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1 Introduction

It is well known that limit theorems play an important role in the probability theory and statistics.
Let (Ω,F , P ) be a probability space and {X,Xn, n ≥ 1} be a sequence of random variables. We
have different kinds of convergence:

• {Xn, n ≥ 1} is said to almost surely converge to X , if there exists a set N ∈ F such that
P (N) = 0 and ∀ω ∈ Ω\N, limn→∞Xn(ω) = X(ω), which is denoted by Xn

a.s.−→ X or
Xn → X a.s..

• {Xn, n ≥ 1} is said to converge to X in probability, if for any ε > 0, limn→∞ P ({|Xn−X| ≥
ε}) = 0, which is denoted by Xn

P−→ X .

• {Xn, n ≥ 1} is said to Lp-converge to X (p > 0) if limn→∞E[|Xn − X|p] = 0, which is

denoted by Xn
Lp

−→ X .

• {Xn, n ≥ 1} is said to L∞-converge to X if limn→∞ ‖Xn − X‖∞ = 0, which is denoted by

Xn
L∞

−→ X .

• {Xn, n ≥ 1} is said to converge to X in distribution, if for any bounded continuous function

f , limn→∞E[f(Xn)] = E[f(X)], which is denoted by Xn
d−→ X .

• {Xn, n ≥ 1} is said to completely converge to X , if for any ε > 0,
∑∞

n=1 P ({|Xn − X| ≥
ε}) < ∞, which is denoted by Xn

c.c.−→ X (see [13]).

• {Xn, n ≥ 1} is said to S-Lp converge to X (p > 0) if
∑∞

n=1E[|Xn − X|p] < ∞, which is

denoted by Xn
S-Lp

−→ X (see [17, Definition 1.4]).

The relations among the different kinds of convergence can be described as follows.

Xn
S-Lp

−→ X ⇒ Xn
c.c.−→ X ⇒ Xn

a.s.−→ X ⇒ Xn
P−→ X ⇒ Xn

d−→ X,
⇑ ⇑

Xn
L∞

−→ X ⇒ Xn
Lp

−→ X

and

• if Xn
P−→ X , then there exists a subsequence {Xnk

} of {Xn} such that Xnk

a.s.−→ X as
k → ∞;
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• if Xn
d−→ C, where C is a constant, then Xn

P−→ C;

• if Xn
d−→ X , then by Skorokhod’s theorem, there exists a sequence of random variables

{Y, Yn, n ≥ 1} such that for any n ≥ 1, Xn and Yn have the same distribution, X and Y
have the same distribution, and Yn

a.s.−→ Y .

In virtue of the relation between convergence in probability and complete convergence, the
relation between Lp convergence and S-Lp convergence, we introduce two new kinds of conver-
gence of random variables, which are stronger versions of a.s. convergence and L∞ convergence,
respectively.

Definition 1.1 Let α > 0. {Xn, n ≥ 1} is said to strongly almost surely converge to X with
order α, if

∞
∑

n=1

|Xn −X|α < ∞ a.s.,

which is denoted by Xn
Sα-a.s.−→ X.

Definition 1.2 {Xn, n ≥ 1} is said to strongly L∞-converge to X if

∞
∑

n=1

‖Xn −X‖∞ < ∞,

which is denoted by Xn
S-L∞

−→ X.

We now introduce two new kinds of convergence which are stronger versions of convergence in
distribution.

Definition 1.3 {Xn, n ≥ 1} is said to S1-d converge to X, if for any bounded Lipschitz contin-
uous function f ,

∞
∑

n=1

|E[f(Xn)− f(X)]| < ∞,

which is denoted by Xn
S1-d−→ X.

Definition 1.4 Let Fn and F be the distribution functions of Xn and X, respectively. {Xn, n ≥
1} is said to S2-d converge to X, if for any continuous point x of F ,

∞
∑

n=1

|Fn(x)− F (x)| < ∞,

which is denoted by Xn
S2-d−→ X.
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The rest of this paper is organized as follows. In Section 2, we study the law of large numbers
for independent and identically distributed (i.i.d.) random variables. In particular, we obtain a
strong Lp-convergence version and a strongly almost sure convergence version of the law of large
numbers. In Section 3, we discuss the relations among several kinds of convergence. In Section
4, we present some open questions for further research.

2 Convergence rates in the law of large numbers

Let {X,Xn, n ≥ 1} be a sequence of i.i.d. random variables. Define Sn = X1 + · · · + Xn,
n ∈ N. Hsu and Robbins ([13]) proved that if E[X2] < ∞ and E[X ] = µ, then Sn

n

c.c.−→ µ. Erdös
([8]) proved the converse result. Baum and Katz ([1]) extended the Hsu-Robbins-Erdös theorem.
Below is a special case of the Baum-Katz theorem.

Theorem 2.1 (Baum and Katz [1]). Let α ≥ 1. Suppose that {X,Xn, n ≥ 1} is a sequence of
i.i.d. random variables with partial sum Sn =

∑n
i=1Xi, n ∈ N. Then, the condition E|X|α < ∞

and EX = 0 is equivalent to

∞
∑

n=1

nα−2P (|Sn| > nǫ) < ∞, ∀ǫ > 0.

Lanzinger ([16]), Gut and Stadtmüller ([12]), Chen and Sung ([4]) extended the results of Baum
and Katz.

Chow ([6]) first investigated the complete moment convergence and obtained the following
result. Let α ≥ 1, p ≤ α and p < 2. Suppose that {X,Xn, n ≥ 1} is a sequence of i.i.d. random
variables with E[X ] = 0. If E[|X|α + |X| log+ |X|] < ∞, then

∞
∑

n=1

n
α
p
− 1

p
−2E

[

(

|Sn| − εn
1

p

)+
]

< ∞ for all ε > 0,

where x+ = max{0, x}.

Chow’s result has been generalized in various directions. Wang and Su ([25]), Wang et al.
([27]), Chen ([2]), Guo and Xu ([11]), Rosalsky et al. ([24]), Ye and Zhu ([28]), and Qiu et
al. ([22]) studied the complete moment convergence for sums of Banach space valued random
elements. Li and Zhang ([19]), Chen et al. ([3]), Kim et al. ([15]), and Zhou ([31]) considered the
complete moment convergence for moving average processes. Jiang and Zhang ([14]), Li ([18]),
Liu and Lin ([21]), Ye et al. ([29]), Fu and Zhang ([9]), Zhao and Tao ([30]), and Chen and Zhang
([5]) studied precise asymptotics for the complete moment convergence. Wang and Zhao ([26]),
Liang et al. ([20]), and Guo ([10]) considered the complete moment convergence for negatively
associated random variables. Qiu and Chen ([22]) studied the complete moment convergence for
i.i.d. random variables and extended two results in Gut and Stadtmüller ([12]) to the complete
moment convergence.
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In the following of this section, we study convergence rates in the law of large numbers for
i.i.d. random variables. In particular, we obtain a strong Lp-convergence version and a strongly
almost sure convergence version of the law of large numbers.

2.1 Strong Lp-convergence version of the law of large numbers

Let {Y, Yn, n ≥ 1} be a sequence of random variables and p > 0. We have

Yn
S-Lp

−→ Y ⇒ Yn
c.c.−→ Y. (2.1)

In this subsection, we consider the following question:

Does it hold that Sn

n

S-Lp

−→ µ for some p > 0 under some condition?

By the Hsu-Robbins-Erdös theorem and (2.1), we know that the condition E[X2] < ∞ is

needed in order that Sn

n

S-Lp

−→ µ.

Theorem 2.2 (1) If E[X2] < ∞ and X 6≡ µ a.s., then Sn

n

S-Lp

9 µ for any 0 < p ≤ 2.

(2) If α > 2 and E[|X|α] < ∞, then Sn

n

S-Lp

→ µ for any 2 < p ≤ α.

Proof. We assume without loss of generality that µ = 0 and E[X2] = 1.

(1) We have

E

[∣

∣

∣

∣

Sn

n

∣

∣

∣

∣

p]

=
1

np/2
E

[∣

∣

∣

∣

Sn√
n

∣

∣

∣

∣

p]

.

Denote the distribution function of Sn√
n
by Fn. Let f ∈ Cc(R) satisfying |f(x)| = |x|p for |x| ≤ 1

and |f(x)| ≤ |x|p for |x| > 1. Then, by the central limit theorem, we have

E

[∣

∣

∣

∣

Sn√
n

∣

∣

∣

∣

p]

≥
∫ ∞

−∞
|f(x)|dFn(x) →

∫ ∞

−∞
|f(x)| 1√

2π
e−|x|2/2dx > 0.

Define

c =

∫ ∞

−∞
|f(x)| 1√

2π
e−|x|2/2dx.

Then, there exists N ∈ N such that

E

[∣

∣

∣

∣

Sn√
n

∣

∣

∣

∣

p]

≥ c

2
, ∀n ≥ N.

Therefore,
∞
∑

n=1

E

[∣

∣

∣

∣

Sn

n

∣

∣

∣

∣

p]

≥
∞
∑

n=N

1

np/2
E

[∣

∣

∣

∣

Sn√
n

∣

∣

∣

∣

p]

≥ c

2

∞
∑

n=N

1

np/2
= ∞.
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(2) If Y is a random variable, we denote ‖Y ‖Lr := (E[|Y |r])1/r for r ≥ 1. By the Burkholder-
Davis-Gundy inequality and Minkowski’s inequality, we have

E[|Sn|α] ≤ cE[(X2
1 + · · ·+X2

n)
α/2]

= c‖X2
1 + · · ·+X2

n‖
α/2

Lα/2

≤ c(‖X2
1‖Lα/2 + · · ·+ ‖X2

n‖Lα/2)α/2

= cnα/2E[|X|α], (2.2)

where c > 0 is a constant, which is independent of n. Then,

∞
∑

n=1

E

[∣

∣

∣

∣

Sn

n

∣

∣

∣

∣

α]

≤ c
∞
∑

n=1

n−α/2E[|X|α] < ∞.

For 2 < p < α, we obtain by (2.2) that

∞
∑

n=1

E

[∣

∣

∣

∣

Sn

n

∣

∣

∣

∣

p]

≤
∞
∑

n=1

1

np
(E [|Sn|α])p/α

≤
∞
∑

n=1

1

np
(cnα/2E[|X|α])p/α

=
∞
∑

n=1

1

np/2
(cE[|X|α])p/α

< ∞.

In [6], Chow also obtained the following result. Let {X,Xn, n ≥ 1} be a sequence of i.i.d.
random variables with E[X ] = 0. Suppose that 1 < α < 2. If E[|X|α log+ |X|] < ∞, then

∞
∑

n=1

n−2E[|Sn|α] < ∞.

As a direct consequence of Theorem 2.2 and its proof, we have the following corollaries.

Corollary 2.3 Suppose that α > 2, E[|X|α] < ∞ and E[X ] = 0. Then, for any 2 < p ≤ α and
β > (p+ 2)/2, we have

∞
∑

n=1

n−βE[|Sn|p] < ∞.

Corollary 2.4 Suppose that X 6≡ µ a.s. and E[|X|α] < ∞ for any α > 0. Then Sn

n

S-Lp

−→ µ if and
only if p > 2.

6



2.2 Strongly almost sure convergence version of the law of large num-
bers

In this subsection, we consider the following question:

Does it hold that Sn

n

Sα-a.s.−→ µ for some α > 0 under some condition?

Theorem 2.5 (1) If E[X4] < ∞ and X 6≡ µ a.s., then
∑∞

n=1

∣

∣

Sn

n
− µ

∣

∣

α
= ∞ a.s. for any

0 < α ≤ 2.

(2) If E[|X|2] < ∞, then for any α > 2 we have

Sn

n

Sα-a.s.−→ µ.

Proof. We assume without loss of generality that µ = 0 and E[X2] = 1.

(1) For N ∈ N, we have

E

[

∣

∣

∣

∣

Sn

n

∣

∣

∣

∣

2
]

=
1

n2
E

[

n
∑

i=1

X2
i + 2

∑

1≤i<j≤n

XiXj

]

=
1

n
.

Define

eN =
N
∑

n=1

1

n
, WN = eN + 2

N
∑

n=2

∑

1≤i<j≤nXiXj

n2
,

and

RN =
N
∑

n=1

(

X2
1 + · · ·+X2

n

n2
− 1

n

)

.

Then,
N
∑

n=1

∣

∣

∣

∣

Sn

n

∣

∣

∣

∣

2

= WN +RN . (2.3)

For M,N ∈ N with M < N , we have

E[(RN −RM )2]

= E





(

N
∑

n=M+1

(X2
1 − 1) + · · ·+ (X2

n − 1)

n2

)2




=
N
∑

n=M+1

E[(X2 − 1)2]

n3
+ 2

∑

M+1≤k<l≤N

E[(
∑k

i=1(X
2
i − 1))(

∑l
j=1(X

2
j − 1))]

k2l2

=
N
∑

n=M+1

E[(X2 − 1)2]

n3
+ 2

∑

M+1≤k<l≤N

E[(X2 − 1)2]

kl2
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≤ (E[(X2 − 1)2])

{

N
∑

n=M+1

1

n3
+ 2

N
∑

l=M+1

el
l2

}

→ 0 as M → ∞.

Hence {RN}∞N=1 is a Cauchy sequence in L2, which implies that {RN}∞N=1 converges to some
R ∈ L2 in probability.

Suppose that Sn

n

S2-a.s.→ 0. Dividing both sides of (2.3) by eN and letting N → ∞, we get

1 +
2

eN

N
∑

n=2

∑

1≤i<j≤nXiXj

n2
→ 0 in probability as N → ∞,

which implies that

1

eN

N
∑

n=2

∑

1≤i<j≤nXiXj

n2
→ −1

2
in probability as N → ∞. (2.4)

We have

E





(

1

eN

N
∑

n=2

∑

1≤i<j≤nXiXj

n2

)2




=
1

(eN)2





N
∑

n=2

E
[

(
∑

1≤i<j≤nXiXj)
2
]

n4

+2
∑

2≤k<l≤N

1

k2l2
E

[(

∑

1≤i<j≤k

XiXj

)(

∑

1≤i<j≤l

XiXj

)])

=
1

(eN)2

(

N
∑

n=2

n− 1

2n3
+

∑

2≤k<l≤N

k − 1

kl2

)

≤ 1

(eN)2

(

N
∑

n=2

1

n2
+ eN

)

≤
∞
∑

n=1

1

n2
. (2.5)

By (2.4) and (2.5), we get

lim
N→∞

E

[

1

eN

N
∑

n=2

∑

1≤i<j≤nXiXj

n2

]

= −1

2
,

which contradicts with

E

[

1

eN

N
∑

n=2

∑

1≤i<j≤nXiXj

n2

]

= 0, ∀N ≥ 2.
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Then, Sn

n

S2-a.s.
9 0. Therfore, we obtain by the Hewitt-Savage 0-1 law that

∑∞
n=1

∣

∣

Sn

n

∣

∣

2
= ∞ a.s..

By the strong law of large numbers, there exists a set N ∈ F satisfying P (N) = 0 and for any
ω ∈ Ω\N , there exists M(ω) ∈ N such that for any n ≥ M(ω),

|Sn(ω)|
n

< 1.

It follows that for any 0 < α < 2 and ω ∈ Ω\N ,

∞
∑

n=M(ω)

∣

∣

∣

∣

Sn(ω)

n

∣

∣

∣

∣

2

≤
∞
∑

n=M(ω)

∣

∣

∣

∣

Sn(ω)

n

∣

∣

∣

∣

α

.

Therefore,
∑∞

n=1

∣

∣

Sn

n

∣

∣

2
= ∞ a.s. implies that

∑∞
n=1

∣

∣

Sn

n

∣

∣

α
= ∞ a.s. for any 0 < α < 2.

(2) By the Hartman-Wintner law of iterated logarithm, we have

lim sup
n→∞

|Sn|√
2n log logn

= 1 a.s..

Then, there exists a set N ∈ F satisfying P (N) = 0 and for any ω ∈ Ω\N , there exists M(ω) ∈ N

such that for any n ≥ M(ω),
|Sn(ω)|√
2n log logn

< 2.

It follows that for any α > 2 and ω ∈ Ω\N ,

∞
∑

n=1

∣

∣

∣

∣

Sn

n

∣

∣

∣

∣

α

< ∞,

i.e., Sn

n

Sα-a.s.−→ 0.

Remark 2.6 By analogues of the Hartman-Wintner law of iterated logarithm in the infinite

variance case, we can show that Sn

n

Sα-a.s.−→ µ for any α > 2 under weaker conditions. Define
L(x) = logmax{e, x} and LL(x) = L(Lx) for x ∈ R. By Einmahl and Li [7, Corollaries 1 and

2], we have Sn

n

Sα-a.s.−→ µ for any α > 2 if one of the following conditions is fulfilled.

(i) For some p ≥ 1,

E

[

(X − µ)2

(LL(|X − µ|))p
]

< ∞, lim sup
x→∞

(LL(x))1−pE[(X − µ)21{|X−µ|≤x}] < ∞.

(ii) For some r > 0,

E

[

(X − µ)2

(L(|X − µ|))r
]

< ∞, lim sup
x→∞

LL(x)

(L(x))r
E[(X − µ)21{|X−µ|≤x}] < ∞.

9



3 Relations among several kinds of convergence

3.1 Main results

Proposition 3.1 Let {X,Xn, n ≥ 1} be a sequence of random variables. Then

(i) For p ≥ 1, we have Xn
S-L∞

−→ X ⇒ Xn
S-Lp

−→ X;

(ii) For α > 0, we have Xn
S-Lα

−→ X ⇒ Xn
Sα-a.s.−→ X;

(iii) For any α ≥ 1, we have Xn
S-L∞

−→ X ⇒ Xn
Sα-a.s.−→ X.

It is well known that Xn
P−→ X if and only if for any subsequence {Xn′} of {Xn}, there exists

a subsequence {Xn′

k
} of {Xn′} such that Xn′

k

a.s.−→ X . In the following, we strengthen this result
to the strongly almost sure convergence.

Theorem 3.2 Xn
P−→ X if and only if for any subsequence {Xn′} of {Xn} and some (hence all)

α > 0, there exists a subsequence {Xn′

k
} of {Xn′} such that Xn′

k

Sα-a.s.−→ X.

As a direct consequence of Theorem 3.2, we have the following corollary.

Corollary 3.3 If Xn
c.c.−→ X, or Xn

a.s.−→ X, or Xn
L∞

−→ X, or Xn
Lp

−→ X, then for any α > 0,

there is a subsequence {Xnk
} of {Xn} such that Xnk

Sα-a.s.−→ X.

Proposition 3.4 Xn
S-L1

−→ X ⇒ Xn
S1-d−→ X.

Now we have the following diagram:

Xn
S1-d−→ X ⇒ ⇒ ⇒ Xn

d−→ X
⇑ ⇑

Xn
S-L∞

−→ X ⇒ Xn
S-L1

−→ X ⇒ Xn
S1-a.s.−→ X ⇑

⇓ ⇓ ⇑
Xn

c.c.−→ X ⇒ Xn
a.s.−→ X ⇒ Xn

P−→ X.
⇑ ⇑

Xn
L∞

−→ X ⇒ Xn
L1

−→ X

Theorem 3.5 Let C be a constant. Then Xn
S2-d−→ C ⇔ Xn

c.c.−→ C.

If C is a constant and Yn
S2-d−→ C, then by Theorem 3.5 we know that Yn

c.c.−→ C. In the following
Slutsky-type theorem, we need a stronger condition than Yn

c.c.−→ C.
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Proposition 3.6 Suppose that Xn
S1-d−→ X and Yn

S-L1

−→ C. Then

(i) Xn + Yn
S1-d−→ X + C;

(ii) if {Xn} is a sequence of bounded random variables, then XnYn
S1-d−→ CX;

(iii) if {Xn} and {1/Yn} are two sequences of bounded random variables and C 6= 0, then
Xn

Yn

S1-d−→ X
C
.

Proposition 3.7 Let {X,Xn, n ≥ 1} be a sequence of random variables and {F, Fn, n ≥ 1} be

the corresponding sequence of distribution functions. Then Xn
S2-d−→ X if one of the following

conditions is fulfilled.

(1) X is a discrete random variable such that {x ∈ R : P (X = x) = 0} is an open subset of R
and Xn

c.c.−→ X.

(2) X has a bounded density function and
∑∞

n=1 P{n(logn)1+β |Xn − X| ≥ δ} < ∞ for two
positive constants β and δ.

3.2 Proofs

Proof of Proposition 3.1.

(i) If ‖Xn −X‖∞ < 1 and p ≥ 1, we have

E[|Xn −X|p] ≤ ‖Xn −X‖p∞ ≤ ‖Xn −X‖∞,

which together with the definitions of Xn
S-L∞

−→ X and Xn
S-Lp

−→ X implies that Xn
S-L∞

−→ X ⇒
Xn

S-Lp

−→ X .

(ii) Let α > 0. If Xn
S-Lα

−→ X , then
∑∞

n=1E[|Xn − X|α] < ∞. By the monotone convergence
theorem, we have

∞
∑

n=1

E[|Xn −X|α] = E

[ ∞
∑

n=1

|Xn −X|α
]

.

It follows that E[
∑∞

n=1 |Xn −X|α] < ∞ and thus
∑∞

n=1 |Xn −X|α < ∞ a.s., i.e., Xn
Sα-a.s.−→ X .

(iii) It is a direct consequence of (i) and (ii).

Proof of Theorem 3.2. The sufficiency is obvious. We only prove the necessity. Suppose that

Xn
P−→ X and {Xn′} is a subsequence of {Xn}. Then Xn′

P−→ X . Thus, for any k ∈ N, we have

lim
n′→∞

P

{

|Xn′ −X|α ≥ 1

k2

}

= 0.

It follows that there exists a sequence {Xn′

k
} of {Xn′} such that for any k ∈ N,

P

{

|Xn′

k
−X|α ≥ 1

k2

}

≤ 1

k2
,
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which implies that
∞
∑

k=1

P

{

|Xn′

k
−X|α ≥ 1

k2

}

< ∞.

By the Borel-Cantelli lemma, we get

P

( ∞
⋂

n=1

∞
⋃

k=n

{

|Xn′

k
−X|α ≥ 1

k2

}

)

= 0,

which implies that

P

( ∞
⋃

n=1

∞
⋂

k=n

{

|Xn′

k
−X|α <

1

k2

}

)

= 1.

Therefore, Xn′

k

Sα-a.s.−→ X . The proof is complete.

Proof of Proposition 3.4. Suppose that f is a bounded Lipschitz continuous function. Then
there a positive constant C such that

|f(x)− f(y)| ≤ C|x− y|, ∀x, y ∈ R.

It follows that
|E[f(Xn)− f(X)]| ≤ E[|f(Xn)− f(X)|] ≤ CE[|Xn −X|],

which together with the definitions of Xn
S-L1

−→ X and Xn
S1-d−→ X implies that Xn

S-L1

−→ X ⇒
Xn

S1-d−→ X .

Proof of Theorem 3.5.

“⇒” For any ǫ > 0, we have

P{|Xn − C| ≥ ǫ} = 1− P{Xn < C + ǫ} + P{Xn ≤ C − ǫ}
≤ 1− Fn

(

C +
ǫ

2

)

+ Fn(C − ǫ). (3.1)

If Xn
S2-d−→ C, then for any ǫ > 0,

∞
∑

n=1

∣

∣

∣
Fn

(

C +
ǫ

2

)

− 1
∣

∣

∣
< ∞ and

∞
∑

n=1

|Fn (C − ǫ)− 0| < ∞,

which together with (3.1) implies that for any ǫ > 0,

∞
∑

n=1

P{|Xn − C| ≥ ǫ} < ∞.

Hence Xn
c.c.−→ C.

“⇐” Let X ≡ C and denote by F the distribution of X . For any ǫ > 0 and x ∈ R, we have

F (x− ǫ)− P{|Xn −X| ≥ ǫ} ≤ Fn(x) ≤ P{|Xn −X| ≥ ǫ}+ F (x+ ǫ). (3.2)
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If x > C, set ǫ = (x− C)/2. By (3.2), we have

1− P{|Xn − C| ≥ ǫ} ≤ Fn(x) ≤ P{|Xn − C| ≥ ǫ}+ 1,

i.e.,

−P{|Xn − C| ≥ ǫ} ≤ Fn(x)− 1 ≤ P{|Xn − C| ≥ ǫ}. (3.3)

If x < C, set ǫ = (C − x)/2. By (3.2), we have

0− P{|Xn − C| ≥ ǫ} ≤ Fn(x) ≤ P{|Xn − C| ≥ ǫ}+ 0,

i.e.,

−P{|Xn − C| ≥ ǫ} ≤ Fn(x)− 0 ≤ P{|Xn − C| ≥ ǫ}. (3.4)

By Xn
c.c.−→ C, (3.3) and (3.4), we obtain that for any x 6= C,

∞
∑

n=1

|Fn(x)− F (x)| < ∞.

Hence Xn
S2-d−→ C.

Proof of Proposition 3.6. Suppose that f is a bounded Lipschitz continuous function. Then
there exits a positive constant K such that

|f(x)− f(y)| ≤ K|x− y|, ∀x, y ∈ R.

(i) We have

|E[f(Xn + Yn)]− E[f(X + C)]|
≤ |E[f(Xn + Yn)]− E[f(Xn + C)]|+ |E[f(Xn + C)]− E[f(X + C)]|
≤ KE[|Yn − C|] + |E[f(Xn + C)]−E[f(X + C)]|. (3.5)

By the assumption that Yn
S-L1

−→ C, we have

∞
∑

n=1

E[|Yn − C|] < ∞. (3.6)

Define g(x) = f(x + c). Then, g is a bounded Lipschitz continuous function and thus by the

assumption that Xn
S1-d−→ X , we get

∞
∑

n=1

|E[f(Xn + C)]− E[f(X + C)]| < ∞. (3.7)

By (3.5)-(3.7) and the definition of S1-d convergence, we obtain that Xn + Yn
S1-d−→ X + C.
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The proofs for (ii) and (iii) are similar, so we omit the details.

Proof of Proposition 3.7.

(1) Suppose that x ∈ R with P (X = x) = 0. Then, by the assumption that {x ∈ R : P (X =
x) = 0} is an open subset of R, there exists ǫ > 0 such that

F (x) = F (x+ ǫ) = F (x− ǫ),

which together with (3.2) implies that

|Fn(x)− F (x)| ≤ P{|Xn −X| ≥ ǫ} + |F (x+ ǫ)− F (x)|+ |F (x− ǫ)− F (x)|
= P{|Xn −X| ≥ ǫ}.

It follows that ∞
∑

n=1

|Fn(x)− F (x)| ≤
∞
∑

n=1

P{|Xn −X| ≥ ǫ},

which together with the definitions of complete convergence and S2-d implies that Xn
S2-d−→ X .

(2) By the assumption, we know that there exists a positive constant C such that |f(x)| ≤
C, ∀x ∈ R. It follows that for any x, y ∈ R,

|F (x)− F (y)| =
∣

∣

∣

∣

∫ y

x

f(u)du

∣

∣

∣

∣

≤ C|y − x|. (3.8)

By (3.2) and (3.8), we have

|Fn(x)− F (x)| ≤ P{|Xn −X| ≥ ǫ} + |F (x+ ǫ)− F (x)|+ |F (x− ǫ)− F (x)|
≤ P{|Xn −X| ≥ ǫ} + 2Cǫ.

Then,

∞
∑

n=1

|Fn(x)− F (x)| ≤
∞
∑

n=1

(

P

{

|Xn −X| ≥ δ

n(logn)1+β

}

+ 2C
δ

n(log n)1+β

)

=
∞
∑

n=1

P
{

n(log n)1+β|Xn −X| ≥ δ
}

+ 2Cδ
∞
∑

n=1

1

n(log n)1+β

< ∞,

and thus Xn
S2-d−→ X .

3.3 Examples and remarks

The following example shows that Xn
S-L∞

−→ X is stronger than Xn
S-Lp

−→ X in general.
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Example 3.8 Define Ω = (0, 1), F = B(Ω) and P be the Lebesgue measure on Ω. For n ∈ N,
we define a random variable Xn by

Xn(ω) =

{

1, if ω ∈ (0, 1
n2 );

0, if ω ∈ [ 1
n2 , 1).

Then, for any p > 0, we have

∞
∑

n=1

E[|Xn − 0|p] =
∞
∑

n=1

∫ 1

n2

0

1pdP =
∞
∑

n=1

1

n2
< ∞,

i.e., Xn
S-Lp

−→ 0. Obviously, we have ‖Xn − 0‖∞ = 1 for any n ∈ N. Hence ‖Xn − 0‖∞ 9 0, which

implies that Xn
S-L∞

9 0.

The following example shows that Xn
S-Lα

−→ X is stronger than Xn
Sα-a.s.−→ X in general.

Example 3.9 Let α > 0. Define Ω = (0, 1), F = B(Ω) and P be the Lebesgue measure on Ω.
For n ∈ N, we define a random variable Xn by

Xn(ω) =

{

1, if ω ∈ (0, 1
n
);

0, if ω ∈ [ 1
n
, 1).

It is easy to check that Xn
Sα-a.s.−→ 0 but Xα

n
c.c.
9 0 and hence Xn

S-Lα

9 0.

Remark 3.10 (i) By Examples 3.8 and 3.9 we know that Xn
S-L∞

−→ X is stronger than Xn
Sα-a.s.−→ X

in general.

(ii) By Example 3.9 and Theorem 3.5, we know that Xn
Sα-a.s.−→ X ; Xn

S2-d−→ X in general.

Example 3.9 shows that Xn
Sα-a.s.−→ X does not imply that Xn

c.c.−→ X in general. Conversely,

the following example shows that Xn
c.c.−→ X does not imply Xn

Sα-a.s.−→ X in general too.

Example 3.11 Let α > 0. Define Ω = (0, 1), F = B(Ω) and P be the Lebesgue measure on Ω.
For n ∈ N, we define a random variable Xn by

Xn(ω) =

{

1, if ω ∈ (0, 1
n2 );

1
n1/α , if ω ∈ [ 1

n2 , 1).

For any ǫ > 0, there exists N such that 1
N1/α < ǫ. Then, for any n ≥ N , we have 1

n1/α ≤
1

N1/α < ǫ and thus

∞
∑

n=1

P{|Xn − 0| ≥ ǫ} ≤
N−1
∑

n=1

P{|Xn − 0| ≥ ǫ}+
∞
∑

n=N

1

n2
< ∞.

Hence Xn
c.c.−→ 0.

Obviously, for any ω ∈ (0, 1), we have
∑∞

n=1 |Xn − 0|α =
∑∞

n=1X
α
n = ∞. Thus Xn

Sα-a.s.
9 0.
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The following example shows that if X is nondegenerate, then for i ∈ {1, 2}, we do not have

Xn
Si-d−→ X ⇒ Xn

P−→ X.

Example 3.12 Let {X,Xn, n ≥ 1} be a sequence of i.i.d. random variables. Obviously, we have

Xn
Si-d−→ X for i ∈ {1, 2}. Suppose that X is nondegenerate. Then, there exists positive constants

c1 and c2 such that P{|Xn −X| ≥ c1} ≡ c2 for any n ∈ N. Therefore, Xn
P
9 X.

4 Some open questions

In this section, we present some open questions for further research.

Question 1. What is the relation between the S1-d convergence and the S2-d convergence?

Question 2. Does Xn
S-L∞

−→ X imply that Xn
S2-d−→ X?

Question 3. Does Xn
S-L1

−→ X imply that Xn
S2-d−→ X?

Question 4. Does Xn
Sα-a.s.−→ X (α > 0) imply that Xn

S1-d−→ X?

Question 5. Does Xn
c.c.−→ X (α > 0) imply that Xn

Si-d−→ X for i ∈ {1, 2}?

Question 6. Can we give a Skorokhod-type theorem for the strong convergence in distribution
and the Sα-a.s. convergence?
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