
ar
X

iv
:1

80
5.

02
79

5v
1

 [
m

at
h.

L
O

]
 8

 M
ay

 2
01

8 A new viewpoint of the Gödel’s incompleteness

theorem and it’s applications

Tianheng Tsui

May 9, 2018

Abstract

A new viewpoint of the Gödel’s incompleteness theorem be given in

this article which reveals the deep relationship between the logic and com-

putation. Upon the results of these studies, an algorithm be given which

shows how to search a proof of statement in first order logic from finite

concrete examples, and an approach be proposed to improve searching

mathematical proof by neural network.

1 Informal Introduction

Gödel’s incompleteness theorem are the most famous result in modern logic.
In addition to the Gödel’s original proof, there are some other proofs of this
theorem [12]. In this article, a new viewpoint to interpret the Gödel’s incom-
pleteness theorem will be given, which lead to some interesting applications and
a deeper understanding of the relation between logic and computation.

The notion of “proof” plays a central role in mathematics as the means by
which the truth or falsity of mathematical statements is established. The main
difficulty in mathematical “proof” is how to prove “infinte objects” serve the
given mathematical statement. If a mathematical statement talk about finite
objects, for example, the statement: ∀n ∈ N((0 < n < 100) → (n2 < 10000)),
we can test it one by one on the finite objects to prove or disprove the statement.
That means there are only finite cases have to be tested for the statement.
But if a mathematical statement talk about infinite objects, for example, the
statement: ∀n((n > 2) → (n2 > 2n)), we cannot prove it or disprove it by test
it one by one, but we have to classify all the infinite objects into essentially
finite different cases, in each case there is a corresponding independent reason
for the statement to be true or to be not true, thus we can prove or disprove
the mathematical proposition about infinite objects. So we get the not rigorous
but heuristic intuition observatons:

Observation 1.1. A true mathematical statement can be proved within finite
steps in a consistent effective formal system if and only if, the domain of the

1

http://arxiv.org/abs/1805.02795v1

statement can be split into essentially finite different classes, in each class there
is a corresponding independent reason to govern the members to serve the state-
ment, i.e., there are only essentially finite different independent reasons to make
the statement to be true.

Let a statement ϕ be true in natrual numbers and unprovable in the formal
Peano system. So just within the formal Peano system, only we can do is to test
it one by one on the standard natrual number 0, 1, 2, 3, · · · . if ϕ(0) is true, we
get a true sample, if ϕ(1) is true, we get another true sample, The reason
to make a natrual number m satisfys ϕ may be different and independent from
other numbers’. There are infinite different reasons to make the statement ϕ to
be true. Since essentially each number m has a particular reason to make the
statement ϕ(m) to be true and ϕ is not logical consequence of Peano Arithmetic,
before it is tested: “computed” the ϕ(m) and “abserved” the result in the Peano
system, nobody can predict true or false of ϕ(m) just within Peano system. Thus
when we check the value of the true but unprovable statement ϕ on the natrual
numbers, the results seem that you are tossing a coin and every time the result is
up! Although it is not logically impossible, it’s probablilty is 0 from prpbability
theory. So we get the second intuition observatons:

Observation 1.2. Let L be a language, T is an L − theory, M is a model of
T . A mathematical statement ϕ is true in M, expressible in L, but it cannot
be proved from T , if and only if, the domain of the statement in the model
M cannot be split into essentially finite different classes, in each class there
is a corresponding independent reason by T , which is expressible in L, govern
the members to serve the statement, i.e., there are essentially infinite different
independent reasons govern the whole domain to serve the unprovable true
statement, but any finite reasons do not.

The rigorous expression of the observation 1.2 is the Theorem 3.2.

2 Preliminaries and Notations

This section is devoted to the exposition of basic preliminary material, no-
tations and conventions which be used throughout of this article.

The notion of algorithm can be defined in terms of Turing machines by means
of the ChurchTuring thesis, so the sentence “There is an algorithm . . . ” means
“There is a Turing machine to compute . . . ”, and sometimes Turing machine
algorithms be described in very high level. If a function or a map is recursive,
it means that the function or the map can be computed by a Turing machine.

It is well known that there are character encoding system ASCII and lan-
guage encoding system LATEX2ε. Therefore, throughout this article, we assume
all the mathematical objects be encoded by these fixed encoding systems, and
the length of a mathematical object is the number binary bits to represent the

2

object. For example, the symbols “t”, “t” and “t298” is represented as one char-
acter: “t”, three characters: “t” and nine characters “$t {298}$” in LATEX2ε,
each charater be encoded by seven bits in ASCII, therefore the binary length
of these objects are 7, 21 and 63 respectively.

It should be noticed that the symbol “t298” can be represented as “$t {298}$”
and “$ t {298} $”, we take the shortest representation to calculate its length.

Definition 2.1. Let s is a ASCII string, the ASCII length of s, written
asciilen(s), abbreviated ‖s‖as, is the number of characters that it contains,
and

binlen(s) = asciilen(s)× 7

named binary length of s.

Let the formal Zermelo-Fraenkel axiomatic set theory is denoted by ZF, and
ZFC denotes the theory ZF with the Axiom of Choice, and ω represents the
natural number set N in the formal ZFC system.

Definition 2.2. A Turing machine M is a 5-tuple, (Q,Γ, δ, q0, qhalt)
Q is a finite set of states, i.e., ∃i(i ∈ ω ∧ ‖Q‖ = i),
Γ is the tape alphabet containing the blank symbol ⊔, and the left end

symbol ⊲,
δ:Q× Γ −→ Q× Γ× {L, S,R} is the transition function,
if δ(q, ⊲) = (p, s, b), then (s = ⊲) ∧ (b = R),
if δ(q, a) = (p, s, b) and a 6= ⊲, then s 6= ⊲,
q0 ∈ Q is the start state,
qhalt ∈ Q is the halt state, that is ∀a ∈ Γ:
δ(qhalt, a) = (qhalt, a, S), and
∀q ∈ Q(∀a ∈ Γ(δ(q, a) = δ(qhalt, a)) → (q = qhalt)).

Unless otherwise indicated, it will always be assumed that the tape alphabet
Γ = {0, 1,⊔, ⊲} throughout this article, and we assume the basic notions and
results of mathematical logic, such as formula, sentence, the set of all formulas
is recursive . . . , etc.

Definition 2.3. (time complexity) Let M be a Turing machine that halts on
all inputs. The running time or time complexity of M , denoted by tM , is the
function

tM : ω → ω

where tM (n) is the maximum number of steps that M uses on any input of
length n.

In computational complexity theory, a reasonable assumption tM (n) ≥ n is
to allow the algorithm have time to read its input. But in this section a property
of the machine M with running time tM (n) < n be given, and the relationship
between it and the provability of statement in consistent effective formal system
will be revealed in later.

3

Theorem 2.1. Let M be a Turing machine, the length of input string s be
denoted as ‖s‖. If there exist a number K for any input s,

‖s‖ ≥ K → tM (‖s‖) < ‖s‖

then ∀r(‖r‖ ≥ K) → (tM (r) < K) and if (‖s‖ ≤ K → M(s) = 1) then we can
prove ∀sM(s) = 1 in ZFC.

Proof. Let ‖s‖ = K, from the assumption tM (‖s‖) < ‖s‖, the machine M halts
before it reads the last bit of the input s i.e., it never reach to the end boundary
of the input, the bits following the (K− 1)th bit have no effect on computation.

Therefore if input ‖r‖ ≥ K, and the first K− 1 bits are the same as a string
s with ‖s‖ = K, the machine does not discriminate r from s, when computing
on r, it return the same result as computing on s, and it halts after the same
steps, i.e., M(r) = M(s) and tM (‖r‖) = tM (‖s‖) < ‖s‖ = K.

The number of string s with ‖s‖ ≤ K is finite. From the explaination above
and if (‖s‖ ≤ K → M(s) = 1), obviously we can prove ∀sM(s) = 1 in finite
steps in ZFC.

Definition 2.4. Let the set of all formulas is denoted by Frm, and let Frmsq

denotes the set of all finite formula sequences, i.e., sq ∈ Frmsq if and only if sq
is a finite formula sequence:

sq = 〈s0, s1, . . . , sr〉, r ∈ ω

For more rigorous, sq is a map from r + 1 to Frm such that

sq(i) ∈ Frm, ∀i < r + 1.

Definition 2.5. RTheory = {〈T, al〉| T ⊆ Frm and al is an algorithm which
decide whether ϕ ∈ T, for any formula ϕ i.e., T is recursive}. If T is a finite
set, we assume that T is a formula sequence: 〈ϕ0, ϕ1, ϕ2, . . . , ϕn〉 i.e., T ∈
Frmsq.

Definition 2.6. The set Λ of logical axioms are arranged in seven groups:

1. Tautologies;

2. ∀xα → αx
t , where t is substitutable for x in α;

3. ∀x(α → β) → (∀xα → ∀xβ);

4. α → ∀xα, where x does not occur free in α;

5. x = x;

6. (x = y) → (α → β), if α and β are atomic formulas and β is obtained
from α by replacing an occurrence of x in α by y;

4

7. αx
t → ∃xα, where t is substitutable for x in α.

Definition 2.7. Let 〈T, al〉 ∈ RTheory, a proof π of a statement ϕ from T in
ZFC is a finite sequence 〈ϕ0, ϕ1, ϕ2, . . . , ϕn〉 of formulas such that ϕn is ϕ and
for each i ≤ n one of the following conditions holds:

1. ϕi ∈ Λ;

2. ϕi ∈ ZFC;

3. ϕi ∈ T ;

4. ∃j, k < i such that ϕj = ϕk → ϕi;

5. ∃j < i∃k ∈ ω(ϕi = ∀xkϕj).

and denoted as
〈T, al〉⊢πϕ

From the definition 2.4, π(i) = ϕi, and it is easy to see that there are
algorithms decide the corresponding conditions such as:

1. GΛ(π(i)) = 1 if π(i) ∈ Λ, otherwise, 0.

2. GZFC(π(i)) = 1 if π(i) ∈ ZFC, otherwise, 0.

3. GIN(〈T, al〉, π(i)) = 1 if π(i) ∈ T, otherwise, 0, note that GIN use the
algorithm al to decide whether π(i) ∈ T .

4. G→(π, i, j, k) = 1 if (j, k < i) and π(j) = π(k) → π(i), otherwise, 0.

5. G∀(π, i, j, k) = 1 if j < i and k ∈ ω(π(i) = ∀xkπ(j)), otherwise, 0.

Let the set of above five verification algorithms is

Gcheck = {GΛ,GZFC,GIN,G→,G∀}

and its member is called checker.

Definition 2.8. (proof type) Let 〈T, al〉 ∈ RTheory and π ∈ Frmsq, π =
〈ϕ0, ϕ1, ϕ2, . . . , ϕn〉, the proof type of 〈〈T, al〉, π〉 denoted by

prooftype(〈T, al〉, π)

such that: If not 〈T, al〉⊢πϕn,

prooftype(〈T, al〉, π) is the empty set.

else if 〈T, al〉⊢πϕn, then prooftype(〈T, al〉, π) is also called the proof type of
〈T, al〉⊢πϕn, and it is a same length sequence G = 〈g0, g1, g2 . . . , gn〉 of checkers,
such that:

5

1. If ϕi ∈ Λ, then the corresponding gi is a recursive function on Frmsq such
that ∀sq ∈ Frmsq:

gi(sq) = GΛ(sq(i))

Say that gi is a GΛ type checker.

2. If ϕi ∈ ZFC, then the corresponding gi is a recursive function on Frmsq

such that ∀sq ∈ Frmsq:

gi(sq) = GZFC(sq(i))

Say that gi is a GZFC type checker.

3. If ϕi ∈ T , then the corresponding gi is a recursive function on RTheory×
Frmsq such that ∀sq ∈ Frmsq and S = 〈ST, als〉 ∈ RTheory:

gi(S, sq) = GIN(S, sq(i))

Say that gi is a GIN type checker.

4. If ∃j, k < i such that ϕj = ϕk → ϕi, then the corresponding gi is a
recursive function on Frmsq such that ∀sq ∈ Frmsq:

gi(sq) = G→(sq, i, j, k)

Say that gi is a G→ type checker.

5. If ∃j < i and k ∈ ω(ϕi = ∀xkϕj), then the corresponding gi is a recursive
function on Frmsq such that ∀sq ∈ Frmsq:

gi(sq) = G∀(sq, i, j, k)

Say that gi is a G∀ type checker.

G is also called the adjoint check sequence of π.

Definition 2.9. Let 〈T1, al1〉⊢
π1ϕ, the adjoint check sequence of π1 is G1,

〈T2, al2〉⊢
π2φ, the adjoint check sequence of π2 is G2. Say that the proof type

of 〈T1, al1〉⊢
π1ϕ is the same as the proof type of 〈T2, al2〉⊢

π2φ if G1 = G2.

Definition 2.10. (adjoint checker) It is not hard to see thatG = 〈g0, g1, g2, . . . , gn〉,
the proof type of 〈T, al〉⊢πϕ, can be easily converted to an algorithm which de-
cide whether a proof have the same type, denote the algorithm by CK(〈T,al〉,π),
abbreviated CKπ, and it is called the adjoint checker of 〈T, al〉⊢πϕ, which on
input

(〈U, b〉, σ), where σ = {φ0, φ1, φ2, . . . , φm}

it does:
firstly, it compare m to n, if m 6= n, return 0 and stop, else it does the

following operations:

for all 0 ≤ i ≤ n it compute gi such as:

6

1. if gi = GΛ(sq(i)), then it compute GΛ(σ(i));

2. if gi = GZFC(sq(i)), then it compute GZFC(σ(i));

3. if gi = GIN(S, sq(i)), then it compute GIN(〈U, b〉, σ(i));

4. if gi = G→(sq, i, j, k), then it compute G→(σ, i, j, k);

5. if gi = G∀(sq, i, j, k), then it compute G∀(σ, i, j, k).

If all of the computations of gi, 0 ≤ i ≤ n, return 1, the CK(〈T,al〉,π) return 1
and stop, else return 0 and stop, therefore

CK(〈T,al〉,π)(〈U, b〉, σ) =

{

1, if prooftype(〈T, al〉, π) = prooftype(〈U, b〉, σ)

0, otherwise

Indeed, the algorithm CK(〈T,al〉,π) is described by a group of checkers gi, it is
only depend on the proof sequence π, it is therefore abbreviated to CKπ.

Theorem 2.2. CK(〈T,al〉,π)((〈T, al〉, π) = 1, i.e.,

If 〈T, al〉⊢πϕ then CKπ((〈T, al〉, π) = 1

Proof. It is obvious from the definition 2.10.

3 A theorem of provability and an algorithm of

proof

In order to prove a statement, we may enumerate formula sequences, and
verify the sequences, one by one, whether or not it is a proof sequence of the
statement. But it is not a practical method. In practice, mathematicians of-
ten have computed lots of concrete examples before proposing a conjecture by
intuition, and searching a proof of it guided by intuition. In this section, the
prove process will be studied from the computational viewpoint, and give a
rigorous expression of the following statement: “There are essentially infinite
different independent reasons govern the whole domain to serve the unprovable
true statement”(Theorem 3.2), and give an algorithm which explain some as-
pects of practical prove activities.

Definition 3.1. Let M is a Turing machine: (Q,Γ, δ, q0, qhalt),
t is a computation tape square, or simply tape square, if t ∈ Γ×Q× {0, 1},
TM = {t|t = (t0, t1, t2, · · ·), ∀i ∈ ω ti ∈ Γ×Q× {0, 1}},
TableM = {table|table = (tape0, tape1, tape2, · · ·),where ∀i ∈ ω(tapei ∈

TM)}.
πM is a projection function from Γ×Q× {0, 1} to Γ as: πM (s, p, v) = s.

7

Remark 3.1. A table of the Turing machine M can be describe as following
figure.

t00 t01 t02 t03 · · ·

t10 t11 t12 t13 · · ·

t20 t21 t22 t23 · · ·

t30 t31 t32 t33 · · ·

· · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · ·

The rows are tape configurations of the Turing machine M which satisfy
some conditions.

In ZFC system, a tape configuration of the Turing machine M :

t = (t0, t1, t2, · · ·), (∀i ∈ ω ti ∈ Γ×Q× {0, 1})

can be defined as function from ω to Γ×Q× {0, 1}, and a table can be defined
as function tb from ω to TM satisfys extra conditions which will be shown later.

Therefore the ti,j as above figure can be represented as t(i)(j) in ZFC formal
system. For convenience later, let “ti,j” is the abbreviation of “t(i)(j)” i.e., t
is a function from ω to TM , t(i) is a function from ω to Γ × Q × {0, 1} and
ti,j = t(i)(j) ∈ Γ×Q× {0, 1}, a computation tape square.

If ti,j = t(i)(j) ∈ Γ × Q × {1}, we say the machine M is reading the jth
square of the tape at step i.

Definition 3.2. It is easy to see that the relation t ∈ TableM and πM can be
defined within finite formulas in ZFC. We say that t is a table of M computing
on input s, if t ∈ TableM and satisfys extra conditions such as:

• ∀i(ti,0 ∈ {⊲}×Q×{0, 1}), this means the leftmost end of a tape is always
markered by ⊲.

• ∀i∃k(ti,k ∈ Γ×Q×{1})∧ (∀j(j 6= k) → (ti,j ∈ Γ×Q×{0})), this formula
means that there is one and only one square be reading at any time by
the machine.

and some interpretations of the transition function δ: Q×Γ −→ Q×Γ×{L, S,R}
such as:

• if δ(q, a) = (p, b, L), then the corresponding formula is

∀i∀j(ti,j = (a, q, 1) → (t(i+1),j = (b, p, 0))∧(t(i+1),(j−1) = (πM (ti,(j−1)), p, 1))∧
(∀k(k 6= j ∧ k 6= j − 1) → t(i+1),k = (πM (ti,k), p, 0))).

8

• if δ(q, a) = (p, b, S), then the corresponding formula is

∀i∀j(ti,j = (a, q, 1) → (t(i+1),j = (b, p, 1)) ∧ (∀k(k 6= j) → t(i+1),k =
(πM (ti,k), p, 0))).

• if δ(q, a) = (p, b, R), then the corresponding formula is

∀i∀j(ti,j = (a, q, 1) → (t(i+1),j = (b, p, 0))∧(t(i+1),(j+1) = (πM (ti,(j+1)), p, 1))∧
(∀k(k 6= j ∧ k 6= j + 1) → t(i+1),k = (πM (ti,k), p, 0))).

• . . .

• . . .

• . . .

• ∃m(∀j(j < m) → t0,j 6= (⊔, q0, 0)) ∧ (∀j(j ≥ m) → t0,j = (⊔, q0, 0)),

Let the set of these formulas are arranged as formula sequence: 〈ϕ0, ϕ1, ϕ2, . . . , ϕk〉,
and denoted by defM .

If s = s0s1s2 . . . sl, si ∈ {0, 1}, 0 ≤ i ≤ l then there are l + 3 formulas to
describe the input s on M such as:

• ϕk+1: ∀j(j > l + 1) → t0j = (⊔, q0, 0),

• ϕk+2: t0,0 = (⊲, q0, 1),

• ϕk+3: t0,1 = (s0, q0, 0),

• ϕk+4: t0,2 = (s1, q0, 0),

• ϕk+5: t0,3 = (s2, q0, 0),

• . . . ,

• ϕk+l+3: t0,(l+1) = (sl, q0, 0).

Let the set of these l + 3 formulas be denoted by inputs.
It is not hard to see that defM is unchanged if the machine M is fixed, and

if ‖s‖ = l then inputs have l + 3 formulas.
T〈M,s〉 is a formula sequence such that

T〈M,s〉 = 〈defM ∪ inputs〉 = 〈ϕ0, ϕ1, ϕ2, . . . , ϕk+l+3〉

where we arrange its members as: the first k + 1 formulas belonging to defM ,
the following l + 3 formulas belonging to inputs, and keep the order as above
described, i.e.,

• ϕ0,

• ϕ1,

9

• ϕ2,

• . . . ,

• ϕk is ∃m(∀j(j < m) → t0,j 6= (⊔, q0, 0)) ∧ (∀j(j ≥ m) → t0,j = (⊔, q0, 0)),

• ϕk+1 is ∀j(j > l + 1) → t0,j = (⊔, q0, 0),

• ϕk+2 is t0,0 = (⊲, q0, 1),

• ϕk+3 is t0,1 = (s0, q0, 0),

• ϕk+4 is t0,2 = (s1, q0, 0),

• ϕk+5 is t0,3 = (s2, q0, 0),

• . . . ,

• ϕk+l+3 is t0,(l+1) = (sl, q0, 0).

Thus T〈M,s〉 is a k + l + 4 formulas sequence as above.

Thus we can define an algorithm AL whose input is 〈ϕ,T〈M,s〉〉 and decide
whether ϕ ∈ T〈M,s〉, such as:

Definition 3.3. (AL) The algorithm on input 〈ϕ,T〈M,s〉〉, it compare ϕ to
each ϕi in T〈M,s〉

• it compare ϕ to ϕ0, if they match, return yes and halt, else:

• it compare ϕ to ϕ1, if they match, return yes and halt, else:

• it compare ϕ to ϕ2, if they match, return yes and halt, else:

• . . .

• it compare ϕ to ϕk+l+3, if they match, return yes and halt, else return no
and halt.

denoted such algorithm by AL throughout this article.

Definition 3.4. (normal proof) Let M is a Turing machine (Q,Γ, δ, q0, qhalt),
v ∈ {0, 1}, s ∈ {0, 1}∗, and AL is the algorithm as the definition 3.3. A normal
proof of M(s) = v in ZFC is a formula sequence π = {ϕ0, ϕ1, ϕ2, . . . , ϕr} such
that:

ϕr is the formula: ∃iti,1 = (v, qhalt, 1) and 〈T〈M,s〉,AL〉⊢πϕr

The ASCII length of the normal proof be denoted by ‖π‖as, defined as

‖π‖as =
r

∑

i=0

asciilen(ϕi)

10

Definition 3.5. (string order) Let x and y are two ASCII strings, we say
that x precede y, written x <s y, if ‖x‖as < ‖y‖as, or ‖x‖as = ‖y‖as and x

precede y in dictionary order.

Definition 3.6. Let x and y are two ASCII strings, and ‖x‖as = n, ‖y‖as = m,
the concatenation of x and y, written x ◦ y, is the string obtained by appending
y to the end of x, i.e., x ◦ y = x1 · · ·xny1 · · · ym.

Definition 3.7. Let S1 and S2 are two finite formula sequences, such that:

S1 = 〈ϕ0, ϕ1, ϕ2, . . . , ϕn〉

S2 = 〈σ0, σ1, σ2, . . . , σm〉

the concatenation of S1 and S2, written S1 + S2, is the finite formula sequence
obtained by appending S2 to the end of S1:

S1 + S2 = 〈ϕ0, ϕ1, ϕ2, . . . , ϕn, σ0, σ1, σ2, . . . , σm〉

In general, S1 + S2 6= S2 + S1, and it is obvious that the operation “+” satisfy
associative law. So if S0, S1, S2, . . . , Sn are all finite formula sequences, we can
define

S0 + S1 + S2 + . . .+ Sn = (. . . ((S0 + S1) + S2) + . . .) + Sn

denoted by
n
∑

i=0

Si

Definition 3.8. (sequence order) Let S1 and S2 are two finite formula se-
quences, such that:

S1 = 〈ϕ0, ϕ1, ϕ2, . . . , ϕn〉

S2 = 〈σ0, σ1, σ2, . . . , σm〉

and we take each formula as an ASCII string, say that S1 precede S2, written
S1 <s S2, if and only if

ϕ0 ◦ ϕ1 ◦ ϕ2 . . . , ◦ϕn <s σ0 ◦ σ1 ◦ σ2 . . . ◦ σm

Remark 3.2. Let π1 and π2 are two normal form proofs of M(s) = v, if
‖π1‖as < ‖π2‖as, we say π1 is shorter than π2. Indeed, if M(s) = v, the
process of M computing on s can be easily converted to a normal proof π such
that 〈T〈M,s〉,AL〉⊢π∃i (ti,1 = (v, qhalt, 1)). Let its ASCII length is ‖π‖as = n.
Since the normal proofs of M(s) = v with ASCII length shorter than n are
finite, we can enumerate formula sequences in sequence order, and check whether
it is a normal proof of M(s) = v. Hence it is easy to see that there is an
algorithm, for any M(s) = v, it give the minimum of the set S = {k| k =
‖π‖as, π is a proof of M(s) = v in ZFC }.

11

Definition 3.9. (FS) Fix an algorithm which can find the shortest ASCII
length of normal proofs as in the remark 3.2 , throughout this article denote
it by FS(M, s, v), abbreviated FS(M, s), if the machine M halts on all inputs,
i.e., for any M(s) = v,

FS(M, s, v) = min{k| k = ‖π‖as, 〈T〈M,s〉,AL〉⊢π∃i (ti,1 = (v, qhalt, 1))}

FS(M, s)= “On input 〈M, s〉, an encoding of a machine M and a string s:

1. Using the description of M and s, compute M on s and get result v.

2. Enumerate formula sequence in the sequence order, every time that FS(M, s)
outputs a sequence S, verify whether it is satisfies

〈T〈M,s〉,AL〉⊢S∃i (ti,1 = (v, qhalt, 1))

3. Let the first formula sequence π satisfies

〈T〈M,s〉,AL〉⊢π∃i (ti,1 = (v, qhalt, 1))

then return the result ‖π‖as”

Definition 3.10. (adjoin proof complexity) LetM be a Turing machine that
halts on all inputs. The adjoint proof complexity ofM is the function f : ω → ω,
where f(n) is the maximum number of the set: {FS(M, r)| ‖r‖ = n}, denote
such function by apfM , i.e., if ‖s‖ = n then

apfM (‖s‖) = apfM (n) = f(n) = max{FS(M, r)| ‖r‖ = ‖s‖}

Let M be a Turing machine which compute a function

g : {0, 1}∗ → {0, 1}

and M(s) = v, ‖s‖ = n. t is the table of M computing on input s and the time
complexity of M is f(n), then the process of M computing on input s can be
converted to a special normal proof of M(s) = v as the following.

Definition 3.11. Let M be a Turing machine which compute a function

g : {0, 1}∗ → {0, 1}

and M(s) = v, ‖s‖ = n, “t” is the table of M computing on input s, the time
complexity of M is f(n). It is obvious that there are only finite tape squares
be affected by the computation, exactly not exceed (f(n)+ 1)× (f(n)+ 1) tape
squares.

The content of each tape square is determined by certain squares in the
preceding row. If we know the values at t(i−1),(j−1), t(i−1),(j), and t(i−1),(j+1),
we can obtain the value at ti,j with M ’s transition function. For example:

Let 100 < f(n) + 1, and if we have proved the formula:

t99,100 = (0, q, 1)

12

and a transition rule is:

∀i∀j(ti,j = (0, q, 1) →

(t(i+1),j = (1, p, 0))

∧(t(i+1),(j+1) = (πM (ti,(j+1)), p, 1))

∧(∀k(k 6= j ∧ k 6= j + 1) → t(i+1),k = (πM (ti,k), p, 0))) (1)

Then we can prove the formula: t100,100 = (1, p, 0) from the above two formulas,
let γ denotes the formula (1), π denotes a formula sequence, a special normal
proof of M(s) = v, the section of proving t100,100 = (1, p, 0) as following:

π(n1): t99,100 = (0, q, 1),
(previously proved)

. . .

. . .

. . .

π(c) : γ,
(GIN(〈T〈M,s〉,AL〉, π(c)) = 1, i.e., π(c) ∈ T〈M,s〉, indeed π(c) ∈ defM)

π(c+ 1): γ → (∀i∀jti,j = (0, q, 1) → (t(i+1),j = (1, p, 0))),
(GΛ(π(c+ 1)) = 1, i.e., π(c+ 1) ∈ Λ, indeed π(c+ 1) is a tautology)

π(c+ 2): ∀i∀jti,j = (0, q, 1) → (t(i+1),j = (1, p, 0)),
(G→(π, c+2, c+1, c) = 1, i.e., π(c+2) is obtained by modus ponens from
π(c+ 1) and π(c))

π(c+ 3): (∀i∀jti,j = (0, q, 1) → (t(i+1),j = (1, p, 0))) →
(t99,100 = (0, q, 1) → (t100,100 = (1, p, 0))),
(GΛ(π(c+ 3)) = 1, i.e., π(c+ 3) ∈ Λ)

π(c+ 4): t99,100 = (0, q, 1) → (t100,100 = (1, p, 0)),
(G→(π, c+ 4, c+ 3, c+ 2) = 1, i.e., π(c+ 4) is obtained by modus ponens
from π(c+ 3) and π(c+ 2))

π(c+ 5): t100,100 = (1, p, 0)
(G→(π, c + 5, c + 4, n1) = 1, i.e., π(c + 5) is obtained by modus ponens
from π(c+ 4) and π(n1))

The six formulas from π(c) to π(c+5) form a proof section of t100,100 = (1, p, 0),
denoted by SECπ(t100,100 = (1, p, 0)).

t100,100 is represented by $t {100,100}$ and t99,100 is represented by $t {99,100}$
in LATEX2ε, and it is obvious that ‖99‖as < ‖100‖as < 100 < f(‖s‖) + 1 =
f(n) + 1
therefore:

‖t99,100‖as = ‖$t {99,100}$‖as < 2f(n) + 9

13

‖t100,100‖as = ‖$t {100,100}$‖as < 2f(n) + 9

Because defM is a sequence formulas 〈ϕ0, ϕ1, ϕ2, . . . , ϕk〉 as in the definition

3.2, we can define

‖defM‖as =

k
∑

i=0

‖ϕi‖as

and it is easy to see

1. π(c) ∈ defM , so ‖π(c)‖as ≤ ‖defM‖as

2. ‖π(c+ 1)‖as < 2‖π(c)‖as ≤ 2‖defM‖as

3. ‖π(c+ 2)‖as < ‖π(c)‖as ≤ ‖defM‖as

4. ‖π(c+ 3)‖as < 2‖π(c+ 2)‖as + 4f(n) + 20 < 2‖defM‖as + 4f(n) + 20

5. ‖π(c+ 4)‖as < ‖π(c+ 3)‖as < 2‖defM‖as + 4f(n) + 20

6. ‖π(c+ 5)‖as < ‖π(c+ 4)‖as < 2‖defM‖as + 4f(n) + 20

5
∑

i=0

‖π(c+ i)‖as < 12f(n) + 10‖defM‖as + 60

Using the same approach as proving t100,100 = (1, p, 0) above, we can prove
a formula ta,b = vab for each pair 〈a, b〉, 0 ≤ a, b ≤ f(n) + 1, denoted by
SECπ(ta,b = vab), is called the proof section of ta,b = vab where the vab is the
value of the tape square ta,b on the table of M(s) = v.

The idea behind this approach is simple, the proof formula sequence is just
a description of M computing on input s: the tape configuration ti determined
by the preceding tape configuration ti−1 and an appropriate transition rule of
the machine M . Note that

1. SECπ(t0,0 = (⊲, q0, 1)) is just the formula itself, because from the defini-

tion 3.2
(t0,0 = (⊲, q0, 1)) ∈ T〈M,s〉

2. The same reasoning applies to any proof section of

t0,b = (sb, q0, 0), 0 < b ≤ n+ 1

i.e., SECπ(t0,b = (sb, q0, 0)) is just one formula, itself.

3. From the definition 3.2, any b > n+1, SECπ(t0,b = (⊔, q0, 0)) is following
formula sequence:

b > n+ 1

∀j(j > n+ 1) → t0j = (⊔, q0, 0)

(∀j(j > n+ 1) → t0j = (⊔, q0, 0)) → ((b > n+ 1) → t0,b = (⊔, q0, 0))

(b > n+ 1) → t0,b = (⊔, q0, 0)

t0,b = (⊔, q0, 0)

14

4. For any a > 0, the SECπ(ta,b = vab) like the case SECπ(t100,100 =
(1, p, 0)) shown above, is a description of how the content of the tape
square ta,b be determined by certain squares in the preceding row.

Hence it is easy to see that there exist two numbers K and C, independent of
the input s, for all

0 ≤ a, b ≤ f(‖s‖) + 1 = f(n) + 1, ‖SECπ(ta,b = vab)‖as < Kf(n) + C

Since t is the table of M(s) = v, there exists a number d ≤ f(n) + 1 satisfys
td,1 = (v, qhalt, 1), and we can prove the formula td,1 = (v, qhalt, 1) like in the
described situation t99,100 = (0, q, 1) above. Then

(td,1 = (v, qhalt, 1)) → ∃iti,1 = (v, qhalt, 1), (denoted by ϕr−1)

∃iti,1 = (v, qhalt, 1), (denoted by ϕr)

is the proof of ∃iti,1 = (v, qhalt, 1) from td,1 = (v, qhalt, 1). Obviously,

‖ϕr−1‖as + ‖ϕr‖as < Kf(n) + C

Thus there is a special normal proof of M(s) = v in ZFC, such that:

1.

π = {ϕ0, ϕ1, ϕ2, . . . , ϕr} = (

f(n)+1
∑

i=0

f(n)+1
∑

j=0

SECπ(ti,j = vij))+〈ϕr−1〉+〈ϕr〉

Note that the operation “+” and “
∑

” on formula sequences are defined
in definition 3.7.

2. ϕr−1 is the formula: (td,1 = (v, qhalt, 1)) → ∃iti,1 = (v, qhalt, 1).

3. ϕr is the formula: ∃iti,1 = (v, qhalt, 1).

4. 〈T〈M,s〉,AL〉⊢πϕr

We denote this special normal proof of M(s) = v as Π〈M,s〉. Therefore,

‖Π〈M,s〉‖as =

f(‖s‖)+1
∑

i=0

f(‖s‖)+1
∑

j=0

‖SECπ(ti,j = vij)‖as + ‖ϕr−1‖as + ‖ϕr‖as

< [

f(‖s‖)+1
∑

i=0

f(‖s‖)+1
∑

j=0

(Kf(‖s‖) + C)] +Kf(‖s‖) + C

= [(f(‖s‖) + 2)(f(‖s‖) + 2) + 1](Kf(‖s‖) + C)

Where the two numbers K and C are independent of the input s.

15

It is obvious that

FS(M, s) ≤ ‖Π〈M,s〉‖as < [(f(‖s‖) + 2)(f(‖s‖) + 2) + 1](Kf(‖s‖) + C) (2)

Therefore we get the following lemma:

Lemma 3.1. (polynomial proof complexity)
Let M be a polynomial time Turing machine. then its adjoint proof complexity
is also a polynomial, i.e., apfM is bounded by a polynomial.

Proof. Let the time complexity ofM is a polynomial f(n). From the definition
3.10, apfM (‖s‖) = max{FS(M, r)| ‖r‖ = ‖s‖}. since the above inequality (2),
we get

apfM (‖s‖) < [(f(‖s‖) + 2)(f(‖s‖) + 2) + 1](Kf(‖s‖) + C)

Lemma 3.2. (bounded running time)
Let M is a Turing machine (Q,Γ, δ, q0, qhalt), v ∈ {0, 1}, r ∈ {0, 1}∗, and AL is
the algorithm as the definition 3.3, M(r) = v, π is a formula sequence:

〈ϕ0, ϕ1, ϕ2, . . . , ϕn〉

such that:

ϕn is the formula: ∃iti,1 = (v, qhalt, 1) and 〈T〈M,r〉,AL〉⊢πϕn

That is π is a normal proof of M(r) = v, thus we can define a Turing machine
on s ∈ {0, 1}∗ as:

f(s) = CKπ(〈T〈M,s〉,AL〉, π)

then the time complexity of f: tf(n) is bounded, i.e., there exists a number K,
for all s ∈ {0, 1}∗, tf(‖s‖) < K.

Proof. From the definition 2.10 CKπ, the adjoint checker of π, be described
by a group of checkers:

{g0, g1, g2, . . . , gn}

therefore f(s) = 1 if and only if the formula sequence π is a normal proof of
M(s) = 1. Indeed there are only five types of checkers:

1. GΛ type;

2. GZFC type;

3. GIN type;

4. G→ type;

5. G∀ type.

16

Since the formula sequence π is fixed

π = 〈ϕ0, ϕ1, ϕ2, . . . , ϕn〉

and 〈T〈M,r〉,AL〉⊢πϕn, therefore from the theorem 2.2:

f(r) = CKπ(〈T〈M,r〉,AL〉, π) = 1

So only the GIN type checkers need to be computed, because:

1. if gi = GΛ(sq(i)), from the definition 2.8, π(i), i.e., ϕi must be in Λ,
therefore GΛ(π(i)) = 1, CKπ need not to compute the checker gi =
GΛ(sq(i)) on input (〈T〈M,s〉,AL〉, π);

2. if gi = GZFC(sq(i)), from the definition 2.8, π(i), i.e., ϕi must be in
ZFC, therefore GZFC(π(i)) = 1, CKπ need not to compute the checker
gi = GZFC(sq(i)) on input (〈T〈M,s〉,AL〉, π);

3. if gi = G→(sq, i, j, k), from the definition 2.8, π(i), i.e., ϕi must satisfys
the following condition j, k < i, ϕj = ϕk → ϕi therefore G→(π, i, j, k) =
1, CKπ need not to compute the checker gi = G→(sq, i, j, k) on input
(〈T〈M,s〉,AL〉, π);

4. if gi = G∀(sq, i, j, k), from the definition 2.8, π(i), i.e., ϕi must sat-
isfys the following condition j < i, k ∈ ω, (ϕi = ∀xkϕj), therefore
G∀(π, i, j, k) = 1,CKπ need not to compute the checker gi = G∀(sq, i, j, k)
on input (〈T〈M,s〉,AL〉, π);

Thus the value of CKπ(〈T〈M,s〉,AL〉, π), i.e., f(s) depends only on GIN type
checkers.

Let gi = GIN(S, sq(i)), then from the definition 2.10, CKπ compute

GIN(〈T〈M,s〉,AL〉, π(i))

and from the definition 2.7, GIN use the algorithm AL to decide whether
π(i) ∈ T〈M,s〉. From the definition 3.2,

T〈M,r〉 = 〈defM ∪ inputr〉

T〈M,s〉 = 〈defM ∪ inputs〉

Let defM are k formulas, and r = r0r1r2 . . . rl, ri ∈ {0, 1}, 0 ≤ i ≤ l, therefore
T〈M,r〉 are k + l + 4 formulas as in definition 3.2.

Since 〈T〈M,r〉,AL〉⊢πϕn and gi is a GIN type checker, from the definition

2.8, π(i) ∈ T〈M,r〉.
Therefore, for each s ∈ {0, 1}∗, when GIN use the algorithm AL to decide

whether π(i) ∈ T〈M,s〉, only the first k+ l+4 formulas of the T〈M,s〉 need to be
tested. That is the number of steps in compute a GIN type checker is less than
a fixed number, denoted by C, and the number of the all GIN type checkers less
than n+ 1, compute all the all GIN type checkers less than C × (n+ 1) steps.

Hence there exists a number K, for all s ∈ {0, 1}∗, the number of steps of
compute f(s) = CKπ(〈T〈M,s〉,AL〉, π) is less thanK, i.e., ∀s s ∈ {0, 1}∗ tf(‖s‖) <
K.

17

In order to analyze proof procedure in more detail, we now consider the input
of normal proof. Let M be a Turing machine on {0, 1}∗, r = r0r1r2 . . . rl, ri ∈
{0, 1}, 0 ≤ i ≤ l, M(r) = 1, and π is a normal proof of M(r) = 1, from the
definition 3.4, we know

〈T〈M,r〉,AL〉⊢π∃iti,1 = (1, qhalt, 1)

According to the definition 3.2 the 〈T〈M,r〉 is:

• ϕ0,

• ϕ1,

• ϕ2,

• . . . ,

• ϕk is ∃m(∀j(j < m) → t0,j 6= (⊔, q0, 0)) ∧ (∀j(j ≥ m) → t0,j = (⊔, q0, 0)),

• ϕk+1 is ∀j(j > l + 1) → t0,j = (⊔, q0, 0),

• ϕk+2 is t0,0 = (⊲, q0, 1),

• ϕk+3 is t0,1 = (r0, q0, 0),

• ϕk+4 is t0,2 = (r1, q0, 0),

• ϕk+5 is t0,3 = (r2, q0, 0),

• . . . ,

• ϕk+l+3 is t0,(l+1) = (rl, q0, 0).

It is easy to see that for any s ∈ {0, 1}∗, the first k+1 formulas of T〈M,s〉 are the
same formulas, i.e., the formula sequence defM . If s 6= r the different formulas
between T〈M,s〉 and T〈M,r〉 are all in

inputs ∪ inputr

Therefore we have the following definition:

Definition 3.12. Let π = 〈ϕ0, ϕ1, ϕ2, . . . , ϕn〉 is a normal proof of M(r) = 1
as described above, the key information set of π is the formula set, denoted by
keyset(π):

{ ϕ| (ϕ ∈ π) ∧ (ϕ ∈ inputr)}

and the key information of π, is the formula obtained by connecting all the
formulas of keyset(π) by ∧ operations, and denoted by keyinfo(π):

∧

ϕ∈keyset(π)

ϕ

18

Corollary 3.1. Let π = 〈ϕ0, ϕ1, ϕ2, . . . , ϕn〉 is a normal proof of M(r) = 1,
then CKπ(〈T〈M,s〉,AL〉, π) = 1 if and only if the input s ∈ {0, 1}∗ satisfies
keyinfo(π), i.e.,

∀s((CKπ(〈T〈M,s〉,AL〉, π) = 1) ↔ keyinfo(π))

Proof. From the proof of lemma 3.2, we know that in order to decide whether
or not CKπ(〈T〈M,s〉,AL〉, π) = 1, only the GIN type checkers need to be com-
puted, and from the above discussion, indeed, only the checkers corresponding
to the formulas in keyset(π) need to be computed, therefore the lemma is
proved.

Corollary 3.2. Let π = 〈ϕ0, ϕ1, ϕ2, . . . , ϕn〉 is a normal proof of M(r) = 1, if
an input s ∈ {0, 1}∗ satisfies keyinfo(π) then M(s) = 1 can be proved in ZFC,
i.e., the following formula can be proved in ZFC:

∀s(keyinfo(π) → (M(s) = 1))

Proof. It is obviously true from the above discussion.

Theorem 3.1. Let π = 〈ϕ0, ϕ1, ϕ2, . . . , ϕn〉 is a normal proof of M(r) = 1,
then the following formula can be proved in ZFC:

∀s((CKπ(〈T〈M,s〉,AL〉, π) = 1) → (M(s) = 1))

Proof. This theorem is obviously deduced from the corollary 3.1 and corollary

3.2.

Definition 3.13. Let M is a Turing machine (Q,Γ, δ, q0, qhalt), vi ∈ {0, 1}, ri ∈
{0, 1}∗, i = 0, 1, · · · , n., and AL is the algorithm as the definition 3.3, M(ri) =
vi, πi is a formula sequence:

〈ϕi0 , ϕi1 , ϕi2 , . . . , ϕiki
〉

such that:

ϕiki
is the formula: ∃jtj,1 = (vi, qhalt, 1) and 〈T〈M,ri〉,AL〉⊢πiϕiki

That is πi is a normal proof of M(ri) = vi, the corresponding adjoint checker
of πi is CKπi

, and let

C = {CKπ0
,CKπ2

, · · · ,CKπn
}

thus we can define a Turing machine FC on s ∈ {0, 1}∗ as:
FC = “On input s, where s ∈ {0, 1}∗:

1. for each i, 0 ≤ i ≤ n use CKπi
to compute

CKπi
(〈T〈M,s〉,AL〉, πi)

19

2. If there is a checker return 1, i.e., there is a normal proof πk,CKπk
(〈T〈M,s〉,AL〉, πk) =

1, the machine FC return 1, and halts.

3. If all the computations of checkes return 0, i.e.,

CKπi
(〈T〈M,s〉,AL〉, πi) = 0, for all 0 ≤ i ≤ n

the machine FC return 0, and halts.”

We call FC the C generated verifier.

Corollary 3.3. Let the Turing machine FC is the C generated verifier as the
definition 3.13, then the time complexity of FC : tFC

(n) is bounded, i.e., there
exists a number K, for all s ∈ {0, 1}∗, tFC

(‖s‖) < K.

Proof. From the lemma 3.2, we know that the time complexity of each

CKπi
(〈T〈M,s〉,AL〉, πi)

is bounded by a number Ki, hence the computation steps of FC is no more than
∑n

i=0 Ki +M where M is a large enough constant number.

Lemma 3.3. Let the Turing machine FC is the C generated verifier as the
definition 3.13, then the following formula can be proved in ZFC:

(FC(s) = 1) ↔

(

∨

CKπi
∈C

(CKπi
(〈T〈M,s〉,AL〉, πi) = 1)

)

Proof. From the definition of FC , it is obviously true.

Lemma 3.4. There exists a Turing machine M that it halts on every input
and the following five formulas can be proved in ZFC:

1. ∀r, s ∈ {0, 1}∗ (‖s‖ = ‖r‖ → (M(s) = M(r))).

2. ∀r, s ∈ {0, 1}∗ (‖s‖ > ‖r‖) → (M(s) = 1 → M(r) = 1).

3. ∀r, s ∈ {0, 1}∗ (‖s‖ > ‖r‖) → (M(r) = 0 → M(s) = 0).

4. ∀s ∈ {0, 1}∗ (M(s) = 0 ∨M(s) = 1).

5. (∀s(s ∈ {0, 1}∗) → (M(s) = 1)) ∨ (∃m(‖s‖ < m → M(s) = 1) ∧ (‖s‖ ≥
m → M(s) = 0)).

but the formula ∀s(M(s) = 1) is independent of ZFC, i.e., it cannot be proved
in ZFC and its negation is also unprovable in ZFC.

Proof. This lemma is just the Corollary 3.2 in the paper [11].

Theorem 3.2. Let M as in the lemma 3.4, i.e., ∀s(M(s) = 1) is independent
of ZFC, then FS(M, s, 1) is unbounded on s ∈ {0, 1}∗, that is

∀m∃s ∈ {0, 1}∗ (FS(M, s, 1) > m)

20

PROOF IDEA From the lemma 3.4, ∀s(M(s) = 1) is independent of
ZFC. Therefore we cannot find a string s ∈ {0, 1}∗ satisfying M(s) = 0, that is,
for all s ∈ {0, 1}∗, we use M to compute on s will returning 1, but we cannot
prove ∀s(M(s) = 1) in ZFC.

If FS(M, s, 1) is bounded on s ∈ {0, 1}∗, then there exists a number n for
all s ∈ {0, 1}∗,

FS(M, s, 1) < n

Let

Sn = {π| π is normal proof of M(s) = 1, s ∈ {0, 1}∗, ‖π‖as < n, }

It is not hard to see that Sn is finite.
Since FS(M, s, 1) < n, for each s ∈ {0, 1}∗, there exists a normal proof

sequence πs of M(s) = 1 and ‖πs‖as < n,

〈T〈M,s〉,AL〉⊢πs(∃iti,1 = (1, qhalt, 1))

therefore πs ∈ Sn. Since Sn is finite, thus we can prove

∀s(M(s) = 1)

in finite steps in ZFC, contradiction.

Proof. Let M as in the lemma 3.4,if we found a string s ∈ {0, 1}∗, M(s) = 0,
then it is obvious that we can prove ¬(∀s(M(s) = 1)) in ZFC. But from the
lemma 3.4:

The statement ∀s(M(s) = 1) is independent of ZFC. (3)

Therefore we cannot find such string, i.e., for all s ∈ {0, 1}∗, we use M to
compute on s will returning 1, but we cannot prove ∀s(M(s) = 1) in ZFC.

Now we prove the statement ∀m∃s ∈ {0, 1}∗ (FS(M, s, 1) > m) by contra-
diction.

First, we assume for the purpose of later obtaining a contradiction that
FS(M, s, 1) is bounded on s ∈ {0, 1}∗. Thus there exists a number n for all
s ∈ {0, 1}∗,

FS(M, s, 1) < n. (4)

Let φ is the formula ∃iti,1 = (1, qhalt, 1) then define the Sn as:

Sn = {π| 〈T〈M,s〉,AL〉⊢πφ, s ∈ {0, 1}∗, ‖π‖as < n, }

It is not hard to see that Sn is finite, therefore let

Sn = {π0, π1, π2, . . . , πm}

21

and the corresponding adjoint checkers set Cn = {cπ| cπ = CKπ, π ∈ Sn} is
also finite, i.e.,

Cn = {CKπ0
,CKπ1

,CKπ2
, . . . ,CKπm

}

Let FCn
is the Cn generated verifier(see the definition in definition 3.13).

From (4), for each s ∈ {0, 1}∗ FS(M, s, 1) < n, therefore there exists a
normal proof sequence πs, ‖πs‖as < n,

〈T〈M,s〉,AL〉⊢πsφ

Therefore πs ∈ Sn and the corresponding adjoint checker CKπs
∈ Cn and from

the theorem 2.2, we get

CKπs
(〈T〈M,s〉,AL〉, πs) = 1.

So when we compute the machine FCn
on any s ∈ {0, 1}∗, it will return 1.

Because the corollary 3.3, the computation steps on FCn
is bounded, so

there exists a number K, the computation complexity of FCn
is bounded by K:

∀s ∈ {0, 1}∗ tFCn
(‖s‖) < K

and obviously, there are finite strings in {s| ‖s‖ ≤ K}, so we can prove the
following formula in ZFC:

‖s‖ ≤ K → FCn
(s) = 1

Therefore we can prove the following two statements:

∀s ∈ {0, 1}∗ ‖s‖ ≥ K → tFCn
(‖s‖) < ‖s‖

and
‖s‖ ≤ K → FCn

(s) = 1

Since the theorem 2.1, we can prove ∀sFCn
(s) = 1 in ZFC, and from the

lemma 3.3, we can prove

∀s

(m
∨

i=0

(CKπi
(〈T〈M,s〉,AL〉, πi) = 1)

)

and since the theorem 3.1 we can prove ∀s(M(s) = 1 in ZFC, contradicting
the statemenet of (3): ∀s(M(s) = 1) is independent of ZFC.

Indeed, the theorem 3.2 is actually the rigorous expression of “there are
essentially infinite different independent reasons govern the whole domain to
serve the unprovable true statement”. From this theorem we get the following
corollary:

22

Corollary 3.4. The formula ∀s(M(s) = 1) is provable in ZFC, if and only if
FS(M, s, 1) is bounded on s ∈ {0, 1}∗, that is

∃m∀s ∈ {0, 1}∗ (FS(M, s, 1) < m)

Proof. This statement is obviously true from the theorem 3.2.

Indeed, the proof of theorem 3.2 has shown a procedure how to search a
proof of a general conclusion(for example ∀s ∈ ω(M(s) = 1)), from some finite
concrete examples. That is, the procedure is to find a adjoint checkers set Cn

which is large enough to satisfies the following two statements:

∀s ∈ {0, 1}∗ ‖s‖ ≥ K → tFCn
(‖s‖) < ‖s‖

and
‖s‖ ≤ K → FCn

(s) = 1

Now we give this procedure as an explicit algorithm which will halts if and
only if the formula ∀sM(s) = 1 is not independant of ZFC:

Algorithm

1. Begin with the checkers set C = empty set,

2. Since the corollary 3.3, we can find a number, K, such that tFC
(‖s‖) < K

on any input s,

3. Compute M(s) and FC(s) on all ‖s‖ ≤ K,

4. If ∀s(‖s‖ ≤ K) → M(s) = 1 and ‖s‖ ≤ K → FC(s) = 1, then from the
proof of theorem 3.2, ∀s(M(s) = 1) can be proved in ZFC, halts,

5. Else if there exist ‖s‖ ≤ K and M(s) 6= 1, then we can prove

¬∀s(M(s) = 1)

halts,

6. Else if ∀s(‖s‖ ≤ K) → M(s) = 1, but ∃r(‖r‖ ≤ K) ∧ (FC(r) = 0), then
adding an adjoint checkerCKπ to the checkers set C, where π is a shortest
normal proof of M(r) = 1 and CKπ is the adjoint checker of π,

7. goto 2

In practice, we can improve this algorithm by using neural network technique
at the step 6 to searching the shortest normal proof. The most interesting thing
we will see in a later article is, that the algorithm seemingly to imply some
sophisticated processes, such as training neural network, cannot be proved being
effective in formal system, though it is practically effective.

23

References

[1] T. P. Baker, J. Gill, and R. Solovay, Relativizations of the P=?NP question,
SIAM Journal on Computing 4(4):431-442, 1975.

[2] J. Hartmanis, Feasible Computations and Provable Complexity Problems,
SIAM, 1978.

[3] J. Hartmanis and J. Hopcroft, Independence results in computer science,
SIGACT News 8(4):13-24, 1976.

[4] J. Hartmanis, Independence results about context-free languages and lower

bounds, Information Proc. Lett. 20(5):241-248, 1985.

[5] Harry R.Lewis and Christos H.Papadimitriou, Elements of the Theory of

Computation 2nd Ed, Prentice-Hall, 1998.

[6] Michael Sipser, Introduction to the Theory of Computation 3rd Ed, Cengage
Learning, 2012.

[7] C. C. Chang and H. J. Keislelr, Model Theory, North-Holland, Amsterdam,
1990.

[8] W. Hodges, Model Theory, Cambridge University Press, 1993.

[9] David Marker, Model Theory: An Introduction, Springer, 2002.

[10] Yu. I. Maninr, A Course in Mathematical Logic,(Graduate texts in math-
ematics; 53) Springer-Verlag, 1977.

[11] Tianheng. Tsui, Two theorems about the P versus NP problem,
https://arxiv.org/pdf/1805.01755.pdf

[12] https://en.wikipedia.org/wiki/Gödel’s incompleteness theorems

24

	1 Informal Introduction
	2 Preliminaries and Notations
	3 A theorem of provability and an algorithm of proof

