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Abstract

We derive upper bounds for the potential energy of spherical designs of cardinality close
to the Delsarte-Goethals-Seidel bound. These bounds are obtained by linear programming
with the use of the Hermite interpolating polynomial of the potential function in suitable
nodes. Numerical computations show that the results are quite close to certain lower energy
bounds confirming that spherical designs are, in a sense, energy efficient.
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1 Introduction

Spherical designs were introduced in 1977 by Delsarte, Goethals and Seidel in the seminal
paper [18]. Let S*~! be the unit sphere in R™. A spherical 7-design C' C S"~! as a nonempty
finite set C c S"~!
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where p(z) is the surface area measure, holds for all polynomials f(z) = f(z1,22,...,zy) of
total degree at most 7. The maximal number 7 = 7(C') such that C' is a spherical 7-design is
called the strength of C.

Spherical designs have broad applications due to two major properties — their connection
to numeric integration on the sphere and their tendency to lead to highly symmetric geomet-
ric configurations. In fact many optimal configurations, such as the regular polytopes, the
Korkine-Zolotarev lattice and the Leech lattice, which arise naturally from various problems
are connected to spherical designs with good parameters. Futhermore, a special class of spheri-
cal designs, so called sharp configurations, were shown to be universally optimal in the sense of
Cohn-Kumar [16]. Classical applications of spherical designs include connections with Waring
problem [30], isometric embeddings between Banach spaces [28], and Chebyshev-type quadra-
ture formulas [24], 25], which in turn provides efficient tools for numerical integration on the
sphere [29] §].

An important subclass of spherical designs, the designs on S? with icosahedral symmetry,
geodesic grids, were introduced in 1968 by Sadourny, Arakawa and Mint [32], and find increasing
importance in various fields such as global ocean modeling [31] and environmental monitoring
[35]. They have richer symmetry than the standard longitude-latitude geographic grid, faces
with mostly equal area, can be easily extended with iterative inclusion of edge midpoints and
have the integration properties of 5-designs making them suitable base for geographic indexing.
Another similar extendable structure, but based on cubic symmetry, is the quadrilateralized
spherical cube, which is also a 3-design. It was introduced in 1975 and famously implemented in
the Cosmic Background Explorer project. Similar approach, combined with space-filling curves
is also used by the Google S2 Geometry library. Other current and suggested applications of
designs on S? include computer graphics, 3D scanning and design of LEO and GSO satellite
constellations.

For a given (extended real-valued) function h : [—1,1] — [0, +oc], the h-energy (or the
potential energy) of a spherical 7-design C' C S"~! is defined by

E(n,Cih):= > hi{z,y)), (1)

z,y€Cz#y

where (x,y) denotes the inner product of z and y. In what follows we assume that h is
absolutely monotone, i.e. h(*®)(t) > 0 for every k > 0 and t € [~1,1). A common example is
the Riesz s-potential h(t) = 1/(2(1 —t))°.

Another important feature of the spherical designs was established in 2006 by Cohn and
Kumar [16]. It was proved in [16] that the sharp configurations (spherical designs of strength
7 = 2m — 1 and have exactly m distinct distances between their points; see also the survey
papers [2, [3]) are universally optimal; i.e., for every h they possess the minimum possible h-
energy among all spherical codes on S"~! of the same cardinality. The only addition to this
list is the 600-cell on S® which is a spherical 11-design.



Bounds for the energy of spherical designs on S? were obtained in [21, 22] for particular
h. The discrete Riesz s-energy of sequences of well separated 7-designs was investigated in
[20]. General lower and upper bounds on energy of designs of fixed dimension, strength and
cardinality were obtained by Boyvalenkov-Dragnev-Hardin-Saff-Stoyanova [13] (see also [14]).

In this paper we address the general problem for finding upper bounds, i.e., to estimate
from above the quantity

U(n, M, 7;h) :=sup{E(n,C;h) : |C| = M, C C S" ! is a r-design}, (2)

the maximum possible h-energy of a spherical 7-design of M points on S"~!. We use a linear
programming approach (sometimes called Delsarte-Yudin method) with a Hermite interpolation
polynomial of the potential function. Our main result suggests (or confirms) that the spherical
designs are,so to say, energy effective. This means that all designs on S"~! of relatively small
(fixed) cardinalities have their h-energy in very thin range. Indeed, our upper bounds are very
close to the recently obtained universal lower bound [13, [14]. As in [13| 14, [16] our results are
valid for all absolutely monotone functions h.

In Section 2 we present notations and results needed for the rest of the paper. In particular,
the linear programming technique is described in the context of the energy bounds. Section
3 is devoted to our new bound. We utilize the linear programming by Hermite interpolation
to the potential function at suitable nodes. Two representations of our bounds are shown to
connect our results to certain lower bounds via certain parameters introduced by Levenshtein
[26]. In Section 4 we present explicit bounds for 7 = 2 and numerical examples for 7 = 4.

2 Preliminaries

2.1 Gegenbauer polynomials

For fixed dimension n, the normalized Gegenbauer polynomials are defined by Po(n) (t) =1,

Pl(n) (t) :=t and the three-term recurrence relation

(i+n—2) PS(t) = (2 +n—2)t P (t) — i PU)(¢) for i > 1.

We have P (t) = PP (t)/P*P) (1), a = B = (n — 3)/2, where P{*?)(t) are the Jacobi
polynomials in standard notation [I, 34].

If f(t) € R[t] is a real polynomial of degree r, then f(t) can be uniquely expanded in terms
of the Gegenbauer polynomials as

£y =" £:PM (1), (3)
=0
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An important property of the Gegenbauer polynomials connects them to harmonic analysis
on S"~! via the formula [23]

ri
PO () = — 3 vl (y) (1)

[ =1
for any two points z,y € S""!. Here r; = dim(Harm(i)) is the dimension of the space of
homogeneous harmonic polynomials of degree i and {v;;(x)};_; is an orthonormal basis of
that space. It is worth noting that the definition for spherical design can be also stated as
> zcc v(x) = 0 for every nonconstant homogeneous harmonic polynomial of degree at most 7.

Using one writes in two ways the sum »_ o f({z,y)) to reach the identity

k T 2
A+ Y S =10+ IS (Zw@:)) )
=0

zyeCaty ' j=1 \zeC
which serves as a base for linear programming bounds for the cardinality and energy of spherical
codes and designs (cf. [13] 14} 18, 19, 26], 27]).
Furthermore, we will use another series of polynomials Pf’b(t), a,b € {0,1}, the so-called

adjacent polynomials, which are again Jacobi polynomials, now with parameters

n—3 n—3
)

(,8) = (a+ 50t

normalized by Pia’b(l) = 1. Note the special case Pio’o(t) = Pi(n) (t). We denote by t?ﬁb <<
tZ’ib the roots of the polynomial Pf’b(t).

2.2 Delsarte-Goethals-Seidel bound and polynomials

Denote B(n,7) := min{|C|: C € S""! is a spherical 7-design}. Delsarte, Goethals, and Seidel
[18] obtained the following Fisher-type lower bound

2<"+k_2>, if =2k —1,
n—1

B(n,7) > D(n,7) := (”Zﬁ;1>+<”;‘;f;2>7 N (6)

The bound @ was obtained by using in the next theorem the polynomials

t+1) (P (¢ 2, ifr=2k—1
. <+10>(§1<>) | | .
(Pk’ (t)) , it 7 =2k



Theorem 2.1. Letn >3, 7 > 1, and f(t) be a real valued polynomial such that:
(B1) f(t) >0 forte[-1,1];
(B1) If f(t) = SSF, iP™(¢) then f; <0 for every i > .
Then B(n,7) > f(1)/fo-

The proof follows by applying (B1) to the left side and (B2) to the right hand side in (/).

Spherical T-designs which attain the bound @ are called tight. Tight 7-designs can exist
for 7 € {1,2,3,4,5,7,11} only [4, [5]. Moreover, the inner products and distance distribution
(therefore, the energy) of the tight designs are well known. Thus we do not consider tight
designs.

For many cardinalities close (but not equal) to D(n, ) existence of spherical T-designs is
still an open problem. On the other hand, existence of designs with asymptotically optimal
cardinalities was proved by Bondarenko, Radchenko, and Viazovska [0} [7].

2.3 Levenshtein bounds on maximal cardinality of spherical codes of pre-
scribed maximal inner product

Denote
A(n,s) =max{|C|: C c S" ! (x,y) < s for all z,y € C,x # y},

the maximal possible cardinality of a spherical code on S"~! of prescribed maximal inner
product s. Levenshtein used linear programming techniques (see [27]) to obtain the bound

(n) (n)
_ (k+n=3\[2k+n—3 _ Droa(s)—P 7 (s)
L2k*1<n’ 8) - ( k—1 )[ n—1 (l—s)Plin)(s) ’

if s ety 1]

A(n,s) < () (n) )
ktn—2 o1 ()R () =P ()
Lox(n, ) = (37 [ — (0l e )

if s € [t,°, 4,1,

Important connections between the Delsarte-Goethals-Seidel bound @ and the Levenshtein
bounds are given by the equalities

Lok_a(n,ty") = Lop_1(n, ") = D(n, 2k — 1),

(9)
Log—1(n,t,°) = Log(n, %) = D(n, 2k)

at the boundaries of the intervals of the Levenshtein bounds.



2.4 Levenshtein’s 1/M-quadrature rule

The coeflicient )
fo= [ s0-2)F ar
—1

from the expansion is crucial in the linear programming (see, for example, Theorems
and [2.6). Let ap < a3 < -+ < ag_1 (resp. B1 < P2 < --+ < fk) be the roots of the equation

Py(t)Py—1(s) = Pr(s)Pe—1(t),
where Pi(t) = PMO(t) and s = ap_y (resp. Py(t) = P (t) and s = B); s will be explained
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below. Finally, set 8y = —1.

Levenshtein [26] (see |27, Section 5] for comprehensive explanation) proved that the Gauss-
Jacobi-type formula

IO N e, = 2k
sz—l(n,$)+z;plf(%), fr— ok _1
Tang) T 2B, =2

(pi,vi are positive weights) holds true for all polynomials f of degree at most 7.
It was observed in [I1] that can be formulated to serve for investigation of the structure
of spherical designs when L. (n,s) is replaced by the cardinality M of a putative spherical 7-
design C C S"~!. Then the design’s cardinality M = L.(n,s) comes as uniquely associated
with the corresponding numbers:
ap < ap <o < Qg1 =8, P0;P1- 5 Pk—1, 1f7—:2k—17 (11)
_1260 <Bl < <Bk’:$7 Y05 V15 -+ Vs 1f7—:2k>

from the formula (10)). Moreover, we define 7(n, M) to be the unique positive integer T such
that
M € (D(n,7),D(n,7+1)).

The formula with Lr(n,s) = M was called 1/M-quadrature formula in [14].

2.5 Universal lower bound on energy of designs

In [14] a lower bound on the energy of spherical codes was proved. This bound is universal in
the sense of Levenshtein [27]. We present here its formulation for spherical designs [13]. Denote

L(n, M, 7;h) :=inf{E(n,C;h) : |C| = M, C C S" ! is a 7-design}. (12)



Theorem 2.2. Let n > 3, 7, and M € [D(n,7),D(n,7 + 1)) be positive integers. Let h :
[—1,1] — [0,400] be absolutely monotone. Then

M2 5 pihles), if T =2k — 1,
M2YF vih(B),  if T =2k

The main result in this paper shows that the strip between the lower bound and our
upper bound is very thin provided that the cardinality of the designs under consideration is
relatively small; i.e., close to the Delsarte-Goethals-Seidel bound @

L(n,M,T;h) > { (13)

2.6 Restrictions on the structure of spherical designs

Denote

u(n, M, 1) := sup{u(C) : C ¢ S" ! is a 7-design, |C| = M}, (14)
where u(C') := max{(z,y) : x,y € C,xz # y}, and

Un, M, 7) i= inf{£(C) : C € "L is a 7-design, |C] = M}, (15)

where ¢(C) := min{(x,y) : z,y € C,x # y}.
For every n, 7, and M € (D(n, 1), D(n,7+1)) non-trivial bounds on u(n, M, 7) are possible
10, [T1].

Lemma 2.3. [11] We have u(n, M,2k — 1) > a1 and u(n, M,2k) > .
Lemma 2.4. We have u(n, M,2k — 1) > t,lc;ll w1 and u(n, M,2k) > t,lg’%

Proof. This follows by Lemma and the inequalities a1 > t,1€’_11 w_p and By > ti’z from [27,
Theorem 5.39]. O

We also utilize upper bounds on w(n, M, 7) from [I0} 11]. Numerical examples can be found
n [33]. Here we list explicit results for 7 = 2 and 4.
Lemma 2.5. [10] a) For every n > 3 and every M € [D(n,2),D(n,3)] = [n+ 1,2n] we have
-2

M
u(n, M,2) < —1.

b) For every n >3 and every M € [D(n,4), D(n,5)] = [n(n+3)/2,n(n+ 1)] we have

23+ +/(n— D[(n+2)M —3(n+3)])
n(n +2)

u(n, M,4) < —1.

The bounds from Lemma are good when M is close to D(n,2) and D(n,4), respectively,
and become worse with the increasing of M.



2.7 Linear programming for upper energy bounds

The next theorem, proven in [13] gives general technique for obtaining upper bounds for the
energy of spherical designs of fixed dimension, strength, and cardinality.
Theorem 2.6. [13] Let n, 7, and M > D(n,T) be positive integers. Let h : [—1,1] — [0, +o0].
Suppose that I is a subset of [-1,1) and g(t) = Z?i%(g) giPi(n) (t) is a real polynomial such that:
(D1) g(t) > h(t) fort € T;
(D2) the Gegenbauer coefficients of g(t) satisfy gi <0 fori > 71+ 1.
If C C S" 1 is a spherical T-design of |C| = M points such that {x,y) € I for distinct points
z,y € C, then E(n,C;h) < M(goM — g(1)). In particular, if [¢(n, M, 1), u(n,M,T)] C I, then

U(n, M, 7;h) < M(goM — g(1)). (16)

It is unknown which are the best polynomials for Theorem even if their degree is
restricted in advance. Our propositions, as shown below, give upper energy bounds which,
despite not optimal, are very close to the lower bounds from [13, [I4].

2.8 Hermite interpolation

According to condition (D1), good polynomials for Theorem have to stay above the potential
h. This naturally leads to use of Hermite interpolation which provides polynomial, whose graph
is tangential to the graphs of f and h. Thus we need interpolation that gives a polynomial
matching the values of h and its derivative h’ at certain points (to be specified later).

More precisely, we are given m + 1 distinct points t] < tg < -+ < t;, < win [-1,1) and we
wish to find a polynomial f of degree less than 2m + 1 (or less than 2m if ¢; = —1) such that
f(t) =h(t;), i=1,2,...,m, f(u)=h(u)

and
f,(tl) = h,(tl) — t; > —1, f/(ti) = h/(ti), t=2,...,m.
There always exists a unique such polynomial [I7]. The next assertion concerning the interpo-

lation error is well known [I7, Theorem 3.5.1].

Lemma 2.7. Under the hypotheses for the Hermite interpolation as explained above, for every
t € [—1,1] there exists £ € (min(t,t1), max(t,u)) such that

(2m—+1) .

h(t) = f(t) = T (¢ = 02t =) (= (=), it > -1,
(2m) ‘ .

M (1)t~ 1) (b )t —w), it =1

We use Lemma in the proof that our polynomials satisfy (D1). The numbers ¢; will be
the zeros t%’lbi of the adjacent polynomials P%°(t), where m =k — 1 or k.
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3 Upper bounds for U(n, M, T;h)

3.1 Derivation of the bounds

We propose the usage of the roots of the polynomials which were used by Delsarte, Goethals
and Seidel [I8] for obtaining the bound (6). Our idea for this choice is motivated by the
combination of two results.

First, there is, in some sense, duality between lower bounds (by Delsarte, Goethals and
Seidel) for the size of spherical designs of fixed dimension and strength and upper bounds on
the size of spherical codes (by Levenshtein) of fixed dimension and minimum distance (see [19]).
This is well illustrated by @

Second, the universal lower bound on the energy of spherical codes and designs was
obtained by using interpolation in the nodes defined by Levenshtein for obtaining his upper
bounds on maximal codes. Therefore, we find it natural to use the nodes of the Delsarte-
Goethals-Seidel’s polynomials for obtaining upper bounds on energy of designs.

In other words — as Boyvalenkov-Dragnev-Hardin-Saff-Stoyanova [13] [14] used for their
lower bounds interpolation in the nodes, coming from the Levenshtein polynomials, we decide
to use for our upper bounds interpolation in the nodes coming from the Delsarte-Goethals-
Seidel polynomials. We explain our interpolation scheme in detail in the proof of the next
theorem.

Theorem 3.1. Let n > 3, 7, and M € (D(n,7),D(n,7 + 1)) be positive integers. Let h :
[—1,1] — [0,400] be absolutely monotone. Then the polynomials constructed as in Cases 1 and
2 below satisfy the conditions (D1) and (D2) of Theorem 2.6 and produce upper bounds for the
corresponding U(n, M, T; h).

Proof. We first explain the ends of our intervals I for f exceeding h as Theorem requires.
We always set I = [—1,u], where u > u(n, M, 7) is valid upper bound (as in Lemma for
7 =2 and 4 or numerical). Therefore we have [¢(n, M;T),u(n, M;7)] C I.

Next, we interpolate in the roots of the Delsarte-Goethals-Seidel polynomials d,(¢) and the
point u as follows:

Case 1. For 7 = 2k — 1 we choose ¢(t) as the Hermite interpolant of h at the roots —1 and
toli=1,2,...,k— 1, of the polynomial dok—1(t), and at u as follows

k—1,i7
g(—l) = h(_1)7 g(tllgil,i) = h(tllgfl,i)a gl(t]?_ll,i) = h/(t}?_llﬂ'% 1=1,2,...,k—1,
g(u) = h(u).

These are in total 1 + 2(k — 1) + 1 = 2k conditions. Then g¢(t) is a polynomial of degree at
most 2k — 1 which satisfies by Lemmas [2.4{ and [2.7| the condition (D1) of Theorem Indeed,



we have o)
h=H(E)
h@)—g@):Azﬁﬁ—@+lﬂtfﬁiLQ?.(tféquQ%t—u)§0
for every t € I = [~1,u] (note that h(®*)(¢£) > 0 since h is absolutely monotone).

The condition (D2) is trivially satisfied since deg(g) < 7 = 2k — 1 and therefore we have an
upper bound for U(n, M, 2k — 1; h) produced by our polynomial.

Case 2. For 7 = 2k we choose g(t) as the Hermite interpolant of h at the roots tif?, i=
1,2,...,k, of dox(t), and at u as follows

g(ty]) = h(ty), o' &) =01, i=1,2,... k g(u) = h(u).
Now g(t) is a polynomial of degree 2k. Since

h(2k+1) (5)

(t— 1) (=) (t —w) <0

forevery t € I = [—1,u| by Lemma and due to the absolute monotonicity of k, the condition
(D1) of Theorem [2.6|is satisfied.

The condition (D2) is again trivially satisfied and therefore we have an upper bound for
U(n, M,2k;h). O
3.2 Two representations of the new upper bounds

Similarly to the ULB, our bound from Theorem [3.I] can be written to include certain values of
the potential function A(t). Again this is done by using the Levenshtein’s quadrature rule.

Theorem 3.2. Let n > 3, 7, and M € (D(n,7),D(n,7 4+ 1)) be positive integers. Let h :
[—1,1] — [0, 400] be absolutely monotone. Then

k—1

D(n,2k —1) D(n,2k —1) 1,1
g0 <1 — M > + M ;_0 ’Y’L’h’(tk—l,i)v
Un, M, 73h) _ ifr=2k-1
M? -
k—1
D(n,2k)\  D(n,2k) 1o .
%<1_ M >+ M Z;MM%JH% if T =2k

(17)
(set t,lﬁ’_lm := —1 in the odd case).
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Proof. We explain in more detail the even case 7 = 2k. We start with the 1/D(n,2k)-
quadrature rule. Solving LQk_l(n,t]?O) = D(n,2k) (see the second line in (9)) to produce
the parameters p; and a; = t,lg’gﬂ, i=20,1,...,k — 1, we obtain

k—1
goD(TL, 2k') — g( 7’1, 2k szg kz-l’-l (TL, Qk) Z h(tllf ?—i—l)
=0

(the interpolation equalities g(tk:i )= h(tk:i 1) were used). Therefore,
Z/[(’IZ,M, T, h) < M(QOM_g(l))
= M(goM(M — D(n,2k)) + (90D (n, 2k) — g(1))
k—1
= M(go(M = D(n,2k)) + D(n, 2k) 3 _ pih(ti;);
=0

which completes the proof in the even case. The odd case 7 = 2k — 1 is analogous. O

Theorem 3.3. Let n > 3, 7, and M € (D(n,7),D(n,7 4+ 1)) be positive integers. Let h :
[—1,1] = [0, 400] be absolutely monotone. Then

k—1
LB
U +sz az al)): ifT:Qk_l
M? - ULB 0 ,
Z% Bi) — h(B:)), if =2k,

where ULB is the bound for the corresponding branch, and the parameters p;, oy, v;, and
B; are the same as in .

Proof. In the even case 7 = 2k we solve M = Loi(n, s) and derive the parameters v; and f3;,
i=0,1,..., k. Using the 1/M-quadrature rule we have

goM —g(1) = MY 7g(B;)-

Therefore our upper bound can be written as

Z/{(TL, MvT’ h) < M(QOM M2Z'7zg ﬁz)
=0
k
= ULB+ MY ~i(g(8) — h(B:)).
i=0
The odd case is analogous. O

11



Remark 3.4. Using the remainder formula from Lemma one can write, for example,

, NS (O PR 1,042 ,
9(Bi) = hBi) = (2K)! (Bi — tk,l) (B — tk,k) (u—Bs)
hCR(E) 1
= ——2 (P (8))% (u— B
where §;, i =0,1,...,k, are points from the interval Z = [—1,u|. This estimate can be further

investigated. The odd case 7 = 2k — 1 is similar.

4 Comparisons and examples

4.1 Explicit bounds for 2-designs

We derive explicit bounds for 7 = 2 and compare them to the lower and upper bounds from
[13].

Theorem 4.1. For given n, M € (D(n,2), D(n,3)) = (n + 1,2n), and absolutely monotond']
in [—1,1) function h we have

L{(n,]J\\jf;h) < Mﬂzl <h (_1) +ih/< 1> +A(¢;;r1)> _nh'(—;)nLA(nH)

, (19)

B2 1) —h(-h) - (M2 - ()

n n n

(ALt - )?

n

where A =

Proof. According to Theorem we have to double interpolation nodes in t}:(l) = —1/n and
singular in u = (M — 2)/n — 1. Straightforward calculations by the Newton formula give the
desired bound. O

Theorem and Theorem 4.2 from [I3] determine thin asymptotic strip for the energies of
spherical 2-designs with cardinalities in (n + 1,2n).

Theorem 4.2. If n and M tend to infinity in relation M = An + o(1), where X\ € (1,2) is a
constant, then

(L= X) = Ah(0) _ L(n,M,2h)

h(0) + = <
-1 M?
. Ll(n,]l\\442,2;h) < hio) + MO=1) _]1\14((();_??_ DI (0)

!Clearly, it is enough to have positive derivatives only the first three derivatives,
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Proof. The lower bound is given by (32) in Theorem 4.2 from [I3]. The upper bound easily
follows from in Theorem O

On Figure 1 we exhibit the situation for n = 20, 7 = 2, 22 < M < 28, and h(t) =
[2(1 —1)]~("=2)/2 — the Newton potential. Our bound is Uy, L and Uy are the lower bound
(31) and the upper bound (36), respectively, from [13]. It is worth to note that L = U for
M = n+ 2 in every dimension (see Example 5.1 in [I3]) and this seems to be the only case
where our bound is weaker.

[Ep——— L l."
175 - u F
— - LE .
15.0 /
/
125 - /
/
10.0 - 7
v
] &
75 p
5.0 4 -
_.-"
_.-"
25 - ﬂ__'_’_d.r...f
(1 ,
2 3 24 25 26 27 28

Figure 1: Newtonian (harmonic) energy comparison for n = 10, 22 < M < 28.

4.2 Numerical examples

We present the typical situation by giving numerical examples of bounds for spherical 4- and
5-designs.

In [I3] the interpolation rules g(¢) = h(¥), g(a;) = h(a;), ¢'(a;) = W' (a;), and g(u) = h(u)
were applied for 7 < 4 with polynomials of degree 1 (for 7 < 2) and 3 (for 7 = 3 and 4).
Here u and ¢ are suitable upper and lower bounds for u(n, M, ) and ¢(n, M, T), respectively,
i =[(7—1)/2], and a; are suitably chosen. The resulting bounds are optimal for that approach
but worse than our bounds.

In Table 1 we present numerical examples with bounds for spherical 4-designs in dimensions
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3 < n < 10. The feasible cardinalities are

n(n+ 3)

M € (D(n,4),D(n,5)) = ( 5

+1,n2+n>,

and the potential function is again the Newtonian h(t) = [2(1 —t)]~(»=2)/2, Similarly to above,
we show our bound as Uy, the universal lower bound L [I3 Theorem 3.4], and the upper bound
Uz from Theorem 5.2 in [I3]:

U(n,N,4;h) < N((N —1)h(ao)
N (h(€) — h(ao)) [uN (14 nad) + 2Nag + n(1 — u)(1 — ag)?]
n(u—£0)(¢ — ap)?
B (h(u) — h(ao)) [¢N(1+nad) + 2Nag + n(1 — £)(1 — ap)?] )
n(u—£)(u— ap)? ’

is a lower

N+ u) +n(l —£0)(1 —u) 2 \/(n—l)(N—2)
Jl= 1 21 AT
n(l —0)(1 —u) — N(1 4+ lun) n n+2
bound for ¢(n,4, M) as in Lemma 2.2 from [13], and u is as in Lemma

where qg :=

n| M U, Uy L
3110 | 65.81 | 65.57 65.34
3|11 | 81.99 | 81.52 80.98
4115 | 117.62 | 115.62 | 114.95
4116 | 137.72 | 134.86 | 133.33
4 1 17 | 160.16 | 155.83 | 153.125
4118 | 185.32 | 178.66 | 174.33
4119 | 213.79 | 203.55 | 196.95
5|21 | 183.89 | 176.78 | 175.50
5| 22 | 207.71 | 198.50 | 195.63
o | 23 | 233.97 | 221.78 | 216.92
5 | 24 | 263.07 | 246.76 | 239.35
5| 25 | 295.54 | 273.59 | 262.95
5 | 26 | 332.06 | 302.50 | 287.69
5 | 27 | 373.55 | 333.77 | 313.59
5 | 28 | 421.33 | 367.80 | 340.65
5|29 | 477.22 | 405.17 | 368.86

Table 1. Newtonian energy comparison for n = 3,4,5, 7 =4,
1+nn+3)/2<M<n(n+1) -1
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To our knowledge there are no upper bounds for the energy of 5-designs in the literature
to compare our results with. Thus we show in Table 2 our bound U; and the universal lower
bound L from [I3, Theorem 3.4]. We note that 5-designs with n? +n+1 points in n dimensions
do not exist [I2]. The values of u are taken from [33].

n| M Ui L

313 | 117.77 | 117.50
3|14 | 139.04 | 138.43
3|15 | 162.18 | 161.12
3116 | 134.86 | 185.56
4| 21 | 247.63 | 246.75
4122127592 | 274

4|23 | 305.92 | 302.75
4124 337.71 333

5 | 31 | 431.12 | 429.26
5 | 32 | 465.53 | 461.55
5 | 33 | 501.52 | 495.10
5 | 34 ] 539.15 | 529.90

Table 2. Newtonian energy comparison for n = 3,4,5, 7 = 5,
nn+1)+1<M<n(n+1)+4.

Finally, it is worth to note that our bounds can be slightly improved by more flexible
choice of the interpolation nodes. Indeed, one can apply a numerical method to move the
interpolation nodes like in [9], where such idea was used for obtaining linear programming
bounds for spherical codes and designs.
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