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SHARP WELL-POSEDNESS AND ILL-POSEDNESS FOR THE 3-D

MICROPOLAR FLUID SYSTEM IN FOURIER-BESOV SPACES

WEIPENG ZHU1

Abstract. We study the Cauchy problem of the incompressible micropolar fluid sys-
tem in R3. In a recent work of the first author and Jihong Zhao [30], it is proved that
the Cauchy problem of the incompressible micropolar fluid system is locally well-posed

in the Fourier–Besov spaces ˙FB
2−

3

p

p,r
for 1 < p ≤ ∞ and 1 ≤ r < ∞, and globally

well-posed in these spaces with small initial data. In this work we consider the critical

case p = 1. We show that this problem is locally well-posed in ˙FB
−1

1,r
for 1 ≤ r ≤ 2, and

is globally well-posed in these spaces with small initial data. Furthermore, we prove

that such problem is ill-posed in ˙FB
−1

1,r
for 2 < r ≤ ∞, which implies that the function

space ˙FB
−1

1,2
is sharp for well-posedness. In addition, using a similar argument we also

prove that this problem is ill-posed in the Besov space Ḃ−1

∞,r
with 2 < r ≤ ∞.

1. Introduction

In this paper we study the following initial value problem for the system of partial
differential equations describing the motion of incompressible micropolar fluid:





∂tu− (χ+ ν)∆u + u · ∇u+∇π − 2χ∇× ω = 0 in R3 × R+,

∂tω − µ∆ω + u · ∇ω + 4χω − κ∇ div ω − 2χ∇× u = 0 in R3 × R+,

div u = 0 in R3 × R+,

(u, ω)|t=0 = (u0, ω0) in R3.

(1.1)

Here u = u(x, t), ω = ω(x, t) and π = π(x, t) are unknown functions representing
the linear velocity field, the micro-rotation velocity field and the pressure field of the
fluid, respectively, and κ, µ, ν and χ are positive constants reflecting various viscosity
of the fluid. For simplicity, throughout this paper we only consider the situation with
κ = µ = 1 and χ = ν = 1/2.

The model (1.1) was first theoretically studied by Eringen in the pioneering work [7].
It was proposed as an essential modification to the classical Navier-Stokes equations
for the purpose to better describe the motion of various real world fluids consisting of
rigid but randomly oriented particles (such as blood) by considering the effect of micro-
rotation of the particles suspended in the fluid. A fluid possessing such a property is
called a micropolar fluid, so that the model (1.1) is referred to as micropolar fluid system
in the literature. Since the publication of the article of Eringen mentioned above, there
have been some experiments in laboratory showing that solutions of the micropolar fluid
system do better mimic behavior of real world fluids like blood than those of the classical
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Navier-Stokes equations, cf., [19–21] and references therein. We refer the reader to see
the references [16, 18] for more physical background of the above model.

Clearly, if χ = 0 and ω = 0 then the system (1.1) reduces into the classical Navier-
Stokes equations, which have been intensively studied during the past sixty years, espe-
cially during the past twenty years. We refer the reader to see the compositive books
of Lemarié-Rieusset [14,15] and references cited therein for interested reader on Navier-
Stokes equations. Our interest of this paper is the case χ 6= 0 and ω 6= 0.

Mathematical treatment of the micropolar fluid system (1.1) has also drawn much
attention during the past fourty years. The first result on existence and uniqueness of
solutions of the problem (1.1) was obtained by Galdi and Rionero in the reference [10].
Existence of global weak solutions of the problem (1.1) was established by Lukaszewicz
[17] and Boldrini and Rojas-Medar [23]. For existence and uniqueness of strong solutions
to the problem (1.1) and more complex systems such as the magneto-micropolar fluid
system, we refer the reader to see [4, 22, 24]. Well-posedness of the problem (1.1) in
various function spaces has also been well studied by many authors and some interesting
results have been obtained. For instance, in [9] Ferreira and Villamizar-Roa proved well-
posedness of a more general model than (1.1) in pseudo-measure spaces. In [5] Chen
and Miao established global well-posedness of the problem (1.1) for small initial data in

the Besov spaces Ḃ
−1+ 3

p
p,r (R3) for p ∈ [1, 6) and r = ∞. Moreover, if r = 1, the range of

p for the existence can be extended to [1,∞). Recently, in a collaborating work of the
first author of the present paper with Zhao [30], well-posedness of the problem (1.1) in

the Fourier-Besov spaces ˙FB
2− 3

p

p,r (R3) for p ∈ (1,∞] and r ∈ [1,∞) is established. We
also refer the reader to see the references [6, 27–29] for other related work.

In this paper we study well-posedness of the problem (1.1) in the borderline Fourier-

Besov spaces ˙FB
−1

1,r(R
3) (1 6 r 6 ∞). We prove that this problem is well-posed in

˙FB
−1

1,r(R
3) for 1 6 r 6 2, while ill-posed for 2 < r 6 ∞. Further, as a by-product of the

argument that we use to prove the second result, we also prove that the problem (1.1) is

ill-posed in the Besov space Ḃ−1
∞,r(R

3) for 2 < r 6 ∞. For systematic study of the issue
of sharp well-posedness and ill-posedness of the problem (1.1) in Besov-type spaces we
leave for future work.

Fourier-Besov spaces ˙FB
s

p,r(R
3) (s ∈ R, p, r ∈ [1,∞]) (see Definition 1.2 below) were

first introduced by Iwabuchi in [11] in the study of the parabolic-elliptic Keller-Segel
system. Later in [12] Iwabuchi and Takada used such spaces to study the initial value
problem of the Navier-Stokes-Coriolis system arising from geophysical fluid theory. They
are introduced for the purpose to overcome difficulties caused by some linear terms like
the terms 2χ∇× ω, 4χω and 2χ∇× u in the model (1.1). Application of such spaces in
the study of the classical Navier-Stokes equations was made by Konieczny and Yoneda
in [13], where they proved global well-posedness of small-data initial value problem of
the Navier-Stokes equations in critical Fourier-Besov spaces. We also refer the reader to
see [1,8] for some extensions of these results in the Fourier-Besov-Morrey spaces for the
active scalar equations and the Navier-Stokes-Coriolis equations, respectively.

Before stating the main results of this paper, let us first introduce some notions
and notations. Let S(R3) be the Schwartz class of rapidly decreasing functions on
R3, and S ′(R3) the space of tempered distributions. Moreover, we denote S ′

h(R
3) :=

S ′(R3)/P(R3), where P(R3) is the set of polynomials (see [2, 26]). Let ϕ, ψ be two
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nonnegative functions in S(R3) supported in B := {ξ ∈ R3 : |ξ| ≤ 4
3
} and C := {ξ ∈

R3 : 3
4
≤ |ξ| ≤ 8

3
}, respectively, such that

∑

j∈Z

ψ(2−jξ) = 1, ∀ξ ∈ R
3\{0}

and

ϕ(ξ) +
∑

j≥0

ψ(2−jξ) = 1, ∀ξ ∈ R
3.

For u ∈ S ′(R3), we define the homogeneous dyadic blocks ∆j and Sj as follows:

∆ju := F−1(ψ(2−jξ)û(ξ)) and Sju := F−1(ϕ(2−jξ)û(ξ)), ∀j ∈ Z,

where F−1 is the inverse Fourier transform. Then for any u ∈ S ′
h(R

3), we have the
following well-known Littlewood-Paley decomposition:

u =
∑

j∈Z

∆ju and Sju =
∑

k≤j−1

∆ku.

Moreover, one easily checks that

∆j∆ku = 0, |j − k| ≥ 2 and ∆j(Sk−1u∆ku) = 0, |j − k| ≥ 5.

The homogeneous Besov space Ḃs
p,r(R

3), the homogeneous Fourier-Besov space ˙FB
s

p,r(R
3),

and the Chemin–Lerner type space L̃λ(0, T ; ˙FB
s

p,r(R
3)) are respectively defined as fol-

lows:

Definition 1.1. Let s ∈ R and 1 ≤ p, r ≤ ∞. The space Ḃs
p,r(R

3) is defined to be the

set of all tempered distributions f ∈ S ′
h(R

3) such that the following norm is finite:

‖f‖Ḃs
p,r

:=





(∑
j∈Z 2

jsr‖∆jf‖rLp

) 1
r

if 1 ≤ r <∞,

supj∈Z 2
js‖∆jf‖Lp if r = ∞.

Definition 1.2. Let s ∈ R and 1 ≤ p, r ≤ ∞. The space ˙FB
s

p,r(R
3) is defined to be

the set of all tempered distributions f ∈ S ′
h(R

3) such that f̂ ∈ L1
loc(R

3) and the following
norm is finite:

‖f‖ ˙FB
s

p,r
:=





(∑
j∈Z 2

jsr‖∆̂jf‖rLp

) 1
r

if 1 ≤ r <∞,

supj∈Z 2
js‖∆̂jf‖Lp if r = ∞.

Definition 1.3. For 0 < T ≤ ∞, s ∈ R and 1 ≤ p, r, λ ≤ ∞, we set (with the usual
convention if r = ∞):

‖f‖L̃λ
T
( ˙FB

s

p,r)
:=
(∑

j∈Z

2jsr‖∆̂jf‖rLλ(0,T ;Lp)

) 1
r .

We then define the space L̃λ(0, T ; ˙FB
s

p,r(R
3)) as the set of temperate distributions f over

(0, T )× R3 such that lim
j→−∞

Sjf = 0 in S ′((0, T )× R3) and ‖f‖L̃λ
T
( ˙FB

s

p,r)
<∞.
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The corresponding linear system of the nonlinear system (1.1) is as follows:




∂tu−∆u−∇× ω = 0,

∂tω −∆ω + 2ω −∇ divω −∇× u = 0,

div u = 0,

(u, ω)|t=0 = (u0, ω0).

(1.2)

We use the notation G(t) to denote the solution operator of the above problem, i.e.,
for given initial data (u0, ω0) in suitable function space, (u, ω)T = G(t)(u0, ω0)

T is the
unique solution of the above problem. A simple computation shows that the operator
G(t) has the following expression:

(Ĝ(t)f)(ξ) = e−A(ξ)tf̂(ξ) for f(x) = (f1(x), f2(x))
T ,

where

A(ξ) =

[
|ξ|2I B(ξ)
B(ξ) (|ξ|2 + 2)I + C(ξ)

]

with

B(ξ) = i




0 ξ3 −ξ2
−ξ3 0 ξ1
ξ2 −ξ1 0


 and C(ξ) =



ξ1

2 ξ1ξ2 ξ1ξ3
ξ1ξ2 ξ2

2 ξ2ξ3
ξ1ξ3 ξ2ξ3 ξ3

2


 .

On the other hand, it is convenient to eliminate the pressure π by applying the Leray
projection P to both sides of the first equations of (1.1), one has





∂tu−∆u+P(u · ∇u)−∇× ω = 0,

∂tω −∆ω + u · ∇ω + 2ω −∇ div ω −∇× u = 0,

div u = 0,

(u, ω)|t=0 = (u0, ω0),

(1.3)

where P := I +∇(−∆)−1 div is the 3× 3 matrix pseudo-differential operator in R3 with

the symbol (δij − ξiξj
|ξ|2

)3i,j=1. Denote by

U(x, t) =

(
u(x, t)
ω(x, t)

)
, U0 =

(
u(x, 0)
ω(x, 0)

)
=

(
u0
ω0

)
, Ui(x, t) =

(
ui(x, t)
ωi(x, t)

)
, i = 1, 2

and

U1⊗̃U2 =

(
u1 ⊗ u2
u1 ⊗ ω2

)
, P̃∇ · (U1⊗̃U2) =

(
P∇ · (u1 ⊗ u2)
∇ · (u1 ⊗ ω2)

)
.

Then by the Duhamel principle, the solution of system (1.3) can be reduced to finding
a solution U of the following integral equations:

U(t) = G(t)U0 −
∫ t

0

G(t− τ)P̃∇ · (U⊗̃U)(τ)dτ. (1.4)

A solution of (1.4) is called a mild solution of (1.1).
The main results of this paper are as follows:

Theorem 1.4. Let r ∈ [1, 2] and α ∈ (0, 1).
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(1) For any initial data (u0, ω0) ∈ ˙FB
−1

1,r(R
3) satisfying div u0 = 0, there exists a positive

T such that the system (1.1) has a unique mild solution such that

(u, ω) ∈ C([0, T ); ˙FB
−1

1,r(R
3)) ∩ L̃ 2

1+α (0, T ; ˙FB
α

1,r(R
3)) ∩ L̃ 2

1−α (0, T ; ˙FB
−α

1,r (R
3)).

(2) There exists a positive constant ǫ such that for any initial data (u0, ω0) ∈ ˙FB
−1

1,r(R
3)

satisfying div u0 = 0 and

‖(u0, ω0)‖ ˙FB
−1
1,r
< ǫ,

the system (1.1) has a unique global mild solution such that

(u, ω) ∈ C([0,∞); ˙FB
−1

1,r(R
3)) ∩ L̃ 2

1+α (0,∞; ˙FB
α

1,r(R
3)) ∩ L̃ 2

1−α (0,∞; ˙FB
−α

1,r (R
3)).

Theorem 1.5. For r ∈ (2,∞], the system (1.1) is ill-posedness in ˙FB
−1

1,r(R
3) in the

sense that the solution map is discontinuous at origin. More precisely, there exist a

sequence of initial data {fN}∞N=1 ⊂ ˙FB
−1

1,2(R
3) and a sequence of time {tN}∞N=1 with

‖fN‖ ˙FB
−1
1,r(R

3)
→ 0 and tN → 0, as N → ∞,

such that the corresponding sequence of solutions (u, ω) ∈ C([0,∞); ˙FB
−1

1,2(R
3)) to initial

value problem (1.1) with (u, ω)[fN ](0) = fN satisfies

‖u[fN ](tN)‖ ˙FB
−1
1,r(R

3)
≥ c0 and ‖ω[fN ](tN)‖ ˙FB

−1
1,r(R

3)
≥ c0,

with a positive constant c0 independent of N .

Theorem 1.6. For r ∈ (2,∞], the system (1.1) is ill-posedness in Ḃ−1
∞,r(R

3) in the sense
that the solution map is discontinuous at origin. More precisely, there exist a sequence

of initial data {fN}∞N=1 ⊂ ˙FB
−1

1,2(R
3) and a sequence of time {tN}∞N=1 with

‖fN‖Ḃ−1
∞,r(R3) → 0 and tN → 0, as N → ∞,

such that the corresponding sequence of solutions (u, ω) ∈ C([0,∞); ˙FB
−1

1,2(R
3)) to initial

value problem (1.1) with (u, ω)[fN ](0) = fN satisfies

‖u[fN ](tN)‖Ḃ−1
∞,r(R3) ≥ c0 and ‖ω[fN ](tN)‖Ḃ−1

∞,r(R3) ≥ c0,

with a positive constant c0 independent of N .

The rest of this paper is organized as follows. In Section 2, we prove Theorem 1.4.
The proofs of Theorem 1.5 and Theorem 1.6 is given in Section 3.

Notation. In the following, let c1 and c2 be two positive constants, we use A ∼ B to
denote c1A ≤ B ≤ c2A. Given f ∈ L1(R3), the Fourier transform F [f ] (or f̂) and the
inverse Fourier transform F−1[f ] (or f̌) are defined by

F [f ](ξ) = f̂(ξ) :=

∫

Rd

e−ixξf(x)dx, F−1[f ](ξ) = f̌(ξ) :=
1

(2π)d

∫

Rd

eixξf(x)dx.
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2. The proof of Theorem 1.4

In this section, we aim at establishing the local and global existence and uniqueness
of solutions for the generalized micropolar equations (1.1). To this end, we establish
some linear estimates for the semigroup G(·) and collect an important multiplication
estimate.

2.1. Linear estimates and product laws. We first give the property of semigroup
G(·).
Lemma 2.1. For t ≥ 0 and |ξ| 6= 0. We have

‖e−tA(ξ)‖ ≤ e−|ξ|2t with ‖e−tA(ξ)‖ = sup
‖f‖≤1

‖e−tA(ξ)f‖. (2.1)

Here ‖f‖ = maxi |ai| with ‖f‖ =
∑6

i=1 aivi, v1, v2, · · · , v6 are the eigenvectors for A(ξ).

Proof. See the proof in [9]. �

Next, we establish the linear estimates for the semigroup G(·).
Lemma 2.2. Let r ∈ [1,+∞]. Then there exists a positive constant C such that

‖G(t)U0‖ ˙FB
−1
1,r

≤ C‖U0‖ ˙FB
−1
1,r

for all t ≥ 0 and all U0 ∈ ˙FB
−1

1,r.

Proof. By Lemma 2.1, we have

‖G(t)U0‖ ˙FB
−1
1,r

=

(∑

j∈Z

2−jr‖F [G(t)∆jU0]‖rL1

) 1
r

=

(∑

j∈Z

2−jr‖e−tA(ξ)F [∆jU0]‖rL1

) 1
r

≤ C

(∑

j∈Z

2−jre−|ξ|2rt‖F [∆jU0]‖rL1

) 1
r

≤ C

(∑

j∈Z

2−jr‖F [∆jU0]‖rL1

) 1
r

= C‖U0‖ ˙FB
−1
1,r
.

This completes the proof of Lemma 2.2. �

Lemma 2.3. Let r ∈ [1,+∞], T ∈ (0,+∞] and α ∈ (0, 1). Then there exists a positive
constant C = C(α) depending only on α such that

‖G(t)U0‖
L̃

2
1±α (0,T ; ˙FB

±α

1,r )
≤ C‖U0‖ ˙FB

−1
1,r

for all U0 ∈ ˙FB
−1

1,r.
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Proof. By Definition 1.3, it is easy to see that

‖G(t)U0‖
L̃

2
1±α (0,T ; ˙FB

±α

1,r )
=
(∑

j

2jr(±α)‖F [G(t)∆jU0]‖r
L

2
1±α (0,T ;L1)

) 1
r

=
(∑

j

2jr(±α)‖e−tA(ξ)F [∆jU0]‖r
L

2
1±α (0,T ;L1)

) 1
r

≤ C
(∑

j

2jr(±α)‖e−t22j‖F [∆jU0]‖L1‖r
L

2
1±α (0,T )

) 1
r

≤ C
(∑

j

2jr(±α)2−(1±α)rj‖F [∆jU0]‖rL1

) 1
r

≤ C‖U0‖ ˙FB
−1
1,r
.

The proof of Lemma 2.3 is complete. �

Lemma 2.4. Let T > 0, s ∈ R and p, r, λ ∈ [1,∞]. Then there exists a positive constant
C such that

∥∥∥
∫ t

0

G(t− τ)f(τ)dτ
∥∥∥
L̃λ(0,T ; ˙FB

s

p,r)
≤ C‖f‖

L̃1(0,T ; ˙FB
s− 2

λ
p,r )

for all f ∈ L̃1(0, T ; ˙FB
s− 2

λ

p,r ).

Proof. By Young’s inequality, we obtain
∥∥∥
∫ t

0

G(t− τ)f(τ)dτ
∥∥∥
L̃λ(0,T ; ˙FB

s

p,r)

=
(∑

j

2jrs
∥∥∥
∫ t

0

e−(t−τ)A(ξ)F [∆jf ](τ)dτ
∥∥∥
r

Lλ(0,T ;Lp)

) 1
r

≤ C
(∑

j

2jrs
∥∥∥
∫ t

0

e−(t−τ)22j‖F [∆jf ](τ)‖Lpdτ
∥∥∥
r

Lλ(0,T )

) 1
r

≤ C
(∑

j

2jr(s−
2
λ
)‖F [∆jf ](τ)‖rL1(0,T ;Lp)

) 1
r

≤ C‖f‖
L̃1(0,T ; ˙FB

s− 2
λ

p,r )
.

We complete the proof of Lemma 2.4. �

Finally, we collect an important multiplication estimate in the context of the homo-
geneous Fourier–Besov spaces.

Lemma 2.5. Let r ∈ [1, 2], T ∈ (0,+∞] and α ∈ (0, 1). Then there exists a positive
constant C such that

‖fg‖
L̃1(0,T ; ˙FB

0
1,r)

≤ C
(
‖f‖

L̃
2

1+α (0,T ; ˙FB
α

1,r)
+ ‖g‖

L̃
2

1−α (0,T ; ˙FB
−α

1,r )

+ ‖g‖
L̃

2
1+α (0,T ; ˙FB

α

1,r)
+ ‖f‖

L̃
2

1−α (0,T ; ˙FB
−α

1,r )

)
.

Proof. See Lemma 2.4 of [25]. �
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2.2. The proof of Theorem 1.4. In order to prove Theorem 1.4, we shall employ the
following standard fixed point theorem.

Proposition 2.6. Let X be a Banach space, B a continuous bilinear map from X ×X
to X , and ε a positive real number such that

ε <
1

4‖B‖ with ‖B‖ := sup
‖u‖,‖v‖≤1

‖B(u, v)‖.

For any y in the ball B(0, ε) (i.e., with center 0 and radius ε) in X , then there exists a
unique x in B(0, 2ε) such that

x = y +B(x, x).

Proof. See Lemma 5.5 in [2]. �

Proof of Theorem 1.4 (1). Let α ∈ (0, 1) be as in Theorem 1.4. Given T > 0, define the
solution space Xα

T as

Xα
T :=

{
U : U ∈ L̃

2
1+α (0, T ; ˙FB

α

1,r) ∩ L̃
2

1−α (0, T ; ˙FB
−α

1,r )
}

and equipped with the following standard product norm:

‖U‖Xα
T
= ‖U‖

L̃
2

1+α (0,T ; ˙FB
α

1,r)
+ ‖U‖

L̃
2

1−α (0,T ; ˙FB
−α

1,r )
.

Given U ∈ Xα
T , we define Φ(U) as follows

Φ(U) := G(t)U0 −
∫ t

0

G(t− τ)P̃∇ · (U⊗̃U)(τ)dτ. (2.2)

Obviously, U is a mild solution of (1.1) on [0, T ] if and only if it is a fixed point of Φ.
We define the bilinear operator B as

B(U1, U2) :=

∫ t

0

G(t− τ)P̃∇ · (U1⊗̃U2)(τ)dτ. (2.3)

Then by Lemma 2.4 and Lemma 2.5, we have

‖B(U1, U2)‖Xα
T
= ‖

∫ t

0

G(t− τ)P̃∇ · (U1⊗̃U2)(τ)dτ‖
L̃

2
1+α (0,T ; ˙FB

α

1,r)

+ ‖
∫ t

0

G(t− τ)P̃∇ · (U1⊗̃U2)(τ)dτ‖
L̃

2
1−α (0,T ; ˙FB

−α

1,r )

≤ C‖P̃∇ · (U1⊗̃U2)‖L̃1(0,∞; ˙FB
−1
1,r)

≤ C
{
‖U1‖

L̃
2

1+α (0,T ; ˙FB
α

1,r)
‖U2‖

L̃
2

1−α (0,T ; ˙FB
−α

1,r )

+ ‖U2‖
L̃

2
1+α (0,T ; ˙FB

α

1,r)
‖U1‖

L̃
2

1−α (0,T ; ˙FB
−α

1,r )

}

≤ C1‖U1‖Xα
T
‖U2‖Xα

T
. (2.4)

Combining (2.2) with (2.4), we conclude that

‖Φ(U)‖Xα
T
≤ ‖G(t)U0‖ ˙FB

−1
1,r

+ C1‖U‖Xα
T
‖U‖Xα

T
.

Notice that applying Lemma 2.3, we have

‖G(t)U0‖Xα
T
≤ C2‖U0‖ ˙FB

−1
1,r
. (2.5)
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Then ‖G(t)U0‖Xα
T
→ 0 as T → 0, since α 6= 1. Hence, there exists T > 0 such that

‖G(t)U0‖Xα
T
< 1

4C1
. Using Proposition 2.6, system (1.1) admits a unique global mild

solution U ∈ Xα
T with ‖U‖Xα

T
< 1

2C1
. By using a standard density argument, we can

further infer that U ∈ C([0, T ); ˙FB
−1

1,r(R
3)). The proof of Theorem 1.4 (1) is complete.

Next, we replace Xα
T by Xα

∞. Then we have

‖B(U1, U2)‖Xα∞ ≤ C1‖U1‖Xα∞‖U2‖Xα∞ . (2.6)

Combining (2.5) with (2.6), we conclude that

‖Φ(U)‖Xα∞ ≤ C2‖U0‖ ˙FB
−1
1,r

+ C1‖U‖Xα∞‖U‖Xα∞ .

Hence, applying Proposition 2.6, if ‖U0‖ ˙FB
−1
1,r
< 1

4C1C2
, then system (1.1) admits a unique

global mild solution U ∈ Xα
∞ with ‖U‖Xα∞ < 1

2C1
. This complete the proof of Theorem

1.4 (2). �

3. Proofs of Theorem 1.5 and Theorem 1.6

In this section we give the proofs of Theorem 1.5 and Theorem 1.6. Before giving the
proofs, let us sketch the ideas used in the proof of Theorem 1.5, which can be used in
Theorem 1.6 similarly. Motivated by [3, 12], we define the maps An for n = 1, 2, · · · as
follows:




A1(f) := G(t)f

An(f) :=
∑

n1,n2≥1,n1+n2=n

∫ t

0

G(t− τ)P̃∇ · (An1(f)⊗̃An2(f))(τ)dτ for n = 2, 3, · · · .

Then we construct a sequence fN such that ‖fN‖ ˙FB
−1
1,r(R

3)
→ 0 when N → ∞ and

‖fN‖ ˙FB
−1
1,2(R

3)
≤ Cδ. For r ∈ (2,∞], it is easy to check that

‖A1(f
N)‖ ˙FB

−1
1,r(R

3)
→ 0, N → ∞,

and

∞∑

k=3

‖Ak(f
N)‖ ˙FB

−1
1,r(R

3)
≤ C

∞∑

k=3

‖Ak(f
N)‖ ˙FB

−1
1,r(R

3)
≤ Cδ3, N ≫ 1, δ ≪ 1.

The key point is to prove

∞∑

k=3

‖Ak(f
N)‖ ˙FB

−1
1,r(R

3)
≥ Cδ2, N ≫ 1, δ ≪ 1,

which implies that system (1.1) is ill-posedness in ˙FB
−1

1,r(R
3).
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The proof of Theorem 1.5: We rewrite A(ξ) as follows:

A(ξ) = Q diag(|ξ|2, 2|ξ|2 + 2, |ξ|2 −
√
|ξ|2 + 1 + 1, |ξ|2 −

√
|ξ|2 + 1 + 1,

|ξ|2 +
√

|ξ|2 + 1 + 1, |ξ|2 +
√
|ξ|2 + 1 + 1)Q−1

= Q diag(|ξ|2, 2|ξ|2, |ξ|2, |ξ|2, |ξ|2, |ξ|2)Q−1

+Q diag(0, 2,−
√
|ξ|2 + 1 + 1,−

√
|ξ|2 + 1 + 1,

√
|ξ|2 + 1 + 1,

√
|ξ|2 + 1 + 1)Q−1

=: A1(ξ) +A2(ξ),

where

Q =




ξ1
ξ3

0
−
√

−1ξ3 ξ̃
+

|ξ|2

√
−1ξ2 ξ̃

+

|ξ|2

√
−1ξ3 ξ̃

−
|ξ|2

−
√

−1ξ2 ξ̃
−

|ξ|2

ξ2
ξ3

0
−
√

−1ξ2ξ3 ξ̃
+

ξ1|ξ|2
−
√

−1(ξ21+ξ23)ξ̃
+

ξ1|ξ|2

√
−1ξ2ξ3 ξ̃

−
ξ1|ξ|2

√
−1(ξ21+ξ23)ξ̃

−

ξ1|ξ|2

1 0
√

−1(ξ21+ξ22)ξ̃
+

ξ1|ξ|2

√
−1ξ2ξ3 ξ̃

+

ξ1|ξ|2
−
√
−1(ξ21+ξ22)ξ̃

−

ξ1|ξ|2
−
√

−1ξ2ξ3 ξ̃
−

ξ1|ξ|2

0
ξ1
ξ3

−ξ2
ξ1

−ξ3
ξ1

−ξ2
ξ1

−ξ3
ξ1

0
ξ2
ξ3

1 0 1 0

0 1 0 1 0 1



;

Here ξ̃+ =
√

|ξ|2 + 1 + 1 and ξ̃− =
√

|ξ|2 + 1 − 1. Since A1(ξ)A2(ξ) = A2(ξ)A1(ξ), we
have

e−tA(ξ) = e−t(A1(ξ)+A2(ξ)) = e−tA1(ξ)e−tA2(ξ).

Note that e−tA2(ξ) =
∑∞

k=0
(−tA2(ξ))k

k!
= I +

∑∞
k=1

(−tA2(ξ))k

k!
, then the semigroup G(·)

satisfies

Ĝ(ξ, t) = e−tA(ξ) = e−tA1(ξ)(I +
∞∑

k=1

(−tA2(ξ))
k

k!
) =: Ĝm(ξ, t) + Ĝr(ξ, t),

where

Ĝm(ξ, t) = e−tA1(ξ) =

[
e−t|ξ|2I 0

0 R(ξ)

]
,

with

R(ξ, t) =




ξ21e
−2t|ξ|2+ξ22e

−t|ξ|2+ξ23e
−t|ξ|2

|ξ|2
ξ1ξ2e

−2t|ξ|2−ξ1ξ2e
−t|ξ|2

|ξ|2
ξ1ξ3e

−2t|ξ|2−ξ1ξ3e
−t|ξ|2

|ξ|2

ξ1ξ2e
−2t|ξ|2−ξ1ξ2e

−t|ξ|2

|ξ|2
ξ21e

−t|ξ|2+ξ22e
−2t|ξ|2+ξ23e

−t|ξ|2

|ξ|2
ξ2ξ3e

−2t|ξ|2−ξ2ξ3e
−t|ξ|2

|ξ|2

ξ1ξ3e
−2t|ξ|2−ξ1ξ3e

−t|ξ|2

|ξ|2
ξ2ξ3e

−2t|ξ|2−ξ2ξ3e
−t|ξ|2

|ξ|2
ξ21e

−t|ξ|2+ξ22e
−t|ξ|2+ξ23e

−2t|ξ|2

|ξ|2


 .

Let fN := (uN0 , ω
N
0 ) and define

χ(ξ) =

{
1, if |ξk| ≤ 1, k = 1, 2, 3

0, otherwise,
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and χ±
j = χ(ξ ∓ 2je2) for j ∈ Z, where e2 = (0, 1, 0). Then we construct a sequence

{(uN0 , ωN
0 )}∞N=1 by Fourier transform

ûN0 (ξ) =
δ
√
−1

N
1
2

[ 3
2
N ]+1∑

j=N

2j(χ+
j (ξ) + χ−

j (ξ))
1

|ξ|



ξ2
−ξ1
0




and

ω̂N
0 (ξ) =

δ
√
−1

N
1
2

[ 3
2
N ]+1∑

j=N

2j(χ+
j (ξ) + χ−

j (ξ))
1

|ξ|



ξ2
0
0


 ,

here δ is a small constant which will be chosen later. It is easy to see that

‖fN‖ ˙FB
−1
1,r

≤ CδN
1
r
− 1

2

for all N ∈ N and all 2 ≤ r ≤ ∞. Then by Lemma 2.2, we obtain

‖A1(f
N)‖ ˙FB

−1
1,r

≤ CδN
1
r
− 1

2 (3.1)

for all N ∈ N and all 2 ≤ r ≤ ∞.
Let E be a measurable set in R3 such that the Lebesgue measure of E is positive,

there exists a constant C > 0 such that

1− ξ21
|ξ|2 ≥ C, for ξ = (ξ1, ξ2, ξ3) ∈ E,

and

E ⊂ {ξ ∈ R
3 | 1

10
≤ ξ1 ≤ 1, |ξ| ≤ 1}.

Since 1
10

≤ |ξ| ≤ 1 for all ξ ∈ E, there exists j0 ∈ N such that
∑j0

j=−j0
ψ̂j(ξ) = 1 for all

ξ ∈ E.
Note that

(u[fN ]T , ω[fN ]T )T =
∞∑

k=1

Ak(f
N),

define

(uk(f
N)T , ωk(f

N)T )T := Ak(f
N), k = 1, 2, · · · ,

then

u[fN ] =
∞∑

k=1

uk(f
N), ω[fN ] =

∞∑

k=1

ωk(f
N).
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By considering the first component of F [u2(f
N)(t)](ξ), we have

|F [u2(f
N)(t)](ξ)|

≥
∣∣∣
∫ t

0

e−(t−τ)|ξ|2
3∑

l=1

(δ1,l −
ξ1ξl
|ξ|2 )

3∑

k=1

ξk(Ĝ(τ)fN)k ∗ (Ĝ(τ)fN)ldτ
∣∣∣

−
∣∣∣
∫ t

0

|Ĝr(ξ, t− τ)|F [P̃∇ · (G(τ)fN⊗̃G(τ)fN )](ξ)dτ
∣∣∣

≥
∣∣∣
∫ t

0

e−(t−τ)|ξ|2(1− ξ21
|ξ|2 )ξ1(e

−τ |ξ|2ûN0 )1 ∗ (e−τ |ξ|2ûN0 )1dτ
∣∣∣

−
∣∣∣
∫ t

0

e−(t−τ)|ξ|2(1− ξ21
|ξ|2 )ξ2(e

−τ |ξ|2ûN0 )2 ∗ (e−τ |ξ|2ûN0 )1dτ
∣∣∣

−
∣∣∣
∫ t

0

e−(t−τ)|ξ|2 ξ1ξ2
|ξ|2 ξ1(e

−τ |ξ|2ûN0 )1 ∗ (e−τ |ξ|2ûN0 )2dτ
∣∣∣

−
∣∣∣
∫ t

0

e−(t−τ)|ξ|2 ξ1ξ2
|ξ|2 ξ2(e

−τ |ξ|2ûN0 )2 ∗ (e−τ |ξ|2ûN0 )2dτ
∣∣∣

− 2
3∑

k,l=1

∣∣∣
∫ t

0

e−(t−τ)|ξ|2(δ1,l −
ξ1ξl
|ξ|2 )ξk(e

−τ |ξ|2ûN0 )k ∗ (|Ĝr(ξ, τ)|f̂N)ldτ
∣∣∣

−
3∑

k,l=1

∣∣∣
∫ t

0

e−(t−τ)|ξ|2(δ1,l −
ξ1ξl
|ξ|2 )ξk(|Ĝr(ξ, τ)|f̂N)k ∗ (|Ĝr(ξ, τ)|f̂N)ldτ

∣∣∣

−
∣∣∣
∫ t

0

|Ĝr(ξ, t− τ)|F [P̃∇ · (G(τ)fN⊗̃G(τ)fN )](ξ)dτ
∣∣∣

=: J1(ξ, t)− J2(ξ, t)− J3(ξ, t)− J4(ξ, t)− J5(ξ, t)− J6(ξ, t)− J7(ξ, t). (3.2)

We first estimates for J1(ξ, t) with ξ ∈ E. By the definitions of uN0 , we have

J1(ξ, t) =
∣∣∣− 2

∫ t

0

e−(t−τ)|ξ|2(1− ξ21
|ξ|2 )ξ1

∫

R3

e−τ(|ξ−η|2+|η|2)

× (ξ2 − η2)η2
|ξ − η||η|

δ2

N

[ 3
2
N ]+1∑

j=N

22jχ+
j (ξ − η)χ−

j (η)dηdτ
∣∣∣.

Since

−1 ≤ (ξ2 − η2)η2
|ξ − η||η| ≤ − 1

16
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for all η ∈ suppχ−
j with ξ − η ∈ suppχ+

j , or all η ∈ suppχ+
j with ξ − η ∈ suppχ−

j , we
obtain

J1(ξ, t) ≥
Cδ2

N

[ 3
2
N ]+1∑

j=N

22j
∫ t

0

∫

R3

e−τ(|ξ−η|2+|η|2)χ+
j (ξ − η)χ−

j (η)dηdτ

≥ Cδ2

N

[ 3
2
N ]+1∑

j=N

22j2−2j(1− e82
2jt)

≥ Cδ2

for all ξ ∈ E and all t ∼ 2−2N , which yields that

‖J1(ξ, t)‖L1(E) ≥ Cδ2. (3.3)

On the estimates of J2(ξ, t) and J3(ξ, t) for ξ ∈ E, we have

J2(ξ, t) + J3(ξ, t) ≤
Cδ2

N

[ 3
2
N ]+1∑

j=N

22j
∫ t

0

∫

R3

e−τ(|ξ−η|2+|η|2) |ξ1 − η1||η2|
|ξ − η||η| χ

+
j (ξ − η)χ−

j (η)dηdτ

≤ Cδ2

N

[ 3
2
N ]+1∑

j=N

22j
∫ t

0

∫

R3

e−τ(|ξ−η|2+|η|2)2−jχ+
j (ξ − η)χ−

j (η)dηdτ

≤ Cδ2

N

[ 3
2
N ]+1∑

j=N

22j2−2j2−j

≤ Cδ2

N2N
. (3.4)

On the estimates of J4(ξ, t) for ξ ∈ E, we have

J4(ξ, t) ≤
Cδ2

N

[ 3
2
N ]+1∑

j=N

22j
∫ t

0

∫

R3

e−τ(|ξ−η|2+|η|2) |ξ1 − η1||η1|
|ξ − η||η| χ

+
j (ξ − η)χ−

j (η)dηdτ

≤ Cδ2

N

[ 3
2
N ]+1∑

j=N

22j2−2j2−2j

≤ Cδ2

N22N
. (3.5)

On the estimates of J5(ξ, t) and J6(ξ, t), note that

|Ĝr(ξ, τ)| =
∣∣∣e−τA1(ξ)

∞∑

k=1

(−τA2(ξ))
k

k!

∣∣∣ ≤ Ce−τ |ξ|2
∞∑

k=1

(2−2N2
3N
2 )k

k!
≤ C2−

N
2 e−τ |ξ|2

for all ξ ∈ supp ûN0 and all τ ∈ (0, t] with t ∼ 2−2N . Then for ξ ∈ E, we obtain

J5(ξ, t) + J6(ξ, t) ≤ C(2−
N
2 + 2−N)

∫ t

0

∫

R3

e−τ |ξ−η|2|f̂N(ξ − η)|e−τ |η|2|f̂N(η)|dηdτ.
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Since it holds that
∑j0

j=−j0
ψ̂j(ξ) = 1 for all ξ ∈ E, Lemma 2.3, Lemma 2.4 and Lemma

2.5 ensures that

‖J5(ξ, t) + J6(ξ, t)‖L1(E) ≤ C2−
N
2

∥∥∥
∫ t

0

e−τ |·|2|f̂N(·)| ∗ e−τ |·|2|f̂N(·)|dτ
∥∥∥
L1(E)

≤ C2−
N
2

{ j0∑

j=−j0

( ∫ t

0

‖ψ̂jF [(F−1[e−τ |·|2|f̂N |])2]‖L1

)2} 1
2

≤ C2−
N
2 ‖F−1[e−τ |·|2|f̂N |]‖‖F−1[e−τ |·|2|f̂N |]‖

≤ C2−
N
2 ‖fN‖2 ˙FB

−1
1,2

≤ Cδ22−
N
2 . (3.6)

On the estimates of J7(ξ, t), since it holds that

|Ĝr(ξ, τ)| =
∣∣∣e−τA1(ξ)

∞∑

k=1

(−τA2(ξ))
k

k!

∣∣∣ ≤ Ce−τ |ξ|2
∞∑

k=1

(2−2N )k

k!
≤ C2−2N

for all ξ ∈ E and all τ ∈ (0, t] with t ∼ 2−2N . Then, in the similar way to (3.6), for
ξ ∈ E, we have

‖J7(ξ, t)‖L1(E) ≤ C2−2N

∫ t

0

‖F [G(τ)fN ⊗G(τ)fN ]‖L1dτ

≤ C2−2N‖G(·)fN‖‖G(·)fN‖
≤ C2−2N‖fN‖2 ˙FB

−1
1,2

≤ Cδ22−2N . (3.7)

By (3.2)–(3.7), we see that

‖u2(fN)(t)‖ ˙FB
−1
1,r

≥ δ2(C − C2−
N
2 − C2−2N − C

N2N
)

for all N ∈ N and t ∼ 2−2N . Let N large enough, then we have

‖u2(fN)(t)‖ ˙FB
−1
1,r

≥ Cδ2

2
. (3.8)

Now, we consider the fourth component of F [A2(f
N)(t)](ξ), which is the first compo-

nent of F [ω2(f
N)(t)](ξ). Denote Ri,j(ξ, t) by the entry in the i-th row and j-th column
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of the matrix R(ξ, t), we have

|F [ω2(f
N)(t)](ξ)|

≥
∣∣∣
∫ t

0

3∑

l=1

R1,l(ξ, t− τ)

3∑

k=1

ξk(Ĝ(τ)fN )k ∗ (Ĝ(τ)fN )l+3dτ
∣∣∣

−
∣∣∣
∫ t

0

|Ĝr(ξ, t− τ)|F [P̃∇ · (G(τ)fN⊗̃G(τ)fN )](ξ)dτ
∣∣∣

≥
∣∣∣
∫ t

0

3∑

l=1

R1,l(ξ, t− τ)
3∑

k=1

ξk( ̂Gm(τ)fN)k ∗ ( ̂Gm(τ)fN )l+3dτ
∣∣∣

−
∣∣∣
∫ t

0

3∑

l=1

R1,l(ξ, t− τ)
3∑

k=1

ξk( ̂Gr(τ)fN )k ∗ ( ̂Gm(τ)fN)l+3dτ
∣∣∣

−
∣∣∣
∫ t

0

3∑

l=1

R1,l(ξ, t− τ)
3∑

k=1

ξk( ̂Gm(τ)fN)k ∗ ( ̂Gr(τ)fN)l+3dτ
∣∣∣

−
∣∣∣
∫ t

0

3∑

l=1

R1,l(ξ, t− τ)

3∑

k=1

ξk( ̂Gr(τ)fN )k ∗ ( ̂Gr(τ)fN)l+3dτ
∣∣∣

−
∣∣∣
∫ t

0

|Ĝr(ξ, t− τ)|F [P̃∇ · (G(τ)fN⊗̃G(τ)fN )](ξ)dτ
∣∣∣

=: K1(ξ, t)−K2(ξ, t)−K3(ξ, t)−K4(ξ, t)−K5(ξ, t). (3.9)

Since |R1,l(ξ, t − τ)| ≤ Ce−(t−τ)|ξ|2 , l = 1, 2, 3 and |( ̂Gm(τ)fN )k| ≤ Ce−τ |ξ|2|f̂N |, k =
1, 2, 3, 4, 5, 6, the similar process for getting J5(ξ, t) and J7(ξ, t) gives

‖K2(ξ, t) +K3(ξ, t) +K4(ξ, t) +K5(ξ, t)‖L1(E) ≤ Cδ22−
N
2 . (3.10)

Now we consider the estimate for K1(ξ, t) with ξ ∈ E.

K1(ξ, t) =
∣∣∣
∫ t

0

3∑

l=1

R1,l(ξ, t− τ)

3∑

k=1

ξk(e
−τ |ξ|2ûN0 )k ∗Rl,1(ξ, τ)(ω̂N

0 )1dτ
∣∣∣

≥
∣∣∣
∫ t

0

R1,1(ξ, t− τ)ξ1

(
(e−τ |ξ|2ûN0 )1 ∗R1,1(ξ, τ)(ω̂N

0 )1

)
dτ
∣∣∣

−
∣∣∣
∫ t

0

R1,1(ξ, t− τ)ξ2

(
(e−τ |ξ|2ûN0 )2 ∗R1,1(ξ, τ)(ω̂N

0 )1

)
dτ
∣∣∣

−
∣∣∣
∫ t

0

3∑

l=2

R1,l(ξ, t− τ)
3∑

k=1

ξk(e
−τ |ξ|2ûN0 )k ∗Rl,1(ξ, τ)(ω̂N

0 )1dτ
∣∣∣

=: K11(ξ, t)−K12(ξ, t)−K13(ξ, t). (3.11)
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On the estimates of K11(ξ, t) for ξ ∈ E, we have

K11(ξ, t) ≥
∣∣∣−
∫ t

0

e−2(t−τ)|ξ|2ξ1

∫

R3

e−τ(|ξ−η|2+|η|2)

×
((ξ2 − η2)η

3
2

|ξ − η||η|3 +
(ξ2 − η2)

3η2
|ξ − η|3|η|

)δ2
N

[ 3
2
N ]+1∑

j=N

22jχ+
j (ξ − η)χ−

j (η)dηdτ
∣∣∣.

Since

−1 ≤ (ξ2 − η2)η
3
2

|ξ − η||η|3 +
(ξ2 − η2)

3η2
|ξ − η|3|η| ≤ − 1

256

for all η ∈ suppχ−
j with ξ − η ∈ suppχ+

j , or all η ∈ suppχ+
j with ξ − η ∈ suppχ−

j , we
obtain

K11(ξ, t) ≥
Cδ2

N

[ 3
2
N ]+1∑

j=N

22j
∫ t

0

∫

R3

e−τ(|ξ−η|2+|η|2)χ+
j (ξ − η)χ−

j (η)dηdτ

≥ Cδ2

N

[ 3
2
N ]+1∑

j=N

22j2−2j(1− e82
2jt)

≥ Cδ2

for all ξ ∈ E and all t ∼ 2−2N , which yields that

‖K11(ξ, t)‖L1(E) ≥ Cδ2. (3.12)

On the estimates of K12(ξ, t) for ξ ∈ E, we have

K12(ξ, t) ≤ Cδ2
∣∣∣
∫ t

0

e−(t−τ)|ξ|2ξ1

∫

R3

e−τ(|ξ−η|2+|η|2)

×
((ξ1 − η1)η

3
2

|ξ − η||η|3 +
(ξ2 − η2)

3η1
|ξ − η|3|η|

) 1

N

[ 3
2
N ]+1∑

j=N

22jχ+
j (ξ − η)χ−

j (η)dηdτ
∣∣∣

≤ Cδ2

N

[ 3
2
N ]+1∑

j=N

22j2−2j2−j

≤ Cδ2

N2N
. (3.13)
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On the estimates of K13(ξ, t) for ξ ∈ E, we have

K13(ξ, t) ≤ Cδ2
∣∣∣
∫ t

0

e−(t−τ)|ξ|2ξ1

∫

R3

e−τ(|ξ−η|2+|η|2)

×
((ξ1 − η1)(ξ2 − η2)

2η2
|ξ − η|3|η| +

(ξ2 − η2)η1η
2
2

|ξ − η||η|3
) 1

N

[ 3
2
N ]+1∑

j=N

22jχ+
j (ξ − η)χ−

j (η)dηdτ
∣∣∣

≤ Cδ2

N

[ 3
2
N ]+1∑

j=N

22j2−2j2−j

≤ Cδ2

N2N
. (3.14)

By (3.9)–(3.14), we see that

‖ω2(f
N)(t)‖ ˙FB

−1
1,r

≥ δ2(C − C2−
N
2 − C

N2N
)

for all N ∈ N and t ∼ 2−2N . Let N large enough, then we have

‖ω2(f
N)(t)‖ ˙FB

−1
1,r

≥ Cδ2

2
. (3.15)

Hence, applying Lemma 2.2, Lemma 2.4, Lemma 2.5 and putting (3.1) and (3.8) together
yields

‖u[fN ]‖ ˙FB
−1
1,r

≥ ‖u2(fN)(t)‖ ˙FB
−1
1,r

− ‖A1(u
N
0 )(t)‖ ˙FB

−1
1,r

−
∞∑

k=3

‖Ak(u
N
0 )(t)‖ ˙FB

−1
1,2

≥ C1δ
2 − C2δN

− 1
2
+ 1

r − C2δ
3

≥ C1

2
δ2,

here we choose δ = min{1
2
, C1

4C2
} and N > max{1000, 4C2

δC1

2r
r−2}. Similarly, we have

‖ω[fN ]‖ ˙FB
−1
1,r

≥ ‖ω2(f
N)(t)‖ ˙FB

−1
1,r

− ‖A1(ω
N
0 )(t)‖ ˙FB

−1
1,r

−
∞∑

k=3

‖Ak(ω
N
0 )(t)‖ ˙FB

−1
1,2

≥ C1δ
2 − C2δN

− 1
2
+ 1

r − C2δ
3

≥ C1

2
δ2.

This completes the proof of Theorem 1.5.
The proof of Theorem 1.6: Next, we prove ill-posedness for system (1.1) in Ḃ−1

∞,r(R
3)

with r ∈ (2,∞]. Similarly to the proof in the case of ˙FB
−1

1,r, we use the same sequence

of initial data. By ˙FB
−1

1,r(R
3) →֒ Ḃ−1

∞,r(R
3), we have

‖fN‖Ḃ−1
∞,r

≤ CδN
1
r
− 1

2 .

Define

Ē := {ξ ∈ R
3 | 1

20
≤ ξ1 ≤

11

10
, |ξ| ≤ 11

10
},
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then E ⊂⊂ Ē. By (3.2), it is easy to check that
∫ t

0

e−(t−τ)|ξ|2(1− ξ21
|ξ|2 )ξ1(e

−τ |ξ|2ûN0 )1 ∗ (e−τ |ξ|2ûN0 )1dτ

= −2

∫ t

0

e−(t−τ)|ξ|2(1− ξ21
|ξ|2 )ξ1

∫

R3

e−τ(|ξ−η|2+|η|2)

× (ξ2 − η2)η2
|ξ − η||η|

δ2

N

[ 3
2
N ]+1∑

j=N

22jχ+
j (ξ − η)χ−

j (η)dηdτ

≥ 0,

then F [u2(f
N)(t)](ξ) is a nonnegative locally integrable function in Ē. Let φ be a

nonnegative functions in S(R3) supported in Ē such that φ(ξ) = 1 for all ξ ∈ E. Thus

‖u2(fN)(t)‖Ḃ−1
∞,r

≥ C‖F−1[φ(ξ)] ∗ F−1[F [u2(f
N)(t)](ξ)]‖L∞(R3)

≥ C‖F−1[φ(ξ)F [u2(f
N)(t)](ξ)]‖L∞(R3)

≥ C‖F [u2(f
N)(t)](ξ)‖L1(E)

≥ C1δ
2.

Here we apply the following proposition: Let f ∈ S ′(R3). If f̂(ξ) is a nonnegative locally

integrable function, then f is bounded if and only if f̂ is integrable, and in this case
‖f‖L∞ = (2π)−3‖f̂‖L1 . Therefore, we obtain

‖u[fN ]‖Ḃ−1
∞,r

≥ ‖u2(fN)(t)‖Ḃ−1
∞,r

− ‖A1(u
N
0 )(t)‖Ḃ−1

∞,r
−

∞∑

k=3

‖Ak(u
N
0 )(t)‖ ˙FB

−1
1,2

≥ C1δ
2 − C2δN

− 1
2
+ 1

r − C2δ
3

≥ C1

2
δ2.

Similarly, by (3.11), we have
∫ t

0

R1,1(ξ, t− τ)ξ1

(
(e−τ |ξ|2ûN0 )1 ∗R1,1(ξ, τ)(ω̂N

0 )1

)
dτ

= −
∫ t

0

e−2(t−τ)|ξ|2ξ1

∫

R3

e−τ(|ξ−η|2+|η|2)

×
((ξ2 − η2)η

3
2

|ξ − η||η|3 +
(ξ2 − η2)

3η2
|ξ − η|3|η|

)δ2
N

[ 3
2
N ]+1∑

j=N

22jχ+
j (ξ − η)χ−

j (η)dηdτ

≥ 0,

then F [ω2(f
N)(t)](ξ) is a nonnegative locally integrable function in Ē. Thus

‖ω2(f
N)(t)‖Ḃ−1

∞,r
≥ C‖F [ω2(f

N)(t)](ξ)‖L1(E) ≥ C1δ
2,

which implies that ‖ω[fN ]‖Ḃ−1
∞,r

≥ C1

2
δ2. This completes the proof of Theorem 1.6.
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