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APPLICATIONS OF A NEW FORMULA FOR OPUC WITH PERIODIC

VERBLUNSKY COEFFICIENTS

BRIAN SIMANEK

Abstract. We find a new formula for the orthonormal polynomials corresponding to a
measure µ on the unit circle whose Verblunsky coefficients are periodic. The formula is
presented using the Chebyshev polynomials of the second kind and the discriminant of
the periodic sequence. We present several applications including a resolution of a problem
suggested by Simon in 2006 regarding the existence of singular points in the bands of the
support of the measure and a universality result at all points of the essential support of µ.
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1. Introduction

Let µ be a probability measure on the unit circle with infinite and compact support.
If {Φn}∞n=0 denotes the sequence of monic orthogonal polynomials obtained by applying
Gram-Schmidt orthogonalization to the sequence {zn}∞n=0, then we define the sequence of
Verblunsky coefficients {αn}∞n=0 by −ᾱn = Φn+1(0). The well-known Szegő-recursion states

Φn+1(z) = zΦn(z)− ᾱnΦ
∗
n(z)

Φ∗
n+1(z) = Φ∗

n(z)− αnzΦn(z),

where Φ∗
n(z) = znΦn(1/z̄). The second kind polynomials {Ψn(z)}∞n=0 are obtained by iter-

ating the Szegő recursion using the sequence {−αn}∞n=0 and the initial condition Ψ0(z) = 1.
The second kind polynomials are also orthogonal with respect to a different measure on the
unit circle, which is in the family of Aleksandrov measures for the measure µ. Let {ϕn}∞n=0

denote the sequence of orthonormal polynomials for the measure µ and let {ψn}∞n=0 denote
the sequence of normalized second kind polynomials.

Verblunsky’s Theorem (see [26, Section 1.7]) establishes a bijection between sequences
{αn}∞n=0 in D and probability measures on ∂D = {z : |z| = 1} with infinite support. There-
fore it is meaningful to study measures µ whose corresponding sequence satisfies certain
properties. In this paper, we will focus on the case when the sequence {αn}∞n=0 is periodic
with period p. Polynomials {Φn}∞n=0 generated by periodic sequences {αn}∞n=0 have been
studied extensively and much is known about their structure, asymptotics, and zero behav-
ior (see for example [13, 16, 17, 18, 19, 20, 28]). However, we will introduce a new formula
for these poiynomials that allows us to carry out some complicated calculations and produce
several new results. The most substantial of our results are a demonstration of the existence
of singular points (defined below) in the support of the measure µ and also a universality re-
sult for the scaled polynomial reproducing kernels around any point in the essential support
of µ.
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A fundamental tool in the analysis of polynomials generated by periodic sequences of
Verblunsky coefficients is the function ∆(z) defined by

∆(z) :=
ϕp(z) + ϕ∗

p(z) + ψp(z) + ψ∗
p(z)

2zp/2
, (1)

which we call the discriminant (as in [27, Section 11]). Due to the presence of the factor
zp/2, it will sometimes be convenient to assume that p is even. Note that there is no loss of
generality in making this assumption because every sequence of period p is also a sequence of
period 2p. The discriminant is especially useful in describing the support of the corresponding
measure. By [27, Theorems 11.1.1 and 11.1.2], we know that if µ is a measure on the unit
circle whose Verblunsky coefficients are periodic with period p, then the support of the
measure µ consists of disjoint closed arcs {Bk}qk=1 (where q ≤ p) and at most one point in
each gap between the arcs. These arcs (called bands) satisfy the relation

q
⋃

k=1

Bk = {eiθ : |∆(eiθ)| ≤ 2}

On each band, the measure µ is purely absolutely continuous with respect to arclength
measure. The set ∂D \ ∪Bk is called the set of gaps in supp(µac).

Let us denote the endpoints of Bk by eixk and eiyk , where 0 ≤ x1 < y1 < x2 < y2 < · · · <
yq < x1 + 2π. When p is even, it holds that

{eixj , eiyj : j = 1, . . . , q} ⊆ ∆−1({−2, 2}),
but this inclusion could be strict. Any point eiθ for which |∆(eiθ)| = 2 but eiθ is not the
endpoint of a band is called a closed gap.

We can also use ∆ to derive a formula for the equilibrium measure of supp(µ). Indeed, it
is known that the equilibrium measure is given by1

V (θ)
dθ

2π
=

|W (θ)|
p
√

4−∆(eiθ)2
dθ

2π
, (2)

where

W (s) :=
d

ds
∆(eis) (3)

(see [27, Theorem 11.1.3] and Remark 1 following it). These formulas for V and W will be
important when stating our results in Section 3.

As in [24], our results will be made possible by a new formula for the orthonormal polyno-
mials {ϕn}∞n=0 in terms of the Chebyshev polynomials of the second kind. These polynomials
have many closed form expressions, but the one that will be most useful for us is

Un(x) =

⌊n
2 ⌋
∑

j=0

(−1)j
(

n− j

j

)

(2x)n−2k (4)

(see [1, page 37]). We also recall from [1, page 37] the formulas

Un(cos(t)) =
sin((n+ 1)t)

sin(t)
(5)

1Here and always, we identify the unit circle with the interval [0, 2π).
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Un(x) =
(x+

√
x2 − 1)n+1 − (x−

√
x2 − 1)n+1

2
√
x2 − 1

(6)

The detailed knowledge we have about the Chebyshev polynomials will enable us to deduce
equally precise results for the orthonormal polynomials when the Verblunsky coefficients are
periodic.

In the next section, we will present our new formula for ϕn in Theorem 2.1. The proof is
short and is similar to that of a related formula that appears in [24]. After deriving these
formulas, the remainder of the paper is devoted to applications.

2. Periodic Verblunsky Coefficients

Let us fix p ∈ N and consider a periodic sequence of Verblunsky coefficients {αn}∞n=0 that
satisfies αn+p = αn for all n ≥ 0. Let {ϕn}∞n=0 be the corresponding sequence of orthonor-
mal polynomials and let {ψn}∞n=0 be the corresponding sequence of normalized second kind
polynomials. For convenience, we define

r :=

p−1
∏

j=0

√

1− |αj|2

η(z; σ) := σ(ϕp(z)− ϕ∗
p(z))− ψp(z)− ψ∗

p(z),

which we will retain for the remainder of this paper. Our first result will make all of our
subsequent results possible and is given by the following theorem.

Theorem 2.1. For any k ∈ N0 and s ∈ {1, . . . , p− 1}, it holds that

ϕkp(z) = zkp/2
[

Uk

(

∆(z)

2

)

+
η(z; 1)

2zp/2
Uk−1

(

∆(z)

2

)]

ϕ∗
kp(z) = zkp/2

[

Uk

(

∆(z)

2

)

+
η(z;−1)

2zp/2
Uk−1

(

∆(z)

2

)]

ϕkp+s(z) =
(ϕs(z) + ψs(z))ϕkp(z) + (ϕs(z)− ψs(z))ϕ

∗
kp(z)

2

ϕ∗
kp+s(z) =

(ϕ∗
s(z)− ψ∗

s (z))ϕkp(z) + (ϕ∗
s(z) + ψ∗

s (z))ϕ
∗
kp(z)

2

where U−1 = 0.

Remark. It is likely that these formulas can be obtained by combining [16, Theorem 3.2]
and [16, Theorem 4.2], but we provide a new short proof for the reader’s convenience.

Proof. We will mimic the proof of [24, Theorem 2.1]. If we set

An =

(

z −ᾱn

−αnz 1

)

then we can write the Szegő recursion as
(

Φn+1(z)
Φ∗

n+1(z)

)

= An

(

Φn(z)
Φ∗

n(z)

)

= AnAn−1 · · ·A0

(

1
1

)
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Since the Verblunsky coefficients form a periodic sequence, we have (see [26, Eq. 3.2.17])

(

Φkp+s(z)
Φ∗

kp+s(z)

)

=
1

2

(

Φs(z) + Ψs(z) Φs(z)−Ψs(z)
Φ∗

s(z)−Ψ∗
s(z) Φ∗

s(z) + Ψ∗
s(z)

)

(

Φp(z)+Ψp(z)
2

Φp(z)−Ψp(z)
2

Φ∗

p(z)−Ψ∗

p(z)

2

Φ∗

p(z)+Ψ∗

p(z)

2

)k
(

1
1

)

(compare with [28, Equation 3.22]). Therefore, one can apply [15, Theorem 1] with

yk(z) =

⌊k
2⌋
∑

m=0

(

n−m

m

)

(

zp/2r∆(z)
)k−2m

(−zpr2)m = zpk/2rkUk

(

∆(z)

2

)

to calculate the kth power of the rightmost matrix. The desired result follows. �

Remark. The analog of Theorem 2.1 on the real line was proven by de Jesus and Petronilho
(see [8, Theorem 5.1] and also [6]). The special case p = 1 was considered in [24].

Remark. Other formulas resembling those in Theorem 2.1 can be found in [17, Theorem 2.1].

There are many simple consequences of the formulas in Theorem 2.1 and we explore many
of them in Section 4. For now we turn to a more substantial analysis to resolve some unsolved
problems.

2.1. Singular Points in the Bands. Notice that we can use Theorem 2.1 to deduce the
Szegő asymptotics of the orthonormal polynomials. This has been done already in [17, 18, 28],
but we can provide a simple proof that comes with explicit bounds on the error terms. When
µ has periodic Verblunsky coefficients with period p and p is even, ∪Bk = ∆−1([−2, 2]) (see
[27, Theorem 11.1.1]) so we can define the functions Γ± as in [28] by

Γ±(z) =
∆(z)

2
±
√

∆(z)2

4
− 1 (7)

Since p is even, these functions are analytic on C \ {∪Bk}. The formula (6) implies

Un

(

∆(z)

2

)

=
Γ+(z)

n+1 − Γ−(z)
n+1

√

∆(z)2 − 4
.

The following result is now an immediate consequence of Theorem 2.1 and the formula (6).

Theorem 2.2. Let {ϕn(z)}n≥0 be the sequence of orthonormal polynomials for the measure
µ, whose corresponding sequence of Verblunsky coefficients is periodic with period p, where p
is even. For z not in the bands of the support of µ it holds that

lim
k→∞

z−kp/2ϕkp(z)

Γ+(z)k
=: j0(z) =

Γ+(z)

2
√

∆(z)2/4− 1
+

η(z; 1)

4zp/2
√

∆(z)2/4− 1

lim
k→∞

z−kp/2ϕ∗
kp(z)

Γ+(z)k
=: ℓ0(z) =

Γ+(z)

2
√

∆(z)2/4− 1
+

η(z;−1)

4zp/2
√

∆(z)2/4− 1

lim
k→∞

z−kp/2ϕkp+s(z)

Γ+(z)k
=: js(z) =

(ϕs(z) + ψs(z))j0(z) + (ϕs(z)− ψs(z))ℓ0(z)

2
,

lim
k→∞

z−kp/2ϕ∗
kp+s(z)

Γ+(z)k
=: ℓs(z) =

(ϕ∗
s(z)− ψ∗

s (z))j0(z) + (ϕ∗
s(z) + ψ∗

s(z))ℓ0(z)

2
,
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for each s ∈ {1, . . . , p− 1}. Furthermore, in all cases the convergence is exponentially fast,
i.e. for every compact set X ⊆ C \ supp(µac), there are constants CX > 0 and ǫX ∈ (0, 1) so
that

∣

∣

∣

∣

z−kp/2ϕkp+s(z)

Γ+(z)k
− js(z)

∣

∣

∣

∣

≤ CX(1− ǫX)
k, z ∈ X

∣

∣

∣

∣

∣

z−kp/2ϕ∗
kp+s(z)

Γ+(z)k
− ℓs(z)

∣

∣

∣

∣

∣

≤ CX(1− ǫX)
k, z ∈ X

for each s ∈ {0, . . . , p− 1}.
Proof. As mentioned above, the form of js and ℓs is a direct consequence of Theorem 2.1 and
the formula (6). The statement about exponential convergence follows from the fact that
Γ+ maps the complement of the bands of supp(µ) to the complement of the closed unit disk
and Γ− maps the complement of the bands of supp(µ) to the unit disk. �

With Theorem 2.2 in hand we can now resolve an unsolved problem from [28] about the
zeros of {js}p−1

s=0. In [28], Simon defines singular points of order k to be those points in the
bands where js vanishes to order k (note that js(e

iθ) is defined when eiθ is in a band as
limr→1− js(re

iθ)). His motivation for this definition comes from a desire to understand the
asymptotic distribution of the zeros of the polynomial ϕn as n → ∞. Certain estimates
can be made more precise in the absence of singular points. It was also mentioned in [28]
that there are no known examples with singular points. We will show that there are indeed
measures with periodic Verblunsky coefficients that have singular points.

Let ν be the equilibrium measure of supp(µ). As in [28], define the function k(θ) to be
the cumulative distribution function of ν

k(θ) = ν
(

{eit : x1 ≤ t ≤ θ}
)

,

where x1 is as described in Section 1. If s ∈ {0, . . . , n−1}, then simple algebraic manipulation
of the formulas in Theorem 2.2 and an application of [28, Proposition 3.4] shows that js(e

iθ) =
0 with eiθ in some band of the support of µ if and only if

2e−iπpk(θ) = −η
(

eiθ;
ψs(e

iθ)

ϕs(eiθ)

)

(8)

From (8) we can deduce that there are in fact singular points in some cases. Indeed,
let us consider the sequence of Verblunsky coefficients {0, . . . , 0, α, 0, . . . , 0, α, 0, . . .}, where
there are p − 1 zeros between each α (α will be chosen later). Then ψs/ϕs ≡ 1 for any
s ∈ {0, . . . , p− 1} so (8) becomes

e−iπpk(θ) =
1 + ᾱ

√

1− |α|2
(9)

for all s ∈ {0, 1, . . . , p−1}. If we specify that Re[α] = −|α|2 6= 0, then the right-hand side of
(9) has absolute value 1. Since the left-hand side of (9) takes on all values in the unit circle
p/2 times as θ runs from x1 to 2π+ x1, we see that we have exactly p/2 singular points and
they are common to all {js}p−1

s=0. In fact, one can see that in this case there are precisely p
bands and they alternate between having a singular point and not having a singular point.

We note that the circle defined by the condition Re[α] = −|α|2 is precisely the boundary
circle of the closed set Ω such that the measure of orthogonality has a mass point in each
gap if and only if α 6∈ Ω (see [26, Section 1.6]).
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3. Universality

Recall that the reproducing kernel for polynomials of degree at most n in L2(µ) is given
by

Kn(z, w;µ) :=

n
∑

j=0

ϕj(z)ϕj(w)

Let σn be a real sequence that monotonically tends to 0 as n→ ∞. Our goal in this section
is to understand the limit

lim
n→∞

Kn(e
i(θ+aσn), ei(θ+bσn);µ)

Kn(eiθ, eiθ;µ)

for appropriate values of θ ∈ R and an appropriate sequence σn. The two sequences we will
be most interested in are σn = −n−2 and σn = n−1, depending on location of eiθ in the
support of µ. A desire to study limits of the above form comes from random matrix theory,
where such limits can be useful in calculating eigenvalue correlation functions. There are
many examples of measures on the unit circle for which these limits can be calculated (see
[2, 10, 12, 23, 24]), but the case of a measure supported on several arcs of the unit circle has
not been previously considered. That is the case we aim to consider here and we note that
the analogous results on the real line have been proven by Totik in [32] and by Danka in [4].

We will consider measures µ on the unit circle whose corresponding sequence of Verblunsky
coefficients is periodic with period p, where p is even. Our analysis will follow the general
method pioneered by Lubinsky, which has been utilized repeatedly by other authors. The
main technical obstacle that we will need to overcome is to take special consideration of the
set of resonances, which are the zeros of ϕp(z)− ϕ∗

p(z) (see [27, Section 11.3]). These zeros

are all on the unit circle and are located in the closure of ∂D \ ∆−1((−2, 2)). Also, every
closed gap is a resonance and it is possible for the endpoint of a band to be a resonance (see
[27, Theorem 11.3.1]).

Before we can state our result, we need to define the kernel that will appear in our theorem.
For any s ∈ R, let Js denote the Bessel function of the first kind order s. Define

J
∗
s(a, b) :=

{

Js(
√
a)
√
bJ ′

s(
√
b)−Js(

√
b)
√
aJ ′

s(
√
a)

2as/2bs/2(a−b)
a 6= b

1
4as

(Js(
√
a)2 − Js+1(

√
a)Js−1(

√
a)) a = b.

As noted in [11], J∗s(a, b) is entire on C2. We also define sinc(x) = sin(x)
x

.
Now we can state our main result of this section (recall the definition of V from (2) and

W from (3)).

Theorem 3.1. Let µ∗ be a measure of the form w(t)µ+ µ0, where µ has periodic Verblun-
sky coefficients with period p, where p is even. Suppose that w is positive and continuous
everywhere on supp(µ) and supp(µ0) ⊆ supp(µac).

i) If eiθ is an interior point of a band in supp(µ) and dist(eiθ, supp(µ0)) > 0, then

lim
k→∞

Kn

(

ei(θ+a/n), ei(θ+b/n);µ∗)

Kn(eiθ, eiθ;µ∗)
= ei

a−b̄
2 sinc(V (θ)(a− b̄))

where the convergence is uniform for a, b in compact subsets of C2.
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ii) If eiθ is an endpoint of a band in supp(µ), dist(eiθ, supp(µ0)) > 0, ∆(eiθ) = 2, and
eiθ is not a resonance, then

lim
k→∞

Kn

(

ei(θ−a/n2), ei(θ−b/n2);µ∗
)

Kn(eiθ, eiθ;µ∗)
=

J∗1/2

(

W (θ)a
p2

, W (θ)b̄
p2

)

J∗1/2 (0, 0)

where the convergence is uniform for a, b in compact subsets of C2.
iii) If eiθ is an endpoint of a band in supp(µ), dist(eiθ, supp(µ0)) > 0, ∆(eiθ) = 2, and

eiθ is a resonance, then

lim
k→∞

Kn

(

ei(θ−a/n2), ei(θ−b/n2);µ∗
)

Kn(eiθ, eiθ;µ∗)
=

J∗−1/2

(

W (θ)a
p2

, W (θ)b̄
p2

)

J∗−1/2 (0, 0)

where the convergence is uniform for a, b in compact subsets of C2.

Remark. In parts (ii) and (iii), there exists a corresponding result for ∆(eiθ) = −2, but we
will omit those calculations.

Remark. Our result allows for the possibility of mass points in the gaps between the bands
of supp(µ).

Remark. We note here that our assumptions imply µ∗ is regular on supp(µ) in the sense of
Stahl and Totik (see [31]).

For the remainder of this section, let µ be fixed as in the statement of Theorem 3.1. Our
first task is to prove Theorem 3.1 for µ∗ = µ. We will proceed to first understand the limit

lim
k→∞

Kkp−1(e
i(θ+aσkp−1), ei(θ+bσkp−1);µ)

Kkp−1(eiθ, eiθ;µ)

For brevity, let us define za = ei(θ+aσkp−1) and zb = ei(θ+bσkp−1) for complex numbers a and b.
If we assume a 6= b̄, then we can use the Christoffel-Darboux formula (see [29]) to write

Kkp−1(za, zb;µ) =
ϕ∗
kp(za)ϕ

∗
kp(zb)− ϕkp(za)ϕkp(zb)

1− ei(a−b̄)σkp−1

Now we split the calculation into cases.

3.1. Case 1: eiθ is not a resonance. We begin with several lemmas that will help us
understand the necessary asymptotics of the orthonormal polynomials.

Lemma 3.2. (a) If eiθ is on the interior of a band in the support of µ and eiθ is not a
resonance, then |ϕn(e

i(θ+c/n))| = O(1) as n → ∞ uniformly for c in compact subsets
of C.

(b) If eiθ is at the edge of a band in the support of µ and eiθ is not a resonance, then

|ϕn(e
i(θ+c/n2))| = O(n) as n→ ∞ uniformly for c in compact subsets of C.

Remark: The scaling of n−1 and n−2 are exactly what one would predict based on Bern-
stein’s Inequality and Markov’s Inequality (see [1, Theorem 5.1.7] and [1, Theorem 5.1.8]
respectively).

Proof. In both cases, Theorem 2.1 shows that it suffices to show that the lemma holds when
n is a multiple of p.
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(a) By assumption, we can write

∆(ei(θ+c/n))

2
= x+

t

n
+O(n−2), n→ ∞

for some x ∈ (−1, 1) and t = t(c) ∈ C that remains bounded as c varies through any compact
set in C. Since |x| < 1, the arccos function is analytic in a neighborhood of x and hence we
can define

wn = arccos

(

∆(ei(θ+c/n))

2

)

= arccos(x) +
β

n
+O(n−2), n→ ∞

for some β = β(c) that remains bounded as c varies through any compact set in C. If we let
α = arccos(x), then

Un

(

∆(ei(θ+c/n))

2

)

= Un(cos(wn)) =
sin((n+ 1)α+ n+1

n
β + o(n−1))

sin(α + o(1))
, n→ ∞.

Using basic trigonometric identities and the fact that x is real with sin(x) 6= 0, we see that
this expression is O(1) as n→ ∞. The desired conclusion now follows from Theorem 2.1.

(b) In this case, |∆(eiθ)| = 2, so without loss of generality, ∆(eiθ) = 2. Taylor expanding
shows

∆(ei(θ+c/n2))

2
= 1− t

n2
+O(n−4), n→ ∞,

for some complex number t = t(c) that remains bounded as c varies throughout any compact
set in C. We can use (5) to write

Un

(

1− x2

2n2

)

= Un(cos(x/n)) + o(n) =
n sin(x)

x
+ o(n), n→ ∞. (10)

The desired conclusion follows from Theorem 2.1. �

By applying Lemma 3.2, the Cauchy-Schwarz inequality, and Montel’s Theorem, we obtain
a proof of our next lemma. Its importance is that it will allow us to prove only pointwise
convergence, since the uniform convergence will follow automatically.

Lemma 3.3. Suppose eiθ ∈ supp(µ). If eiθ is an interior point in a band in the support of
µ and eiθ is not a resonance, then

{

Kn(e
i(θ+a/n), ei(θ+b/n);µ)

n

}

n∈N

is a normal family on C2 in the variables a and b. If eiθ is a band edge and not a resonance,
then

{

Kn(e
i(θ+a/n2), ei(θ+b/n2);µ)

n3

}

n∈N

is a normal family on C2 in the variables a and b.
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Now we proceed to calculate the asymptotics of the Christoffel-Darboux kernel. By in-
voking Theorem 2.1, we can rewrite the Christoffel Darboux formula as

Kkp−1(za, zb;µ) =e
i
kp(a−b̄)σkp−1

2

(

1− ei(a−b̄)σkp−1

)−1

×
(

Uk

(

∆(za)

2

)

Uk−1

(

∆(zb)

2

)

(

ϕ∗
p(zb)− ϕp(zb)

2z
p/2
b

)

+ Uk−1

(

∆(za)

2

)

Uk

(

∆(zb)

2

)

ϕ∗
p(za)− ϕp(za)

2z
p/2
a

(11)

[η(za;−1)η(zb;−1)− η(za; 1)η(zb; 1)]Uk−1

(

∆(za)
2

)

Uk−1

(

∆(zb)
2

)

4z
p/2
a z̄

p/2
b

)

To help us analyze this form of the expression, we provide the following lemma.

Lemma 3.4. With za and zb defined as above, it holds that

η(za;−1)η(zb;−1)− η(za; 1)η(zb; 1) = O(σn), n→ ∞. (12)

The O-estimate is uniform in a and b in compact subsets of C.

Proof. If we expand the expressions for η(z;±1), we find that the expression on the left-hand
side of (12) simplifies to

2((ϕp(za)− ϕ∗
p(za))(ψp(zb) + ψ∗

p(zb)) + (ϕp(zb)− ϕ∗
p(zb))(ψp(za) + ψ∗

p(za))) (13)

If we consider the Taylor expansion around eiθ of each polynomial in this expression, then
it suffices to show that all of the constant terms cancel. The resulting expression will then
be O(|za − eiθ|+ |zb − eiθ|) = O(σn), which is what we want to show.

To this end, notice that in D, it holds that |ϕp(z)| < |ϕ∗
p(z)| and the reverse inequality

holds outside the closed unit disk. The same is true for ψp and ψ
∗
p, so we conclude that there

are real numbers {tj}pj=1 and {sj}pj=1 such that

ϕp(z)− ϕ∗
p(z) =

1 + αp−1

r

p
∏

j=1

(z − eitj ), ψp(z) + ψ∗
p(z) =

1 + αp−1

r

p
∏

j=1

(z − eisj)

The constant term in the Taylor expansion of (13) is

2((ϕp(e
iθ)− ϕ∗

p(e
iθ))(ψp(eiθ) + ψ∗

p(e
iθ)) + (ϕp(eiθ)− ϕ∗

p(e
iθ))(ψp(e

iθ) + ψ∗
p(e

iθ)))
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We calculate

(ϕp(e
iθ)− ϕ∗

p(e
iθ))(ψp(eiθ) + ψ∗

p(e
iθ)) =

|1 + αp−1|2
r2

p
∏

j=1

(eiθ − eitj )(e−iθ − e−isj )

=
|1 + αp−1|2

r2

p
∏

j=1

(e−itj − e−iθ)(eisj − eiθ)

p
∏

j=1

eitj
p
∏

j=1

e−isj

=
|1 + αp−1|2

r2

p
∏

j=1

(e−iθ − e−itj )(eiθ − eisj )
r(ϕp(0)− ϕ∗

p(0))

1 + αp−1

(

r(ψp(0) + ψ∗
p(0))

αp−1 + 1

)

=
|1 + αp−1|2

r2

p
∏

j=1

(e−iθ − e−itj )(eiθ − eisj )
−ᾱp−1 − 1

1 + αp−1
· 1 + αp−1

ᾱp−1 + 1

= −(ϕp(eiθ)− ϕ∗
p(e

iθ))(ψp(e
iθ) + ψ∗

p(e
iθ))

so the constant term in (13) is zero as desired. �

We now consider interior points and edge points separately.

3.1.1. Case 1a: ∆(eiθ) ∈ (−2, 2). In the first case, we will assume that ∆(eiθ) ∈ (−2, 2) and

σn = 1/n. By Taylor expanding
ϕ∗

p(z)−ϕp(z)

2zp/2
around eiθ, we see that for c = a, b

ϕ∗
p(zc)− ϕp(zc)

2z
p/2
c

=
ϕ∗
p(e

iθ)− ϕp(e
iθ)

2eipθ/2
+O(σn), (14)

where the error estimate is uniform for c in compact subsets of C. Since
ϕ∗

p(e
iθ)−ϕp(eiθ)

2eipθ/2
is

purely imaginary and not zero (we used [27, Theorem 11.3.1] here), we can write (11) as

(1 + o(1))ei
(a−b̄)

2

(

−i(a− b̄)

kp− 1

)−1

×
(

[

Uk

(

∆(za)

2

)

Uk−1

(

∆(zb)

2

)

− Uk−1

(

∆(za)

2

)

Uk

(

∆(zb)

2

)

]

ϕp(e
iθ)− ϕ∗

p(e
iθ)

2eipθ/2
(1 +O(k−1))

[η(za;−1)η(zb;−1)− η(za; 1)η(zb; 1)]Uk−1

(

∆(za)
2

)

Uk−1

(

∆(zb)
2

)

4ei
a−b̄
2k

)

as k → ∞. We can apply the calculations from Lemma 3.2 to conclude that the last term
in (11) is O(k−1) as k → ∞ (here we used the fact that ∆(eiθ) ∈ (−2, 2)). We conclude that

Kkp−1(za, zb;µ) = (1 + o(1))ei
a−b̄
2

kp

i(b̄− a)
·
ϕp(e

iθ)− ϕ∗
p(e

iθ)

2eipθ/2
×

[

Uk

(

∆(za)

2

)

Uk−1

(

∆(zb)

2

)

− Uk−1

(

∆(za)

2

)

Uk

(

∆(zb)

2

)

]

(15)

as k → ∞. If ν∗ is the measure of orthogonality for the polynomials {Un}n≥0, then

Kn(x, y; ν
∗) =

Un(y)Un+1(x)− Un(x)Un+1(y)

2(x− ȳ)
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(see [29, Section 3]). Letting x = ∆(za)/2 and y = ∆(zb)/2, we find

Kkp−1(za, zb;µ) =

(1 + o(1))ei
a−b̄
2
kp(ϕp(e

iθ)− ϕ∗
p(e

iθ))

2i(b̄− a)eipθ/2
(∆(za)−∆(zb))Kk−1

(

∆(za)

2
,
∆(zb)

2
; ν∗
)

Let us consider the asymptotics of this expression. Using the fact that ∆(eiθ) is real and
W (θ) is real and non-zero, a Taylor expansion shows that

lim
k→∞

kp(∆(za)−∆(zb))

b̄− a
= −W (θ).

We can also use [30, Theorem 3.11.6] to conclude that as k → ∞

Kk−1

(

∆(za)

2
,
∆(zb)

2
; ν∗
)

= Kk−1

(

∆(eiθ)

2
,
∆(eiθ)

2
; ν∗
) sin W (θ)(b̄−a)

p
√

4−∆(eiθ)2

W (θ)(b̄−a)

p
√

4−∆(eiθ)2

+ o(k)

=
2kp sin W (θ)(b̄−a)

p
√

4−∆(eiθ)2

W (θ)(b̄− a)
√

4−∆(eiθ)2
+ o(k)

where we used [30, Equation 3.11.42]. Therefore,

lim
k→∞

Kkp−1(za, zb;µ)

k
= ei

a−b̄
2

p(ϕ∗
p(e

iθ)− ϕp(e
iθ)) sin W (θ)(a−b̄)

p
√

4−∆(eiθ)2

ieipθ/2(a− b̄)
√

4−∆(eiθ)2

By Lemma 3.3, these asymptotics also hold when a = b̄. Taking a limit as a− b̄ → 0 shows

lim
k→∞

Kkp−1(e
iθ, eiθ;µ)

k
=
W (θ)(ϕ∗

p(e
iθ)− ϕp(e

iθ))

ieipθ/2(4−∆(eiθ)2)

Thus,

lim
k→∞

Kkp−1(za, zb;µ)

Kkp−1(eiθ, eiθ;µ)
= ei

a−b̄
2 sinc

W (θ)(a− b̄)

p
√

4−∆(eiθ)2
= ei

a−b̄
2 sinc(V (θ)(a− b̄)) (16)

(compare with [10, Equation 1.5] and [12, Theorem 1.1]). Notice that all of the above
estimates can be taken uniformly on any compact subset of ∆−1((−2, 2)) because of the
uniformity of the asymptotics of Kn(x+a/n, x+b/n; ν

∗) for x in compact subsets of (−1, 1).

3.1.2. Case 1b: eiθ is a nonresonance band edge. Now we will consider the case when
∆(eiθ) = 2, σn = −1/n2, eiθ is at the edge of a band, and ϕp(e

iθ) 6= ϕ∗
p(e

iθ). According
to [27, Theorem 11.3.2iii], the weight of µ vanishes as a square root on the band edge near
eiθ. As in the previous case, we need to calculate the asymptotics in the expression (11),
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which we rewrite as

(1 + o(1))e
i (a−b̄)k

2(kp−1)2

(

− i(a− b̄)

(kp− 1)2

)−1

×
(

[

Uk

(

∆(za)

2

)

Uk−1

(

∆(zb)

2

)

− Uk−1

(

∆(za)

2

)

Uk

(

∆(zb)

2

)

]

ϕp(e
iθ)− ϕ∗

p(e
iθ)

2eipθ/2
(1 +O(k−2))

[η(za;−1)η(zb;−1)− η(za; 1)η(zb; 1)]Uk−1

(

∆(za)
2

)

Uk−1

(

∆(zb)
2

)

4ei
a−b̄
2k2

)

as k → ∞. By applying Lemma 3.4 and the calculations in the proof of Lemma 3.2, we
conclude that the last term in this expression is O(1) as k → ∞. It follows that

Kkp−1(za, zb;µ) = (1 + o(1))
(kp)2

i(b̄− a)
·
ϕp(e

iθ)− ϕ∗
p(e

iθ)

2eipθ/2
×

[

(∆(za)−∆(zb))Kk−1

(

∆(za)

2
,
∆(zb)

2
; ν∗
)

+O(1)

]

(17)

as k → ∞, where ν∗ is as in the previous case.
To calculate the asymptotics of this expression, we use [4, Theorem 1.4] to conclude that

Kk−1

(

∆(za)

2
,
∆(zb)

2
; ν∗
)

= Kk−1 (1, 1; ν
∗)

J∗1/2

(

W (θ)a
p2

, W (θ)b̄
p2

)

J∗1/2(0, 0)
+ o(k3)

=
k(k + 1)(2k + 1)J∗1/2

(

W (θ)a
p2

, W (θ)b̄
p2

)

6J∗1/2(0, 0)
+ o(k3)

A Taylor expansion shows ∆(za)−∆(zb) = O(k−2) as k → ∞, which means the O(1) term
in (17) is negligible as k → ∞. It also shows that

lim
k→∞

(kp)2(∆(za)−∆(zb))

b̄− a
= W (θ).

Therefore,

lim
k→∞

Kkp−1(za, zb;µ)

k3
=

(ϕ∗
p(e

iθ)− ϕp(e
iθ))J∗1/2

(

W (θ)a
p2

, W (θ)b̄
p2

)

6ieipθ/2J∗1/2(0, 0)

By Lemma 3.3, these asymptotics also hold when a = b̄. Taking a limit as a, b→ 0 shows

lim
k→∞

Kkp−1(e
iθ, eiθ;µ)

k3
=

(ϕ∗
p(e

iθ)− ϕp(e
iθ))

6ieipθ/2

Thus,

lim
k→∞

Kkp−1(za, zb;µ)

Kkp−1(eiθ, eiθ;µ)
=

J∗1/2

(

W (θ)a
p2

, W (θ)b̄
p2

)

J∗1/2(0, 0)
(18)

as desired.
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3.2. Case 2: eiθ is a resonance. In this situation we will not rely on asymptotics of
Kn(·, ·; ν∗) and instead rely on more direct calculations. We begin with a result that tells us
how the second kind polynomials behave at a resonance.

Lemma 3.5. Suppose eiθ is a resonance and ∆(eiθ) = 2u with u ∈ {−1, 1}. Then

ψp(e
iθ) + ψ∗

p(e
iθ)

2eipθ/2
= u. (19)

Proof. We present the argument in the case ∆(eiθ) = 2, the other case being very similar.
By Theorem 2.1, we write

ϕkp(e
iθ) = eipθ/2

(

Uk(1)−
ψp(e

iθ) + ψ∗
p(e

iθ)

2eipθ/2
Uk−1(1)

)

= eipθ/2

(

k + 1−
ψp(e

iθ) + ψ∗
p(e

iθ)

2eipθ/2
k

)

If eiθ is on the interior of a band in supp(µ), then Lemma 3.3 shows that

N
∑

k=0

|ϕkp(e
iθ)|2 = O(N) (20)

as N → ∞. If eiθ is at a band edge, then by [27, Theorem 11.3.2iv], we know that the
weight of µ grows like the inverse of the square root of the distance near eiθ and hence by
[5, Theorem 1.1] we also know that (20) holds. By our above formula, the only way this can
happen is if (19) holds. �

We will also need the following lemma, which is an analog of Lemma 3.2.

Lemma 3.6. (a) If eiθ is on the interior of a band in the support of µ and eiθ is a
resonance, then |ϕn(e

i(θ+c/n))| = O(1) as n → ∞ uniformly for c in compact subsets
of C.

(b) If eiθ is at the edge of a band in the support of µ and eiθ is a resonance, then

|ϕn(e
i(θ+c/n2))| = O(1) as n→ ∞ uniformly for c in compact subsets of C.

Proof. In both cases we may assume without loss of generality that ∆(eiθ) = 2. Theorem
2.1 shows that it suffices to show that the lemma holds when n is a multiple of p.

(a) We use Theorem 2.1 and Lemma 3.5 to deduce that

|ϕkp(e
i(θ+c/(kp)))| = O

∣

∣

∣

∣

Uk

(

∆(zc)

2

)

− Uk−1

(

∆(zc)

2

)∣

∣

∣

∣

,

where zc = ei(θ+c/(kp)). A resonance on the interior of a band edge must be a closed gap and
as in the proof of Lemma 3.2, we may assume ∆(eiθ) = 2. This implies ∆′(eiθ) = 0 and
W ′(θ) < 0 so we can write

∆(zc)

2
= 1 +

W ′(θ)c2

4(kp− 1)2
+O(k−3) = cos

(

c
√

|W ′(θ)|√
2(kp− 1)

)

+O(k−3).
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as k → ∞. Thus, if we define tk so that cos(tk) = ∆(zc)/2, it holds that tk =
c
√

|W ′(θ)|√
2kp

+o(k−1)

as k → ∞. Then the formula (5) implies

Uk

(

∆(zc)

2

)

−Uk−1

(

∆(zc)

2

)

=
sin((k + 1)tk)− sin(ktk)

sin(tk)
=

sin(ktk)

sin(tk)
(cos(tk)−1)+cos(ktk) = O(1)

as k → ∞.

(b) The proof is very similar to part (a) except now we set zc = ei(θ+c/(kp)2) and again
choose tk ∈ C so that cos(tk) = ∆(zc)/2. Since ∆(eiθ) = 2, we see that tk = O(k−1) as
k → ∞. By using (5) as in part (a) we find

Uk(cos(tk))− Uk−1(cos(tk)) =
sin((k + 1)tk)− sin(ktk)

sin(tk)
= O(1)

as k → ∞. �

By combining Lemma 3.5 and Lemma 3.6 we obtain the following analog of Lemma 3.3
to the case of resonances.

Lemma 3.7. Suppose eiθ ∈ supp(µ). If eiθ is a resonance, then

{

Kn(e
i(θ+a/n), ei(θ+b/n);µ)

n

}

n∈N

is a normal family on C2 in the variables a and b.

Now we proceed as in Case 1 to consider interior points and edge points of the bands
separately.

3.2.1. Case 2a: eiθ is a closed gap. Now we will consider the case when ∆(eiθ) ∈ {−2, 2}
and W (θ) = 0. In other words, the point eiθ represents a closed gap, so we will let σn = 1/n.
Due to the symmetry of the problem, we will confine our attention to the case ∆(eiθ) = 2.
As in the proof of Lemma 3.6, for c = a, b

∆(zc)

2
= 1 +

W ′(θ)c2

4(kp− 1)2
+O(k−3)

as k → ∞.
Define

f1(z) :=
ϕ∗
p(z)− ϕp(z)

2zp/2
, g1(t) := f1(e

it)

f2(z) :=
ψ∗
p(z) + ψp(z)

2zp/2
, g2(t) := f2(e

it)
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We know that g1 : R → iR and g2 : R → R, so the same must be true for g′1 and g′2
respectively. Using these formulas, we can use (10) to estimate

ϕkp(za)

eiθkp/2
= eikpa/(2kp−2)

[

Uk

(

1 +
W ′(θ)a2

4(kp− 1)2
+O(k−3)

)

−
(

g1

(

θ +
a

kp− 1

)

+ g2

(

θ +
a

kp− 1

))

Uk−1

(

1 +
W ′(θ)a2

4(kp− 1)2
+O(k−3)

)]

= eia/2

[

Uk

(

cos

(

a
√

|W ′(θ)|√
2(kp− 1)

))

− Uk−1

(

cos

(

a
√

|W ′(θ)|√
2(kp− 1)

))

(

1 +
(g′1(θ) + g′2(θ))a

kp− 1

)

]

+ o(1)

= eia/2









cos

(

a
√

|W ′(θ)|
p
√
2

)

−
sin

(

a
√

|W ′(θ)|
p
√
2

)

sin

(

a
√

|W ′(θ)|√
2(kp−1)

) · (g
′
1(θ) + g′2(θ))a

kp− 1









+ o(1)

as k → ∞. A similar analysis of ϕ∗
kp(za) shows that as k → ∞

ϕkp(za)

eiθkp/2
= eia/2









cos

(

a
√

|W ′(θ)|
p
√
2

)

−

√
2 sin

(

a
√

|W ′(θ)|
p
√
2

)

(g′1(θ) + g′2(θ))

√

|W ′(θ)|









+ o(1)

ϕ∗
kp(za)

eiθkp/2
= eia/2









cos

(

a
√

|W ′(θ)|
p
√
2

)

−

√
2 sin

(

a
√

|W ′(θ)|
p
√
2

)

(g′2(θ)− g′1(θ))

√

|W ′(θ)|









+ o(1)

Thus, if a 6= b̄, then the Christoffel Darboux formula implies

lim
k→∞

Kkp−1(za, zb;µ)

k

=
2
√
2g′1(θ)pe

ia−b̄
2

i(b̄− a)
√

|W ′(θ)|

(

cos

(

b̄
√

|W ′(θ)|
p
√
2

)

sin

(

a
√

|W ′(θ)|
p
√
2

)

− cos

(

a
√

|W ′(θ)|
p
√
2

)

sin

(

b̄
√

|W ′(θ)|
p
√
2

))

=
2
√
2g′1(θ)pe

ia−b̄
2

i(b̄− a)
√

|W ′(θ)|
sin

(

(a− b̄)
√

|W ′(θ)|
p
√
2

)

By Lemma 3.7, these same asymptotics hold when a = b̄, so taking a− b̄→ 0 shows

lim
k→∞

Kkp−1(e
iθ, eiθ;µ)

k
= 2ig′1(θ)

In particular, we see that g′1(θ) 6= 0. We conclude that

lim
k→∞

Kkp−1(za, zb;µ)

Kkp−1(eiθ, eiθ;µ)
= ei

a−b̄
2

sin

(

(a−b̄)
√

|W ′(θ)|
p
√
2

)

(a−b̄)
√

|W ′(θ)|
p
√
2

= ei
a−b̄
2 sinc

(

(a− b̄)
√

|W ′(θ)|
p
√
2

)
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An application of L’Hôpital’s Rule to the formula for V (θ) shows that we can rewrite this as

lim
k→∞

Kkp−1(za, zb;µ)

Kkp−1(eiθ, eiθ;µ)
= ei

a−b̄
2 sinc

(

V (θ)(a− b̄)
)

(21)

as in (16).

3.2.2. Case 2b: eiθ is a band edge. As above, we will consider only the case ∆(eiθ) = 2. We
will carry out an analysis similar to that in Case 2a but with σn = −1/n2. If we define tk so
that cos

(

tk
k

)

= ∆(za)/2, then

ϕkp(za)

eiθkp/2
=

(

1− iakp

2(kp− 1)2
+O(k−2)

)

×
[

sin(tk)

sin
(

tk
k

)(cos

(

tk
k

)

− 1) + cos(tk) +
sin(tk)a(g

′
2(θ) + g′1(θ))

sin
(

tk
k

)

(kp− 1)2
+O(k−3)

]

ϕ∗
kp(za)

eiθkp/2
=

(

1− iakp

2(kp− 1)2
+O(k−2)

)

×
[

sin(tk)

sin
(

tk
k

)(cos

(

tk
k

)

− 1) + cos(tk) +
sin(tk)a(g

′
2(θ)− g′1(θ))

sin
(

tk
k

)

(kp− 1)2
+O(k−3)

]

Notice that
∞
∑

m=0

(−1)m
t2mk

k2m(2m)!
= 1− W (θ)a

2(kp− 1)2
+O(k−4), k → ∞

and so
W (θ)a

(kp− 1)2
=
t2k
k2

+O(k−4), k → ∞,

which means tk =

√
aW (θ)

p
+O(k−1) as k → ∞ for an appropriate choice of the square root.

Therefore,

ϕkp(za)

eiθkp/2
= cos

(

√

aW (θ)

p

)

+O(k−2)

+
1

k









−ia cos
(√

aW (θ)

p

)

2p
−
√

aW (θ)

p
sin

(

√

aW (θ)

p

)

(

1

2
− g′1(θ) + g′2(θ)

W (θ)

)









ϕ∗
kp(za)

eiθkp/2
= cos

(

√

aW (θ)

p

)

+O(k−2)

+
1

k









−ia cos
(√

aW (θ)

p

)

2p
−
√

aW (θ)

p
sin

(

√

aW (θ)

p

)

(

1

2
− g′2(θ)− g′1(θ)

W (θ)

)
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as k → ∞. A similar formula holds at zb so we can now use the Christoffel-Darboux formula
to calculate

lim
k→∞

Kkp−1(za, zb;µ)

k

=
2pg′1(θ)

i(b̄− a)W (θ)

×





√

aW (θ) cos





√

bW (θ)

p



 sin

(

√

aW (θ)

p

)

−
√

b̄W (θ) cos

(

√

aW (θ)

p

)

sin





√

bW (θ)

p









= 2pπig′1(θ)J
∗
−1/2

(

W (θ)a

p2
,
W (θ)b̄

p2

)

where we used the fact that

J−1/2(z) =

√
2 cos(z)√
πz

(see [9, page 17]). By Lemma 3.7, these same asymptotics hold when a = b̄. Setting
a = b = 0, we find

lim
k→∞

Kkp−1(za, zb;µ)

Kkp−1(eiθ, eiθ;µ)
=

J∗−1/2

(

W (θ)a
p2

, W (θ)b̄
p2

)

J∗−1/2 (0, 0)
(22)

as desired.

Combining (16), (18), (21), and (22) proves Theorem 3.1 in the case n = kp − 1 and
µ∗ = µ. To pass from the subsequence {kp−1}k∈N to the general case, we need the following
lemma.

Lemma 3.8. Suppose µ is as in the statement of Theorem 3.1. Fix eiθ in a band of supp(µ).
If ∆(eiθ) ∈ (−2, 2), set σn = 1/n, while if ∆(eiθ) ∈ {−2, 2}, set σn = −1/n2. Then uniformly
for a and b in compact subsets of C and s ∈ {1, . . . , p− 1} it holds that

lim
k→∞

∣

∣

∣

∣

Kkp−1+s(e
i(θ+aσkp−1+s), ei(θ+bσkp−1+s);µ)

Kkp−1+s(eiθ, eiθ;µ)
− Kkp−1(e

i(θ+aσkp−1), ei(θ+bσkp−1);µ)

Kkp−1(eiθ, eiθ;µ)

∣

∣

∣

∣

= 0

as k → ∞.

Proof. First we will show that

lim
k→∞

Kkp−1+s(e
iθ, eiθ;µ)

Kkp−1(eiθ, eiθ;µ)
= 1. (23)

Then we will show that

lim
k→∞

∑kp+s−1
j=kp ϕj(e

i(θ+aσkp+s−1))ϕj(ei(θ+bσkp+s−1))

Kkp−1(eiθ, eiθ;µ)
= 0. (24)

uniformly for a and b in compact subsets of C and uniformly in s ∈ {1, . . . , p − 1}. These
two limits and the calculations of this section combine to give us the desired result. Notice
that (23) is (24) in the case a = b = 0, so it suffices to prove (24).

Since µ({eiθ}) = 0, we know that Kkp−1(e
iθ, eiθ;µ) → ∞ as k → ∞. If ∆(eiθ) ∈ (−2, 2),

then Lemmas 3.2 and 3.6 shows that {|ϕj(e
i(θ+cσj))|}j∈N is bounded uniformly in j ∈ N and



18

uniformly in c in compact subsets of C. This implies (24). The same reasoning applies if
|∆(eiθ)| = 2 and eiθ is a resonance. If |∆(eiθ)| = 2 and eiθ is not a resonance, then Lemma
3.2 shows that |ϕj(e

i(θ+cσj))| = O(j) as j → ∞ uniformly in c in compact subsets of C, while
Kkp−1(e

iθ, eiθ;µ) grows like a constant times k3 as k → ∞ (see also [5, Theorem 1.1]). Taken
together, this implies (24) in this case. �

Lemma 3.8 and the calculations preceding it give us a complete proof of Theorem 3.1
in the case µ∗ = µ. The general case now follows standard perturbative methods as in
[10, 12, 23, 24]. Due to the well-known method of proof, we provide only a sketch of the
ideas. The main idea is to rely on a result of Bourgade, which is [2, Theorem 3.10] and tells
us that under the assumptions of Theorem 3.1 it holds that

lim
n→∞

∣

∣

∣

∣

w(θ)Kn(e
i(θ+aσn), ei(θ+bσn);µ∗)−Kn(e

i(θ+aσn), ei(θ+bσn);µ)

Kn(ei(θ+aσn), ei(θ+aσn);µ∗)

∣

∣

∣

∣

= 0

uniformly for a and b in appropriate compact intervals in the real line. Some technicalities
remain to show that this is the desired conclusion.

The key remaining part of the proof of Theorem 3.1 is to show that

lim
n→∞

Kn(e
i(θ−aσn), ei(θ−aσn);µ)

Kn(ei(θ−aσn), ei(θ−aσn);µ∗)
= w(θ)

and the convergence is uniform for a in compact subsets of C. Proving this is where we use
the fact that the measure µ∗ is regular and involves interpreting the diagonal reproducing
kernel in terms of Christoffel functions and a localization argument. The details appear in
many places, such as [10, 14, 23], so we omit the lengthy calculations. Due to the possible
presence of mass points in the gaps of supp(µac), we mention that the Erdős-Turán criterion
(see [31, page 101]) and [27, Theorem 11.3.2] imply that not only is µ∗ regular, but so is its
restriction to supp(µac). Thus [31, Theorem 3.2.3v] is applicable to this restricted measure.

Part of the calculations that allow us to complete the proof of Theorem 3.1 require knowing
that the limiting kernel is strictly positive along the diagonal. This is given to us by the
following result, which is an analog of [24, Proposition 4.2].

Proposition 3.9. The function J∗−1/2(t, t̄) is non-vanishing as a function of t ∈ C.

Proof. First note that for t ∈ R it holds that

J
∗
−1/2(t, t) =

1

4π

(

2 +
sin(2

√
t)√

t

)

> 0,

which verifies the claim in this case. By using the formula for J−1/2 mentioned earlier, one
can check that if a 6= b

J
∗
−1/2(a, b) =

√
a sin(

√
a) cos(

√
b)−

√
b sin(

√
b) cos(

√
a)

π(a− b)

If J∗−1/2(t, t̄) = 0 for t 6∈ R, then for θ as in Case 2b above, we would have

lim
n→∞

Kn(e
i(θ−p2t/(W (θ)n2)), ei(θ−p2t/(W (θ)n2)), µ)

Kn(eiθ, eiθ, µ)
= 0.

By the Cauchy-Schwarz inequality, this would imply

lim
n→∞

Kn(e
i(θ−p2t/(W (θ)n2)), eiθ, µ)

Kn(eiθ, eiθ, µ)
= 0.
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However, we also know this limit is equal to J∗−1/2(t, 0)/J
∗
−1/2(0, 0) = sin(

√
t)/

√
t. This

implies t ∈ R, which gives us a contradiction. �

With these tools in hand, one will have no trouble adapting the method used in [10, 12,
23, 24] to complete the proof of Theorem 3.1.

4. Simple Applications of Theorem 2.1

In this section, we will use Theorem 2.1 to find short proofs of some formulas and results,
some of which are new.

As a first application, we recall that in [8, Section 5.1] a new derivation of [28, Theorem
2.1] is given. Using Theorem 2.1, we can provide a new proof of the unit circle version, which
was originally given as [28, Theorem 3.1].

Corollary 4.1. Under the assumptions of Theorem 2.1, the zeros of Φkp(z)−Φ∗
kp(z) are the

resonances and the preimages of the zeros of Uk−1(x) under the map ∆(z)/2.

Remark. Recall that resonances are the zeros of Φp(z)− Φ∗
p(z).

Remark. Since Un is either odd or even (depending on the parity of n), we do not need to
assume that p is even in Corollary 4.1.

As a second application of Theorem 2.1 and inspired by the work in [3], let us consider
the generating function of this sequence of orthonormal polynomials. To state our results
more succinctly, we define

g(z, t) := (ϕp(z)− ϕ∗
p(z))

p−1
∑

s=0

tsψs(z)− (ψp(z) + ψ∗
p(z))

p−1
∑

s=0

tsϕs(z)

ν(z, t;λ) :=

p−1
∑

s=0

ts(ϕs(z) + λψs(z))

Corollary 4.2. The polynomials {ϕn(z)}∞n=0 satisfy
∞
∑

n=0

ϕn(z)t
n =

2ν(z, t; 0) + tpg(z, t)

2(1−∆(z)zp/2tp + zpt2p)

whenever this series converges.

Proof. Notice that Theorem 2.1 implies
∞
∑

n=0

ϕn(z)t
n =

ν(z, t; 1)

2

∞
∑

k=0

tkpϕkp(z) +
ν(z, t;−1)

2

∞
∑

k=0

tkpϕ∗
kp(z) (25)

Now we again use Theorem 2.1 and the fact that
∞
∑

n=0

Un(x)t
n =

1

1− 2xt + t2

whenever this series converges (see [7, Equation 4.5.23]). This shows
∞
∑

k=0

tkpϕkp(z) =
2 + η(z; 1)tp

2− 2∆(z)zp/2tp + 2zpt2p
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and
∞
∑

k=0

tkpϕ∗
kp(z) =

2 + η(z;−1)tp

2− 2∆(z)zp/2tp + 2zpt2p

Now we plug this into (25) and use the fact that ν(z, t; 1) + ν(z, t;−1) = 2ν(z, t; 0) and the
definition of g(z, t) to deduce the desired formula. �

We can also use Theorem 2.1 to derive identities satisfied by the Chebyshev polynomials
Un. Indeed, a sequence of periodic Verblunsky coefficients with period p is also a sequence
of periodic Verblunsky coefficients with period np for any n ∈ N. Therefore, we can use
the formulas in Theorem 2.1 with different choices of periods to derive identities for the
polynomials {Un}n≥0.

Corollary 4.3. Let {αn}∞n=0 be a sequence of periodic Verblunsky coefficients with period p.
Let ∆j(z) be defined as ∆(z) in (1) but with each p replaced by j and similarly define ηj(z; σ)
as in Section 2 but with each p replaced by j. Then for any k,m ∈ N it holds that

Uk

(

∆mp(z)

2

)

+
ηmp(z; 1)

2zmp/2
Uk−1

(

∆mp(z)

2

)

= Umk

(

∆p(z)

2

)

+
ηp(z; 1)

2zp/2
Umk−1

(

∆p(z)

2

)

For example, if we consider the sequence {0, α, 0, α, 0, . . .}, then applying Corollary 4.3
with m = 2 shows that for any k ∈ N and any α ∈ D it holds that

Uk

(

z4 + 2|α|2z2 + 1

2z2(1− |α|2)

)

− 2(z2( |α|2 + ᾱ) + ᾱ + 1)

2z2(1− |α|2) Uk−1

(

z4 + 2|α|2z2 + 1

2z2(1− |α|2)

)

= U2k

(

z2 + 1

2z
√

1− |α|2

)

− 1 + ᾱ

z
√

1− |α|2
U2k−1

(

z2 + 1

2z
√

1− |α|2

)

As an additional application of Theorem 2.1, we can derive a formula for the Carathéodory
function of the measure of orthogonality. Such an expression is given in [27, Equation 11.3.15]
and [16, Section 2], but we will give a different formula. By [25, Theorem 1], we know that

lim
n→∞

Un+1(x)

Un(x)
= x+

√
x2 − 1, x 6∈ [−1, 1]. (26)

Therefore, we have

F (z) = lim
k→∞

ψ∗
kp(z)

ϕ∗
kp(z)

=
2zp/2Γ+(z) + ψ∗

p(z)− ψp(z)− ϕp(z)− ϕ∗
p(z)

2zp/2Γ+(z) + ϕ∗
p(z)− ϕp(z)− ψp(z)− ψ∗

p(z)

= 1 +
2(ψ∗

p(z)− ϕ∗
p(z))

2zp/2Γ+(z) + ϕ∗
p(z)− ϕp(z)− ψp(z)− ψ∗

p(z)
(27)

We can also use Theorem 2.1 to find the Schur function for the measure of orthogonality.
To do so, we follow the method of [24] and first find convenient formulas for the Wall
polynomials for this measure. Recall that the Wall polynomials are a pair of polynomial
sequences {An, Bn}∞n=0 such that An/Bn converges to the Schur function f associated with
µ uniformly on compact subsets of the unit disk D. The Pintér-Nevai formulas (see [26,
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Theorem 3.2.10] or [21]) tell us that

An(z) =
Ψ∗

n+1(z;µ)− Φ∗
n+1(z;µ)

2z

Bn(z) =
Ψ∗

n+1(z;µ) + Φ∗
n+1(z;µ)

2

Since we are free to take the index to infinity through any subsequence, we will only write
explicit formulas for the Wall polynomials for indices in a certain subsequence. Formulas for
the other indices can be obtained easily.

Corollary 4.4. For all k ∈ N, the Wall polynomials Akp−1 and Bkp−1 for the measure µ are
given by

Akp−1(z) =
rkz(k−1)p/2−1Uk−1(∆(z)/2)

2
(ψ∗

p(z)− ϕ∗
p(z))

Bkp−1(z) = rkzkp/2
[

Uk(∆(z)/2)− Uk−1(∆(z)/2)

2zp/2
(ψp(z) + ϕp(z))

]

Proof. This is an immediate consequence of Theorem 2.1 and the Pintér-Nevai formulas. �

We can apply Corollary 4.4 and send k → ∞ to find the Schur function for the measure
µ. If we apply Corollary 4.4 and (26) with x = ∆(z)/2 we conclude

f(z) = lim
k→∞

Akp−1(z)

Bkp−1(z)
=

ψ∗
p − ϕ∗

p

2Γ+(z)zp/2+1 − z(ψp(z) + ϕp(z))
, |z| < 1

As a final application, we note that according to the results in [22], each of the following
limits should exist for z in the appropriate domain:

lim
k→0

ϕkp+s(z)

ϕkp+s+1(z)
, s ∈ {0, . . . , p− 1}

Another application of Theorem 2.1 (or Theorem 2.2) allows us to make these limits explicit
(see also [18, Corollary 3.5]).
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