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THE REGULARITY THEORY FOR THE DOUBLE OBSTACLE PROBLEM

FOR FULLY NONLINEAR OPERATOR

KI-AHM LEE AND JINWAN PARK

Abstract. In this paper, we prove the existence and uniqueness of W2,p (n < p < ∞)

solutions of a double obstacle problem with C1,1 obstacle functions. Moreover,

we show the optimal regularity of the solution and the local C1 regularity of
the free boundary. In the study of the regularity of the free boundary, we deal
with a general problem, the no-sign reduced double obstacle problem with an

upper obstacleψ, F(D2u, x) = fχΩ(u)∩{u<ψ}+F(D2ψ, x)χΩ(u)∩{u=ψ}, u ≤ ψ in B1, where

Ω(u) = B1 \ ({u = 0} ∩ {∇u = 0}).

1. Introduction

Obstacle problems with a single obstacle appear in various fields of study such
as porous media, elasto-plasticity, optimal control, and financial mathematics, see
[8, 4]. The regularity of the solutions and the free boundaries of the problems have
been actively studied by [3, 6, 11, 13, 2].

The double obstacle problem, which is the obstacle problem with two obstacles,
originates in the study of optimal investment problems with transaction costs,
the game of tug-of-war, and semiconductor devices, (see [18] and the references
therein). Recently, global homogeneous solutions to the double obstacle problem,
with homogeneous obstacles was considered by [1] and the regularity of the free
boundaries of the double obstacle problem for Laplacian was obtained by [15].

In this paper, we discuss the regularity of the solution and the free boundary for
the double obstacle problem of the fully nonlinear operator. Precisely, we prove
the existence and uniqueness of W2,p (n < p < ∞) solutions of double obstacle problem
for the fully nonlinear operator in a domain D ⊂ Rn,



























F(D2u, x) ≥ 0, in {u > φ1} ∩D,
F(D2u, x) ≤ 0, in {u < φ2} ∩D,
φ1(x) ≤ u(x) ≤ φ2(x) in D,
u(x) = g(x) on ∂D,

(FB)

with φ1, φ2 ∈ C1,1(D), ∂D ∈ C2,α, g ∈ C2,α(D) and φ1 ≤ g ≤ φ2 in ∂D. The optimal
(C1,1) regularity of the solution u to (FB) is also obtained. Moreover, we have C1

regularity of the free boundary ∂{u = ψ1} of (FB), by studying the regularity of
the free boundary for a general problem (FBnosign local), which contains a reduced
version (FBlocal) of (FB).
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Specifically, by subtracting the lower obstacleφ1 from the solution u, the problem
(FB) is reduced to the double obstacle problem with the zero lower obstacle:

F(D2u, x) = fχ{0<u<ψ} + F(D2ψ, x)χ{0<u=ψ}, 0 ≤ u ≤ ψ in B1, (FBlocal)

with ψ ∈ C1,1(B1) ∩ C2,1({ψ > 0}), f ∈ C0,1(B1), see Subsection 1.2 for more detail.
Furthermore, we consider a general problem (FBnosign local) of (FBlocal), which relaxes
the sign condition of u in (FBlocal) (i.e., the solution could be below the lower zero
obstacle):

F(D2u, x) = fχΩ(u)∩{u<ψ} + F(D2ψ, x)χΩ(u)∩{u=ψ}, u ≤ ψ in B1, (FBnosign local)

where

Ω(u) := B1 \ ({u = 0} ∩ {∇u = 0}) and f ∈ C0,1(B1),

with the upper obstacle function

ψ ∈ C1,1(B1) ∩ C2,1(Ω(ψ)), Ω(ψ) := B1 \ ({ψ = 0} ∩ {∇ψ = 0}).

By obtaining the regularity of the free boundary Γ(u) := ∂Ω(u) ∩ B1 of (FBnosign local)
Theorem 1.4, we have the regularity of the free boundary ∂{u = ψ1} for (FB) as a
corollary, see Corollary 1.5.

The result of the problem (FBnosign local) is a generalization of the theory for the
no-sign single obstacle problem (ψ = ∞ in (FBnosign local)) studied in [6, 7]. Moreover,
it is an extension for the result of the problem for Laplacian in [15].

1.1. Methodology and contents. The main idea to have the regularity of the free
boundary, Γ(u) of (FBnosign local), which corresponds to ∂{u = ψ1} in (FB), is consider-
ing the upper obstacle ψ as a solution of the single obstacle problem, (FBlocal) with
ψ = ∞. Additionally, we apply the method of blowup to the upper obstacleψwith
the thickness assumption of the zero set of ψ at 0, which means that the zero set
near the free boundary point 0 is sufficiently large in some sense, see Subsection
1.5. Then, the blowup ψ0 of the upper obstacle ψ is of the form c(x+n )2, c > 0 and it
is crucially used to have the regularity of the free boundary.

The main difficulty to have the regularity of the free boundary is the lack of
monotonicity formulas, used in the problem for Laplacian in [15]. Precisely, in the
paper, by using the formulas, we have the classification of global solutions, a global
solution of (FBnosign local) in whole domain Rn is of the form c(x+n )2, c > 0. However,
it is not applicable for the fully nonlinear case due to the nonlinearity.

Hence, for the fully nonlinear operator, we focus on the fact that the global
solution u is zero in a half-space {xn ≤ 0}. Then, the optimal (C1,1) regularity for
u implies that ∂eu/xn is finite in Rn. Therefore, we prove that ∂eu/xn is identically
zero inRn for any direction e ∈ Sn−1∩ e⊥n , which implies that u is a one-dimensional
function and it is of the form c

2 (x+n )2, for a positive constant c. It is noticeable that
similar arguments for the second derivative have been introduced in [16], and the
one for the first derivative as above has been considered in [10] in the study of the
free boundary near the fixed boundary.

Now, we summarize the contents of this paper. In Subsection 2.1, we have
the existence and uniqueness of the W2,p (n < p < ∞) solution of (FB) by using
a penalization method, Proposition 2.1. Since the obstacles φ1 and φ2 have C1,1

regularity, we consider the penalization method with bounded penalty term. In
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Subsection 2.2, we have the optimal regularity of the solution of (FB) Proposition
2.3 by using the quadratic growth of the solution of (FBlocal), Proposition 2.2.

In Subsection 3.2, we obtain the classification of global solutions Proposition 3.5,
the global solution u to (FBnosign local) with the upper obstacleψ = c(x+n )2 is also of the

form c1(x+n )2, for some c, c1 > 0, by using the argument discussed in the previous
paragraph.

Therefore, in Subsection 3.3, we prove the directional monotonicity and the
proof of the regularity for the free boundaries, Theorem 1.4, using the methods
considered in [13, 19, 9, 15] and references therein.

Remark 1.1. The reason to set the regularity of the obstacle functions φ1, φ2 in (FB), and
ψ in (FBlocal), (FBnosign local) to C1,1 is closely related to the main idea introduced in the first
paragraph of the previous subsection. Indeed, to apply the method of blowup to the upper
obstacleψ, the regularity ofψ should be at least C1,1. Furthermore, the thickness assumption
of the zero set ofψmeans that the region where the equation F(D2ψ) = 0 satisfies ({ψ = 0})
is sufficiently large. Hence, D2ψ should not be continuous, and therefore, the regularity of
the upper obstacle ψ should not be better than C1,1.

1.2. Reduction of (FB). By subtracting the lower obstacle φ1 from the solution
u, we reduce the problem (FB) to the double obstacle problem with zero lower
obstacle. Specifically, we define F̃(M, x) := F(M + D2φ1, x) − F(D2φ1, x) and v :=
u − φ1, where u is a W2,p (n < p < ∞) solution of (FB). Then,

F̃(D2v, x) = F(D2u, x) − F(D2φ1, x)

= −F(D2φ1, x)χ{φ1<u<φ2} +

(

F(D2φ2, x) − F(D2φ1, x)
)

χ{φ1<u=φ2}

= −F(D2φ1, x)χ{0<v<φ2−φ1} + F̃(D2(φ2 − φ1), x)χ{0<v=φ2−φ1}.

By replacing f = −F(D2φ1, x), ψ = φ2 − φ1 and reusing v = u − φ1 by u, F̃(M, x) =
F(M +D2φ1, x) − F(D2φ1, x) by F(M, x), u is a W2,p solution of

F(D2u, x) = fχ{0<u<ψ} + F(D2ψ, x)χ{0<u=ψ} a.e. in D, (1)

with 0 ≤ u ≤ ψ in D, f ∈ L∞(D), and ψ ∈ C1,1(D). Since we discuss the local
regularity of the free boundaries, we consider a local form (FBlocal) of (1).



4 KI-AHM LEE AND JINWAN PARK

1.3. Notations. We will use the following notations throughout the paper.

C,C0,C1 generic constants
χE the characteristic function of the set E, (E ⊂ Rn)

E the closure of E
∂E the boundary of a set E
|E| n-dimensional Lebesgue measure of the set E
Br(x),Br {y ∈ Rn : |y − x| < r}, Br(0)
Ω(u),Ω(ψ) see Equation (FBnosign local)
Λ(u),Λ(ψ) B1 \Ω(u),B1 \Ω(ψ)
Γ(u), Γψ(u) ∂Λ(u) ∩ B1, ∂{u = ψ} ∩ B1

Γd(u) Γ(u) ∩ Γψ(u) (the intersection of free boundaries)
∂ν, ∂νe first and second directional derivatives
Pr(M),P∞(M) see Definition 1.2, 1.3
δr(u, x), δr(u) see Definition 1.1
P+,P− Pucci operators

S, S, S, S∗ the viscosity solution spaces for the Pucci operators

We refer to the book of Caffarelli-Cabré [5], for the definitions of the viscosity
solution, Pucci operators P± and the spaces of viscosity solutions of the Pucci

operators S(λ0, λ1, f ), S(λ0, λ1, f ), S(λ0, λ1, f ), and S∗(λ0, λ1, f ).

1.4. Conditions on F = F(M, x). We assume that the fully nonlinear operator
F(M, x) satisfies the following conditions:

(F1) F(0, x) = 0 for all x ∈ Rn.
(F2) F is uniformly elliptic with ellipticity constants 0 < λ0 ≤ λ1 < +∞, that is

λ0‖N‖ ≤ F(M +N, x) − F(M, x) ≤ λ1‖N‖,

for any symmetric n×n matrix M and positive definite symmetric n×n matrix
N.

(F3) F(M, x) is convex in M for all x ∈ Rn.
(F4)

|F(M, x)− F(M, y)| ≤ C‖M‖|x − y|α,

for some 0 < α ≤ 1.

(F4)’

|F(M, x)− F(M, y)| ≤ C(‖M‖ + C1)|x − y|α, for some 0 < α ≤ 1.

Remark 1.2. We define oscillations of the fully nonlinear operator F in the variable x by

βF(x, x0) := sup
M∈S\{0}

|F(M, x)− F(M, x0)|

‖M‖

and

β̃F(x, x0) := sup
M∈S

|F(M, x) − F(M, x0)|

‖M‖ + 1
.

For any fixed x0, the condition (F4) implies that βF and β̃F are Cα at x0. Then, βF

and β̃F satisfy the conditions for the W2,p and C2,α estimates of viscosity solutions v to
F(D2v, x) = f (x), respectively (see Chapter 7 and 8 in [5] and [20]).

Hence, in Section 2, we assume that F satisfies (F4) and the W2,p estimate is used in the
proof of the existence and uniqueness of W2,p solution (FBnosign local), Proposition 2.1 and

C2,α estimate is used in the proof of optimal regularity of solution, Proposition 2.3.
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In Section 3, we study the regularity of the free boundary for the reduced forms, (FBlocal)
and (FBnosign local). If F is the fully nonlinear operator of (FB), then F̃ = F(M+D2φ1, x)−

F(D2φ1, x), introduced in Subsection 1.2, is the fully nonlinear operator in (FBlocal) and
(FBnosign local). If F(M, x) satisfies (F4), then F̃(M, x) satisfies (F4)’ and β̃F̃(x, x0) is Cα for

the variable x at fixed x0 ∈ R
n. Hence, we have the C2,α estimate of viscosity solutions

v to F̃(D2v, x) = f (x), and it is used in Lemma 3.4, to have that the blowup u0 of u of
(FBnosign local) is a global solution.

We note that, in Section 3, when we study the regularity of the free boundary for the
reduced forms, (FBlocal) and (FBnosign local), we denote the fully nonlinear operator by F,

instead of F̃. Hence, we assume (F4)’ for a fully nonlinear operator F, in Section 3.

1.5. Definitions. In this subsection, we define the rescaling, blowup, thickness of
coincidence sets Λ(u) and Λ(u) ∩ Λ(ψ), and solution spaces. These concepts are
already discussed in the literature of the obstacle problem, e.g. [3, 4, 13, 19, 7, 15].
We introduce the concepts for (FBnosign local), for the reader’s convenience.

In order to find the possible configuration of the solution near the free boundary,
the following blowup concept has been used heavily at [3, 8] and other references.
For a W2,n solution, u, of (FBnosign local) in Br, we define the rescaling function of u at
x0 ∈ ∂Λ(u) ∩ Br with ρ > 0 as

uρ(x) = uρ,x0
(x) :=

u(x0 + ρx) − u(x0)

ρ2
, for x ∈ (Br − x0)/ρ.

By optimal (C1,1) regularity of solution u (Theorem 1.3), for any sequence ρi → 0,

there exists a subsequence ρi j
of ρi and u0 ∈ C1,1

loc
(Rn) such that

uρi j
→ u0 uniformly in C1,α

loc
(Rn) for any 0 < α < 1.

The limit function u0 is a blowup of u at x0.

Definition 1.1. (Thickness of the coincident setΛ(u) ) We denote by δr(u, x) the thickness
of Λ(u) in Br(x), i.e.,

δr(u, x) :=
MD(Λ(u) ∩ Br(x))

r
,

where MD(A), the minimal diameter of subset A ofRn, is the least distance between two
parallel hyperplanes containing A. We will use the abbreviated notation δr(u) for δr(u, 0).

To briefly explain the theory of the regularity of free boundary in Section 3, we
define classes of local and global solutions of the problem.

Definition 1.2. (Local solutions) We say a W2,n function u belongs to the class Pr(M)
(0 < r < ∞), if u satisfies

(i) F(D2u, x) = fχΩ(u)∩{u<ψ} + F(D2ψ, x)χΩ(u)∩{u=ψ}, u ≤ ψ in Br,
(ii) ‖D2u‖L∞ ,Br

≤M,
(iii) 0 ∈ Γd(u),

where f ∈ C0,α(Br) and ψ ∈ C1,1(Br) ∩ C2,α(Ω(ψ)).

Definition 1.3. (Global solutions) We say a W2,n function u belongs to the class P∞(M),
if u satisfies

(i) F(D2u) = χΩ(u)∩{u<ψ} + F(D2ψ)χΩ(u)∩{u=ψ}, u ≤ ψ in Rn,
(ii) F(D2ψ) = aχΩ(ψ) in Rn, for a constant a > 1,

(iii) ‖D2u‖∞,Rn ≤M,
(iv) 0 ∈ Γ(u).
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1.6. Main Theorems. The purposes of the paper are to obtain the existence,
uniqueness, and optimal regularity of the solution for the double obstacle problem
and the regularity of the free boundary. The main theorems are as follows:

Theorem 1.3 (Existence, uniqueness and optimal regularity). Assume F satisfies
(F1)-(F4). Then the following holds:

(i) For n < p < ∞, there exist W2,p solution u of (FB) with φ1, φ2 ∈ C1,1(D), ∂D ∈ C2,α,

g ∈ C2,α(D), and φ1 ≤ g ≤ φ2 in D.
(ii) For any compact set K in D, we have

‖u‖C1,1(K) ≤M < ∞,

for some constant M =M(‖u‖L∞(D), ‖φ1‖C1,1(D), ‖φ2‖C1,1(D), dist(K, ∂D)) > 0.

Theorem 1.4 (Regularity of free boundary). Assume F ∈ C1 satisfies (F1)-(F3) and
(F4)’ and let u ∈ P1(M) with an upper obstacle ψ such that

0 ∈ ∂Ω(ψ), lim
x→0,x∈Ω(ψ)

F(D2ψ(x), x) > f (0), f ≥ c0 > 0 in B1,

and
inf
{

F(D2ψ, x), F(D2ψ, x) − f
}

≥ c0 > 0 in Ω(ψ).

Suppose

δr(u, ψ) :=
MD(Λ(u) ∩ Λ(ψ) ∩ Br)

r
≥ ǫ0 for all r < 1/4. (2)

Then there is r0 = r0(u, c0, ‖∇F‖L∞(BM+‖φ1‖C1,1 (D)
×B1), ‖F‖L∞(BM+‖φ1‖C1,1(D)×B1), ‖∇ f ‖L∞(B1)) > 0,

such that Γ(u) ∩ Br0
is a C1 graph.

Since Theorem 1.4 is for the reduced forms (FBlocal) and (FBnosign local) with F̃(M, x) =

F(M+D2ψ, x)− F(D2ψ, x), where F is the fully nonlinear operator in (FB), the local
regularity of the free boundary for (FB) is obtained as a corollary.

Corollary 1.5. Let u, φ1, and φ2 be as in Theorem 1.3 and we assume that φ2 − φ1 ∈

C2,1({φ1 < φ2}) and φ1 ∈ C2,1(D). Suppose that 0 ∈ ∂{u > φ1} ∩ ∂{u < φ2},

0 ∈ ∂{φ1 < φ2}, lim
x→0,x∈{φ1<φ2}

F(D2φ2(x), x) > 0, −F(D2φ1, x) ≥ c0 > 0 in B1,

and
inf
{

F(D2φ2, x) − F(D2φ1, x), F(D2φ2, x)
}

≥ c0 > 0 in {φ1 < φ2}.

Suppose
δr(φ2 − φ1, z) ≥ ǫ0 for all r < 1/4, z ∈ ∂{φ1 < φ2}

and
δr(u − φ1, φ2 − φ1) ≥ ǫ0 for all r < 1/4.

Then, there is r0 = r0(v − φ1, c0, ‖∇F‖L∞(BM×B1), ‖F‖L∞(BM×B1), ‖∇F(D2φ1(x), x)‖L∞(B1)) > 0
such that ∂{u = φ1} ∩ Br0

is a C1 graph.

Remark 1.6. We assume the thickness of Λ(ψ) and Λ(u) satisfies the
assumption (2) in Theorem 1.4. Then, the assumption implies that

δr(u0, ψ0) ≥ ǫ0 for all r > 0, (3)

for any blowups u0 and ψ0 of u and ψ at 0, respectively. By (3), we have that the blowups
ψ0 of ψ are the half-space type upper obstacle, ψ0 =

a
2 (x+n )2, in an appropriate system of

coordinates, see e.g. Proposition 4.7 of [14]. Furthermore, (3) implies that the blowup
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u0 of u ∈ P1(M) is a nonnegative function and moreover, u is also nonnegative in a
neighborhood of 0, see Section 3.2 and 3.3. Thus, the solution u ∈ P1(M) to the general
problem (FBnosign local) becomes a solution of (FBlocal).

In contrast to the Laplacian case in [15], we have the regularity of one of the two free
boundaries. Precisely, we only have the regularity of the free boundary ∂{u = φ1} which is
emerged by the lower coincident set {u = φ1}, not ∂{u = φ2}, for (FB) in Corollary 1.5. The
free boundary ∂{u = φ1} is corresponding to Γ(u) in Theorem 1.4, for the general problem
(FBnosign local). The reason for this result is the lack of the regularity theory for the free
boundary of ”single” obstacle problem for ”concave” fully nonlinear operator, see Remark
3.3.

2. Existence, Uniqueness and Optimal Regularity

2.1. Existence, uniqueness of W2,p solution. For the single obstacle problem in
[8, 13], the authors used an unbounded penalization term βǫ(z), such that βǫ(z) to
−∞, for z < 0, ǫ→ 0. Then, C2 regularity for obstacle function φ is needed to show
that βǫ(uǫ − φ) is bounded, where uǫ is a solution of the penalization problem for
the single obstacle problem with the obstacle function φ.

On the other hand, in this subsection, we consider a penalization problem (4)
with a new penalty term βǫ, whose L∞ norms are uniformly bounded by a constant
that depends only on C1,1 norms of the obstacle functions φ1 and φ2.

Then, we have solutions uǫ of the penalization problem (4) such that W2,∞ norms
of uǫ are uniformly bounded. Hence, there is a limit function u0 of uǫ as ǫ → 0 in
W2,p sense. Finally, we prove that the limit function u0 of uǫ is the unique solution
of (FB) with the obstacle functions φ1 ∈ C1,1 and φ2 ∈ C1,1.

Proposition 2.1. Assume F satisfies (F1)-(F4). For n < p < ∞, there is a unique viscosity
solution u ∈W2,p(D) of (FB) with

‖u‖W2,p(D) ≤ C
(

‖F(D2φ1, x)‖L∞(D), ‖F(D2φ2, x)‖L∞(D)

)

,

where φ1, φ2 ∈ C1,1(D), ∂D ∈ C2,α, g2,α ∈ C(D), and φ1 ≤ g ≤ φ2 on ∂D.

Proof. Let β1(z) ∈ C∞(R) be a function satisfying


















β1(z) = −max
{

‖F(D2φ1, x)‖L∞(D), ‖F(D2φ2, x)‖L∞(D)

}

if z < −1,

β1(z) = 0 if z > 1,
β1(z) ≤ 0 in z ∈ R,

and define βǫ(z) := β1(z/ǫ), for ǫ > 0. We consider a penalization problem,
{

F(D2u, x) = βǫ(u − φ1) − βǫ(φ2 − u) in D,
u(x) = g(x) on ∂D.

(4)

By the W2,p regularity in [5] and [20], for each v ∈ C0,α(D) (0 < α < 1) there is a
unique solution w ∈W2,p(D) (n < p < ∞), of

{

F(D2w, x) = βǫ(v − φ1) − βǫ(φ2 − v) in D,
w(x) = g(x) on ∂D,

with

‖w‖W2,p(D) ≤ ‖w‖L∞(D) + ‖g‖W2,p(D) + ‖βǫ(v − φ1) − βǫ(φ2 − v)‖Lp(D),

By the boundedness of βǫ, we have
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‖w‖W2,p(D) ≤ C0, (5)

where C0 is a constant which is independent for ǫ and v.
Let us consider a map S such that w = Sv for v ∈ C0,α(D). Since W2,p space is

compactly embedded in C0,α, the boundedness of W2,p norm of w, (5) implies that
S|BC0

: BC0
→ BC0

is a compact map, where BC0
is the C0 ball centered at 0 in C0,α(D)

and S|BC0
is the function S from BC0

to BC0
defined by S|BC0

(v) = S(v). Furthermore,

the W2,p estimate implies that S|BC0
is continuous. Hence, by Schauder’s fixed-point

theorem, there is a function uǫ ∈ BC0
such that S|BC0

uǫ = uǫ, i.e., there is uǫ ∈W2,p(D)
such that uǫ is a solution of (4) and ‖uǫ‖W2,p(D) ≤ C0, where C0 does not depend on

ǫ. Then, there is a sequence ǫ = ǫi → 0 and u ∈W2,p(D) such that

uǫ → u weakly in W2,p(D), n < p < ∞.

Thus, we have that ‖u‖W2,p(D) ≤ C0 and

uǫ → u uniformly in D.

We claim that u is a solution of the double obstacle problem (FB). First, we are
going to prove that F(D2u, x) ≥ 0 in {u > φ1} ∩D. Let x0 be a point in {u > φ1} ∩D
and let δ = (u(x0)−φ1(x0))/2. Then, by the uniform convergence of uǫ to u, there is
a ball Br(x0) ⋐ {u > φ1} ∩D and ǫ0 > 0 such that uǫ −φ1 ≥ δ in Br(x0), for ǫ < ǫ0. By
the definition of βǫ, for ǫ ≤ min{ǫ0, δ}, we have

βǫ(uǫ − φ1) ≡ 0 and F(D2uǫ, x) ≥ 0 in Br(x0).

By the closedness of the family of viscosity solutions, Proposition 2.9 of [5], the
uniform convergence of uǫ to u implies that F(D2u, x) ≥ 0 in Br(x0). Since x0 ∈

{u > φ1} ∩ D is arbitrary, we obtain F(D2u, x) ≥ 0 in {u > φ1} ∩ D. We also have
F(D2u, x) ≤ 0 in {u < φ2} ∩D, from the same argument as above.

Next, we prove that φ1 ≤ u ≤ φ2 in D. Suppose that {u < φ1} ∩ D is not empty
and let x0 be a point in {u < φ1}∩D . Then, by the uniform convergence of uǫ, there
is a ball Br(x0) such that

βǫ(uǫ − φ1) = −max
{

‖F(D2φ1, x)‖L∞(D), ‖F(D2φ2, x)‖L∞(D)

}

, βǫ(φ2 − uǫ) ≡ 0 in Br(x0)

and

F(D2uǫ, x) ≤ F(D2φ1) in Br(x0), for sufficiently small ǫ.

Consequently, F(D2u, x) ≤ F(D2φ1) in {u < φ1} ∩ D. Moreover, the boundary con-
dition ψ1 ≤ u = g on ∂D implies {u < φ1} ∩ D ⋐ D and u ≡ φ1 on ∂({u < φ1} ∩D).
Hence, by the maximum principle, we have u ≥ φ1 in {u < φ1} ∩ D and it is a
contradiction. The same method implies that {u > φ2} ∩D = ∅ and φ1 ≤ u ≤ φ2 in
D. Hence, u is a solution of (FB).

In order to prove the uniqueness, we suppose that there are two solutions u1

and u2 of (FB) and {u1 < u2} ∩ D is not empty. In {u1 < u2} ∩ D, the conditions
φ1 ≤ u1 ≤ φ2 and φ1 ≤ u2 ≤ φ2 in D imply that φ2 > u1 and u2 > φ1 and we
have F(D2u1, x) ≤ 0 ≤ F(D2u2, x) in {u1 < u2} ∩ D. Furthermore, by the boundary
condition for u1 and u2, we have that u1 ≡ u2 on ∂({u1 < u2} ∩ D). Therefore, by
the comparison principle, we have that u1 ≥ u2 in {u1 < u2} ⊂ D and we arrive at a
contradiction. �
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2.2. Optimal Regularity. In this subsection, we prove the optimal regularity of
the double obstacle problem (FB) with C1,1 obstacles by using the reduced form
of (FBlocal). We will first prove the quadratic growth of the solution at the free
boundary point.

Definition 2.1. For a positive constant c′, let G(c′) be a class of solutions u ∈W2,n(B1) of

F(D2u, x) = f (x)χ{0<u<ψ} + F(D2ψ, x)χ{0<u=ψ}, 0 ≤ u ≤ ψ in B1, (6)

with | f (x)|, |F(D2ψ, x)|, |ψ| ≤ c′ in B1 and 0 ∈ Γ(u).

Proposition 2.2 (Quadratic growth). Assume F satisfies (F1) and (F2). For any u ∈
G(c′), we have

S(r, u) := sup
x∈Br

u(x) ≤ C0r2, (7)

for a positive constant C0 = C0(c′).

Proof. First, we show that there is a positive constant C0 such that

S(2− j−1, u) ≤ max(C02−2 j, 2−2S(2− j, u)) for all j ∈N ∪ {0,−1}. (8)

Suppose it fails, then, for each j ∈N ∪ {0,−1}, there exists u j ∈ G such that

S(2− j−1, u j) > max( j2−2 j, 2−2S(2− j, u j)). (9)

We consider

ũ j(x) :=
u(2− jx)

S(2− j−1, u)
x ∈ B2 j .

Then, by the definition of ũ and (9),

S(ũ j, 1/2) = 1, S(ũ j, 1) = 4, and ũ j(0) = 0.

Since u ∈ G(c′), by the condition (F1) and Proposition 2.13 of [5], we know that

u ∈ S∗(λn ,Λ, c
′). Thus, the inequality (9) implies

P
+(D2ũ(x)) =

2−2 j

S(2− j−1, u)
· P+(D2u(2− jx)) ≥ −

c′

j

and

P−(D2ũ(x)) =
2−2 j

S(2− j−1, u)
· P−(D2u(2− jx)) ≤

c′

j
,

where P± are Pucci operators, i.e., we obtain that ũ ∈ S∗(λ/n,Λ, c′/ j). By Harnack
inequality (Theorem 4.3 of [5]) and Cα regularity (Proposition 4.10 of [5]), we know
that ũ j → ũ in B1, up to subsequence and

ũ ∈ S∗(λ/n,Λ, 0) in B1,

ũ , 0 in B1/2, and ũ(0) = 0. In other words, a nontrivial viscosity solution ũ has
its minimum at an interior point. Hence, by the strong maximum principle, it is a
contradiction.

Next, we claim that

S(2− j, u) ≤ C02−2 j+2 for all j ∈N ∪ {0}. (10)

We may assume that C0 > c′/4. Then, (10) holds for j = 0. Assume that (10) holds
for j = j0. By (8), we have the inequality (10) for j0 + 1,

S(2−( j0+1), u) ≤ max(C02−2 j0 , 2−2S(2− j0 , u)) ≤ C02−2 j0 .

Thus, by the mathematical induction, we have (10) for all j ∈N ∪ {0}.
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Now, take a positive number r, and take a natural number j such that 2− j−1 ≤

r ≤ 2− j. Then, by (10), we have

S(r, u) ≤ S(2− j, u) ≤ C02−2 j+2
= C0242−2 j−2 ≤ C024r2.

Thus, we have the quadratic growth rate (7) of u at 0. �

Proposition 2.3 (Optimal regularity). Assume F satisfies (F1)-(F4). Let u ∈ W2,n(D)

be a solution of (FB), with φ1, φ2 ∈ C1,1(D), ∂D ∈ C2,α, g ∈ C2,α(D), and φ1 ≤ g ≤ φ2 on

∂D. Then u ∈W2,∞
loc

(D).

Proof. Let K be a compact set in D and δ = dist(K, ∂D). Since u ∈ W2,p(D), D2u =
D2φ1 a.e. on {u = φ1} and D2u = D2φ2 a.e. on {u = φ2}. Thus, it suffice to show that
‖u‖W2,∞({φ1<u<φ2}∩K) < +∞. Let x0 be a point in {φ1 < u < φ2} ∩ K and denote d(x0) :=
dist(x0, ∂{u = φ1} ∪ ∂{u = φ2}). We may assume that d(x0) = dist(x0, ∂{u = φ1}).

Case 1) 5d(x0) < δ.
For v := u − φ1, we have that

F̃(D2v, x) = −F(D2φ1, x)χ{0<v<φ2−φ1} + F̃(D2(φ2 − φ1), x)χ{0<v=φ2−φ1} in D,

where F̃(M, x) = F(M +D2φ1, x) − F(D2φ1, x), see Subsection 1.2.
Let y0 ∈ ∂Bd(x0)(x0) ∩ {u = φ1}. Then B4d(x0)(y0) ⊂ B5d(x0)(x0) ⋐ D. Since φ1, φ2 ∈

C1,1(D), we know that v(4dx + y0)/(4d)2 is in the solution space G(c′) for a positive
number c′ for the fully nonlinear operator F̃ which also satisfies (F1) and (F2).
Then, by Proposition 2.2, we obtain

‖u − φ1‖L∞(B2d(y0)) ≤ C(‖φ1‖C1,1(D), ‖φ2‖C1,1(D))d
2.

Since F(D2u, x) = 0 in Bd(x0)(x0) ⊂ {φ1 < u < φ2}, by C2,α estimate, we have that

‖D2(u − φ1)‖L∞(Bd/2(x0)) ≤ C
‖u − φ1‖L∞(Bd(x0))

d2
.

Thus, Bd(x0) ⊂ B2d(y0) implies

‖D2(u − φ1)‖L∞(Bd/2(x0)) ≤ C(‖φ1‖C1,1(D), ‖φ2‖C1,1(D)),

and
‖D2u‖L∞(Bd/2(x0)) ≤ C(‖φ1‖C1,1(D), ‖φ2‖C1,1(D)).

Case 2) 5d(x0) > δ.
The interior derivative estimate for u in Bδ/4(x0) gives

‖D2u‖L∞(Bδ/10(x0)) ≤ C
42

δ2
‖u‖L∞(D).

For the case d(x0) = dist(x0, ∂{u = φ2}), the same argument as above with φ2 − u
implies the boundedness of the Hessian matrix of u. Therefore, we obtain the
optimal regularity of the solution u of (FB). �

We note that the property for the classical single obstacle problem (i.e., (FB)
with φ2 = ∞ and F = ∆) is obtained in [3, 4]. The growth rate for the reduced
single obstacle problem ((FBlocal) with φ2 = ∞) is discussed in [16], and the optimal
(p/p− 1) growth rate for the p-Laplacian case is obtained in [12, 17].

For the case (FBnosign local), with f ∈ C0,α and ψ ∈ C2,α, the optimal regularity of
the solutions is obtained by the theory in [9] (see [7, 9] and Theorem 2.1 of [15] for
more detail).
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3. Regularity of the Free Boundary Γ(u)

In this section, we discuss the regularity of the free boundary of the double
obstacle problem, (FBnosign local). In Subsection 3.2, we show the classification of
the global solution, which means that the global solution u ∈ P∞(M) with the

upper obstacle ψ(x) = a
2 (x+n )2 (a > 1) is u = 1

2 (x+n )2 or u = a
2 (x+n )2, see Proposition

3.5. In Subsection 3.3, we prove the directional monotonicity of the local solution
u ∈ P1(M), Lemma 3.7. Then, we have that u ∈ P1(M) is nonnegative in a small
neighborhood B of 0, and u is a solution of the simple problem (FBlocal) in B.

Therefore, the blowup u0 of u should be 1
2 (x+n )2, not a

2 (x+n )2, see Remark 3.2. In

other words, we have the uniqueness of the blowup u0 =
1
2 (x+n )2 of u ∈ P1(M).

Finally, we prove the regularity of the free boundary Γ(u), by using the directional
monotonicity.

3.1. Non-degeneracy. In this subsection, we study the non-degeneracy of the so-
lution u ∈ P1(M), which is one of the important properties for solutions of obstacle
problems. This property implies that 0 is also on the free boundary Γ(u0), where
u0 is a blow-up of u at 0 ∈ Γ(u), and Γ(u) has a Lebesgue measure zero.

Lemma 3.1. Assume F satisfies (F1) and (F2). Let u ∈ P1(M). If f ≥ c0 > 0 in B1 and
F(D2ψ, x) ≥ c0 > 0 in Ω(ψ), then

sup
∂Br(x)

u ≥ u(x) +
c

8λ1n
r2 x ∈ Ω(u) ∩ B1, (11)

where Br(x) ⋐ B1.

Proof. Let x0 ∈ Ω(u) ∩ B1 and u(x0) > 0. Since u ≤ ψ, we know that {u = ψ} = {u =
ψ} ∩ {∇u = ∇ψ} and therefore, Ω(u) ∩ {u = ψ} ⊂ Ω(ψ). By the assumptions for f
and F(D2ψ, x), we obtain F(D2u, x) = fχΩ(u)∩{u<ψ} +F(D2ψ, x)χΩ(u)∩{u=ψ} ≥ c0 inΩ(u).
Thus, the uniformly ellipticity, (F2) in Definition 1.4 implies

F(D2w, x) ≥ F(D2u, x) − c ≥ 0 on Br(x0) ∩Ω(u),

where

w(x) := u(x) − u(x0) −
c

2λ1n
|x − x0|

2.

Since w(x0) = 0 and w(x) < 0 on ∂Ω(u), the maximum principle on Br(x0) ∩ Ω(u)
implies

sup
∂Br(x0)∩Ω(u)

w > 0 and sup
∂Br(x)

u ≥ u(x) +
c

2λ1n
r2.

Let x0 ∈ Ω(u)∩B1 and u(x0) ≤ 0. If there is a point x1 ∈ Br/2(x0) such that u(x1) > 0.
Then by the first case in the previous paragraph for x1 implies the non-degeneracy
for x0.

If u(x) ≤ 0 in Br/2(x0), then u(x) ≡ 0 in Br/2(x0) or u(x) < 0 in Br/2(x0), by the
maximum principle. Since x0 ∈ Ω(u), the second case is only possible and in the
case, F(D2u, x) ≥ c in Br/2(x0). Then, it implies the non-degeneracy of u at x0.

For the case of x0 ∈ ∂Ω(u) ∩ B1,we take a sequence of points x j ∈ Ω(u) such that
x j → x0 as j → ∞. By passing to the limit as j goes to ∞, we have the desired

inequality for x0 ∈ Ω(u) ∩ B1. �

By the non-degeneracy and of the solution u ∈ P1(M), we have the local porosity
of Γ(u) and Γ(u) has Lebesgue measure zero, e.g. Section 3.2.1 of [19].
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Remark 3.2. For u ∈ P1(M), by the definition of the rescalings and blowups and the
non-degeneracy, we have sup∂Br

u0 ≥
c

8λ1n r2, for r > 0, where u0 is a blowup of u at 0.

Thus, the origin 0 is on the free boundary Γ(u0) of u0. On the other hand, in general, we
do not know that 0 ∈ Γψ(u) implies 0 ∈ Γψ0 (u0), for u ∈ P1(M).

However, in the same manner as the linear case in Remark 2.4 of [15], if we assume that
u is a non-negative function, then v := ψ − u is a solution of

F̃(D2v, x) =
(

F(D2ψ, x) − f
)

χ{0<v<ψ} + F(D2ψ, x)χ{0<v=ψ} in B1,

where F̃(M, x) := F(D2ψ, x) − F(D2ψ −M, x). Then, if we assume that F(D2ψ, x) − f ≥ c
and F(D2ψ, x) ≥ c in {ψ > 0}, we have the non-degeneracy for v which implies 0 ∈ Γ(v0) =
Γψ0 (u0) and |Γ(v)| = |Γψ(u)| = 0.

Remark 3.3. We also note that

F̃(M, x) = F(D2ψ, x) − F(D2ψ −M, x)

is a concave fully nonlinear operator. Thus, we can not apply the theory of the obstacle
problem for the convex fully nonlinear operator in [13] to F̃(M, x).

Precisely, it is uncertain that we can have Lemma 3.10 for v, which is that the blowup
of v at x ∈ Γ(v) = Γψ(u) near 0 is of the form c

2 (x+n )2, for a positive constant c. Hence, in
contrast with linear theory [15], we only have the regularity of the free boundary Γ(u), not
Γψ(u), see Theorem 1.3 and Corollary 1.5.

Lemma 3.4. Assume F satisfies (F1)-(F3) and (F4)’. Let u ∈ P1(M) with an upper obstacle
ψ such that

0 ∈ ∂Ω(ψ), lim
x→0,x∈Ω(ψ)

F(D2ψ(x), x) > f (0), f ≥ c0 > 0 in B1,

and

F(D2ψ, x) ≥ c0 > 0 in Ω(ψ).

Then u0 ∈ P∞(M).

Proof. Let uri
andψri

be sequences of the rescaling functions converging to blowups,
u0 and ψ0, respectively. First, we claim that

F(D2ψ0, 0) = F(D2ψ(0), 0)χΩ(ψ0) in Rn,

whereΩ(ψ0) = Rn\({ψ0 = 0}∩{∇ψ0 = 0}) and F(D2ψ(0), 0) := limx→0,x∈Ω(ψ) F(D2ψ(x), x).

Let x be a point in Ω(ψ0). Then, by C1,α
loc

convergence of ψri
to ψ0, we know that

there exist δ > 0 and i0 such that Bδ(x) ⊂ Ω(ψri
), for all i ≥ i0. Then, by the definition

of rescalings ψri
, we have rix ∈ Ω(ψ). Furthermore, ψ ∈ C2,α(Ω(ψ)) implies strong

convergence of ψri
to ψ0 in C2,β(Bδ(x)) for some 0 < β < α. Thus,

F(D2ψ0(x), 0) = lim
i→∞

F(D2ψri
(x), rix) = lim

i→∞
F(D2ψ(rix), rix) = F(D2ψ(0), 0).

Next, we prove that u0 is a solution of

F(D2u0, 0) = f (0)χΩ(u0)∩{u0<ψ0} + F(D2ψ(0), 0)χΩ(u0)∩{u0=ψ0}, u0 ≤ ψ0 in Rn.

The rescaling uri
is a solution of

F(D2uri
, rix) = f (rix)χΩ(uri

)∩{uri
<ψri
} + F(D2ψri

, rix)χΩ(uri
)∩{uri

=ψri
}, uri

≤ ψri
in B1/ri

,
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where Ω(uri
) := B1/ri

\ ({uri
= 0} ∩ {∇uri

= 0}). Let x be a point in Ω(u0) ∩ {u0 < ψ0}.

Then, by C1,α
loc

convergence of uri
to u0, there exist δ > 0 and i0 such that Bδ(x) ⊂

Ω(uri
) ∩ {uri

< ψri
}, for all i ≥ i0. Then

F(D2uri
(y)) = f (rix) in Bδ(x).

Since f ∈ C0,α(B1), we have C2,α estimates for uri
and we may assume strong

convergence of uri
to u0 in C2,β(Bδ(x)) for some 0 < β < α. Thus we have |D2u0(x)| ≤

M and

F(D2u0(x), 0) = lim
i→∞

F(D2uri
(x), rix) = lim

i→∞
f (rix) = f (0) ≥ c0 > 0.

Since F(0, 0) = 0, we know that F(D2u0, 0) = 0 a.e. on {u0 = 0}. Moreover, Ω(u0) ∩
{u0 = ψ0} ⊂ Ω(ψ0) implies that F(D2u0, 0) = F(D2ψ0, 0) in Ω(u0) ∩ {u0 = ψ0}.

Therefore, u0 is a solution of

F(D2u0, 0) = f (0)χΩ(u0)∩{u0<ψ0} + F(D2ψ(0), 0)χΩ(u0)∩{u0=ψ0}, u0 ≤ ψ0 in Rn,

with f (0) < F(D2ψ(0), 0). Furthermore, by the non-degeneracy, Lemma 3.1, we
have 0 ∈ Γ(u0), see Remark 3.2. Consequently, u0 is in P∞(M) for the fully nonlinear
operator G(M) = F(M, 0)/ f (0). �

3.2. Classification of Global Solutions. In this subsection, we discuss the classi-
fication of global solutions, which means that the global solution u ∈ P∞(M) with
the upper obstacle ψ = a

2 (x+n )2 (a > 1) and the thickness assumption (2), is a
2 (x+n )2 or

1
2 (x+n )2.

First, we observe that the zero set of u contains a half plain {xn < 0}, by the
thickness assumption (2) and the non-degeneracy, Lemma 3.1. Thus, the optimal
(C1,1) regularity for the solution u ∈ P∞(M) implies that ∂eu/xn is finite. Moreover,
by considering the rescaling functions of u and ψ with a distance from x ∈ {xn > 0}
to {xn = 0}, (12), we show that ∂eu ≡ 0, for any direction e ∈ Sn−1 ∩ e⊥n . It implies

that u is one-dimensional, and it is a
2 (x+n )2 or 1

2 (x+n )2.

Proposition 3.5. Assume F = F(M) satisfies (F1)-(F2). Let u ∈ P∞(M) be a solution of

F(D2u) = χΩ(u)∩{u<ψ} + aχΩ(u)∩{u=ψ}, u ≤ ψ a.e. in Rn,

with the upper obstacle

ψ(x) =
a

2
(x+n )2,

for a constant a > 1. Suppose

δr(u, ψ) ≥ 0, for all r > 0.

Then, we have

u(x) =
1

2
(x+n )2 or u(x) =

a

2
(x+n )2.

Proof. The condition u ≤ ψ = a
2 (x+n )2 on Rn implies that u(x) ≤ 0 on {xn ≤ 0}.

We claim that {xn < 0} ⊂ Λ(u). First, we suppose that ∂Ω(u) ∩ {xn < 0} , ∅.
Then, by non-degeneracy, (Lemma 3.1), we have that {u > 0} ∩ {xn < 0} , ∅
and we arrive at a contradiction. Next, we suppose that {xn < 0} ⊂ Ω(u). Since
{ψ = 0} = Λ(ψ) = {xn ≤ 0}, it is a contraction to δr(u, ψ) ≥ 0, for all r > 0.

Therefore, we have that {xn < 0} is contained in Λ(u). Hence, u = 0 on {xn ≤ 0}
and ∂eu = 0 on {xn ≤ 0} for all e ∈ Sn−1 ∩ e⊥n , where Sn−1 := {x ∈ Rn : |x| = 1} and
e⊥ := {x ∈ Rn : x ⊥ e} for e ∈ Sn−1.
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In order to have the conclusion, it suffices to show that ∂eu ≡ 0 on Rn, for any
direction e ∈ Sn−1 ∩ e⊥n . Thus, we fix e1 ∈ S

n−1 ∩ e⊥n and define

0 ≤ sup
x∈{xn>0}

∂1u(x)

xn
=: M0.

By the optimal regularity and ∂1u = 0 on {xn ≤ 0}, we know that M0 is finite.
If we prove that M0 is 0, we have that ∂1u ≡ 0 on Rn. Since the direction e1 is
arbitrary, we have that ∂eu = 0 on {xn ≤ 0}, for all e ∈ Sn−1 ∩ e⊥n .

Arguing by contradiction, suppose M0 > 0. Since ∂1u ≡ 0 on (Ω(u) ∩ {u < ψ})c,
we can take a sequence x j ∈ Ω(u) ∩ {u < ψ} ⊂ {xn > 0} such that

lim
j→∞

1

x
j
n

∂1u(x j) =M0.

Let r j := x
j
n = |x

j
n| and consider rescaling functions

ur j
(x) :=

u
(

((x j)′, 0) + r jx
)

(r j)2
and ψr j

(x) :=
ψ
(

((x j)′, 0) + r jx
)

(r j)2
= ψ(x). (12)

Then, D2ur j
are uniformly bounded and ur j

≡ 0 on {xn ≤ 0}. Thus,

ur j
(x)→ ũ(x) in C1,α

loc
(Rn) for any α ∈ [0, 1),

ũ ≡ 0 on {xn ≤ 0} (13)

and ũ is a solution of

F(D2u) = χΩ(u)∩{u<ψ} + aχΩ(u)∩{u=ψ}, u ≤ ψ a.e. in Rn,

with the upper obstacle

ψ(x) =
a

2
(x+n )2.

By the definition of M0, for x ∈ {xn > 0},

∂1ur j
(x) =

∂1u
(

((x j)′, 0) + r jx
)

r jxn
· xn ≤M0xn.

Hence, we have ∂1ũ(x) ≤M0xn on {xn > 0}. Moreover,

∂1ũ(en) = lim
j→∞

∂1ur j
(en) = lim

j→∞

∂1u
(

((x j)′, 0) + r jen

)

r j
= lim

j→∞

∂1u(x j)

x
j
n

=M0.

If en ∈ (Ω(ũ)∩ {ũ < ψ})c, then ∂1ũ(en) = 0 and we arrive at a contradiction. Thus,
en ∈ Ω(ũ) ∩ {ũ < ψ}. Let Ω̃(ũ) be the connected component of Ω(ũ) ∩ {ũ < ψ}
containing en. By (13), we know that Ω̃(ũ) ⊂ Ω(ũ) ⊂ {xn > 0}.

By differentiating F(D2ũ) = 1 on Ω̃(ũ) with respect to e1, we have Fi j(D
2ũ)∂i j∂1ũ =

0 and Fi j(D
2ũ)∂i j∂1(ũ −M0xn) = 0 on Ω̃(ũ). Thus, the strong maximum principle

implies that

∂1ũ =M0xn on Ω̃(ũ) ⊂ {xn > 0}.

If there exists x ∈ ∂Ω̃(ũ) ∩ {xn > 0}, then ∂1ũ(x) = 0 = Mxn and we have a
contradiction, i.e., we have ∂Ω̃(ũ) ∩ {xn > 0} = ∅. Then, Ω̃(ũ) ⊂ {xn > 0} implies

Ω̃(ũ) = {xn > 0}, ∂1ũ ≡Mxn on {xn > 0} and

ũ(x) =M0x1xn + g(x2, ..., xn) on {xn > 0}.
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Since ũ is in C1,1
loc

(Rn) and ũ ≡ 0 on {xn ≤ 0}, we have

∂nũ(x) =M0x1 + ∂ng(x2, ..., xn) = 0 on {xn = 0}

and it does not hold unless M0 = 0 and ∂ng(x2, ..., 0) = 0. Hence, we arrive at a
contradiction. �

3.3. Directional Monotonicity and proof of Theorem 1.4. In this subsection, we
show the directional monotonicity for solutions of (FBnosign local) and the regularity of
the solutions u ∈ P1(M). We note that the argument for the linear case is discussed
in [15].

Lemma 3.6. Assume F ∈ C1 satisfies (F1)-(F3) and (F4)’ and let u be a solution of

F(D2u, rx) = f (rx)χΩ(u)∩{u<ψ} + F(D2ψ(rx), rx)χΩ(u)∩{0<u=ψ}, u ≤ ψ in B1

and assume that f (x) ≥ c0 > 0 in B1, Suppose that we have

C∂eψ − ψ ≥ 0, C∂eu − u ≥ −ǫ0 in B1,

for a direction e and ǫ0 < c/64λ1n. Then we obtain

C∂eu − u ≥ 0 in B1/4,

if 0 < r ≤ r′0, for some

r′0 = r′0(C, c0, ‖∇F‖L∞(BM×B1), ‖∇ f ‖L∞(B1)).

Proof. By differentiating F(D2u, rx) = f (rx) with respect to the direction e, we have

Fi j(D
2u(x), x)∂i j∂eu(x) = r∂e f (rx) − r(∂eF)(D2u(x), rx) in Ω(u) ∩ {u < ψ}, (14)

where ∂eF is the spatial directional derivative of F(M, x) in the direction e.
Arguing by contradiction, suppose there is a point y ∈ B1/2∩Ω(u)∩{u < ψ} such

that C∂eu(y) − u(y) < 0. We consider the auxiliary function

φ(x) = C∂eu(x) − u(x) +
c0

4λ1n
|x − y|2.

By Proposition 2.13 of [5] and the condition (F1) (F(0, x) = 0 for all x ∈ Rn),
we have u ∈ S(λ0/n, λ1, f (rx)) in Ω(u) ∩ {u < ψ} and moreover (14) implies ∂eu ∈
S(λ0/n, λ1, r∂e f (rx) − r(∂eF)(D2u(x), rx)). Hence, we have

φ ∈ S(λ0/n, λ1, r∂e f (rx) − r(∂eF)(D2u(x), rx)− f (rx) + c0/2) in Ω(u) ∩ {u < ψ}.

Furthermore, since there is a sufficiently small constant r̃0 = r̃0(C, c0, ‖∇ f ‖L∞(B1),
‖∇F‖L∞(BM×B1)) > 0 such that

Cr∂e f (rx) − Cr(∂eF)(D2u(x), rx) − f (rx) + c0/2

≤ Cr‖∇ f ‖L∞(B1) + Cr‖∇xF‖L∞(BM×B1) − f (rx) + c0/2 ≤ 0,

for all r < r̃0, we have

φ(x) ∈ S(λ0/n, λ1, 0) in Ω(u) ∩ {u < ψ}, for all r ≤ r̃0.

By the minimum principle of φ in B1/4(y) ∩Ω(u) ∩ {u < ψ}, we have

inf
∂(B1/4(y)∩Ω(u)∩{u<ψ})

φ ≤ φ(y) < 0.

Moreover, C∂eψ − ψ ≥ 0 in B1 implies that φ ≥ 0 on ∂
(

Ω(u) ∩ {u < ψ}
)

. Thus, we
obtain

inf
∂B1/4(y)∩(Ω(u)∩{u<ψ})

φ < 0 and inf
∂B1/4(y)∩(Ω(u)∩{u<ψ})

(C∂eu − u) < −
c0

128λ1n
.
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Since ǫ0 <
c0

64λ1n , we have a contradiction. �

Lemma 3.7 (Directional monotonicity). Let u, ψ, F be as in Theorem 1.4. Then for any
δ ∈ (0, 1], there exists

rδ = rδ(u, ψ, c0, ‖∇F‖L∞(BM×B1), ‖F‖L∞(BM×B1), ‖∇ f ‖L∞(B1)) > 0

such that

u ≥ 0 in Br1

∂eu ≥ 0 in Brδ for any e ∈ Cδ ∩ ∂B1,

where

Cδ = {x ∈ R
n : xn > δ|x

′|}, x′ = (x1, ..., xn−1).

Proof. We denote ur and ψr by rescalings of uri
and ψri

, respectively. The thickness
assumption (3) implies that ψ0 =

a
2 (x+n )2, (a > 1), in an appropriate system of

coordinates, see e.g. Proposition 4.7 of [14]. Then, by Proposition 3.5, we know that

u0 is 1
2 (x+n )2 or a

2 (x+n )2. Hence, for any e ∈ Cδ = {x ∈ R
n : xn > δ|x′|}, x′ = (x1, ..., xn−1),

we obtain

δ−1∂eψ0 − ψ0 ≥ 0 and δ−1∂eu0 − u0 ≥ 0 in Rn.

By the C1,α convergence of ψr and ur to ψ0 and u0, respectively, we obtain that

δ−1∂eψr − ψr ≥ −ǫ0 and δ−1∂eur − ur ≥ −ǫ0 in B1,

for ǫ0 < c/64λ1n and r < r̂δ(u, ψ). Then, by applying the directional monotonicity
for the solution of the single obstacle, Lemma 13 of [9] to ψ, we have that δ−1∂eψr −

ψr ≥ 0 in B1/2 for all r < r′
δ
(u, ψ, c0, ‖∇F‖L∞(BM×B1), ‖∇ f ‖L∞(B1)). Furthermore, by

Lemma 3.6, we have

δ−1∂eur − ur ≥ 0 in B1/4, (15)

for 0 < r ≤ r̃δ = r̃δ(u, ψ, c0, ‖∇F‖L∞(BM×B1), ‖∇ f ‖L∞(B1)).

We claim that ur = 0 in {xn < −1/8} ∩ B1/4. By the C1,α convergence of ur to u,

we may assume that ‖ur − u0‖L∞(B1) ≤
c

8λ1n ×
1

128 for 0 < r ≤ r̃δ. Let x0 be a point in

{xn < 0} ∩Ω(ur) ∩ B1/4. By the non-degeneracy, Lemma 3.1, we have

sup
∂Bρ(x0)

ur ≥ ur(x0) +
c

8λ1n
ρ2, (16)

whereρ := |(x0)n|. Since u0 = 0 in {xn ≤ 0} implies ‖ur − u0‖L∞(∂Bρ(x0)) = ‖ur‖L∞(∂Bρ(x0)) ≤
c

8λ1n ×
1

128 , by (16), we have c
8λ1nρ

2 ≤ c
4λ1n ×

1
128 and ρ ≤ 1

8 . Therefore, {xn <
0} ∩Ω(ur) ∩ B1/4 ⊂ {−1/8 < xn < 0} and ur = 0 in {xn < −1/8} ∩ B1/4.

Let us fix δ = 1 and let v(x) = exp(−e · x)ur(x). Then, by (15), we have ∂ev ≥ 0
in B1/4 for any e ∈ Cδ. Thus, ur = 0 in {xn < −1/8} ∩ B1/4 implies that v = 0 in
{xn < −1/8} ∩ B1/4, v ≥ 0 in B1/4, and ur ≥ 0 in B1/4 for all r ≤ r̃1. By the definition

of scaling functions ur, we have u ≥ 0 in Br1
, for r1 =

1
4r̃1

. Furthermore, (15) implies

that

∂eu ≥ 0 in Brδ for any e ∈ Cδ ∩ ∂B1,

for rδ =
1

4r̃δ
< r1, δ ∈ (0, 1]. �
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Lemma 3.8. Let u, ψ, F be as in Theorem 1.4. Then there exists

r1 = r1(u, ψ, c0, ‖∇F‖L∞(BM×B1), ‖F‖L∞(BM×B1), ‖∇ f ‖L∞(B1)) > 0

such that u is a solution of

F(D2u, x) = fχ{0<u<ψ} + F(D2ψ, x)χ{0<u=ψ}, 0 ≤ u ≤ ψ in Br1
.

Moreover, if u0 and ψ0 are blowup functions of u and ψ at 0, respectively, then in an
appropriate system of coordinates,

ψ0(x) =
a

2
(x+n )2 and u0(x) =

1

2
(x+n )2.

Proof. By Lemma 3.7, there is r1 = r1(u, ψ, c0, ‖∇F‖L∞(BM×B1), ‖F‖L∞(BM×B1), ‖∇ f ‖L∞(B1)) >
0 such that u ≥ 0 in Br1

. Hence u is a solution of

F(D2u, x) = fχ{0<u<ψ} + F(D2ψ, x)χ{0<u=ψ}, 0 ≤ u ≤ ψ in Br1
.

and v := ψ − u is a solution of

F̃(D2v, x) =
(

F(D2ψ, x) − f
)

χ{0<v<ψ} + F(D2ψ, x)χ{0<v=ψ} 0 ≤ v ≤ ψ in B1,

where F̃(M, x) := F(D2ψ, x)− F(D2ψ−M, x). Since 0 ≤ v ≤ ψ, we have that {v > 0} ⊂
{ψ > 0} = Ω(ψ). Thus, min{F(D2ψ, x), F(D2ψ, x) − f } ≥ c0 > 0 in Ω(ψ) implies

F̃(D2v, x) = (F(D2ψ, x) − f )χ{0<v<ψ} + F(D2ψ, x)χ{0<v=ψ} ≥ c0 > 0 in {v > 0}.

Thus, by the same argument in Lemma 3.1, we have the non-degeneracy for v,

sup
∂Br(x)

v ≥ v(x) +
λ

8n
r2 x ∈ Ω(v) ∩ Br0

,

for Br(x) ⋐ Br0
. This implies 0 ∈ Γ(v0) = Γψ0 (u0), where v0 is a blowup functions of

v at 0 such that v0 = ψ0 − u0, see Remark 3.2. Consequently, we have

ψ0(x) =
a

2
(x+n )2 and u0(x) =

1

2
(x+n )2

in an appropriate system of coordinates. �

By the uniqueness of the blowup for the single obstacle problem, we have the
uniqueness of blowup for ψ, i.e., for any sequence λ→ 0,

ψλ → ψ0 =
1

2
(x+n )2 in C1,α

loc
(Rn),

in an appropriate system of coordinates. Then, the uniqueness of the blowup for
u directly follows from Lemma 3.8.

Proposition 3.9 (Uniqueness of blowup). Let u, ψ, F be as in Theorem 1.4. Then the
blowup function of u at 0 is unique, i.e., in an appropriate system of coordinates, for any
sequence λ→ 0,

uλ → u0 =
1

2
(x+n )2 in C1,α

loc
(Rn)

as λ→ 0.

In the following lemma, we have that the blowups of u for any points x near 0
are also half-space functions.

Lemma 3.10. Let u, ψ, F and r1 be as in Theorem 1.4. Then there is r′
1
= r′

1
(u, ψ) > 0

such that the blowup function of u at x ∈ Γ(u) ∩ Br′
1

are half-space functions.
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Proof. By the directional monotonicity for u and ψ (Lemma 3.7 and 3.8), we have
that, for any δ ∈ (0, 1], there exists

rδ = rδ(u, c0, ‖∇F‖L∞(BM×B1), ‖F‖L∞(BM×B1), ‖∇ f ‖L∞(B1)) > 0

such that r1 ≥ r′
δ
= r′

δ
(u, ψ) > 0 and

ψ, u ≥ 0 in Br′
1

∂eψ, ∂eu ≥ 0 in Br′
δ

for any e ∈ Cδ.

Then, the free boundaries ∂{u = 0} ∩ Br′
1
= Γ(u)∩ Br′

1
, ∂{ψ = 0} ∩ Br′

1
are represented

by Lipschitz functions.
Let x0 be a point in Γ(u) ∩ Br′

1
and assume that there exists r0 > 0 such that

{u = ψ} ∩ Br(x
0) , ∅ for all r < r0.

Then, there is a sequence of points x j such that x j ∈ {u = ψ} and x j → x0 as j→ ∞.
Thus,

ψ(x j) = u(x j)→ 0 as j→∞, and x0 ∈ {ψ = 0}.

Since u is nonnegative in Br′
1
, we have 0 ≤ u ≤ ψ and {ψ = 0} ⊂ {u = 0} in Br′

1
. Thus,

x0 ∈ Γ(u) ∩ Br′
1

implies x0 ∈ ∂{ψ = 0}. Furthermore, by the Lipschitz regularity of
the zero set of ψ, {ψ = 0} and the positivity of u, (0 ≤ u ≤ ψ), we obtain

δr(u, ψ, x0) = δr(ψ, x0) ≥ ǫ0 for all r < 1/4.

Then, by classification of blowup, Proposition 3.5, we know that the blowup of u
at x0 is a half-space solution, which means that it is of the form c

2 (x+n )2, for a positive
constant c.

Next, we assume that, for x0 ∈ Γ(u) ∩ Br′
1
, there exists r0 > 0 such that

{u = ψ} ∩ Br0
(x0) = ∅.

Then u is a solution of

F(D2u, x) = fχ{u>0}, u ≥ 0 in Br0
(x0).

On the other hand, Lipschitz regularities of Γ(u) implies the thickness assumption
for u near x0. Then, the blowup function of u at 0 is a half-space solution. �

By using lemmas in this subsection and arguments in [13, 19, 9, 15], we prove
one of the main theorems of the paper, Theorem 1.4.

Proof of Theorem 1.4. The directional monotonicity for u, Lemma 3.7, implies that
the free boundary Γ(u) ∩ Brδ/2 is represented as a graph xn = f (x′) for Lipschitz
function f and the Lipschitz constant of f is less than δ in Brδ/2. Since δ > 0 can be
chosen arbitrary small, we have a tangent plane of Γ(u) and the normal vector en at
0. By Lemma 3.10, for any z ∈ Γ(u)∩Br′

1
, we know that the blowup is the half-space

solution and there is a tangent plane for z ∈ Γ(u) ∩ Br′
1

with tangent vector νz. By
Lemma 3.7, for z ∈ Γ(u) ∩ Brδ , we have νz · e ≥ 0 for any e ∈ Cδ. Hence, νz is in C1/δ

and then, for sufficiently small δ > 0, νz is close to en. Specifically, we have that

|νz − en| ≤ Cδ, z ∈ Γ(u) ∩ Brδ .

Therefore, Γ(u) is C1 at 0 and by the same argument, Γ(u) ∩ Br′
1

is C1. �
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