ON TWO LETTER IDENTITIES IN LIE RINGS

BORIS BARANOV, SERGEI O. IVANOV, AND SAVELII NOVIKOV

ABSTRACT. Let $L = L(a, b)$ be a free Lie ring on two letters a, b. We investigate the kernel I of the map $L \oplus L \to L$ given by $(A, B) \mapsto [A, a] + [B, b]$. Any homogeneous element of L of degree ≥ 2 can be presented as $[A, a] + [B, b]$. Then I measures how far such a presentation from being unique. Elements of I can be interpreted as identities $[A(a, b), a] = [B(a, b), b]$ in Lie rings. The kernel I can be decomposed into a direct sum $I = \bigoplus_{n,m} I_{n,m}$, where elements of $I_{n,m}$ correspond to identities on commutators of weight $n+m$, where the letter a occurs n times and the letter b occurs m times. We give a full description of $I_{2,m}$; describe the rank of $I_{3,m}$; and present a concrete non-trivial element in $I_{3,3n}$ for $n \geq 1$.

INTRODUCTION

It is easy to check that the following identity is satisfied in any Lie ring (=Lie algebra over \mathbb{Z})

(1)
$$
[a, b, b, a] = [a, b, a, b],
$$

where $[x_1, \ldots, x_n]$ is the left-normed bracket of elements x_1, \ldots, x_n defined by recursion $[x_1, \ldots, x_n]$:= $[[x_1, \ldots, x_{n-1}], x_n]$. We denote by $[a, i]$ the Engel brackets of a, b :

$$
[a, b] = a, \qquad [a, i+1 b] = [[a, i b], b].
$$

For example, $[a, b] = [a, b, b, b]$. In [\[1\]](#page-7-0) the second author together with Roman Mikhailov generalized the identity [\(1\)](#page-0-0) as follows

(2)
$$
[[a, a, b], a] = \left[\sum_{i=0}^{n-1} (-1)^i [[a, a_{n-1-i}, b], [a, b]], b\right],
$$

where $n \geq 1$. This identity is crucial in their proof that the wedge of two circles $S^1 \vee S^1$ is a Q-bad space in sense of Bousfield-Kan. Note that the letter a occurs twice in each commutator of this identity and the letter b occurs $2n$ times. Moreover, the identity has the form $[A, a] = [B, b]$.

We are interested in identities of the form:

(3)
$$
[A(a,b),a] = [B(a,b),b],
$$

where A and B are some expressions on letters a and b . These identities can be interpreted as an equalities in the free Lie ring $L = L(a, b)$. Note that a description of all identities of such kind would give a full description of the intersection $[L, a] \cap [L, b]$. Consider a Z-linear map

$$
\Theta: L \oplus L \to L,
$$

$$
\Theta(A, B) = [A, a] + [B, b].
$$

Then the problem of describing identities of type [\(3\)](#page-0-1) can be formalised as the problem of describing

$$
I := \text{Ker}(\Theta).
$$

Any homogeneous element of L of degree > 2 can be presented as $[A, a] + [B, b]$. So I measures how far this presentation from being unique. The problem of describing of I is different from the problem formulated on the formal language of identities, because A, B here are not just formal expressions but they are elements of the free Lie ring. For example, the identity $[[b, b], a] = [[a, a], b]$ is not interesting for us because $([b, b], -[a, a]) = (0, 0)$ in I. This work is devoted to the study of I.

The Lie ring L has a natural grading by the weight of a commutator: $L = \bigoplus_{n \geq 1} L_n$. Moreover, $L_n = \bigoplus_{k+m} L_{k,m}$, where $L_{k,m} \subseteq L_{k+m}$ is an abelian group generated by multiple commutators with k letters $\bigoplus_{k+m=n} L_{k,m}$, where $L_{k,m} \subseteq L_{k+m}$ is an abelian group generated by multiple commutators with k letters a and m letters b. We can consider the following restrictions of the map Θ

$$
\Theta_n: L_{n-1} \oplus L_{n-1} \to L_n, \qquad \Theta_{k,l}: L_{k-1,l} \oplus L_{k,l-1} \to L_{k,l}
$$

and set $I_n = \text{Ker}(\Theta_n)$ and $I_{k,l} = \text{Ker}(\Theta_{k,l})$. It is easy to check that

$$
I = \bigoplus_{n \ge 1} I_n, \qquad I_n = \bigoplus_{k+l=n} I_{k,l}.
$$

The main results of the paper are the full description of $I_{2,n}$; the description of the rank of the free abelian group $I_{3,n}$; and the description of a concrete series of elements from $I_{3,3n}$ for any $n \geq 1$.

The rank of a free abelian group X is called "dimension of X" in this paper and it is denoted by dim X. It well known that the dimension of L_n can be computed by the Necklace polynomial

$$
\dim L_n = \frac{1}{n} \sum_{d|n} \mu\left(\frac{n}{d}\right) 2^d,
$$

where μ is the Mobius function.

Since the map Θ_n is an epimorphsm, we obtain

$$
\dim I_n = 2 \cdot \dim L_{n-1} - \dim L_n.
$$

We prove the following

$$
\dim I_{2,m} = \begin{cases} 0, \text{ if } m \text{ is odd} \\ 1, \text{ if } m \text{ is even} \end{cases}, \qquad \dim I_{3,m} = \left\lfloor \frac{m+1}{2} \right\rfloor - \left\lfloor \frac{m-1}{3} \right\rfloor - 1.
$$

(Proposition [1.4,](#page-2-0) Proposition [2.5\)](#page-6-0). For $n \leq 13$ we obtain the following table for dimensions.

The computation of dim $I_{2,m}$ shows that there are no any other elements in $I_{2,m}$ except those that come from the identities [\(2\)](#page-0-2). In particular, all non-trivial identities corresponding to elements of $I_{2,n}$ have even weight.

Note that $I_n = 0$ for odd $n < 9$. This can be interpreted as the fact that there is no a non-trivial identity of the type $[A, a] = [B, b]$ on two letters of odd weight lesser than 9. However, we have found a non-trivial identity of this type of weight 9 (Theorem [2.8\)](#page-6-1). If we set

$$
C_n = [a_n, b],
$$

then the following identity of weight 9 holds in any Lie ring

(4)
$$
[2[C_5, C_1] + 5[C_4, C_2], a] = [2[C_4, C_1, C_0] + 3[C_3, C_2, C_0] - 2[C_3, C_1, C_1] + [C_2, C_1, C_2], b].
$$

The main result of this paper is a concrete series of identities that correspond to non-trivial elements in $I_{3,3n}$ that generalise the identity [\(4\)](#page-1-0) (Theorem [2.3\)](#page-3-0). Namely, for any $n \geq 1$, the following identity is satisfied in $L_{3,3n}$.

$$
\left[\sum_{k=0}^{\left\lfloor\frac{n+1}{2}\right\rfloor}(-1)^{n+1}\alpha_{n+1-k,k}[C_{2n+1-k},C_{n+k-1}],a\right]=\left[\sum_{i=0}^{n}\sum_{j=0}^{\left\lfloor\frac{i}{2}\right\rfloor}(-1)^{i+1}\alpha_{i-j,j}[C_{n+i-j},C_{n+j-1},C_{n-i}],b\right],
$$

where $\alpha_{0,0} = 1$ and $\alpha_{i,j} = 2\binom{i+j-1}{j} + \binom{i+j-2}{j-1} - \binom{i+j-2}{j-2} - 2\binom{i+j-1}{j-2}$ for $i, j \ge 0$ and $(i, j) \ne (0, 0)$. For $n = 2$ we obtain the identity [\(4\)](#page-1-0). For $n = 1$ we obtain the identity

$$
[3[a, b, b, [a, b]] + 2[a, b, b, a], a] = [-[a, b, a, [a, b]] + 2[a, b, b, a, a], b]
$$

that holds in any Lie ring.

1. IDENTITIES CORRESPONDING TO ELEMENTS IN $I_{2,m}$

Definition 1.1. If w is a Lyndon word, we denote by $[w]$ the corresponding element of the Lyndon-Shirshov basis of the free Lie algebra L (see [\[2\]](#page-7-1)). If w is a letter, then $[w] = w$. If w is not a letter then w has a standard factorisation $w = uv$ and $[w]$ is defined by recursion $[w] = [[u], [v]]$. For example, $[a] = a$ and $[ab^{n}] = [[ab^{n-1}], b] = C_n.$

Lemma 1.2. The following set is a basis of $L_{2,n}$ with $n \in \mathbb{N}$.

$$
\{ [C_k, C_l] \mid k > l, k + l = n \ k, l, m \in \mathbb{N} \}.
$$

Proof. The intersection of the Lyndon-Shirshov basis with $L_{k,m}$ is a basis of $L_{k,m}$. The basis of $L_{2,m}$ consists of commutators of Lyndon words with 2 letters "a" and m letters "b".

$$
[ab^{l}ab^{k}] = [[ab^{l}],[ab^{k}]] = -[[ab^{l}],[ab^{k}]] = -[C_{k},C_{l}].
$$

Word ab^lab^k is a Lyndon word only when $k > l$. The assertion follows.

Lemma 1.3. For any $n \in \mathbb{N}$ the following is satisfied:

$$
\dim L_{2,n} = \left\lceil \frac{n}{2} \right\rceil = \left\lfloor \frac{n+1}{2} \right\rfloor.
$$

Proof. Consider the basis from lemma [1.2.](#page-1-1) Hence $L_{2,n} = \langle \{[C_{n_1}, C_{n_2}] | n_1, n_2 \in \mathbb{N}_0, n_1 > n_2 \text{ and } n_1 + n_2 = \emptyset, n_1 + n_2 = \$ n . Total number of words with 2 letters a and n letters b starting with a is $n + 1$. However, in our case $n_1 > n_2$. Hence for odd *n* number of such commutators is $\frac{n+1}{2}$ and for even *n* it is $\frac{n}{2}$.

Proposition 1.4. For any $m \in \mathbb{N}$ we have

$$
\dim\,I_{2,m}=\begin{cases} 0,\ if\ m\ is\ odd\\ 1,\ if\ m\ is\ even. \end{cases}
$$

Proof. By definition, $I_{2,m} = \text{Ker } \Theta_{2,m}$. Then $\dim I_{2,m} = \dim(\ker \Theta_{2,m}) = \dim(L_{1,m} \oplus L_{2,m-1}) - \dim(\text{Im } \Theta_{2,m}) =$ $\dim(L_{1,m} \oplus L_{2,m-1}) - \dim L_{2,m} = \dim L_{1,m} + \dim L_{2,m-1} - \dim L_{2,m} = 1 + \dim L_{2,m-1} - \dim L_{2,m}$ $1+\left\lfloor \frac{m}{2} \right\rfloor - \left\lfloor \frac{m+1}{2} \right\rfloor$ (see lemma [1.3\)](#page-2-1). Let m be even, then $\dim I_{2,m} = 1 + \frac{m}{2} - \left\lfloor \frac{m}{2} - \frac{1}{2} \right\rfloor = 1 + \frac{m}{2} - \frac{m}{2} = 1$. Consider the case of odd m. Then dim $I_{2,m} = 1 + \left\lceil \frac{m-1}{2} \right\rceil - \frac{m+1}{2} = 1 + \frac{m}{2} - \frac{1}{2} - \frac{m}{2} - \frac{1}{2} = 0.$ \Box

Theorem 1.5. For any $m \in \mathbb{N}$ the following is satisfied

$$
I_{2,m} = \begin{cases} 0, \text{ if } m \text{ is odd} \\ \langle (C_m, \sum_{i=1}^{\frac{m}{2}} (-1)^i [C_{m-i}, C_{i-1}] \rangle \rangle, \text{ if } m \text{ is even.} \end{cases}
$$

Proof. Triviality of the kernel for odd m can be easily proven using lemma [1.3.](#page-2-1) Consider the case when m is even. Then basis of $L_{1,m}$ consists of one element $[ab^m]$, i.e. $L_{1,m} = {\alpha[ab^m] | \alpha \in \mathbb{Z}}$. Basis of $L_{2,m-1}$ consists of $\lfloor \frac{m}{2} \rfloor$ elements (according to lemma [1.3\)](#page-2-1). Because m is even $\lfloor \frac{m}{2} \rfloor = \frac{m}{2}$. Hence the following equality is true

$$
L_{2,m-1} = \left\{ \alpha_1 [aab^{m-1}] + \alpha_2 [abab^{m-2}] + \cdots + \alpha_{\frac{m}{2}} [ab^{\frac{m}{2}-1}ab^{m-\frac{m}{2}}] \mid \alpha_1, \alpha_2, \ldots, \alpha_{\frac{m}{2}} \in \mathbb{Z} \right\}.
$$

By definition, $I_{2,m} = \ker \Theta_{2,m}$. We can apply map $\Theta_{2,m}$ to arbitrary element of $L_{1,m} \oplus L_{2,m-1}$ that is expressed as basis elements and equate the obtained to zero. Jacobi identity implies the following

$$
[[ab^{n}ab^{m}],b] = [[ab^{n+1}], [ab^{m}]] + [ab^{n}ab^{m+1}].
$$

We can use this equality to transform an image of an element from $L_{2,m-1}$.

$$
\Theta_{2,m}\left(\alpha[ab^m], \sum_{i=1}^{\frac{m}{2}} \alpha_i[ab^{i-1}ab^{m-i}] \right) = \alpha[[ab^m], a] + \sum_{i=1}^{\frac{m}{2}} \alpha_i[[ab^{i-1}ab^{m-i}], b] =
$$

= $-\alpha[a, [ab^m]] + \sum_{i=1}^{\frac{m}{2}} \alpha_i ([[ab^i], [ab^{m-i}]] + [ab^{i-1}ab^{m-i+1}]) =$

For all $i \neq \frac{m}{2}$ commutator $[[ab^i], [ab^{m-i}]] = [ab^iab^{m-i}]$. Then the sum can be rewritten as follows

$$
= -\alpha [aab^m] + \alpha_1 [abab^{m-1}] + \alpha_1 [aab^m] + \alpha_2 [ab^2ab^{m-2}] + \alpha_2 [abab^{m-1}] + \cdots + \alpha_{i-1} [ab^{i-1}ab^{m-i+1}] +
$$

+
$$
\alpha_{i-1} [[ab^{i-2}ab^{m-i+2}]] + \alpha_i [ab^iab^{m-i}] + \alpha_i [ab^{i-1}ab^{m-i+1}] + \alpha_{i+1} [ab^{i+1}ab^{m-i+1}] + \alpha_{i+1} [ab^iab^{m-i}] + \cdots +
$$

+
$$
\alpha_{\frac{m}{2}} [[ab^{\frac{m}{2}}], [ab^{m-\frac{m}{2}}]] + \alpha_{\frac{m}{2}} [ab^{\frac{m}{2}-1}ab^{m-\frac{m}{2}+1}] = 0.
$$

Last but one element of sum is equals to 0 because $\alpha_{\frac{m}{2}}[[ab^{\frac{m}{2}}],[ab^{m-\frac{m}{2}}]]=\alpha_{\frac{m}{2}}[[ab^{\frac{m}{2}}],[ab^{\frac{m}{2}}]]=0$. It is easy to see that for equality we need such coefficients α and α_i that terms of the sum will be reduced. Let $\alpha = 1$, hence $\alpha_1 = 1$ because we need $-\alpha [aab^m]$ and $\alpha_1 [aab^m]$ to be reduced. Other coefficients can be obtained similarly. Commutators with coefficients α_i and α_{i+1} will be reduced. Hence ker $\Theta_{2,m}$ is generated by element $[ab^m]$ = C_m and sum $[aab^{m-1}] - [abab^{m-2}] + \cdots \mp [ab^{\frac{m}{2}-1}ab^{m-\frac{m}{2}+1}] \pm [ab^{\frac{m}{2}}ab^{m-\frac{m}{2}}] = \sum_{i=1}^{\frac{m}{2}}(-1)^{i+1}[ab^{i-1}ab^{m-i}] =$ $=\sum_{i=1}^{\frac{m}{2}}(-1)^{i+1}[[ab^{i-1}],[ab^{m-i}]] = \sum_{i=1}^{\frac{m}{2}}(-1)^{i}[[ab^{m-i}],[ab^{i-1}]] = \sum_{i=1}^{\frac{m}{2}}(-1)^{i}[C_{m-i},C_{i-1}]$

2. IDENTITIES CORRESPONDING TO ELEMENTS IN $I_{3,m}$

Lemma 2.1. For any $n \in \mathbb{N}$ the following set is a basis of $L_{3,n}$.

 $\{[C_k, C_l, C_m] \mid k > l, k \ge m, k + l + m = n \ k, l, m \in \mathbb{N}_0 \}.$

Proof. Lyndon words commutators of length $n + 3$ with 3 letters "a" and n letters "b" construct the basis of $L_{3,n}$. It is easy to prove that $ab^iab^jab^t$ is a Lyndon word if and only if $i \leq j$ and $i < t$, where $i, j, t \in \mathbb{N}_0$. Consider two cases:

- (1) $j < t$ then $[ab^iab^jab^t] = [[ab^i],[ab^jab^t]] = [[ab^i],[[ab^j],[ab^j]] = [[ab^t],[ab^j],[ab^j]] = [C_t,C_j,C_i]$. Take $t = k, j = l, i = m$ then $k > l, k > m$ and $l \geq m$.
- (2) $j \geq t$ then $[ab^iab^jab^t] = [[ab^iab^j],[ab^t]] = [[ab^i],[ab^j],[ab^t]] = [C_i,C_j,C_t] = -[C_j,C_i,C_t]$. Take $j = k, u = l, t = m$ then $k \ge m, l \le k$ and $m > l$. Hence $k \ge m > l$, so $k > l$.

If we unite conditions of both cases, we get $k > l$ and $k \geq m$ for arbitrary $k, l, m \in \mathbb{N}_0$.

$$
\Box
$$

 \Box

2.1. Generalized identity with three letters "a".

Lemma 2.2. For expression $\alpha_{i,j} = 2\binom{i+j-1}{j} + \binom{i+j-2}{j-1} - \binom{i+j-2}{j-2} - 2\binom{i+j-1}{j-2}$, where $i, j \in \mathbb{N}_0$ the following conditions are satisfied:

- 1) $\alpha_{i-1,j} + \alpha_{i,j-1} = \alpha_{i,j}$, when $i \neq j$ and $j \neq 0$
- 2) $\alpha_{i,i-1} = \alpha_{i,i}$, when $i \geq 2$
- 3) $\alpha_{i,o} = 2$, when $i \geq 1$

Proof. We can use the recurrence relation for binomial coefficient to prove the first condition:

$$
\alpha_{i-1,j} + \alpha_{i,j-1} = 2\binom{i+j-2}{j} + \binom{i+j-3}{j-1} - \binom{i+j-3}{j-2} - 2\binom{i+j-2}{j-2} +
$$

+2 $\binom{i+j-2}{j-1} + \binom{i+j-3}{j-2} - \binom{i+j-3}{j-3} - 2\binom{i+j-2}{j-3} = 2\binom{i+j-2}{j} + \binom{i+j-2}{j-1} +$
+ $\binom{i+j-3}{j-1} + \binom{i+j-3}{j-2} - \binom{i+j-3}{j-2} + \binom{i+j-3}{j-3} - 2\binom{i+j-2}{j-2} + \binom{i+j-2}{j-3} =$
= 2 $\binom{i+j-1}{j} + \binom{i+j-2}{j-1} - \binom{i+j-2}{j-2} - 2\binom{i+j-1}{j-2} = \alpha_{i,j}.$

To prove the second condition we can substitute $j = i$ into $\alpha_{i,j}$ and express each term using recurrence relation for binomial coefficient:

$$
\alpha_{i,i} = 2\binom{2i-1}{i} + \binom{2i-2}{i-1} - \binom{2i-2}{i-2} - 2\binom{2i-1}{i-2} =
$$
\n
$$
= 2\binom{2i-2}{i-1} + 2\binom{2i-2}{i} + \binom{2i-3}{i-2} + \binom{2i-3}{i-1} - \binom{2i-3}{i-3} - \binom{2i-3}{i-2} - 2\binom{2i-2}{i-3} - 2\binom{2i-2}{i-2} =
$$
\n
$$
= \alpha_{i,i-1} + 2\binom{2i-2}{i} + \binom{2i-3}{i-1} - \binom{2i-3}{i-2} - 2\binom{2i-2}{i-2}.
$$

All we need to prove now is that $2\binom{2i-2}{i} + \binom{2i-3}{i-1} - \binom{2i-3}{i-2} - 2\binom{2i-2}{i-2} = 0$. Using symmetric property of binomial coefficient, i.e. $\binom{n}{k} = \binom{n}{n-k}$, all terms will be reduced:

$$
2\binom{2i-2}{i} + \binom{2i-3}{i-1} - \binom{2i-3}{i-2} - 2\binom{2i-2}{i-2} = \binom{2i-3}{i-2} + 2\binom{2i-2}{i-2} - \binom{2i-3}{i-2} - 2\binom{2i-2}{i-2} = 0.
$$

Consider the case, when $j = 0$. We need to mention that for $k < 0$ binomial coefficient $\binom{n}{k} = 0$. Then the expression will be as follows.

$$
\alpha_{i,0} = 2\binom{i-1}{0} + \binom{i-2}{-1} - \binom{i-2}{-2} - 2\binom{i-1}{-2} = 2\binom{i-1}{0} = 2.
$$

Theorem 2.3. For any $n \in \mathbb{N}$, the following identity is satisfied in $L_{3,3n}$.

$$
\left[\sum_{k=0}^{\left\lfloor\frac{n+1}{2}\right\rfloor}(-1)^{n+1}\alpha_{n+1-k,k}[C_{2n+1-k},C_{n+k-1}],a\right] = \left[\sum_{i=0}^{n}\sum_{j=0}^{\left\lfloor\frac{i}{2}\right\rfloor}(-1)^{i+1}\alpha_{i-j,j}[C_{n+i-j},C_{n+j-1},C_{n-i}],b\right],
$$

where $\alpha_{0,0} = 1$ and $\alpha_{i,j} = 2\binom{i+j-1}{j} + \binom{i+j-2}{j-1} - \binom{i+j-2}{j-2} - 2\binom{i+j-1}{j-2}$, where $i, j \in \mathbb{N}$.

Proof. Consider $n, k \in \mathbb{N}$. Lets prove the following identity for any $k \leq n$:

$$
\left[\sum_{i=0}^{k} \sum_{j=0}^{\lfloor \frac{i}{2} \rfloor} (-1)^{i+1} \alpha_{i-j,j} [C_{n+i-j}, C_{n+j-1}, C_{n-i}], b\right] = \sum_{t=0}^{\lfloor \frac{k+1}{2} \rfloor} (-1)^{k+1} \alpha_{k+1-t,t} [C_{n+k+1-t}, C_{n-1+t}, C_{n-k}].
$$

Denote the left part as ω_k and the right part as θ_k . We will prove this equality using mathematical induction with variable k .

1 We can expand the sum and use lemma [2.2](#page-3-1) $\omega_1 = [-\alpha_{0,0}[C_n, C_{n-1}, C_n] + \alpha_{1,0}[C_{n+1}, C_{n-1}, C_{n-1}], b] = -1[C_n, C_{n-1}, C_n, b] + 2[C_{n+1}, C_{n-1}, C_{n-1}, b] = -1[C_n, C_{n-1}, C_n, b]$ $= -1[C_{n+1}, C_{n-1}, C_n]+1[C_{n+1}, C_n, C_{n-1}]+2[C_{n+1}, C_{n-1}, C_n]+2[C_{n+2}, C_{n-1}, C_{n-1}]+2[C_{n+1}, C_{n-1}, C_{n-1}]=$ $= 2[C_{n+2}, C_{n-1}, C_{n-1}] + 3[C_n, C_{n-1}, C_n] = \alpha_{2,0}[C_{n+2}, C_{n-1}, C_{n-1}] + \alpha_{1,1}[C_n, C_{n-1}, C_n] = \theta_1$

2 We need to prove that $\omega_k = \theta_k$ implies $\omega_{k+1} = \theta_{k+1}$. We can expand ω_{k+1} as a sum of ω_k and the last element of the first sum in ω_{k+1} :

$$
\omega_{k+1} = \underbrace{\omega_k}_{\theta_k} + \left[\sum_{j=0}^{\left\lfloor \frac{k+1}{2} \right\rfloor} (-1)^{k+2} \alpha_{k+1-j,j} [C_{n+k+1-j}, C_{n+j-1}, C_{n-k-1}], b \right]
$$

By expanding the commutator as follows $[C_{n+k+1-j}, C_{n+j-1}, C_{n-k-1}, b] = [C_{n+k+2-j}, C_{n+j-1}, C_{n-k-1}, b] +$ $[C_{n+k+1-j}, C_{n+j}, C_{n-k-1}, b] + [C_{n+k+1-j}, C_{n+j-1}, C_{n-k}, b]$, we can express the second term as three different sums. One of them will be reduced by θ_k .

$$
\omega_{k+1} = \sum_{t=0}^{\left\lfloor \frac{k+1}{2} \right\rfloor} (-1)^{k+1} \alpha_{k+1-t,t} [C_{n+k+1-t}, C_{n-1+t}, C_{n-k}] + \sum_{j=0}^{\left\lfloor \frac{k+1}{2} \right\rfloor} (-1)^{k+2} \alpha_{k+1-j,j} [C_{n+k+2-j}, C_{n+j-1}, C_{n-k-1}] +
$$

\n
$$
+ \sum_{j=0}^{\left\lfloor \frac{k+1}{2} \right\rfloor} (-1)^{k+2} \alpha_{k+1-j,j} [C_{n+k+1-j}, C_{n+j}, C_{n-k-1}] + \sum_{j=0}^{\left\lfloor \frac{k+1}{2} \right\rfloor} (-1)^{k+2} \alpha_{k+1-j,j} [C_{n+k+1-j}, C_{n+j-1}, C_{n-k}] =
$$

\n
$$
= \sum_{j=0}^{\left\lfloor \frac{k+1}{2} \right\rfloor} (-1)^{k+2} \alpha_{k+1-j,j} [C_{n+k+2-j}, C_{n+j-1}, C_{n-k-1}] + \sum_{j=0}^{\left\lfloor \frac{k+1}{2} \right\rfloor} (-1)^{k+2} \alpha_{k+1-j,j} [C_{n+k+1-j}, C_{n+j}, C_{n-k-1}]
$$

Denote commutators in sums as a_j and b_j correspondingly. We can show that for any $j \geq 0$ it is satisfied that $a_{j+1} = b_j$.

$$
a_{j+1} = [C_{n+k+2-j-1}, C_{n+j+1-1}, C_{n-k-1}] = [C_{n+k+1-j}, C_{n+j}, C_{n-k-1}] = b_j.
$$

Because of that, the expression can be written as a sum of a_0 , $b_{\lfloor \frac{k+1}{2} \rfloor}$ with corresponding coefficients and one sum on index j with summed coefficients.

$$
\omega_{k+1} = \sum_{j=0}^{\left\lfloor \frac{k+1}{2} \right\rfloor - 1} (-1)^{k+2} (\alpha_{k-j,j+1} + \alpha_{k+1-j,j}) [C_{n+k+1-j}, C_{n+j}, C_{n-k-1}] + (-1)^{k+2} \alpha_{k+1,0} [C_{n+k+2}, C_{n-1}, C_{n-k-1}] -
$$

$$
+ (-1)^{k+2} \alpha_{k+1-\left\lfloor \frac{k+1}{2} \right\rfloor, \left\lfloor \frac{k+1}{2} \right\rfloor} [C_{n+k+1-\left\lfloor \frac{k+1}{2} \right\rfloor}, C_{n+\left\lfloor \frac{k+1}{2} \right\rfloor}, C_{n-k-1}].
$$

Coefficients of commutators, in obtained sum on index j , can be transformed using the first case of lemma [2.2.](#page-3-1) Also, we can change index of sum by subtracting 1 from it. Coefficient of a_0 can be rewritten using the third case of lemma [2.2.](#page-3-1) Then $b_{\lfloor \frac{k+1}{2} \rfloor}$ will become a zero element of sum on index j.

$$
\omega_{k+1} = \sum_{j=1}^{\left\lfloor \frac{k+1}{2} \right\rfloor} (-1)^{k+2} \alpha_{k+2-j,j} [C_{n+k+2-j}, C_{n-1+j}, C_{n-k-1}] + (-1)^{k+2} \alpha_{k+2,0} [C_{n+k+2}, C_{n-1}, C_{n-k-1}] +
$$

$$
+ (-1)^{k+2} \alpha_{k+1} \left\lfloor \frac{k+1}{2} \right\rfloor, \left\lfloor \frac{k+1}{2} \right\rfloor} [C_{n+k+1} \left\lfloor \frac{k+1}{2} \right\rfloor, C_{n+\left\lfloor \frac{k+1}{2} \right\rfloor}, C_{n-k-1}] =
$$

$$
= \sum_{j=0}^{\left\lfloor \frac{k+1}{2} \right\rfloor} (-1)^{k+2} \alpha_{k+2-j,j} [C_{n+k+2-j}, C_{n-1+j}, C_{n-k-1}] + (-1)^{k+2} \alpha_{k+1} \left\lfloor \frac{k+1}{2} \right\rfloor, \left\lfloor \frac{k+1}{2} \right\rfloor} b \left\lfloor \frac{k+1}{2} \right\rfloor.
$$

Consider two cases:

1) k is odd. Then $\lfloor \frac{k+2}{2} \rfloor = \lfloor \frac{k+1}{2} + \frac{1}{2} \rfloor = \frac{k+1}{2} + \lfloor \frac{1}{2} \rfloor = \frac{k+1}{2} = \lfloor \frac{k+1}{2} \rfloor$, hence $b_{\lfloor \frac{k+1}{2} \rfloor} = 0$. It is true because $b_{\lfloor \frac{k+1}{2} \rfloor} = [C_{n+k+1-\frac{k+1}{2}}, C_{n+\frac{k+1}{2}}, C_{n-k-1}] = [0, C_{n-k-1}] = 0$. Consequently ω_{k+1} can be expressed as follows. $\omega_{k+1} =$ $\frac{\left\lfloor \frac{k+2}{2} \right\rfloor}{\sum}$ $(-1)^{k+2} \alpha_{k+2-j,j}$ $[C_{n+k+2-j}, C_{n-1+j}, C_{n-k-1}] = \theta_{k+1}.$

2) k is even. Then $\left\lfloor \frac{k+2}{2} \right\rfloor = \frac{k+2}{2} = \left\lfloor \frac{k}{2} \right\rfloor + 1 = \left\lfloor \frac{k+1}{2} \right\rfloor + 1$, hence $\alpha_{k+2-\left\lfloor \frac{k+2}{2} \right\rfloor, \left\lfloor \frac{k+2}{2} \right\rfloor} = \alpha_{\left\lfloor \frac{k+1}{2} \right\rfloor + 1, \left\lfloor \frac{k+1}{2} \right\rfloor}$ because of the second case of lemma [2.2.](#page-3-1) It is important to mention that $\left\lfloor \frac{k+1}{2} \right\rfloor = \left\lfloor \frac{k}{2} + \frac{1}{2} \right\rfloor = \frac{k}{2}$. Hence $\alpha_{k+1-\left\lfloor\frac{k+1}{2}\right\rfloor,\left\lfloor\frac{k+1}{2}\right\rfloor}=\alpha_{\frac{k+1}{2},\left\lfloor\frac{k+1}{2}\right\rfloor+\left\lfloor\frac{k+1}{2}\right\rfloor}$. We can express θ_{k+1} as a sum up to $\left\lfloor\frac{k+2}{2}\right\rfloor-1=\left\lfloor\frac{k+1}{2}\right\rfloor$ and the last addendum with $j = \lfloor \frac{k+2}{2} \rfloor = \lfloor \frac{k+1}{2} \rfloor + 1$:

$$
\theta_{k+1} = \sum_{j=0}^{\left\lfloor \frac{k+1}{2} \right\rfloor} (-1)^{k+2} \alpha_{k+2-j,j} [C_{n+k+2-j}, C_{n-1+j}, C_{n-k-1}] +
$$

+
$$
(-1)^{k+2} \alpha_{k+2-\left\lfloor \frac{k+2}{2} \right\rfloor, \left\lfloor \frac{k+2}{2} \right\rfloor} [C_{n+k+2-\left\lfloor \frac{k+1}{2} \right\rfloor-1}, C_{n-1+\left\lfloor \frac{k+1}{2} \right\rfloor+1}, C_{n-k-1}] =
$$

=
$$
\sum_{j=0}^{\left\lfloor \frac{k+1}{2} \right\rfloor} (-1)^{k+2} \alpha_{k+2-j,j} [C_{n+k+2-j}, C_{n-1+j}, C_{n-k-1}] + (-1)^{k+2} \alpha_{k+1-\left\lfloor \frac{k+1}{2} \right\rfloor, \left\lfloor \frac{k+1}{2} \right\rfloor} b_{\left\lfloor \frac{k+1}{2} \right\rfloor} = \omega_{k+1}
$$

Consequently, the identity above is satisfied for any $n, k \in \mathbb{N}$, such that $k \leq n$. If we substitute $k = n$, we will get the original identity. \square

2.2. Additional results.

Lemma 2.4. For any $n \in \mathbb{N}$ the following is satisfied:

 $j=0$

$$
\dim L_{3,n} - \dim L_{3,n-1} = \left\lfloor \frac{n-1}{3} \right\rfloor + 1.
$$

Proof. To calculate this expression, we need to count all Lyndon words of form $ab^{n_1}ab^{n_2}ab^{n_3}$, where $n_1, n_2, n_3 \in$ \mathbb{N}_0 and $n_1 + n_2 + n_3 = n$. Let $n_1 = i$ and $n_2 = j$, hence $n_3 = n - i - j$. As it was mentioned before, $ab^{n_1}ab^{n_2}ab^{n_3}$ is a Lyndon word if and only if $n_1 \leq n_2$ and $n_1 < n_3$, where $n_1, n_2, n_3 \in \mathbb{N}$. We can portray integer points that satisfy these conditions on coordinate plane by drawing plots of functions $y = x$ and $y = n - 2x$.

Abscissa of functions intersection point is $\frac{n}{3}$. $ab^iab^jab^{n-i-j}$ is a Lyndon word if point (i, j) belongs to $\triangle ABC$ (without point on the line $y = n - 2x$). Then dim $L_{3,n}$ equals to number of integer points in $\triangle DEC$. Hence $\dim L_{3,n} - \dim L_{3,n-1}$ equals to number of integer points on segment DE , i.e. $\lfloor \frac{n-1}{3} \rfloor + 1$.

Proposition 2.5. For any $m \in \mathbb{N}$ the following is satisfied:

$$
\dim I_{3,m} = \left\lceil \frac{m}{2} \right\rceil - \left\lfloor \frac{m-1}{3} \right\rfloor - 1.
$$

Proof. By definition, $I_{3,m} = \text{ker } \Theta_{3,m}$. Hence, according to lemmas [1.4](#page-2-0) and [2.4,](#page-5-0) dim $I_{3,m} = \text{dim }\text{ker } \Theta_{3,m}$ dim $(L_{2,m} \oplus L_{3,m-1}) - \dim L_{3,m} = \dim L_{2,m} - (\dim L_{3,m} - \dim L_{3,m-1}) = \left\lceil \frac{m}{2} \right\rceil - \left\lfloor \frac{m-1}{3} \right\rfloor - 1.$

Lemma 2.6. For $k > l$, $k \geq m$ the following is satisfied:

$$
[C_k, C_l, C_m, b] = \begin{cases} [C_{k+1}, C_l, C_m] + [C_k, C_{l+1}, C_m] + [C_k, C_l, C_{m+1}], if k > l+1, k \ge m+1 \\ [C_{k+1}, C_l, C_m] + [C_k, C_l, C_{m+1}], if k = l+1, k \ge m+1 \\ 2[C_{k+1}, C_l, C_m] - [C_{k+1}, C_{l+1}, C_{m-1}], if k = l+1, k = m \\ 2[C_{k+1}, C_l, C_m] + [C_k, C_{l+1}, C_m] - [C_{k+1}, C_k, C_l], if k > l+1, k = m. \end{cases}
$$

Proof. It is easy to rewrite the expression in the first case using Jacobi identity:

 $[C_k, C_l, C_m, b] = [C_k, C_l, b, C_m] + [C_k, C_l, [C_m, b]] = [C_{k+1}, C_l, C_m] + [C_k, C_{l+1}, C_m] + [C_k, C_l, C_{m+1}].$

Second case:

$$
[C_k, C_l, C_m, b] = [C_{l+2}, C_l, C_m] + [C_{l+1}, C_{l+1}, C_m] + [C_{l+1}, C_l, C_{m+1}] = [C_{k+1}, C_l, C_m] + [C_k, C_l, C_{m+1}].
$$

Third case:

$$
[C_k, C_l, C_m, b] = [C_{k+1}, C_l, C_m] + [C_k, C_l, C_{m+1}] = [C_{k+1}, C_l, C_m] + [C_k, C_{m+1}, C_l] + [C_{m+1}, C_l, C_k] =
$$

= 2[C_{k+1}, C_l, C_m] - [C_{k+1}, C_{l+1}, C_{m-1}].

Fourth case:

$$
[C_k, C_l, C_m, b] = [C_{k+1}, C_l, C_m] + [C_k, C_{l+1}, C_m] + [C_k, C_l, C_{m+1}] = [C_{k+1}, C_l, C_m] + [C_k, C_{l+1}, C_m] +
$$

+
$$
[C_k, C_{m+1}, C_l] - [C_l, C_{m+1}, k] = [C_{k+1}, C_l, C_m] + [C_k, C_{l+1}, C_m] + [C_k, C_{m+1}, C_l] - [C_l, C_{m+1}, k] =
$$

=
$$
2[C_{k+1}, C_l, C_m] + [C_k, C_{l+1}, C_m] - [C_{k+1}, C_k, C_l].
$$

 \Box

Theorem 2.7. The kernel of $\Theta_{3,3}$ is generated by the following element:

$$
(3[C_2, C_1] + 2[C_3, C_0], [C_1, C_0, C_1] - 2[C_2, C_0, C_0]).
$$

Proof. According to lemma [2.5](#page-6-0) dim $I_{3,3} = \left[\frac{3}{2}\right] - \left[\frac{2}{3}\right] - 1 = 1$. Consequently, we have to provide only one identity to describe the whole $I_{3,3}$. Substitute $n = 1$ into identity from theorem [2.3:](#page-3-0)

$$
[\alpha_{2,0}[C_3,C_0]+\alpha_{1,1}[C_2,C_1],a] = [-\alpha_{0,0}[C_1,C_0,C_1]+\alpha_{1,0}[C_2,C_0,C_0],b].
$$

By definition of $\alpha_{i,j}$, $\alpha_{2,0} = 2$, $\alpha_{1,1} = 3$, $\alpha_{0,0} = 1$ and $\alpha_{1,0} = 2$. We can move right part of the equality to the left side and it will become an image of the element from $L_{2,3} \oplus L_{3,2}$:

 $[2[C_3,C_0]+3[C_2,C_1],a]+[[C_1,C_0,C_1]-2[C_2,C_0,C_0],b]=\Theta_{3,3}(2[C_3,C_0]+3[C_2,C_1],[C_1,C_0,C_1]-2[C_2,C_0,C_0])=0$ As a result, we obtained the element that generates all identities in $L_{3,3}$ that is equivalent to description of $I_{3,3}.$

Theorem 2.8. The abelian group $I_{3,6}$ is generated by the following element

$$
(-2[C_5, C_1] - 5[C_4, C_2], 2[C_4, C_1, C_0] + 3[C_3, C_2, C_0] - 2[C_3, C_1, C_1] + [C_2, C_1, C_2])
$$

Proof. Similarly to proof of the theorem [2.7.](#page-6-2) $\dim I_{3,6} = \lceil \frac{6}{2} \rceil - \lfloor \frac{5}{3} \rfloor - 1 = 1$. Substitute $n = 2$ into identity from theorem [2.3:](#page-3-0)

$$
[-\alpha_{3,0}[C_5,C_1]-\alpha_{2,1}[C_4,C_2],a] = [-\alpha_{0,0}[C_2,C_1,C_2]+\alpha_{1,0}[C_3,C_1,C_1]-\alpha_{2,0}[C_4,C_1,C_0]-\alpha_{1,1}[C_3,C_2,C_0],b].
$$

Coefficients will be $\alpha_{3,0} = 2$, $\alpha_{2,1} = 5$, $\alpha_{0,0} = 1$, $\alpha_{1,0} = 2$, $\alpha_{2,0} = 2$ and $\alpha_{1,1} = 3$. Again, we've found an element of $L_{2,6} \oplus L_{3,5}$ that generates all possible identities. Coefficients in the right part will be multiplied by −1 because of moving to the left side.

REFERENCES

[1] Sergei O. Ivanov, Roman Mikhailov: A finite Q–bad space. [arXiv:1708.00282](http://arxiv.org/abs/1708.00282)

[2] C. Reutenauer: Free Lie algebras, Oxford University Press, 1993

Laboratory of Continuous Mathematical Education (School 564 of St. Petersburg), nab. Obvodnogo kanala 143, Saint Petersburg, Russia.

E-mail address: BBBOOORRRIIISSS@mail.ru

Laboratory of Modern algebra and Applications, St. Petersburg State University, 14th Line, 29b, Saint Petersburg, 199178 Russia.

E-mail address: ivanov.s.o.1986@gmail.com

LABORATORY OF CONTINUOUS MATHEMATICAL EDUCATION (SCHOOL 564 OF ST. PETERSBURG), NAB. OBVODNOGO KANALA 143, Saint Petersburg, Russia.

E-mail address: novikov.savelii00@gmail.com