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Abstract. Let L = L(a, b) be a free Lie ring on two letters a, b. We investigate the kernel I of the map

L⊕L→ L given by (A,B) 7→ [A, a] + [B, b]. Any homogeneous element of L of degree ≥ 2 can be presented

as [A, a] + [B, b]. Then I measures how far such a presentation from being unique. Elements of I can be
interpreted as identities [A(a, b), a] = [B(a, b), b] in Lie rings. The kernel I can be decomposed into a direct

sum I =
⊕

n,m In,m, where elements of In,m correspond to identities on commutators of weight n + m,

where the letter a occurs n times and the letter b occurs m times. We give a full description of I2,m; describe

the rank of I3,m; and present a concrete non-trivial element in I3,3n for n ≥ 1.

Introduction

It is easy to check that the following identity is satisfied in any Lie ring (=Lie algebra over Z)

(1) [a, b, b, a] = [a, b, a, b],

where [x1, . . . , xn] is the left-normed bracket of elements x1, . . . , xn defined by recursion [x1, . . . , xn] :=
[[x1, . . . , xn−1], xn]. We denote by [a,i b] the Engel brackets of a, b :

[a,0 b] = a, [a,i+1 b] = [[a,i b], b].

For example, [a,3 b] = [a, b, b, b]. In [1] the second author together with Roman Mikhailov generalized the
identity (1) as follows

(2) [[a,2n b], a] =

[
n−1∑
i=0

(−1)i[[a,2n−1−i b], [a,i b]] , b

]
,

where n ≥ 1. This identity is crucial in their proof that the wedge of two circles S1 ∨ S1 is a Q-bad space
in sense of Bousfield-Kan. Note that the letter a occurs twice in each commutator of this identity and the
letter b occurs 2n times. Moreover, the identity has the form [A, a] = [B, b].

We are interested in identities of the form:

(3) [A(a, b), a] = [B(a, b), b],

where A and B are some expressions on letters a and b. These identities can be interpreted as an equalities in
the free Lie ring L = L(a, b). Note that a description of all identities of such kind would give a full description
of the intersection [L, a] ∩ [L, b]. Consider a Z-linear map

Θ : L⊕ L→ L,

Θ(A,B) = [A, a] + [B, b].

Then the problem of describing identities of type (3) can be formalised as the problem of describing

I := Ker(Θ).

Any homogeneous element of L of degree ≥ 2 can be presented as [A, a] + [B, b]. So I measures how far
this presentation from being unique. The problem of describing of I is different from the problem formu-
lated on the formal language of identities, because A,B here are not just formal expressions but they are
elements of the free Lie ring. For example, the identity [[b, b], a] = [[a, a], b] is not interesting for us because
([b, b],−[a, a]) = (0, 0) in I. This work is devoted to the study of I.

The Lie ring L has a natural grading by the weight of a commutator: L =
⊕

n≥1 Ln. Moreover, Ln =⊕
k+m=n Lk,m, where Lk,m ⊆ Lk+m is an abelian group generated by multiple commutators with k letters

a and m letters b. We can consider the following restrictions of the map Θ

Θn : Ln−1 ⊕ Ln−1 → Ln, Θk,l : Lk−1,l ⊕ Lk,l−1 → Lk,l

and set In = Ker(Θn) and Ik,l = Ker(Θk,l). It is easy to check that

I =
⊕
n≥1

In, In =
⊕
k+l=n

Ik,l.
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The main results of the paper are the full description of I2,n; the description of the rank of the free abelian
group I3,n; and the description of a concrete series of elements from I3,3n for any n ≥ 1.

The rank of a free abelian group X is called “dimension of X” in this paper and it is denoted by dimX.
It well known that the dimension of Ln can be computed by the Necklace polynomial

dimLn =
1

n

∑
d|n

µ
(n
d

)
2d,

where µ is the Mobius function.

n 1 2 3 4 5 6 7 8 9 10 11 12 13
dimLn 2 1 2 3 6 9 18 30 56 99 186 335 630

Since the map Θn is an epimorphsm, we obtain

dim In = 2 · dim Ln−1 − dim Ln.

We prove the following

dim I2,m =

{
0, if m is odd

1, if m is even
, dim I3,m =

⌊
m+ 1

2

⌋
−
⌊
m− 1

3

⌋
− 1.

(Proposition 1.4, Proposition 2.5). For n ≤ 13 we obtain the following table for dimensions.

n 2 3 4 5 6 7 8 9 10 11 12 13
dim I2,n−2 0 0 1 0 1 0 1 0 1 0 1 0
dim I3,n−3 0 0 0 0 1 0 1 1 1 1 2 1

dim In 3 0 1 0 3 0 6 4 13 12 37 40

The computation of dim I2,m shows that there are no any other elements in I2,m except those that come
from the identities (2). In particular, all non-trivial identities corresponding to elements of I2,n have even
weight.

Note that In = 0 for odd n < 9. This can be interpreted as the fact that there is no a non-trivial identity
of the type [A, a] = [B, b] on two letters of odd weight lesser than 9. However, we have found a non-trivial
identity of this type of weight 9 (Theorem 2.8). If we set

Cn = [a,n b],

then the following identity of weight 9 holds in any Lie ring

(4)
[
2[C5, C1] + 5[C4, C2], a

]
=
[
2[C4, C1, C0] + 3[C3, C2, C0]− 2[C3, C1, C1] + [C2, C1, C2], b

]
.

The main result of this paper is a concrete series of identities that correspond to non-trivial elements in
I3,3n that generalise the identity (4) (Theorem 2.3). Namely, for any n ≥ 1, the following identity is satisfied
in L3,3n.b

n+1
2 c∑

k=0

(−1)n+1αn+1−k,k[C2n+1−k, Cn+k−1] , a

 =

 n∑
i=0

b i
2c∑
j=0

(−1)i+1αi−j,j [Cn+i−j , Cn+j−1, Cn−i] , b

 ,
where α0,0 = 1 and αi,j = 2

(
i+j−1
j

)
+
(
i+j−2
j−1

)
−
(
i+j−2
j−2

)
− 2
(
i+j−1
j−2

)
for i, j ≥ 0 and (i, j) 6= (0, 0). For n = 2

we obtain the identity (4). For n = 1 we obtain the identity

[ 3[a, b, b, [a, b]] + 2[a, b, b, a] , a] = [ −[a, b, a, [a, b]] + 2[a, b, b, a, a] , b]

that holds in any Lie ring.

1. Identities corresponding to elements in I2,m

Definition 1.1. If w is a Lyndon word, we denote by [w] the corresponding element of the Lyndon-Shirshov
basis of the free Lie algebra L (see [2]). If w is a letter, then [w] = w. If w is not a letter then w has
a standard factorisation w = uv and [w] is defined by recursion [w] = [[u], [v]]. For example, [a] = a and
[abn] = [[abn−1], b] = Cn.

Lemma 1.2. The following set is a basis of L2,n with n ∈ N.

{ [Ck, Cl] | k > l, k + l = n k, l,m ∈ N } .
2



Proof. The intersection of the Lyndon-Shirshov basis with Lk,m is a basis of Lk,m. The basis of L2,m consists
of commutators of Lyndon words with 2 letters “a” and m letters “b”.

[ablabk] = [[abl], [abk]] = −[[abl], [abk]] = −[Ck, Cl].

Word ablabk is a Lyndon word only when k > l. The assertion follows. �

Lemma 1.3. For any n ∈ N the following is satisfied:

dimL2,n =
⌈n

2

⌉
=

⌊
n+ 1

2

⌋
.

Proof. Consider the basis from lemma 1.2. Hence L2,n = 〈 {[Cn1 , Cn2 ] |n1, n2 ∈ N0, n1 > n2 and n1 + n2 =
n} 〉. Total number of words with 2 letters a and n letters b starting with a is n + 1. However, in our case
n1 > n2. Hence for odd n number of such commutators is n+1

2 and for even n it is n
2 . �

Proposition 1.4. For any m ∈ N we have

dim I2,m =

{
0, if m is odd

1, if m is even.

Proof. By definition, I2,m = Ker Θ2,m. Then dim I2,m = dim(ker Θ2,m) = dim(L1,m⊕L2,m−1)−dim(Im Θ2,m) =
dim(L1,m ⊕ L2,m−1) − dimL2,m = dimL1,m + dimL2,m−1 − dimL2,m = 1 + dimL2,m−1 − dimL2,m =
1 +

⌊
m
2

⌋
−
⌊
m+1
2

⌋
(see lemma 1.3). Let m be even, then dim I2,m = 1 + m

2 −
⌊
m
2 −

1
2

⌋
= 1 + m

2 −
m
2 = 1.

Consider the case of odd m. Then dim I2,m = 1 +
⌈
m−1
2

⌉
− m+1

2 = 1 + m
2 −

1
2 −

m
2 −

1
2 = 0.

�

Theorem 1.5. For any m ∈ N the following is satisfied

I2,m =

{
0, if m is odd

〈 (Cm,
∑m

2
i=1(−1)i[Cm−i, Ci−1] ) 〉, if m is even.

Proof. Triviality of the kernel for odd m can be easily proven using lemma 1.3. Consider the case when m
is even. Then basis of L1,m consists of one element [abm], i.e. L1,m = {α[abm] | α ∈ Z}. Basis of L2,m−1
consists of

⌊
m
2

⌋
elements (according to lemma 1.3). Because m is even

⌊
m
2

⌋
= m

2 . Hence the following
equality is true

L2,m−1 =
{
α1[aabm−1] + α2[ababm−2] + · · ·+ αm

2
[ab

m
2 −1abm−

m
2 ] | α1, α2, . . . , αm

2
∈ Z

}
.

By definition, I2,m = ker Θ2,m. We can apply map Θ2,m to arbitrary element of L1,m ⊕ L2,m−1 that is
expressed as basis elements and equate the obtained to zero. Jacobi identity implies the following

[[abnabm], b] = [[abn+1], [abm]] + [abnabm+1].

We can use this equality to transform an image of an element from L2,m−1.

Θ2,m

α[abm],

m
2∑
i=1

αi[ab
i−1abm−i]

 = α[[abm], a] +

m
2∑
i=1

αi[[ab
i−1abm−i], b] =

= −α[a, [abm]] +

m
2∑
i=1

αi
(
[[abi], [abm−i]] + [abi−1abm−i+1]

)
=

For all i 6= m
2 commutator [[abi], [abm−i]] = [abiabm−i]. Then the sum can be rewritten as follows

= −α[aabm] + α1[ababm−1] + α1[aabm] + α2[ab2abm−2] + α2[ababm−1] + · · ·+ αi−1[abi−1abm−i+1]+

+αi−1[[abi−2abm−i+2]] + αi[ab
iabm−i] + αi[ab

i−1abm−i+1] + αi+1[abi+1abm−i+1] + αi+1[abiabm−i] + · · ·+
+αm

2
[[ab

m
2 ], [abm−

m
2 ]] + αm

2
[ab

m
2 −1abm−

m
2 +1] = 0.

Last but one element of sum is equals to 0 because αm
2

[[ab
m
2 ], [abm−

m
2 ]] = αm

2
[[ab

m
2 ], [ab

m
2 ]] = 0. It is easy to

see that for equality we need such coefficients α and αi that terms of the sum will be reduced. Let α = 1, hence
α1 = 1 because we need −α[aabm] and α1[aabm] to be reduced. Other coefficients can be obtained similarly.
Commutators with coefficients αi and αi+1 will be reduced. Hence ker Θ2,m is generated by element [abm] =

Cm and sum [aabm−1]− [ababm−2] + · · · ∓ [ab
m
2 −1abm−

m
2 +1]± [ab

m
2 abm−

m
2 ] =

∑m
2
i=1(−1)i+1[abi−1abm−i] =

=
∑m

2
i=1(−1)i+1[[abi−1], [abm−i]] =

∑m
2
i=1(−1)i[[abm−i], [abi−1]] =

∑m
2
i=1(−1)i[Cm−i, Ci−1] �
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2. Identities corresponding to elements in I3,m

Lemma 2.1. For any n ∈ N the following set is a basis of L3,n.

{ [Ck, Cl, Cm] | k > l, k ≥ m, k + l +m = n k, l,m ∈ N0 } .
Proof. Lyndon words commutators of length n + 3 with 3 letters “a” and n letters “b” construct the basis
of L3,n. It is easy to prove that abiabjabt is a Lyndon word if and only if i ≤ j and i < t, where i, j, t ∈ N0.
Consider two cases:

(1) j < t then [abiabjabt] = [[abi], [abjabt]] = [[abi], [[abj ], [abt]]] = [[abt], [abj ], [abi]] = [Ct, Cj , Ci]. Take
t = k, j = l, i = m then k > l, k > m and l ≥ m.

(2) j ≥ t then [abiabjabt] = [[abiabj ], [abt]] = [[abi], [abj ], [abt]] = [Ci, Cj , Ct] = −[Cj , Ci, Ct]. Take
j = k, u = l, t = m then k ≥ m, l ≤ k and m > l. Hence k ≥ m > l, so k > l.

If we unite conditions of both cases, we get k > l and k ≥ m for arbitrary k, l,m ∈ N0. �

2.1. Generalized identity with three letters “a”.

Lemma 2.2. For expression αi,j = 2
(
i+j−1
j

)
+
(
i+j−2
j−1

)
−
(
i+j−2
j−2

)
− 2
(
i+j−1
j−2

)
, where i, j ∈ N0 the following

conditions are satisfied:

1) αi−1,j + αi,j−1 = αi,j, when i 6= j and j 6= 0
2) αi,i−1 = αi,i, when i ≥ 2
3) αi,o = 2, when i ≥ 1

Proof. We can use the recurrence relation for binomial coefficient to prove the first condition:

αi−1,j + αi,j−1 = 2

(
i+ j − 2

j

)
+

(
i+ j − 3

j − 1

)
−
(
i+ j − 3

j − 2

)
− 2

(
i+ j − 2

j − 2

)
+

+ 2

(
i+ j − 2

j − 1

)
+

(
i+ j − 3

j − 2

)
−
(
i+ j − 3

j − 3

)
− 2

(
i+ j − 2

j − 3

)
= 2

((
i+ j − 2

j

)
+

(
i+ j − 2

j − 1

))
+

+

((
i+ j − 3

j − 1

)
+

(
i+ j − 3

j − 2

))
−
((

i+ j − 3

j − 2

)
+

(
i+ j − 3

j − 3

))
− 2

((
i+ j − 2

j − 2

)
+

(
i+ j − 2

j − 3

))
=

= 2

(
i+ j − 1

j

)
+

(
i+ j − 2

j − 1

)
−
(
i+ j − 2

j − 2

)
− 2

(
i+ j − 1

j − 2

)
= αi,j .

To prove the second condition we can substitute j = i into αi,j and express each term using recurrence
relation for binomial coefficient:

αi,i = 2

(
2i− 1

i

)
+

(
2i− 2

i− 1

)
−
(

2i− 2

i− 2

)
− 2

(
2i− 1

i− 2

)
=

= 2

(
2i− 2

i− 1

)
+ 2

(
2i− 2

i

)
+

(
2i− 3

i− 2

)
+

(
2i− 3

i− 1

)
−
(

2i− 3

i− 3

)
−
(

2i− 3

i− 2

)
− 2

(
2i− 2

i− 3

)
− 2

(
2i− 2

i− 2

)
=

= αi,i−1 + 2

(
2i− 2

i

)
+

(
2i− 3

i− 1

)
−
(

2i− 3

i− 2

)
− 2

(
2i− 2

i− 2

)
.

All we need to prove now is that 2
(
2i−2
i

)
+
(
2i−3
i−1
)
−
(
2i−3
i−2
)
− 2
(
2i−2
i−2
)

= 0. Using symmetric property of

binomial coefficient, i.e.
(
n
k

)
=
(
n

n−k
)
, all terms will be reduced:

2

(
2i− 2

i

)
+

(
2i− 3

i− 1

)
−
(

2i− 3

i− 2

)
− 2

(
2i− 2

i− 2

)
=

(
2i− 3

i− 2

)
+ 2

(
2i− 2

i− 2

)
−
(

2i− 3

i− 2

)
− 2

(
2i− 2

i− 2

)
= 0.

Consider the case, when j = 0. We need to mention that for k < 0 binomial coefficient
(
n
k

)
= 0. Then the

expression will be as follows.

αi,0 = 2

(
i− 1

0

)
+

(
i− 2

−1

)
−
(
i− 2

−2

)
− 2

(
i− 1

−2

)
= 2

(
i− 1

0

)
= 2.

�

Theorem 2.3. For any n ∈ N, the following identity is satisfied in L3,3n.b
n+1
2 c∑

k=0

(−1)n+1αn+1−k,k[C2n+1−k, Cn+k−1], a

 =

 n∑
i=0

b i
2c∑
j=0

(−1)i+1αi−j,j [Cn+i−j , Cn+j−1, Cn−i], b

 ,
where α0,0 = 1 and αi,j = 2

(
i+j−1
j

)
+
(
i+j−2
j−1

)
−
(
i+j−2
j−2

)
− 2
(
i+j−1
j−2

)
, where i, j ∈ N.
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Proof. Consider n, k ∈ N. Lets prove the following identity for any k ≤ n: k∑
i=0

b i
2c∑
j=0

(−1)i+1αi−j,j [Cn+i−j , Cn+j−1, Cn−i], b

 =

b k+1
2 c∑
t=0

(−1)k+1αk+1−t,t[Cn+k+1−t, Cn−1+t, Cn−k].

Denote the left part as ωk and the right part as θk. We will prove this equality using mathematical induction
with variable k.

1 We can expand the sum and use lemma 2.2

ω1 = [−α0,0[Cn, Cn−1, Cn] + α1,0[Cn+1, Cn−1, Cn−1], b] = −1[Cn, Cn−1, Cn, b] + 2[Cn+1, Cn−1, Cn−1, b] =

= −1[Cn+1, Cn−1, Cn]+1[Cn+1, Cn, Cn−1]+2[Cn+1, Cn−1, Cn]+2[Cn+2, Cn−1, Cn−1]+2[Cn+1, Cn−1, Cn−1] =

= 2[Cn+2, Cn−1, Cn−1] + 3[Cn, Cn−1, Cn] = α2,0[Cn+2, Cn−1, Cn−1] + α1,1[Cn, Cn−1, Cn] = θ1

2 We need to prove that ωk = θk implies ωk+1 = θk+1. We can expand ωk+1 as a sum of ωk and the
last element of the first sum in ωk+1:

ωk+1 = ωk︸︷︷︸
θk

+

b
k+1
2 c∑
j=0

(−1)k+2αk+1−j,j [Cn+k+1−j , Cn+j−1, Cn−k−1], b


By expanding the commutator as follows [Cn+k+1−j , Cn+j−1, Cn−k−1, b] = [Cn+k+2−j , Cn+j−1, Cn−k−1, b] +
[Cn+k+1−j , Cn+j , Cn−k−1, b]+[Cn+k+1−j , Cn+j−1, Cn−k, b], we can express the second term as three different
sums. One of them will be reduced by θk.

ωk+1 =

b k+1
2 c∑
t=0

(−1)k+1αk+1−t,t[Cn+k+1−t, Cn−1+t, Cn−k]+

b k+1
2 c∑
j=0

(−1)k+2αk+1−j,j [Cn+k+2−j , Cn+j−1, Cn−k−1]+

+

b k+1
2 c∑
j=0

(−1)k+2αk+1−j,j [Cn+k+1−j , Cn+j , Cn−k−1] +

b k+1
2 c∑
j=0

(−1)k+2αk+1−j,j [Cn+k+1−j , Cn+j−1, Cn−k] =

=

b k+1
2 c∑
j=0

(−1)k+2αk+1−j,j [Cn+k+2−j , Cn+j−1, Cn−k−1] +

b k+1
2 c∑
j=0

(−1)k+2αk+1−j,j [Cn+k+1−j , Cn+j , Cn−k−1]

Denote commutators in sums as aj and bj correspondingly. We can show that for any j ≥ 0 it is satisfied
that aj+1 = bj .

aj+1 = [Cn+k+2−j−1, Cn+j+1−1, Cn−k−1] = [Cn+k+1−j , Cn+j , Cn−k−1] = bj .

Because of that, the expression can be written as a sum of a0, bb k+1
2 c with corresponding coefficients and

one sum on index j with summed coefficients.

ωk+1 =

b k+1
2 c−1∑
j=0

(−1)k+2(αk−j,j+1+αk+1−j,j)[Cn+k+1−j , Cn+j , Cn−k−1]+(−1)k+2αk+1,0[Cn+k+2, Cn−1, Cn−k−1]−

+(−1)k+2αk+1−b k+1
2 c,b k+1

2 c[Cn+k+1−b k+1
2 c, Cn+b k+1

2 c, Cn−k−1].

Coefficients of commutators, in obtained sum on index j, can be transformed using the first case of lemma
2.2. Also, we can change index of sum by subtracting 1 from it. Coefficient of a0 can be rewritten using the
third case of lemma 2.2. Then bb k+1

2 c will become a zero element of sum on index j.

ωk+1 =

b k+1
2 c∑
j=1

(−1)k+2αk+2−j,j [Cn+k+2−j , Cn−1+j , Cn−k−1] + (−1)k+2αk+2,0[Cn+k+2, Cn−1, Cn−k−1]+

+(−1)k+2αk+1−b k+1
2 c,b k+1

2 c[Cn+k+1−b k+1
2 c, Cn+b k+1

2 c, Cn−k−1] =

=

b k+1
2 c∑
j=0

(−1)k+2αk+2−j,j [Cn+k+2−j , Cn−1+j , Cn−k−1] + (−1)k+2αk+1−b k+1
2 c,b k+1

2 cbb k+1
2 c.

Consider two cases:
5



1) k is odd. Then
⌊
k+2
2

⌋
=
⌊
k+1
2 + 1

2

⌋
= k+1

2 +
⌊
1
2

⌋
= k+1

2 =
⌊
k+1
2

⌋
, hence bb k+1

2 c = 0. It is true because

bb k+1
2 c = [Cn+k+1− k+1

2
, Cn+ k+1

2
, Cn−k−1] = [0, Cn−k−1] = 0. Consequently ωk+1 can be expressed as follows.

ωk+1 =

b k+2
2 c∑
j=0

(−1)k+2αk+2−j,j [Cn+k+2−j , Cn−1+j , Cn−k−1] = θk+1.

2) k is even. Then
⌊
k+2
2

⌋
= k+2

2 =
⌊
k
2

⌋
+ 1 =

⌊
k+1
2

⌋
+ 1, hence αk+2−b k+2

2 c,b k+2
2 c = αb k+1

2 c+1,b k+1
2 c

because of the second case of lemma 2.2. It is important to mention that
⌊
k+1
2

⌋
=
⌊
k
2 + 1

2

⌋
= k

2 . Hence

αk+1−b k+1
2 c,b k+1

2 c = α k
2+1,b k+1

2 c = αb k+1
2 c+1,b k+1

2 c. We can express θk+1 as a sum up to
⌊
k+2
2

⌋
− 1 =

⌊
k+1
2

⌋
and the last addendum with j =

⌊
k+2
2

⌋
=
⌊
k+1
2

⌋
+ 1:

θk+1 =

b k+1
2 c∑
j=0

(−1)k+2αk+2−j,j [Cn+k+2−j , Cn−1+j , Cn−k−1]+

+(−1)k+2αk+2−b k+2
2 c,b k+2

2 c[Cn+k+2−b k+1
2 c−1, Cn−1+b k+1

2 c+1, Cn−k−1] =

=

b k+1
2 c∑
j=0

(−1)k+2αk+2−j,j [Cn+k+2−j , Cn−1+j , Cn−k−1] + (−1)k+2αk+1−b k+1
2 c,b k+1

2 cbb k+1
2 c = ωk+1

Consequently, the identity above is satisfied for any n, k ∈ N, such that k ≤ n. If we substitute k = n,
we will get the original identity. �

2.2. Additional results.

Lemma 2.4. For any n ∈ N the following is satisfied:

dimL3,n − dimL3,n−1 =

⌊
n− 1

3

⌋
+ 1.

Proof. To calculate this expression, we need to count all Lyndon words of form abn1abn2abn3 , where n1, n2, n3 ∈
N0 and n1 + n2 + n3 = n. Let n1 = i and n2 = j, hence n3 = n − i − j. As it was mentioned before,
abn1abn2abn3 is a Lyndon word if and only if n1 ≤ n2 and n1 < n3, where n1, n2, n3 ∈ N. We can portray
integer points that satisfy these conditions on coordinate plane by drawing plots of functions y = x and
y = n− 2x.
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Abscissa of functions intersection point is n
3 . abiabjabn−i−j is a Lyndon word if point (i, j) belongs to4ABC

(without point on the line y = n− 2x). Then dimL3,n equals to number of integer points in 4DEC. Hence
dimL3,n − dimL3,n−1 equals to number of integer points on segment DE, i.e.

⌊
n−1
3

⌋
+ 1. �

Proposition 2.5. For any m ∈ N the following is satisfied:

dim I3,m =
⌈m

2

⌉
−
⌊
m− 1

3

⌋
− 1.

Proof. By definition, I3,m = ker Θ3,m. Hence, according to lemmas 1.4 and 2.4, dim I3,m = dim ker Θ3,m =
dim(L2,m ⊕ L3,m−1)− dimL3,m = dimL2,m − (dimL3,m − dimL3,m−1) =

⌈
m
2

⌉
−
⌊
m−1
3

⌋
− 1. �

Lemma 2.6. For k > l, k ≥ m the following is satisfied:

[Ck, Cl, Cm, b] =


[Ck+1, Cl, Cm] + [Ck, Cl+1, Cm] + [Ck, Cl, Cm+1], if k > l + 1, k ≥ m+ 1

[Ck+1, Cl, Cm] + [Ck, Cl, Cm+1], if k = l + 1, k ≥ m+ 1

2[Ck+1, Cl, Cm]− [Ck+1, Cl+1, Cm−1], if k = l + 1, k = m

2[Ck+1, Cl, Cm] + [Ck, Cl+1, Cm]− [Ck+1, Ck, Cl], if k > l + 1, k = m.

Proof. It is easy to rewrite the expression in the first case using Jacobi identity:

[Ck, Cl, Cm, b] = [Ck, Cl, b, Cm] + [Ck, Cl, [Cm, b]] = [Ck+1, Cl, Cm] + [Ck, Cl+1, Cm] + [Ck, Cl, Cm+1].

Second case:

[Ck, Cl, Cm, b] = [Cl+2, Cl, Cm] + [Cl+1, Cl+1, Cm] + [Cl+1, Cl, Cm+1] = [Ck+1, Cl, Cm] + [Ck, Cl, Cm+1].

Third case:

[Ck, Cl, Cm, b] = [Ck+1, Cl, Cm] + [Ck, Cl, Cm+1] = [Ck+1, Cl, Cm] + [Ck, Cm+1, Cl] + [Cm+1, Cl, Ck] =

= 2[Ck+1, Cl, Cm]− [Ck+1, Cl+1, Cm−1].

Fourth case:

[Ck, Cl, Cm, b] = [Ck+1, Cl, Cm] + [Ck, Cl+1, Cm] + [Ck, Cl, Cm+1] = [Ck+1, Cl, Cm] + [Ck, Cl+1, Cm]+

+[Ck, Cm+1, Cl]− [Cl, Cm+1, k] = [Ck+1, Cl, Cm] + [Ck, Cl+1, Cm] + [Ck, Cm+1, Cl]− [Cl, Cm+1, k] =

= 2[Ck+1, Cl, Cm] + [Ck, Cl+1, Cm]− [Ck+1, Ck, Cl].

�

Theorem 2.7. The kernel of Θ3,3 is generated by the following element:

(3[C2, C1] + 2[C3, C0], [C1, C0, C1]− 2[C2, C0, C0]).

Proof. According to lemma 2.5 dim I3,3 =
⌈
3
2

⌉
−
⌊
2
3

⌋
− 1 = 1. Consequently, we have to provide only one

identity to describe the whole I3,3. Substitute n = 1 into identity from theorem 2.3:

[α2,0[C3, C0] + α1,1[C2, C1], a] = [−α0,0[C1, C0, C1] + α1,0[C2, C0, C0], b].

By definition of αi,j , α2,0 = 2, α1,1 = 3, α0,0 = 1 and α1,0 = 2. We can move right part of the equality to
the left side and it will become an image of the element from L2,3 ⊕ L3,2:

[2[C3, C0]+3[C2, C1], a]+[[C1, C0, C1]−2[C2, C0, C0], b] = Θ3,3(2[C3, C0]+3[C2, C1], [C1, C0, C1]−2[C2, C0, C0]) = 0

As a result, we obtained the element that generates all identities in L3,3 that is equivalent to description of
I3,3. �

Theorem 2.8. The abelian group I3,6 is generated by the following element

(−2[C5, C1]− 5[C4, C2] , 2[C4, C1, C0] + 3[C3, C2, C0]− 2[C3, C1, C1] + [C2, C1, C2])

Proof. Similarly to proof of the theorem 2.7. dim I3,6 =
⌈
6
2

⌉
−
⌊
5
3

⌋
− 1 = 1. Substitute n = 2 into identity

from theorem 2.3:

[−α3,0[C5, C1]−α2,1[C4, C2], a] = [−α0,0[C2, C1, C2]+α1,0[C3, C1, C1]−α2,0[C4, C1, C0]−α1,1[C3, C2, C0], b].

Coefficients will be α3,0 = 2, α2,1 = 5, α0,0 = 1, α1,0 = 2, α2,0 = 2 and α1,1 = 3. Again, we’ve found an
element of L2,6 ⊕ L3,5 that generates all possible identities. Coefficients in the right part will be multiplied
by −1 because of moving to the left side. �
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