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SPECTRAL GAP AND DEFINABILITY

ISAAC GOLDBRING

ABSTRACT. We relate the notions of spectral gap for unitary representations

and subfactors with definability of certain important sets in the corresponding

structures. We give several applications of this relationship.

CONTENTS

1. Introduction 2

1.1. A crash course in continuous logic 3

2. Definability in continuous logic 5

2.1. Generalities on formulae 5

2.2. Definability relative to a theory 7

2.3. Definability in a structure 9

3. Spectral gap for unitary group representations 11

3.1. Generalities on unitary group representations 11

3.2. Introducing spectral gap 12

3.3. Spectral gap and definability 13

3.4. Spectral gap and ergodic theory 15

4. Basic von Neumann algebra theory 17

4.1. Preliminaries 17

4.2. Tracial von Neumann algebras as metric structures 19

4.3. Property Gamma and the McDuff property 20

5. Spectral gap subalgebras 21

5.1. Introducing spectral gap for subalgebras 21

5.2. Spectral gap and definability 22

5.3. Relative bicommutants and e.c. II1 factors 23

5.4. Open questions 24

6. Continuum many theories of II1 factors 25

6.1. The history and the main theorem 25

6.2. The base case 26

6.3. A digression on good unitaries and generalized McDuff factors 27

6.4. The inductive step 28

References 29

Goldbring’s work was partially supported by NSF CAREER grant DMS-1349399.

1

http://arxiv.org/abs/1805.02752v1


2 ISAAC GOLDBRING

1. INTRODUCTION

The notion of definable set is one of (if not the) most important concepts in clas-

sical model theory. Indeed, if one wants to understand the model-theoretic prop-

erties of a given structure and/or make use of this understanding in applications, a

thorough analysis of the definable sets in the structure is often indispensable.

While continuous model theory resembles classical model theory in many re-

spects and a general pattern of formulating continuous analogues of classical defi-

nitions and results soon becomes apparent, the continuous logic notion of definable

set sometimes can pose a problem for classical model theorists. Since continuous

logic formulae are real-valued, a naïve first guess is that definable sets in contin-

uous logic should just be level sets of formulae, that is, for a given structure M,

formula ϕ(~x) (perhaps with parameters in M), and r ∈ R, one might guess that

{~a ∈ M : ϕM(~a) = r} should be a definable set. While it is true that ulti-

mately all definable sets are of this form, for various reasons one quickly realizes

that this naïve notion of definable set is not robust enough to carry out many fa-

miliar arguments using definable sets. For instance, one would like to be able to

take a formula and quantify some of the free variables over a definable set and be

left with a formula again. In general, this property does not hold when quantifying

over level sets.

Eventually, a notion of definable set in continuous logic was proposed that al-

lowed for the remainder of the basic theory to go through as in the classical case.

While the definition served the correct theoretical purpose, some practical criti-

cisms remained, namely to give an analysis of the definable sets and functions in

some basic metric structures. This proves to be a much more difficult endeavor

than in classical logic. We made an attempt at such an analysis in the papers [14],

[15], and [16], but our efforts were far from yielding a complete classification.

In this paper, we switch our perspective and instead show how a particularly

important notion in von Neumann algebras, namely that of spectral gap, is inti-

mately related to the definability of certain naturally occurring sets. Spectral gap is

an integral part of Popa’s deep theory of deformation rigidity in the study of II1
factors; see, for example, his ICM survey [33]. Our analysis in this paper merely

scratches the surface of the model-theoretic study of spectral gap and it is our hopes

that a much finer analysis could shed some light on the underlying model theory

behind Popa’s extremely successful programme.

We would be remiss if we did not point out that the notion of definability has

played an extremely important role in the model-theoretic study of C∗-algebras.

An extensive treatment of this topic can be found in [11].

We now sketch the contents of our paper. First, at the end of this introduction,

we give an extremely rapid introduction to continuous logic; by no means is this

introduction exhaustive but rather the reader should view it as our attempt to fix no-

tation and presentation. In Section 2, we give a careful treatment of the notion of

definable set. We take this opportunity to offer some alternative nomenclature and
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motivation that might prove psychologically useful to classical model theorists try-

ing to understand the rationale behind the continuous logic definition of definable

set.

In Section 3, we begin the study of the connection between spectral gap and

definability in the context of unitary group representations, in which this notion

originally came to light. This allows us the opportunity to give a model-theoretic

treatment of this notion in a context that is much more simple and involves far less

prerequisites.

In Section 4, we introduce the basic facts that we need about von Neumann

algebras for the rest of the paper. Once again, our treatment is quick and a more

detailed presentation of the subject aimed at model theorists can be found in [17].

In Section 5, we arrive at the main results in the paper. We give a model-theoretic

treatment of spectral gap subalgebra and use it to give some applications, including

a technologically more elementary proof of the fact that the theory of tracial von

Neumann algebras does not have a model companion, which was originally proven

in [19] with Bradd Hart and Thomas Sinclair.

In the final section, we take the opportunity to discuss our paper [20], joint

with Bradd Hart and Henry Towsner. In that paper, we give a model-theoretic

account of the striking paper [5], where they show that the family of continuum

many pairwise non-isomoprhic separable II1 factors constructed by McDuff are in

fact pairwise non-elementarily equivalent. It turns out that in the background of

both papers, heavy uses of spectral gap are employed and it is the aim of the final

section to spell out these hidden uses in more detail.

We would like to thank Bradd Hart, Thomas Sinclair, and Todor Tsankov for

many useful conversations regarding this work. We would also like to thank the

Institut Henri Poincaré for their incredible hospitality during our stay there, where

the majority of this paper was written.

1.1. A crash course in continuous logic. In this subsection, we give a very short

introduction to continuous logic. We make no attempt at being exhaustive, but

rather use this as a chance to fix our terminology, notation and setup. We borrow

heavily from [11].

Definition 1.1. A metric structure is a triple M := (S(M),F(M),R(M))
where:

(1) S(M) is an indexed family of complete bounded metric spaces, called the

sorts of M;

(2) F(M), the set of distinguished functions, is a set of uniformly continuous

functions such that, for f ∈ F(M), the domain of f is a finite product of

sorts and the codomain of f is another sort.

(3) R(M), the set of distinguished relations, is a set of uniformly continuous

functions such that, for R ∈ R(M), the domain of R is a finite product of

sorts and the codomain of R is a compact interval in R.

As in classical model theory, one uses a signature to describe a metric structure.

Formally, a signature is a triple L := (S,F,R), where:
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• S is a set of sorts. Moreover, for each sort S ∈ S, the signature must

provide a real number KS .

• For each function symbol F ∈ F, the signature must provide an arity,

which is a finite sequence (S1, . . . , Sn) from S (the domain of F ) together

with another element S from S (the codomain of F ). In addition, the

signature must provide a modulus of uniform continuity for F .

• For each relation symbol R ∈ R, the signature must provide an arity,

which is a finite sequence (S1, . . . , Sn) from S (the domain of R) together

with a compact interval KR in R (the codomain of R). Once again, the

signature must provide a modulus of uniform continuity.

Given a signature L, there is a natural notion of a metric structure M being an

L-structure. The key points are as follows:

• S(M) is indexed by S. Moreover, for each S ∈ S, letting (S(M), dS(M))
denote the metric space indexed by S, KS is a bound on the diameter of

(S(M), dS(M)).

• F(M) is indexed by F. Moreover, for each F ∈ F, letting FM denote the

corresponding distinguished function, we have that the domain, codomain,

and modulus of uniform continuity of FM are as prescribed by the signa-

ture.

• The analogous statement as in the previous item for R.

Given a metric signature L, one defines L-terms as in classical logic. Atomic

L-formulae are given by:

• Rt1 · · · tn, where R ∈ R, the domain of R is (S1, . . . , Sn), and each ti is

a term of sort Si;
• dS(t1, t2), where t1 and t2 are terms of sort S.

One obtains arbitrary L-formulae by closing under all continuous functions Rn →
R and the quantifiers sup and inf .

Given an L-formula ϕ(~x), an L-structure M, there is a natural notion of the

interpretation of ϕ in M, which is a function ϕM : M~x → R. Each ϕM is a

uniformly continuous function taking values in a compact interval Kϕ in R in a

way that depends only on L (and not on the choice of M).

An L-sentence is an L-formula with no free variables. An L-theory is a set

of L-sentences. Given an L-theory T and an L-structure M, we say that M is a

model of T , denoted M |= T, if σM = 0 for all σ ∈ T . We let Mod(T ) denote the

class of all models of T . A class C of L-structures is called an elementary class if

there is an L-theory T such that C = Mod(T ).
As in classical logic, there are appropriate notions of embedding, elementary

embedding, substructure, and elementary substructure.

Ultraproducts will play an important role in this paper, so let us recall the con-

struction in continuous logic. Let (Mi)i∈I denote a family of L-structures and let

U be an ultrafilter on I . For each sort S, we let dS,U denote the pseudometric on∏
i∈I S(Mi) given by dS,U(xi, yi) := limU dS(Mi)(xi, yi). The ultraproduct of

the family (Mi), denoted
∏

U Mi has as the underlying metric space of sort S the

quotient of
∏

i∈I S(Mi) by the pseudometric dS,U and with symbols interpreted
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coordinatewise as usual.1 When Mi = M for all i, we speak instead of the ul-

trapower of M, denoted M
U . For (xi) ∈ ∏

i∈I S(Mi), we let (xi)
• denote its

equivalence class in the ultraproduct. The diagonal embedding of M in M
U is the

embedding given by mapping a ∈ M to (a, a, a, . . .)•. The Łos theorem for con-

tinuous logic states that, for an arbitrary formula ϕ(~x) and~a = (~ai)
• ∈ (

∏
U Mi)

~x,

we have that

ϕ
∏

U
Mi(~a) := lim

U
ϕMi(~ai).

It follows that a diagonal embedding is always an elementary map.

In Section 5, existentially closed structures will be a point of discussion. For

the sake of brevity, we give the semantic definition. If M and N are L-structures

with N ⊆ M, we say that N is existentially closed (or e.c.) in M if there is an

embedding M →֒ N
U such that the restriction to N is the diagonal embedding. If

T is an L-theory, we call a model N |= T an existentially closed model of T if it

is existentially closed in all extensions that are also models of T .

2. DEFINABILITY IN CONTINUOUS LOGIC

2.1. Generalities on formulae. Until further notice, we fix a base theory T . The

goal of this subsection is to extend the notion of formula in models of T . Towards

this end, we let F0
~x denote the set of L-formulae with free variables ~x. Observe

that F0
~x is naturally a pseudometric space when equipped with the pseudometric

d(ϕ,ψ) := dF0

~x

(ϕ,ψ) := sup{|ϕM(~a)− ψM(~a)| : M |= T, ~a ∈ M
~x}.

d is indeed a pseuodmetric rather than a metric as two formulae ϕ and ψ are

T -equivalent precisely when d(ϕ,ψ) = 0.

When given a pseudometric space (X, d), one is naturally inclined to form

its completion (X, d). Here, by the completion of a pseudometric space, we

mean the completion of its separation. Concretely, we view X as the space of

equivalence classes of Cauchy sequences (xn) from X modulo the pseudometric

d((xn), (yn)) := limn d(xn, yn); this pseudometric naturally induces a metric d
on X .

For each of notation, we set F~x := F0
~x .

Definition 2.1. A T -formula2 (over ~x) is simply an element of F~x.

Remark 2.2. With this terminology, a formula from F0
~x is not technically a T -

formula, but rather its T -equivalence class is a T -formula. Since T -equivalent

formulae might as well be treated as equal, this abuse of terminology is not trou-

blesome. An element of F0
~x (viewed as a T -formula) will be referred to as a simple

T -formula.

1Taken literally, it seems that a relation symbol R with values in the interval KR now take values

in an ultrapower KU
R of KR. However, KU

R is naturally isomorphic to KR via the ultralimit map.
2In the literature, this is called a definable predicate in T but we find the term T -formula much

more suggestive.
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Consider ϕ ∈ F~x and take a Cauchy sequence (ϕn(~x)) from F0
~x that represents

ϕ. Then, for every ǫ > 0, there is N such that, for all m ≥ n ≥ N , we have

d(ϕm, ϕn) ≤ ǫ, or, in other words:

T |= sup
~x

|ϕm(~x)− ϕn(~x)| ≤ ǫ.

Note also that if (ψn(x)) is another Cauchy sequence from F0
~x representing ϕ,

then, there is N ′ such that, for all m ≥ N ′, we have d(ϕm, ψm) ≤ ǫ, or, in other

words:

T |= sup
~x

|ϕm(~x)− ψm(~x)| ≤ ǫ.

Consequently, in all M |= T , we have a well-defined interpretation ϕM of ϕ
given by ϕM(~a) := limn ϕ

M
n (~a).3 Note also that ϕM is a uniformly continuous

function which takes values in a compact interval Kϕ in R in a way that does not

depend on M.

Example 2.3. Suppose that (ψm(~x)) is any sequence from F0
~x . For n ∈ N, set

ϕn(~x) :=
∑

m≤n 2
−mψm(~x). It is clear that (ϕn) is a Cauchy sequence from

F0
~x , whence represents a T -formula. For psychological reasons, we denote this

T -formula by
∑

m 2−mψm.

In connection with the main result of the next section, it will prove useful to end

this subsection with a brief discussion on type-spaces.

Definition 2.4.

(1) Given M |= T and ~a ∈ M
~x, we define the type of ~a in M to be the

function tpM(~a) : F~x → R given by tpM(~a)(ϕ) := ϕM(~a).
(2) A function p : F~x → R is called a type in ~x over T if p = tpM(~a) for

some M |= T and some ~a ∈ M
~x; in this case, we say that ~a realizes p.

(3) The set of types in T over ~x will be denoted by S~x(T ).
(4) Given ϕ ∈ F~x, we define fϕ : S~x(T ) → R by fϕ(p) := p(ϕ). The logic

topology on S~x(T ) is the weakest topology making all maps fϕ continu-

ous. The Compactness Theorem yields that S~x(T ) is compact with respect

to the logic topology.4

It is straightforward to verify that the set of functions fϕ separate points in

S~x(T ), the Stone-Weierstrass theorem yields:

Theorem 2.5. A function f : S~x(T ) → R is continuous if and only if there is a

T -formula ϕ(~x) for which f = fϕ.

3The fact that we have such an interpretation yields credence to the use of the term T -formula.
4A remark for the analysts: F~x is naturally a Banach over R. Note then that a type is a continuous

functional on F~x and an easy ultraproduct argument shows that S~x(T ) is a closed subset of (F~x)
∗

in the weak*-topology; the logic topology on S~x(T ) is merely the restriction of the weak*-topology.

The compactness of S~x(T ) follows from this observation.
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2.2. Definability relative to a theory. In order to smoothly state the main theorem

of this section, we need to collect a few elementary (if not slightly cumbersome)

definitions and examples.

In the following definition, we view Mod(T ) as a category whose objects are

models of T and whose morphism are elementary embeddings. We also let Met be

the category whose objects are bounded metric spaces and whose morphisms are

isometric embeddings.

Definition 2.6. A functor X : Mod(T ) → Met is called a T -functor over ~x if:

• For every M |= T , X(M) is a closed subset of M~x, and

• X is restriction on morphisms.

A natural source of T -functors:

Definition 2.7. Given a T -formula ϕ(~x), its zeroset is the T -functor Z(ϕ) given

by

Z(ϕ)(M) := Z(ϕM) := {~a ∈ M
~x : ϕM(~a) = 0}.

We will also need the following notion:

Definition 2.8. A T -function over ~x is simply a function whose domain is the set

of pairs (M,~a), with M |= T and ~a ∈ M~x, and whose codomain is a bounded

subset of R. A T -function is nonnegative if its co-domain is contained in the set

of nonnegative reals.

A natural source of T -functions:

Example 2.9. The interpretation of a T -formula is a T -function. If the T -function

Φ is the interpretation of a T -formula ϕ, we will say that Φ is realized by ϕ. If Φ
is nonnegative, then we also say that ϕ is nonnegative.

Example 2.10. Suppose that X is a T -functor over ~x.

• For any T -function Φ over (~x, ~y), we have the T -functions

sup
~x

Φ(~x, ~y) and inf
~x

Φ(~x, ~y)

over ~y defined by mapping the pair (M,~b) to

sup
~a∈X(M)

Φ(M,~a,~b) and inf
~a∈X(M)

Φ(M,~a,~b)

respectively.

• A particular instance of the previous item is the case that Φ is simply the in-

terpretation of the T -formula d(~x, ~y) (where ~x and ~y range over the same

product of sorts). In this case, we see that the T -function which maps

(M,~b) to d(~b,X(M)) is a nonnegative T -function, which we write sug-

gestively as d(~x,X).

Definition 2.11. We say that a nonnegative T -function Φ over ~x is almost-near if,

for every ǫ > 0, there is δ > 0 such that, for all (M,~a), if Φ(M,~a) < δ, then there
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is ~b ∈ M
~x such that d(~a,~b) ≤ ǫ and with Φ(M,~b) = 0. We say that a T -formula

is almost-near if its interpretation is almost-near.5

Example 2.12. Given a T -functor X over ~x, the T -function d(~x,X) is an almost-

near T -function (simply take δ = ǫ).

With all of the terminology established, we can now neatly state the main theo-

rem of this section:

Theorem 2.13. Suppose that X is a T -functor over ~x. Then the following are

equivalent:

(1) For all T -formulae ψ(~x, ~y), the T -functions sup~x∈X ψ(~x, ~y) and inf~x∈X ψ(~x, ~y)
are realized by T -formulae.

(2) The T -function d(~x,X) is realized by a T -formula.

(3) There is an almost-near T -formula ϕ(~x) such that X = Z(ϕ).
(4) For all sets I , all families of models (Mi)i∈I of T , and all ultrafilters U on

I , we have

X(
∏

U

Mi) =
∏

U

X(Mi).

(5) (a) X is a zeroset, and

(b) for any nonnegative T -formula ϕ(~x) such that X = Z(ϕ), we have

that ϕ is almost-near.

Proof. (1) implies (2) is immediate and (2) implies (3) follows from Example 2.12.

(3) implies (4): Suppose thatX = Z(ϕ) for an almost-near T -formula ϕ(~x) and

fix a family (Mi)i∈I of models of T and an ultrafilter U on I . Set M :=
∏

U Mi.

Notice that
∏

U X(Mi) ⊆ X(M) always holds by the Łos theorem, and, in fact,∏
U X(Mi) is a closed subset of X(M). Now consider ~a = (~ai)

• ∈ X(M) and

fix ǫ > 0. Take δ > 0 witnessing that ϕ is an almost-near formula for ǫ. Since

ϕM(~a) = 0, there is I ∈ U such that ϕM(~ai) < δ for i ∈ I . By choice of δ, for i ∈
I we may find~bi ∈ X(Mi) such that d(~ai,~bi) ≤ 1

n . Set ~b := (~bi)
• ∈ ∏

U X(Mi)

(with ~bi ∈ Mi chosen arbitrarily for i /∈ I). It follows that d(~a,~b) ≤ ǫ. Since∏
U X(Mi) is closed, it follows that ~a ∈ ∏

U X(Mi).
(4) implies (5): We assume that (4) holds and first prove (a). Note that it suffices

to show that the T -function d(~x,X) is realized by a T -formula. Towards this end,

by Theorem 2.5, it suffices to show that there is a continuous function f : S~x(T ) →
R given by f(p) := d(~a,X(M)) for any M |= T and ~a ∈ M

~x realizing p.

In order to show that the function f from the previous paragraph is well-defined,

suppose, towards a contradiction, that there are M,N |= T , ~a ∈ M
~x and~b ∈ N

~x

such that ~a and ~b both realize p yet d(~a,X(M)) < d(~b,X(N)). Fix a nonprin-

cipal ultrafilter U on N and take an elementary embedding i : M → N
U with

5In [7], almost-near formulae are called stable and in [11] they are called weakly stable. While

these terminologies arise from corresponding terminology in the operator algebra literature, they are

infinitely confusing to model-theorists (as they have nothing to do with the model-theoretic notion of

stable formula) and thus we prefer the more suggestive term almost-near.
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i(~a) = ~b. Take ~c ∈ X(M) such that d(~a,~c) < d(~b,X(N)). We then arrive at the

contradiction

d(~a,~c) = d(~b, i(~c)) ≥ d(~b,X(NU )) = d(~b,X(N)U ) ≥ d(~b,X(N)).

It remains to prove that f is continuous. We thus suppose that (pi)i∈I is a net

from S~x(T ) and U is an ultrafilter on I such that limU pi = p; we must show that

limU f(pi) = f(p). For each i ∈ I , take Mi |= T and ~ai ∈ Mi realizing pi. Set

M :=
∏

U Mi and set ~a := (~ai)
•. Notice that ~a realizes p. We thus have

f(p) = d(~a,X(M)) = d(~a,
∏

U

X(Mi)) = lim
U
d(~ai,X(Mi)) = lim

U
f(pi).

This finishes the proof of (a).

We now prove (b). Suppose that ϕ is nonnegative, X = Z(ϕ), and yet ϕ is not

almost-near. There is thus some ǫ > 0 such that, for all n ∈ N, there are Mn |= T
and ~an ∈ Mn such that ϕMn(~an) <

1
n and yet d(~an,X(Mn)) ≥ ǫ. It follows

that ~a ∈ X(
∏

U Mn), whence, by (4), we have that, for U -almost all n, there are
~bn ∈ X(Mn) such that d(~an,~bn) < ǫ, a contradiction.

(5) implies (1): We only prove the inf case, the sup case being similar. We

first need an elementary fact from analysis [4, Lemma 2.10/Remark 2.12]: given

any function ∆ : (0, 1] → (0, 1], there is an increasing, continuous function α :
[0, 1] → [0, 1] such that: for any set Y and functions F,G : Y → [0, 1] satisfying

(∀ǫ > 0)(∀x ∈ Y )(F (x) ≤ ∆(ǫ) ⇒ G(x) ≤ ǫ), (†)
we have G(x) ≤ α(F (x)) for all x ∈ Y .

Next fix a nonnegative T -formula ϕ(~x) such that X = Z(ϕ). By (5), ϕ is an

almost-near formula, whence there is a function ∆ : (0, 1] → (0, 1] for which

(†) holds whenever Y := M
~x, F (~x) := ϕM(~x), and G(~x) := d(~x,X(M)) (for

M |= T ). Consequently, there is an α as in the previous paragraph such that for all

M |= T and all ~a ∈ M
~x, we have d(~a,X(M)) ≤ α(ϕM(~a)).

Now fix an arbitrary T -formula ψ(~x, ~y). By quoting the first paragraph again,

there is a function β such that, for all M |= T and all ~a ∈ M
~x and~b,~c ∈ M

~y, we

have |ψM(~a,~b) − ψM(~a,~c)| ≤ β(d(~b,~c)). It is now straightforward to check that

infy∈X ψ(~x, ~y) is realized by the T -formula inf~z[ψ(~x, ~z) + β(α(ϕ(z)))]. �

Definition 2.14. A T -functor satisfying any of the equivalent conditions in the

previous theorem is called a T -definable set.

Remark 2.15. In the literature, item (2) in the previous definition is often given as

the definition of definable set. It is our opinion that this choice of definition may

seem a bit obscure at first. However, we hope that it is clear that items (1) and (4)

are desirable properties of a T -functor.

2.3. Definability in a structure. For our purposes, it will also be convenient to

have a notion of a definable subset of a particular structure. For the rest of this

section, we abandon our fixed theory T from above and instead fix a structure M

and a subset A ⊆ M. Suppose that (ϕn(~x)) is a sequence of L(A)-formulae that

are uniformly Cauchy in M, that is, for all ǫ > 0, there is N ∈ N such that for all
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m,n ≥ N and all ~a ∈ M
~x, we have that |ϕM

m (~a) − ϕM
n (~a)| ≤ ǫ. Then the same

fact remains true in any model of Th(MA), whence we have that ϕ := (ϕn(x)) is

a Th(MA)-formula. We will also say that ϕ is a formula in M over A. It is clear

that in any model N of Th(MA), one has a natural interpretation ϕN of ϕ in N.

Definition 2.16. A closed subset X ⊆ M
~x is called definable in M over A if the

function ~x 7→ d(~x,X) : M~x → R is the interpretation of a formula in M over A.

Some of the equivalences in Theorem 2.13 remain true in this local context:

Theorem 2.17. Suppose that X ⊆ M
~x is a closed subset and A ⊆ M. The

following are equivalent:

(1) X is definable in M over A.

(2) For all formulae ψ(~x, ~y) in M over A, there are formulae in M over A
whose interpretations in M coincide with the functions

sup
~x∈X

ψM(~x, ~y) and inf
~x∈X

ψM(~x, ~y).

(3) There is a formula ϕ(~x) in M over A with X = Z(ϕM) and such that: for

all ǫ > 0, there is a δ > 0 such that, for all ~a ∈ M
~x,

ϕM(~a) < δ ⇒ d(~a,X) ≤ ǫ.

We leave the proof of the previous theorem to the reader as it follows many of

the ideas in the proof of Theorem 2.13. A key distinction in the local theory of

definability is that the local analog of item (5) in Theorem 2.13 is no longer true.

First, a definition:

Definition 2.18. Suppose that ϕ is a formula in M overA. We will say that Z(ϕM)
is ϕ-definable if for every ǫ > 0, there is δ > 0 such that, for all a ∈ M

~x, if

ϕ(~a)M < δ, then d(~a, Z(ϕM)) ≤ ǫ.

Item (3) of Theorem 2.17 can be recast in this new terminology:

Corollary 2.19. Suppose that X ⊆ M
~x is a closed subset and A ⊆ M. Then X

is definable if and only if it is ϕ-definable for some formula ϕ(~x) in M over A.

Unfortunately, it is not true that if ϕ is a formula in M over A and Z(ϕM) is

definable, then it is ϕ-definable.6 In fact, we will see concrete instances of this dis-

tinction in Remarks 3.10 and 5.10 below. However, the following characterization

of ϕ-definability shows that it is a natural notion:

Theorem 2.20. Suppose that ϕ is a formula in M over A. Then Z(ϕ) is ϕ-

definable if and only if Z(ϕM)U = Z(ϕM
U

) for every ultrafilter U .

We leave the proof of the previous theorem to the reader as it is extremely similar

to the earlier proofs in this section. We end this section by observing that, in

saturated structures, there is no distinction between definable and ϕ-definable:

6It is a good exercise for the reader to see where the proof of the corresponding part of Theorem

2.13 breaks down in the local situation.
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Proposition 2.21. Suppose that M is ℵ1-saturated and ϕ is a formula in M over

A. Then Z(ϕ) is definable if and only if it is ϕ-definable.

Once again, given the earlier proofs in this section, the proof of the previous

proposition is rather routine. One can also consult [4, Remark 9.20].

3. SPECTRAL GAP FOR UNITARY GROUP REPRESENTATIONS

3.1. Generalities on unitary group representations. We begin by fixing some

terminology concerning Hilbert spaces. Throughout, we suppose that H is a com-

plex Hilbert space. We let B(H) denote the set of bounded operators on H, that is,

the set of linear operators T : H → H for which the quantity

‖T‖ := sup{‖Tx‖ : ‖x‖ ≤ 1}
is finite. We refer to ‖T‖ as the operator norm of T . Recall that for T ∈ B(H),
the adjoint of T is the unique operator T ∗ : H → H satisfying 〈Tx, y〉 = 〈x, T ∗y〉
for all x, y ∈ H. It is straightforward to check that T ∗ is also an element of B(H).
B(H), equipped with addition, composition, scalar multiplication, and adjoint has

the structure of a ∗-algebra. Finally, we let U(H) denote the subset of B(H)
consisting of unitary operators on H, that is, those T ∈ B(H) for which T ∗ =
T−1. Note that U(H) is a subgroup of B(H) under composition.

Throughout this section, we fix a countable group Γ. A unitary representation

of Γ is simply a group homomorphism π : Γ → U(Hπ) for some Hilbert space

Hπ.

Example 3.1. Given Γ, we set

ℓ2Γ := {f : Γ → C :
∑

γ∈Γ

|f(γ)|2 <∞}.

ℓ2Γ is naturally a Hilbert space under the inner product 〈f, g〉 := ∑
γ∈Γ f(γ)g(γ).

The left-regular representation of Γ is the unitary representation λΓ : Γ →
U(ℓ2Γ) given by (λΓ(γ)(f))(η) := f(γ−1η).

Suppose that π is a unitary representation of Γ. A closed subspace K ⊆ Hπ is

called invariant under π if π(γ)(K) ⊆ K for all γ ∈ Γ. In this case, we may

consider the restriction of π to K, denoted π|K : Γ → U(K).
Recall that, given a subspace K of H, the orthogonal complement of K is the

set

K⊥ := {ζ ∈ H : 〈ζ, η〉 = 0 for all η ∈ K}.
Note that K⊥ is a closed subspace of H, whence a Hilbert space in its own right.

If H = Hπ for some unitary representation π of Γ and K happens to be invariant

under π, then it is readily verified that K⊥ is also invariant under π.

Given a unitary representation π of Γ, we set

Fix(π) := {ζ ∈ Hπ : π(γ)(ζ) = ζ for all γ ∈ Γ}.
Note that Fix(π) is an invariant subspace of Hπ. We say that π is ergodic if

Fix(π) = {0}. We set Erg(π) := Fix(π)⊥ and refer to it as the ergodic part of

π. Of course, π|Erg(π) is ergodic.
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Example 3.2. λΓ is ergodic if and only if Γ is infinite.

Finally, given a family (πi)i∈I of unitary representations of Γ and an ultrafilter

U on I , one can consider the unitary representation
∏

U πi : Γ → U(
∏

U Hi) given

by (
∏

U πi(γ))(ξi)
• := (πi(γ)(ξi))

•. We refer to
∏

U πi as the ultraproduct of

the representations πi. If πi = π for all i, we write πU for the ultrapower of π.

3.2. Introducing spectral gap. We leave the proof of the following proposition

to the reader:

Proposition 3.3. Let π : Γ → U(Hπ) be a unitary representation. The following

are equivalent:

(1) There exists finite F ⊆ Γ and c > 0 such that, for all ζ ∈ Hπ, we have

max
γ∈F

‖π(γ)ζ − ζ‖ ≥ c‖ζ‖.

(2) For any nonprincipal ultrafilter U , πU is ergodic.

(3) For all ǫ > 0, there is a finite F ⊆ Γ and δ > 0 such that, for all ζ ∈ Hπ,

we have

max
γ∈F

‖π(γ)ζ − ζ‖ ≤ δ ⇒ ‖ζ‖ ≤ ǫ.

Notice that an action satisfying the equivalent properties enumerated in Propo-

sition 3.3 is necessarily ergodic. Here is arguably the most important definition in

this entire paper.

Definition 3.4. A unitary representation π has spectral gap if π|Erg(π) satisfies

the equivalent properties enumerated in Proposition 3.3.

Example 3.5. If Γ is finite, then every representation of Γ has spectral gap. To see

this, fix an ergodic representation π of Γ and ξ ∈ Hπ. Note then that 1
|Γ|

∑
γ∈Γ π(γ)ξ

belongs to Fix(π) and is thus equal to 0. It follows that

‖ξ‖ =

∥∥∥∥∥∥
1

|Γ|
∑

γ∈Γ

π(γ)ξ − ξ

∥∥∥∥∥∥
=

∥∥∥∥∥∥
1

|Γ|
∑

γ∈Γ

(π(γ)ξ − ξ)

∥∥∥∥∥∥
≤ 1

|Γ|
∑

γ∈Γ

‖π(γ)ξ − ξ‖.

Thus, if maxγ∈Γ ‖π(γ)ξ − ξ‖ ≤ ǫ for all γ ∈ Γ, we have that ‖ξ‖ ≤ ǫ.

Example 3.6. By a theorem of Hulanicki and Reiter (see [3, Theorem G.3.2]), if

Γ is infinite, then λΓ has spectral gap if and only if Γ is non-amenable.

Before we move on any further, let us briefly explain the terminology. Suppose

that π is an ergodic unitary representation of Γ. Suppose that F ⊆ Γ is finite and

closed under inverse. Define hF := 1
|F |

∑
γ∈F π(γ), a self-adjoint contraction,

that is, h∗F = hF and ‖hF ‖ ≤ 1. Consequently, σ(hF ) ⊆ [−1, 1], where σ(hF )
denotes the spectrum of hF , namely

σ(hF ) := {λ ∈ C : hF − λ · I is not invertible}.
The following fact explains the terminology spectral gap; see, for example, [1,

Corollary 15.1.4].
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Fact 3.7. π has spectral gap if and only if there is a symmetric finite F and δ < 1
such that σ(hF ) ⊆ [−1, 1− δ].

In the next section, the following theorem will immediately yield the connection

between spectral gap and definability.

Theorem 3.8. A unitary representation π has spectral gap if and only if, for any

nonprincipal ultrafilter U , we have Fix(πU ) = Fix(π)U .

Proof. Note that Fix(πU ) = Fix(π)U ⊕ Fix((π|Erg(π))U ). By part (2) of Propo-

sition 3.3, π has spectral gap if and only if Fix((π|Erg(π))U ) = {0}, whence the

result follows. �

3.3. Spectral gap and definability. For the rest of this section, we fix an enu-

meration of Γ, say Γ = {γ0, γ1, γ2, . . .}. We view a unitary representation π as

a structure in the language of Hilbert spaces7 augmented by function symbols for

elements of Γ in the natural way. It follows easily that the class of unitary repre-

sentations of Γ is in fact an axiomatizable class in this language, say Mod(TΓ).
Note that π 7→ Fix(π) is a TΓ-functor and, in fact, Fix(π) is the zeroset of the

TΓ-formula

ϕΓ(x) :=
∑

m

2−m‖γm · x− x‖.

By Theorems 2.20 and 3.8, we immediately have:

Corollary 3.9. Fix a unitary representation π of Γ. Then π has spectral gap if and

only if Fix(π) is a ϕΓ-definable subset of Hπ.

Remark 3.10. Unfortunately, in general, one cannot replace “ϕΓ-definable” in

the previous theorem with “definable.” For example, suppose that Γ is an infinite

amenable group. Then by Examples 3.2 and 3.6, Fix(λΓ) = {0} (which is clearly

a definable subset of ℓ2Γ) but λΓ does not have spectral gap. However, as shown

in Proposition 2.21, if Hπ is ℵ1-saturated, then it is in fact true that π has spectral

gap if and only if Fix(π) is definable.

We now address the global question. First, we need a definition:

Definition 3.11. We say that Γ has property (T) if every unitary representation of

Γ has spectral gap.

Example 3.12.

(1) Finite groups have property (T). This follows from the calculation done in

Example 3.5.

(2) If n ≥ 3, then SLn(Z) has property (T). This is a theorem due to Kazhdan;

see [3, Section 1.4].

(3) It has recently been shown in [24] (using a computer-assisted proof) that

Aut(F5) has property (T).

(4) Random groups (in the sense of Gromov) have property (T); see the intro-

duction to [3] for references.

7Say, for simplicity, the one-sorted language for the unit ball of Hilbert spaces.
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(5) By Examples 3.2 and 3.6, infinite amenable groups never have property

(T). A finitely generated free group also does not have property (T); see [3,

Example 1.3.7].

While the above definition of property (T) is probably not the standard one, we

find it be the most natural given the context of this article. We now describe the

usual definition. First, given a unitary representation π of Γ, a finite subset F of Γ,

and δ > 0, we say that ξ ∈ Hπ is (F, δ)-almost invariant if maxγ∈F ‖π(γ)(ξ) −
ξ‖ < δ‖ξ‖. We say that π has almost invariant vectors if, for every finite subset

F of Γ and every δ > 0, π has a (F, δ)-almost invariant vector. Note that π has

almost invariant vectors if and only if there is a nonprincipal ultrafilter U such that

πU is not ergodic. The following lemma is now immediate:

Lemma 3.13. Γ has property (T) if and only if: for every unitary representation π
of Γ, if π has almost invariant vectors, then π is not ergodic.

It turns out that one can improve the definition of property (T) using a notion

that is a priori weaker:

Lemma 3.14. Γ has property (T) if and only if there is a finite F ⊆ Γ and δ > 0
such that: for every unitary representation π, if π has a (F, δ)-almost invariant

vector, then π is not ergodic.

Proof Sketch. Suppose that no such pair (F, δ) exists. Then, for each such pair,

there is an ergodic representation π(F,δ) of Γ with an (F, δ)-almost invariant vector.

It is easy to verify that
⊕

(F,δ) π(F,δ) is an ergodic representation of Γ with almost

invariant vectors, whence Γ does not have property (T). �

A pair (F, δ) as in Lemma 3.14 is called a Kazhdan pair for Γ and F is called

a Kazhdan set for Γ. The following proposition gets us closer to the connection

with definability:

Proposition 3.15. Suppose that (F, δ) is a Kazhdan pair for Γ. Then for any

unitary representation π of Γ and any ǫ > 0, if ξ ∈ Hπ is (F, δǫ)-invariant, then

there is η ∈ Fix(π) such that ‖ξ − η‖ < ǫ‖ξ‖.

Proof. Write ξ = ξ1 + ξ2 with ξ1 ∈ Fix(π) and ξ2 ∈ Erg(π); it suffices to show

that ‖ξ2‖ < ǫ‖ξ‖. By the definition of Kazhdan pair, there is γ ∈ F such that

‖π(γ)(ξ2)− ξ2‖ ≥ δ‖ξ2‖. On the other hand, we have

‖π(γ)(ξ2)− ξ2‖ = ‖π(γ)(ξ) − ξ‖ < δǫ‖ξ‖.
The desired result now follows. �

Theorem 3.16. The following are equivalent:

(1) Γ has property (T).

(2) The TΓ-functor Fix is a TΓ-definable set.

In this case, a simple TΓ-formula witnesses that Fix is a definable set.

Proof. The direction that (1) implies (2) follows immediately from Proposition

3.15. The other direction follows immediately from the definition of property (T)
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and Corollary 3.9. The moreover part follows from the existence of Kazhdan sets.

�

Remark 3.17. Note that, at first glance, property (T) merely states that Fix(π)
is a ϕΓ-definable subset of Hπ for each Hπ |= TΓ. However, after some simple

Hilbert space manipulations, one concludes the stronger statement that Fix(π) is a

TΓ-definable set.

The phenomenon described in the previous remark is atypical; here is an exam-

ple to show that it need not hold in general:

Example 3.18. Let L consist of a single unary relation symbol R taking values in

[0, 1] and let T be the L-theory that states that R is constant in every model, that is,

T =

{
sup
x,y

|R(x)−R(y)| = 0

}
.

Then in any M |= T , Z(RM) is either empty or all of M; in either case, it is

R-definable. (If RM is constantly δ, then δ
2 works for any ǫ vacuously.) But if

Mn |= T is such that RMn is constantly 1
n and M =

∏
U Mn for some nonprin-

cipal ultrafilter U on N, then RM is identically 0, whence Z(RM) = M while∏
U Z(R

Mn) = ∅, whence Z(R) is not a T -definable set.

3.4. Spectral gap and ergodic theory. If Γ has property (T), then there are strong

implications for the ergodic theory of actions of Γ. In this subsection, we point out

the model-theoretic versions of these implications.

We first recall that an action σ of Γ on a probability space (X,B, µ) is said to be

probability measure preserving (or pmp) if each γ ∈ Γ acts as an automorphism

of the probability space. In this case, we simply write Γ y
σ (X,B, µ) or even

Γ y
σ (X,µ) if B is clear from context.

Definition 3.19. Given an action Γ y
σ (X,µ), we set

Fix(σ) := {A ∈ B : gA = A for all g ∈ G}.
We say that σ is ergodic if every element of Fix(σ) is µ-null or µ-conull.

The connection between pmp actions and unitary representations is via the fol-

lowing definition:

Definition 3.20. Given an action Γ y
σ (X,µ), the Koopman representation of

σ is the unitary group representation πσ : Γ → L2(X,µ) given by

(πσ(γ)(f))(x) := f(σ(γ−1)(x)).

Note that πσ is never ergodic since it always contains the constant functions. We

let πσ,0 denote the restriction of πσ to the orthogonal complement of the constant

functions. The following lemma is standard and straightforward.

Lemma 3.21. σ is ergodic if and only if πσ,0 is ergodic.

Definition 3.22. Given an action Γ y
σ (X,µ), we say that σ has spectral gap if

the Koopman representation πσ : Γ → L2(X,µ) has spectral gap.



16 ISAAC GOLDBRING

As described in [4, Section 16], probability spaces are studied model-theoretically

via the corresponding probability algebras, which are simply the metric structures

obtained from identifying measurable sets whose symmetric difference has mea-

sure 0. Probability algebras form an elementary class in a natural language. A

pmp action of Γ on a probability space induces an action of Γ on the corresponding

probability algebra and it is straightforward to verify that the class of actions of Γ
on probability algebras forms an elementary class, say Mod(TΓy). We let ϕΓy

denote the TΓy-formula
∑

m 2−md(γm · x, x). Given an action Γ y
σ (X,µ), we

abuse notation and let Fix(σ) also denote the set of elements of the probability al-

gebra corresponding to (X,µ) fixed by every element of Γ, which clearly coincides

with the zeroset of ϕΓy.

In the next proposition, we adopt the convention that if A and B are measurable

sets in some probability space, then a and b denote the corresponding element of

the associated probability algebra.

Proposition 3.23. Suppose that σ has spectral gap. Then Fix(σ) is aϕΓy-definable

set.

Proof. Fix ǫ > 0 and choose a finite subset F of Γ and δ > 0 witnessing that πσ
has spectral gap. Fix η > 0 sufficiently small and suppose that A is a measurable

set such ϕΓy(a) < η. Then, for η chosen appropriately, it follows that 1A is (F, δ)-
invariant, so there is f ∈ Fix(πσ) such that ‖1A − f‖2 < ǫ. Let B := {x ∈ X :
|f(x)| ≥ 1

2}; since f ∈ Fix(πσ), we have that b ∈ Fix(σ). Now notice that

1

4
µ(A△B) ≤

∫

A△B

|1A(x)− f(x)|2dµ(x) ≤ ‖1A − f‖2 < ǫ2.

It follows that d(a, b) < 4ǫ2. �

Remark 3.24. Unfortunately, the converse of the previous proposition is false.

Indeed, suppose that σ is a strongly ergodic action, meaning that every ultrapower

of σ is ergodic. Then by Theorem 2.20, we have that Fix(σ) = {0, 1} is a ϕΓy-

definable set. However, there are examples of strongly ergodic actions that do not

have spectral gap; see [34].

The previous remark notwithstanding, the global picture is still clear:

Theorem 3.25. Γ has property (T) if and only if Fix is a TΓy-definable set.

Proof. Suppose Γ has property (T). Then the proof of Proposition 3.23 shows that

Fix(σ) has spectral gap uniformly over all actions (depending on how the repre-

sentations of T have spectral gap uniformly).

The converse follows from a theorem of Connes-Schmidt-Weiss (see [3, Sec-

tion 6.3], who show that Γ has property (T) if and only if every ergodic action of

Γ is strongly ergodic; this latter condition follows from the fact that Fix(σ) is a

ϕΓy-definable set for each σ (which is a priori weaker than Fix(σ) being a TΓy-

definable set). �
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4. BASIC VON NEUMANN ALGEBRA THEORY

The remainder of this paper concerns von Neumann algebras. In this section,

we review the necessary background material.

4.1. Preliminaries. For any X ⊆ B(H), set

X ′ := {T ∈ B(H) : TS = ST for all S ∈ X}.
Note that X ′ is a unital subalgebra of B(H) for any X ⊆ B(H) which is more-

over closed under ∗ if X is closed under ∗.

Definition 4.1. A von Neumann algebra is a unital ∗-subalgebra M of B(H) such

that M ′′ =M .

Example 4.2. Note that B(H)′ = C ·1, so B(H)′′ = B(H), whence B(H) is a von

Neumann algebra. In particular, when dim(H) = n, we see that Mn(C) is a von

Neumann algebra.

Here is a much more interesting source of examples:

Example 4.3. We let L(Γ) := λΓ(Γ)
′′ ⊆ B(ℓ2Γ) denote the von Neumann algebra

generated by λΓ(Γ).

When studying von Neumann algebras, two other topologies on B(H) prove

very useful:

Definition 4.4. Suppose that H is a Hilbert space.

(1) The strong operator topology (SOT) on B(H) is the weakest topology

making the maps T 7→ Tx : B(H) → H (for x ∈ H) continuous.

(2) The weak operator topology (WOT) on B(H) is the weakest topology

making the maps T 7→ 〈Tx, y〉 : B(H) → H (for x, y ∈ H) continuous.

It is readily verified that the weak operator topology refines the strong opera-

tor topology, which in turn refines the operator norm topology. The remarkable

bicommutant theorem of von Neumann states that, for a unital ∗-subalgebra M
of B(H), one has that M is a von Neumann algebra (in the above sense, that is,

M =M ′′) if and only if M is WOT-closed if and only if M is SOT-closed.

Notation 4.5. For a von Neumann algebra M , we let M1 denote its operator norm

unit ball.

Definition 4.6. Suppose that M is a von Neumann algebra. A linear functional

tr :M → C is called a trace on M if it satisfies the following properties:

• (normalization) tr(1) = 1;

• (positivity) tr(x∗x) ≥ 0 for all x ∈M ;

• (faithful) tr(x∗x) = 0 if and only if x = 0;

• (normality) tr |M1 is WOT-continuous;

• (traciality) tr(xy) = tr(yx) for all x, y ∈M .
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A tracial von Neumann algebra is a pair (M, tr), where M is a von Neumann

algebra and tr is a trace on M .8

Example 4.7.

(1) Mn(C) has a trace given by trn(x) := 1
n

∑n
i=1 xii. However, if H is

infinite-dimensional, then B(H) does not have a trace.

(2) For any group Γ, L(Γ) admits a trace tr given by tr(x) := 〈xδe, δe〉.
Until further notice, fix a tracial von Neumann algebra (M, tr). We can define

an inner-product 〈·, ·〉tr on M given by 〈x, y〉tr := tr(y∗x) whose corresponding

norm will be denoted ‖x‖2 := ‖x‖tr,2 :=
√

〈x, x〉tr. We will say that M is

separable if the metric on M induced by the norm ‖ · ‖2 is separable.

We let L2(M) be the Hilbert space obtained by completing the inner product

space (M, 〈·, ·〉tr). Using the fact that ‖ab‖2 ≤ ‖a‖ · ‖b‖2, one can readily verify

that every a ∈M can be viewed as an element â of B(L2(M)) defined by â(b) :=
ab for b ∈ M (and then extended to the completion by the above observation).

Moreover, the embedding a →֒ â : M → B(L2(M)) is SOT-continuous. This

representation of M is referred to as the standard representation.

Continuing the discussion from the previous paragraph, suppose that N is a von

Neumann subalgebra of M . It is straightforward to see that L2(N) is then a closed

subspace of L2(M) and we let EN denote the orthogonal projection of L2(M)
onto L2(N). It is routine to verify that EN (M) = N .

Definition 4.8. Given a von Neumann algebra M , we define its center to be

Z(M) := M ′ ∩M := {x ∈ M : xy = yx for all y ∈ M}. A von Neumann

algebra with trivial center (that is, Z(M) = C · 1) is called a factor.

Example 4.9.

(1) B(H) is a factor.

(2) L(Γ) is a factor if and only if every nontrivial conjugacy class of Γ is

infinite. (Such groups are called ICC groups.)

Definition 4.10. A II1 factor is an infinite-dimensional factor that admits a trace.

Consequently, B(H) is never a II1 factor. On the other hand, when Γ is a count-

ably infinite ICC group, then L(Γ) is a II1 factor. It is a theorem of Connes [8] that

all countably infinite ICC amenable groups (e.g. S∞ :=
⋃

n Sn) yield the same II1
factor, called the hyperfinite II1 factor, denoted R. We should also note that a II1
factor admits a unique trace.

Definition 4.11. Suppose that M ⊆ B(H1) and N ⊆ B(H2) are von Neumann

algebras. We define the tensor product of M and N to be the von Neumann

algebra

M⊗N :=M ⊙N
WOT ⊆ B(H1 ⊗H2),

8One often abuses notation and simply writes M for a tracial von Neumann algebra (suppressing

mention of the particular trace on M that is under consideration).
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where ⊙ denotes the usual vector space tensor product and ⊗ denotes the usual

Hilbert space tensor product.9

It is straightforward to verify that if M and N are tracial, then so is M⊗N .

Example 4.12. If Γ1 and Γ2 are two groups, then L(Γ1)⊗L(Γ2) ∼= L(Γ1 ⊕ Γ2).

We will also need the notion of amalgamated free product of tracial von Neu-

mann algebras as introduced in [30]. The context is that of two tracial von Neu-

mann algebras M1 and M2 with a common subalgebra N . One then constructs a

tracial von Neumann algebra M1 ∗N M2 that is generated by M1 and M2, which

have their common copies of N identified, and which are positioned as “freely” as

possible relative to N . We will only need to know one particular instance of this

freeness, namely that if b ∈M1 \N and c ∈M2 \N , then [b, c] 6= 0.

4.2. Tracial von Neumann algebras as metric structures. We now briefly de-

scribe how to view tracial von Neumann algebras as metric structures; see [12] for

the complete details. The model-theoretic presentation can be motivated by the

tracial ultraproduct construction, which we first describe.

Let ((Mi, tri))i∈I be a family of tracial von Neumann algebras and let U be an

ultrafilter on I . We let

ℓ∞(Mi) :=

{
(xi) ∈

∏

i∈I

Mi : sup
i∈I

‖xi‖ <∞
}

and

cU (Mi) :=

{
(xi) ∈ ℓ∞(Mi) : lim

U
‖xi‖2 = 0

}
.

The tracial ultraproduct of the family (Mi) is the quotient algebra
∏

U Mi :=
ℓ∞(Mi)/cU (Mi), which can be shown to be a tracial von Neumann algebra with

trace trU ((xi)
•) := limU tri(xi).

It is important to note that use of ‖ · ‖ in the definition of ℓ∞ versus the use of

‖·‖2 in cU is not a typo but rather a crucial asymmetry that ensures that the quotient

algebra is once again a von Neumann algebra.

Motivated by this asymmetry, one views a tracial von Neumann algebra M as a

many-sorted metric structure whose sorts are the operator norm balls of M (say of

natural number radii), equipped with all of its ∗-algebra structure and with its trace

being viewed as a distinguished predicate. The metric on each sort is the restriction

of the metric induced by the ‖ · ‖2-norm. We let LvNa be the metric signature

naturally associated to such a structure. Let us temporarily call the metric structure

associated to M the dissection of M .

With this set-up in place, one can show that the metric ultraproduct of a fam-

ily of dissections of tracial von Neumann algebras is naturally isomorphic to the

dissection of the tracial ultraproduct of the family of algebras (and really one has

an equivalence of categories). With a slight abuse of terminology, we can thus say

9It can be shown that this tensor product does not depend on the representations of M and N .
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that the class of tracial von Neumann algebras is an elementary class (where for-

mally we mean that the class of LvNa-structures obtained from taking dissections

of tracial von Neumann algebras is an elementary class), say Mod(TvNa), and in

fact TvNa is a universal theory. Concrete axioms for TvNa are given in [12]. We

will abuse notation and use M both for the tracial von Neumann algebra M and its

dissection.

It is well-known that the tracial ultraproduct of a family of II1 factors is once

again a II1 factor and it is also fairly easy to check that an ultraroot of a II1 factor

is once again a II1 factor. It follows that the subclass of II1 factors is also an

elementary class, in fact an ∀∃-axiomatizable class. Once again, concrete axioms

for this class are given in [12]. It is this latter fact that allows one to show that an

existentially closed tracial von Neumann algebra is necessarily a II1 factor.

4.3. Property Gamma and the McDuff property. There are a couple of prop-

erties that a II1 factor may or may not have that will become relevant later in this

paper. The first was introduced by Murray and von Neumann in [28]. We will need

the notations [x, y] := xy − yx and U(M) := {x ∈M : uu∗ = u∗u = 1}.

Definition 4.13. We say that a II1 factor M has property Gamma if, for any

finite F ⊆ M and any ǫ > 0, there is u ∈ U(M) with tr(u) = 0 and such that

maxx∈F ‖[x, u]‖2 < ǫ.

The point of introducing property Gamma was that it allowed Murray and von

Neumann to distinguish between R and L(F2). Indeed, they proved that any uni-

tary u ∈ U(L(F2)) that almost commutes with the unitaries associated with the

generators of F2 is very close to the center of L(F2), that is, is close to C; since

the unitaries in C cannot have trace close to 0, this shows that L(F2) does not have

property Gamma. Combined with the easy observation that R does have property

Gamma, they were able to conclude that R 6∼= L(F2). In [13, 3.2.2], the authors

showed that property Gamma is in fact an axiomatizable property of separable II1
factors, whence one can conclude that R 6≡ L(F2).

The other property that will become relevant is the following:

Definition 4.14 (McDuff [27]). A separable II1 factor M is said to be McDuff if

M⊗R ∼=M .

From the presentation R =
⊗
M2n(C), it is relatively straightforward to see

that R is McDuff. Consequently, M⊗R is McDuff for any separable II1 factor M .

Following Popa [32], when M is non-Gamma, we call M⊗R strongly McDuff.

In Remark 5.8, we will mention that McDuff implies property Gamma. Dixmier

and Lance [9] gave an example of a separable II1 factor M that has property

Gamma but is not McDuff. This M provided the third isomorphism class of sepa-

rable II1 factors.

In [13, Proposition 3.9], the authors show that McDuffness is also axiomatizable

for separable II1 factors. Consequently, the M from the previous paragraph also

represents a third elementary equivalence class.
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5. SPECTRAL GAP SUBALGEBRAS

5.1. Introducing spectral gap for subalgebras. Until further notice, suppose that

M is a separable II1 factor and N ⊆M is a subalgebra. For the sake of readability,

all LvNa-formulae appearing below will be assumed to have their free variable

ranging over the sort for the operator norm unit ball.

Although the presentation in Section 3 was in terms of countable groups, one

can also define what it means for a unitary representation of an arbitrary (not nec-

essarily countable) group to have spectral gap (as is done in [1]). In particular, it

makes sense to speak of a unitary representation of U(N) having spectral gap.

Definition 5.1. We say that N has spectral gap in M if the unitary representation

u 7→ uxu∗ : U(N) → U(L2(M)) of U(N) has spectral gap.

Example 5.2. Suppose that Γ has property (T). Then L(Γ) has spectral gap in M
for any M containing L(Γ). Indeed, fix ǫ > 0 and take F ⊆ Γ finite and δ > 0
witnessing that Γ has property (T). For γ ∈ Γ, set uγ := λΓ(γ). It follows that,

for any a ∈ L2(M), if maxγ∈F ‖uγau∗γ − a‖ < δ, then there is b ∈ L2(M) with

uγbu
∗
γ = b for all γ ∈ Γ and with ‖a − b‖2 ≤ ǫ. It just remains to observe that

such b then commutes with all of L(Γ) and thus with all of U(L(Γ)).

Remark 5.3. The preceding example can be generalized. Indeed, there is a notion

of a II1 factor having property (T) (examples of which include L(Γ) for Γ an ICC

property (T) group) and such II1 factors will have spectral gap in any extension.

In a project in progress with Bradd Hart and Thomas Sinclair, we generalize the

results in Section 3 by showing that a II1 factor M has property (T) if and only if

the set of central vectors is a definable set relative to theory of M -M bimodules.

Let us recast the notion of spectral gap subalgebra in more concrete terms. In-

deed, we have that N has spectral gap in M if, for all ǫ > 0, there are u1, . . . , un ∈
U(M) and δ > 0 such that, for all x ∈M ,

‖[x, ui]‖2 ≤ δ‖x‖2 ⇒ ‖x− EN ′∩M (x)‖2 ≤ ǫ‖x‖2.
By weakening the previous statement by asking that x above only range over

M1, one obtains a useful weakening of the notion of spectral gap subalgebra:

Definition 5.4. N has weak spectral gap (or w-spectral gap) inM if for all ǫ > 0,

there are u1, . . . , un ∈ U(M) and δ > 0 such that, for all x ∈M1,

‖[x, ui]‖2 ≤ δ‖x‖2 ⇒ ‖x− EN ′∩M (x)‖2 ≤ ǫ‖x‖2.
We leave the following lemma as an exercise to the reader:

Lemma 5.5.

(1) N has spectral gap in M if and only if N ′ ∩ L2(M)U = L2(N ′ ∩M)U .

(2) N has w-spectral gap in M if and only if N ′ ∩MU = (N ′ ∩M)U .

In general, spectral gap and weak spectral gap are different notions (see, for

example, [31, Remark 2.2]). There is an important case in which they coincide:
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Fact 5.6 (Connes [8]). Suppose that N is a II1 factor. Then the following are

equivalent:

(1) N has spectral gap in N ;

(2) N has w-spectral gap in N (i.e. N ′ ∩NU = C · 1);

(3) N does not have property Gamma.

Moreover, if these equivalent conditions hold, then N has spectral gap in N⊗S
for any tracial von Neumann algebra S.

Remark 5.7. As a corollary of the previous fact, if N is a II1 factor with spectral

gap in some extension M , then N does not have property Gamma.

Remark 5.8. In her paper [27], McDuff shows that a separable II1 factor M is

McDuff if and only if M ′ ∩MU is not abelian. Combined with Fact 5.6, we see

that McDuff implies property Gamma.

5.2. Spectral gap and definability. Let {un} be an enumeration of a countable

dense subset of U(N) and let ϕN (x) :=
∑

n 2
−n‖[x, un]‖2, a formula in M over

N . Note that Z(ϕN ) = N ′ ∩ M1. The following theorem is almost immediate

from the definition:

Theorem 5.9. N has w-spectral gap inM if and only ifN ′∩M1 is a ϕN -definable

subset of M1.

Remark 5.10. As in the case of spectral gap for unitary representations, once again

we cannot replace “ϕN -definable” with “definable” in the previous theorem. For

instance, if N = M , then M ′ ∩M1 = S
1, which is a definable subset of M (as it

is compact), but as we just saw in the last subsection, M has w-spectral in itself if

and only if M does not have property Gamma.

For the sake of sanity, let us say that a subalgebra Q of M is definable if Q∩M1

is a definable subset of M1.

Naïvely speaking, it seems that N ′∩M should always be a definable subalgebra

of M . Indeed, N ′ ∩M1 is the zeroset of supy∈N1
‖[x, y]‖2. There are two issues

with this train of thought. First, the aforementioned expression is only a formula in

M if N is a definable subalgebra of M . Secondly, zerosets need not be definable

sets. It turns out that the second issue is not really an issue at all.

Fact 5.11 (See Lemma 3.6.5(ii) in [35]). For any x ∈M1, we have

d(x,N1) ≤ sup
y∈N1

‖[x, y]‖2.

Theorem 2.17 and the previous fact immediately imply the following:

Corollary 5.12. Suppose that N is a definable subalgebra of M . Then N ′ ∩M is

a definable subalgebra of M .

Example 5.13. Suppose that N is a non-Gamma II1 factor and S is any tracial

von Neumann algebra. Then by Fact 5.6, N has w-spectral gap in N⊗S, whence

S = N ′∩(N⊗S) is a definable subalgebra ofN⊗S. Moreover, by Corollary 5.12,

we have that N = S′ ∩ (N⊗S) is also a definable subalgebra of N ⊗ S.
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Combining Theorem 5.9 with Corollary 5.12 yields:

Corollary 5.14. Suppose that N has w-spectral gap in M . Then (N ′ ∩M)′ ∩M
is a definable subalgebra of M .

5.3. Relative bicommutants and e.c. II1 factors. Recalling von Neumann’s dou-

ble commutant theorem, one might see the above relative bicommutant and guess

that (N ′ ∩M)′ ∩M should always coincide with N . However, this is often not

the case. Indeed, given a II1 factor M , one can always find a proper irreducible

subfactor N in the sense that N ′∩M = C ·1, in which case (N ′∩M)′∩M =M .

(For M 6= R, this is due to Popa [29, Corollary 4.1]10; for M = R, this follows

from the work of Jones in [23].)

In connection with the above discussion, the following exercise in Hodges’ book

Building Models by Games [21, Exercise 3.3.2(b)] proved inspiring to the current

discussion:

Fact 5.15. Suppose that G is an existentially closed group and a ∈ G. Then

CG(CG(a)) = 〈a〉.11

As we just pointed out, the naïve von Neumann analog of the previous fact is not

true. However, the von Neumann analog does hold with a spectral gap hypothesis:

Proposition 5.16. Suppose that M is an e.c. II1 factor and N is a w-spectral gap

subalgebra of M . Then N satisfies the bicommutant condition

(N ′ ∩M)′ ∩M = N.

Proof. Suppose, towards a contradiction, that b ∈ (N ′ ∩ M)′ ∩ M but b /∈ N .

Let Q := M ∗N (N⊗L(Z)). Since M ⊆ Q and M is e.c., there is an embedding

i : Q → MU such that i restricts to the diagonal embedding on M . Let c ∈ Q be

the canonical unitary of L(Z). Then i(c) ∈ N ′ ∩MU = (N ′ ∩M)U , so we can

write i(c) = (cn)
• with each cn ∈ N ′ ∩M . By choice of b, we have [b, cn] = 0

for all n, whence [i(b), i(c)] = 0 and hence [b, c] = 0, contradicting the fact that

b /∈ N . �

Corollary 5.17. Suppose that M is an e.c. II1 factor and N has w-spectral gap in

M . Then N is a definable subalgebra of M .

Corollary 5.18. Suppose that M is an e.c. II1 factor and N is a property (T)

subfactor.12 Then N is a definable subalgebra of M .

The above discussion can be used to give a new proof of the following, fact

previously established by the author, Bradd Hart, and Thomas Sinclair in [19].

Corollary 5.19. The theory of II1 factors does not have a model companion.

10We thank Stefaan Vaes for pointing us to this reference.
11Here, for X ⊆ G, CG(X) := {b ∈ G : ab = ba for all a ∈ X}, CG(a) := CG({a}), and

〈a〉 denotes the subgroup of G generated by a.
12Refer back to Remark 5.3 for a discussion on property (T) factors.
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Proof. Let Γ be an infinite, ICC group with property (T) (e.g. Γ := SL3(Z)) and

set N := L(Γ). Let M be an e.c. II1 factor containing N . We seek to find an

elementary extension M̃ of M that is not e.c.

Set ψN (x) := supy∈N ′∩M ‖[x, y]‖2, so N = (N ′ ∩M)′ ∩M is ψN -definable.

Since N is infinite-dimensional, by compactness there is an elementary extension

M̃ of M such that Z(ψM̃
N ) is a proper extension of N . Now note that ψM̃

N defines

(N ′ ∩ M̃)′ ∩ M̃ . It follows that (N ′ ∩ M̃)′ ∩ M̃ 6= N , whence M̃ is not e.c. �

It is worth pointing out that the previous proof uses far less “technology” than

the original proof from [19]. Indeed, the above proof simply uses the existence of

infinite ICC groups with property (T) while the proof from [19] uses some deep

results of Bekka [2] and Brown [6].

5.4. Open questions. We end this section by mentioning some open problems

where spectral gap might play a role:

Question 5.20. Are any two e.c. II1 factors elementarily equivalent?

Here is a quick explanation for why the ideas presented in this section might

be relevant to the previous question. For simplicity, suppose that R is e.c. (As

mentioned in [10], R is e.c. if and only if the famous Connes Embedding Problem

has a positive solution.) Let N be a property (T ) factor (so, in particular, does

not have property Gamma). Let M be an e.c. factor containing N . The hope

would be to show that this M could not be elementarily equivalent to R. Indeed,

N is a definable subfactor of M and the idea would be to see if one could use the

assumption that M ≡ R to show that R must also have a definable, non-Gamma

subfactor, yielding a contradiction (as all subfactors of R are hyperfinite).

If the strategy described in the previous paragraph worked, it could probably

also be used to yield a positive answer to the following:

Question 5.21. If M is a strongly McDuff II1 factor, is it true that M 6≡ R?

A related question:

Question 5.22. Can an e.c. II1 factor ever be strongly McDuff?

Temporarily, call a non-Gamma factor N bc-good if it contains a w-spectral gap

subfactor Ñ such that (Ñ ′ ∩N)′ ∩N 6= Ñ . Corollary 5.14 immediately implies:

Lemma 5.23. Suppose that N is a non-Gamma II1 factor with a w-spectral gap

subfactor Ñ that is not definable. Then N is bc-good.

Here is the relevance of bc-good factors in connection with the last question:

Corollary 5.24. If N is a bc-good non-Gamma factor, then N⊗R is not e.c.

Proof. Let Ñ be as in the definition of bc-good. Then Ñ has w-spectral gap in

N⊗R (see [22, Corollary in the Appendix]) but

(Ñ ′ ∩ (N⊗R))′ ∩ (N⊗R) = (Ñ ′ ∩N)′ ∩N 6= Ñ ,

whence, by Proposition 5.16, N⊗R is not e.c. �



SPECTRAL GAP AND DEFINABILITY 25

Consequently, it is of interest to investigate whether or not all non-Gamma fac-

tors are bc-good.

6. CONTINUUM MANY THEORIES OF II1 FACTORS

6.1. The history and the main theorem. The progress in exhibiting many non-

isomorphic separable II1 factors was very slow. As mentioned earlier, the first

example of two nonisomorphic separable II1 factors was given by Murray and von

Neumann, where they used property Gamma to distinguish R from L(F2). The

third isomorphim class was given by Dixmier and Lance, where they found an

example of a separable II1 factor that had property Gamma but was not McDuff.

Slowly, more isomorphism classes were discovered but it remained until Mc-

Duff’s seminal works in [25] and [26] to exhibit infinitely many isomorphism

classes. The latter work exhibited a family (Mα)α∈2ω of pairwise nonisomorphic

separable II1 factors. We will explain the construction of this family below.

The progress in exhibiting non-elementarily equivalent II1 factors was equally

as slow. As mentioned earlier, property Gamma and the McDuff property were

shown to be elementary properties in [13], so the first three pairwise nonisomorphic

separable II1 factors are also pairwise non-elementarily equivalent. A fourth class

was discovered by the current author and Bradd Hart in 2015 (but was not published

until [18]) and it remained open to show that there were infinitely many elementary

equivalence classes until the appearance of [5], where the following was shown:

Fact 6.1. Let (Mα)α∈2ω be McDuff’s family of pairwise nonisomorphic separable

II1 factors. Then for any α 6= β and ultrafilters U and V on any sets, we have that

MU
α 6∼=MV

β .

Using either the continuous version of the Keisler-Shelah theorem or a Contin-

uum Hypothesis/absoluteness argument, the following model-theoretic corollary is

immediate:

Corollary 6.2. Under the assumptions of the previous fact, we have that Mα 6≡
Mβ.

The previous corollary notwithstanding, it at first proved difficult to find explicit

sentences distinguishing the McDuff examples. In [18], with Bradd Hart we used

Ehrenfeucht-Fraïsse games together with a careful reading of [5] to at least give an

upper bound to the quantifier-complexity of sentences distinguishing the McDuff

examples. Refining the ideas in [18], together with Hart and Henry Towsner, we

were finally able to provide explicit sentences distinguishing the McDuff examples

in [20]. It is the goal of this section to give a rough overview of the ideas involved

in this latter work and to highlight the role of spectral gap and definability.

Before stating the main theorem, let us introduce some notation. Let Γ be a

countable group. For i ≥ 1, let Γi denote an isomorphic copy of Γ and let Λi

denote an isomorphic copy of Z. Let Γ̃ :=
⊕

i≥1 Γi. If S∞ denotes the group of

permutations of N with finite support, then there is a natural action of S∞ on Γ̃
(given by permutation of indices), whence we may consider the semidirect product

Γ̃⋊ S∞. Given these conventions, we can now define two new groups:
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T0(Γ) := 〈Γ̃, (Λi)i≥1 | [Γi,Λj ] = 0 for i ≥ j〉
and

T1(Γ) := 〈Γ̃⋊ S∞, (Λi)i≥1 | [Γi,Λj ] = 0 for i ≥ j〉.
Note that if ∆ is a subgroup of Γ and α ∈ {0, 1}, then Tα(∆) is a subgroup of

Tα(Γ). Given a sequence α ∈ 2≤ω , we define a group Kα(Γ) as follows:

(1) Kα(Γ) := Γ if α = ∅;

(2) Kα(Γ) := (Tα0
◦ Tα1

◦ · · ·Tαn−1
)(Γ) if α ∈ 2n;

(3) Kα is the inductive limit of (Kα|n)n if α ∈ 2ω.

We then set Mα(Γ) := L(Tα(Γ)); if α = (0) or (1), we simply write M0(Γ)
or M1(Γ). We also set Mα := Mα(F2); these are the McDuff examples referred

to above.

Here is the main theorem from [20]:

Theorem 6.3. For each nonamenable ICC group Γ, there is an integer m(Γ) and

a sequence (cn(Γ)) of positive real numbers such that, for any n, t ∈ N with t ≥ 1
and any α ∈ 2n, we have:

θ
L(Tα(Γ))⊗t

m,n = 0 for all m ≥ 1 if α(n− 1) = 1;

θ
L(Tα(Γ))⊗t

m(Γ),n ≥ cn(Γ) if α(n− 1) = 0.

We then have the following precise form of Corollary 6.2:

Corollary 6.4. Suppose that α,β ∈ 2ω are such that α|n−1 = β|n−1, α(n) = 1,

β(n) = 0. Write β = (β|n+1)̂β∗. Set m := m(Tβ∗(F2)) and c := c(Tβ∗(F2)).

Then θMα
m,n = 0 and θ

Mβ
m,n ≥ c.

In the rest of this section, we explain the main ideas behind the proof of Theorem

6.3.

6.2. The base case. We start by describing how to find θm,0. First, we will need

the following fact:

Fact 6.5. Let ϕunitary(U) be the formula max(‖UU∗ − 1‖2, ‖U∗U − 1‖2). Then

Z(ϕunitary) is a TvNa-definable set.

In light of the previous fact, in the sequel, we may consider quantifiers over

unitaries. When doing so, we will use the letters U and V (perhaps with subscripts)

to denote variables ranging only over unitaries.

We now define the following formulae:

• χ(X,U1, U2) := 100(‖[X,U1 ]‖2 + ‖[X,U2]‖2).
• For m ≥ 1, set ψm(V1, V2) to be

sup
~X,~Y

((
inf
U

max
1≤i,j≤m

‖[UXiU
∗, Yj ]‖2 −. 2 max

1≤i≤m

√
χ(Xi, V1, V2)

))
.

• Set θm,0 := infV1,V2
ψm.
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We can now distinguish the base case. First, using lemmas from [5], one estab-

lishes:

Fact 6.6. Suppose that m, t ≥ 1. Then θ
M1(Γ)⊗t

m,0 = 0.

Spectral gap comes into play in the following:

Fact 6.7. Suppose that Γ is not amenable. Then there is m = m(Γ) and c = c(Γ)
such that, for any von Neumann algebra Q and any M0(Γ) ⊆ M ⊆ M0(Γ)⊗Q,

we have θMm,0 ≥ c.

While the proof of this is quite technical, we mention that the key fact underlying

the proof is the statement from Example 3.6, namely that Γ is non-amenable if and

only if λΓ has spectral gap. Thus, the m and the c come from Proposition 3.3(1).

6.3. A digression on good unitaries and generalized McDuff factors. Before

explaining how the inductive step works, we need to introduce some key defini-

tions. First, some:

Notation 6.8. Let M be a von Neumann algebra and ~a,~b be sequences from M .

• We write CM (~a) := {b ∈M : [b, ai] = 0 for all i}. We usually just write

C(~a) if M is clear from context.

• We write ~a ≤ ~b to mean C(~b) ⊆ C(~a).

Definition 6.9. Suppose that M is a II1 factor. A pair (u1, u2) ∈ U(M)2 is

called a pair of good unitaries if, for all a ∈ M , we have d(a,C(u1, u2)) ≤√
χ(a, u1, u2).

In other words, a pair of unitaries (u1, u2) is good if C(u, v) is a
√
χ-definable

subset of M with “modulus of continuity” the identity function. This is also equiv-

alent to saying that the algebra generated by u and v has spectral gap in M in a

precise numerical way. The following two lemmas are clear:

Lemma 6.10. There is a formula ϕgood(~U) such that, in ω-saturated II1 factors

(e.g. ultraproducts) M , Z(ϕM
good) is the set of pairs of good unitaries in M .

Lemma 6.11. There is a formula ψ( ~X, ~U) such that, for all II1 factors M , all

~a ∈ M , and all pairs of good unitaries ~u from M , we have ~a ≤ ~u if and only if

ψ(~a, ~u)M = 0.

We come to our other key definition.

Definition 6.12. A generalized McDuff ultraproduct for Γ and α is one of the

form ∏

U

Mα(Γ)
⊗ts .

The following fact explains the importance of generalized McDuff ultraprod-

ucts:
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Fact 6.13 ([20] elaborating on results from [5]). Suppose that Γ is an ICC group,

α ∈ 2<ω and M is a generalized McDuff ultraproduct for Γ and α. Write α =
α0α

#. Then for any pair of good unitaries ~u and any countable sequence ~a from

M , there is a pair of good unitaries ~v from M such that ~v > (~a, ~u) and C(~v)′ ∩
C(~u) is a generalized McDuff ultraproduct corresponding to Γ and α#.

6.4. The inductive step. The preceding fact illustrates how we should proceed to

find θm,1. Indeed, suppose that α = (α0, 1). Fix t ≥ 1 and let M :=
∏

U M
⊗t
α .

Let ~u be a nontrivial pair of good unitaries in M . Given any a ∈ M , there is

~v > (a, ~u). Since C(~v)′ ∩ C(~u) is generalized McDuff for Γ and (0), Fact 6.7

(and the Łos theorem) implies that θ
C(~v)′∩C(~u)
m,0 = 0. In order to extract a genuine

sentence witnessing this phenomenon, we need:

Fact 6.14 ([20]). For any sentence θ in prenex normal form, there is a formula

θ̃(~U, ~V ) such that, for any II1 factor M and pairs of good unitaries ~u and ~v from

M with C(~v) ⊆ C(~u), we have

θ̃(~u,~v)M = θC(~v)′∩C(~u).

Proof Sketch. We sketch a softer proof here than the one given in [20]. First let L1

denote the extension of the language of tracial von Neumann algebras obtained by

adding two new constants cu1
and cu2

. We let T1 denote the L1-theory extending

the theory of tracial von Neumann algebras stating that the interpretations of cu1

and cu2
are good unitaries. It is then clear that the T1-functor mapping a model

(M,u1, u2) of T1 to C(u1, u2) is a T1-definable set and the witnessing T1-formula

is a simple L1-formula.

Next, let L2 denote the extension of L1 obtained by adding two further con-

stant symbols cv1 and cv2 . Let T2 be the L2-theory obtained by adding to T1 ax-

ioms stating that the interpretations of cv1 and cv2 are also good unitaries and that

C(v1, v2) is contained in C(u1, u2). (To do this, one needs the result from the pre-

vious paragraph, namely that C(v1, v2) is a definable set.) Observe now that the

T2-functor mapping a model (M,u1, u2, v1, v2) of T2 to C(v1, v2)
′ ∩ C(u1, u2)

is a T2-definable set with witnessing formula a simple L2-formula. Indeed, let

ϕ(x) := max(d(x,C(u1, u2)), supy∈C(v1,v2) ‖[x, y‖2). If ϕ(x) is small, then by

the first paragraph, x is near x′ ∈ C(u1, u2) for which supy∈C(v1,v2) ‖[x′, y]‖2 is

still small. But then by Fact 5.11 (applied to C(u1, u2)), we see that x′ is near

x′′ ∈ C(v1, v2)
′ ∩ C(u1, v1).

Now given any sentnence θ (in the original language of von Neumann algebras)

that is in prenex normal form, it is straightforward to construct an L2-sentence θ′

such that, in models (M,u1, u2, v1, v2) of T2, we have (θ′)M = θC(v1,v2)′∩C(u1,u2).

The desired formula θ̃ is obtained by replacing the new constants by free variables.

�

Given the previous fact, we can consider the sentence θm,1 given by

inf
~U

max(ϕgood(~U), sup
A

inf
~V

max(ϕgood(~V ), ψ(A, ~U , ~V ), θ̃m,0(~U, ~V ))).

Our above discussion shows the following:
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Proposition 6.15. Suppose that Γ is any ICC group and α = (α0, 1). Then for

any t ≥ 1, we have θ
Mα(Γ)⊗t

m,1 = 0.

Contrast this with the following:

Proposition 6.16. Suppose that Γ is a non-amenable ICC group. Then there is a

constant c1(Γ) such that, for any t ≥ 1 and any β ∈ 21 with β(1) = 0, we have

θ
Mβ(Γ)

⊗t

m,1 ≥ c1(Γ).

Proof. Suppose, towards a contradiction, that no such c1(Γ) exists. Then there

is β ∈ 21 such that, for any n, there is tn ≥ 1 such that θ
Mβ(Γ)

⊗tn

m,1 < 1
n . Let

M :=
∏

U Mβ(Γ)
⊗tn , a generalized McDuff factor corresponding to Γ and β.

Let ~u be a pair of good unitaries in M witnessing the outermost infimum. Take

a > ~u and take good unitaries ~v > (a, ~u) witnessing the next infimum, that is,

such that θ̃m,0(~u,~v) = 0. In other words, θ
C(v1,v2)′∩C(u1,u2)
m,0 = 0. But C(v1, v2)

′∩
C(u1, u2) is a generalized McDuff factor corresponding to Γ and (0), contradicting

Fact 6.7. �

One proves Theorem 6.3 by iterating the above procedure.
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