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Fields of definition of finite hypergeometric functions

Frits Beukers

Abstract Finite hypergeometric functions are functions of a finite field Fq to C. They arise

as Fourier expansions of certain twisted exponential sums and were introduced indepen-

dently by John Greene and Nick Katz in the 1980’s. They have many properties in com-

mon with their analytic counterparts, the hypergeometric functions. One restriction in the

definition of finite hypergeometric functions is that the hypergeometric parameters must

be rational numbers whose denominators divide q− 1. In this note we use the symmetry

in the hypergeometric parameters and an extension of the exponential sums to circumvent

this problem as much as posssible.

1 Introduction

In the 1980’s John Greene [5] and Nick Katz [6] independently introduced functions from

finite fields to the complex numbers which can be interpreted as finite sum analogues of the

classical one variable hypergeometric functions. These functions, also known as Clausen-

Thomae functions are determined by two multisets of d entries in Q each. We denote them

by ααα = (α1, . . . ,αd) and βββ = (β1, . . . ,βd). Throughout we assume that these sets have

empty intersection when considered modulo Z. The Clausen-Thomae functions satisfy a

linear differential equation of order d with rational function coefficients. See [2].

Let Fq be the finite field with q elements. Let ζp be a primitive p-th root of unity and define

the additive character ψq(x) = ζ
Tr(x)
p where Tr is trace from Fq to Fp. For any multiplicative

character χ : F×
q →C× we define the Gauss sum

g(χ) = ∑
x∈F×q

χ(x)ψq(x) .

Let ω be a generator of the character group on F×
q . We use the notation g(m) = g(ωm) for

any m ∈ Z. Note that g(m) is periodic in m with period q− 1. Note that the dependence

of g(m) on ζp and ω is not made explicit. Very often we shall need characters on F×
q of a

given order. For that we use the notation q = q− 1 so that a character of order d can be

given by ωq/d for example, provided that d divides q of course.

Now we define finite hypergeometric sums. Let again ααα and βββ be multisets of d rational

numbers each, and disjoint modulo Z. We need the following crucial assumption.

Assumption 1.1 Suppose that

(q− 1)αi,(q− 1)β j ∈ Z
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2 Frits Beukers

for all i and j.

Definition 1.2 (Finite hypergeometric sum) Keep the above notation and Assumption

1.1. We define for any t ∈ Fq,

Hq(ααα,βββ |t) =
1

1− q

q−2

∑
m=0

d

∏
i=1

(

g(m+αiq)g(−m−βiq)

g(αiq)g(−βiq)

)

ω((−1)dt)m .

It is an exercise to show that the values of Hq(ααα,βββ |t) are independent of the choice of ζp.

The hypergeometric sums above were considered without the normalizing factor (∏d
i=1 g(αiq)g(−βiq))

−1

by Katz in [6, p258]. Greene, in [5], has a definition involving Jacobi sums which, after

some elaboration, amounts to

ω(−1)|βββ |qq−d
d

∏
i=1

g(αiq)g(−βiq)

g(αiq−βiq)
Hq(ααα,βββ |t) ,

where |βββ |= β1 + · · ·+βd . The normalization we adopt in this paper coincides with that of

Dermot McCarthy, [7, Def 3.2].

Let

A(x) =
d

∏
j=1

(x− e2π iα j), B(x) =
d

∏
j=1

(x− e2π iβ j).

An important special case is when A(x),B(x) ∈ Z[x]. In that case we say that the hypergeo-

metric sum is defined over Q. Another way of describing this case is that kααα ≡ ααα(mod Z)
and kβββ ≡ βββ (mod Z) for all integers k relatively prime to the common denominator of the

αi,β j. In other words, multiplication by k of the αi(mod Z) simply permutes these ele-

ments. Similarly for the β j. From work of Levelt [2, Thm 3.5] it follows that in such a

case the monodromy group of the classical hypergeometric equation can be defined over

Z. It also turns out that hypergeometric sums defined over Q occur in point counts in Fq of

certain algebraic varieties, see [1, Thm 1.5] and the references therein. It is an easy exercise

to show that Hq(ααα,βββ |t) is independent of the choice of ω (it is already independent of the

choice of ψq).

One of the obstacles in the definition of finite hypergeometric sums over Q is Assumption

1.1 which has to be made on q, whereas one has the impression that such sums can be

defined for any q relatively prime with the common denominator of the αi,β j. This is

resolved in [1, Thm 1.3] by an extension of the definition of hypergeometric sum. The idea

is to apply the theorem of Hasse-Davenport to the products of Gauss sums which occur in

the coefficients of the hypergeometric sum. Another way of dealing with this problem is

given by McCarthy, who uses the Gross-Koblitz theorem which expresses Gauss sums as

values of the p-adic Γ -function.

Theorem 1.3 (Gross-Koblitz) Let ω be the inverse of the Teichmüller character. Let

π p−1 =−p and ζp such that ζp ≡ 1+π(mod π2). Let Γp be the p-adic Morita Γ -function.

Let q = p f and gq(m) denote the Gauss-sum over Fq with multiplicative character ωm.

Then, for any integer m we have

gq(m) =−
f−1

∏
i=0

π
(p−1)

{

pim
q−1

}

Γp

({

pim

q− 1

})

.

Here {x}= x−⌊x⌋ is the fractional part of x. In particular, when q = p we get

gp(m) =−π
(p−1)

{

m
p−1

}

Γp

({

m

p− 1

})

.
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See Henri Cohen’s book [4] for a proof. When p does not divide the common denominator

of the αi,β j one easily writes down a p-adic version of our hypergeometric sum for the

case q = p.

Definition 1.4 We define Gp(ααα,βββ |t) by the sum

1

1− p

q−2

∑
m=0

ω((−1)dt)m(−p)Λ(m)
d

∏
i=1

Γp

({

αi +
m

p−1

})

Γp({αi})

Γp

({

−βi −
m

p−1

})

Γp({−βi})
,

where

Λ(m) =
d

∑
i=1

{

αi +
m

p− 1

}

−{αi}+

{

−βi −
m

p− 1

}

−{−βi}.

Note that

Λ(m) =
d

∑
i=1

−

⌊

αi +
m

p− 1

⌋

+ ⌊αi⌋−

⌊

−βi −
m

p− 1

⌋

+ ⌊−βi⌋.

In particular Λ(m) ∈ Z. Definition 1.4 almost coincides with McCarthy’s function dGd

from [7, Def 1.1] in the sense that our function coincides with dGd(1/t). We prefer to

adhere to the definition given above. The advantage of Definition 1.4 is that Assumption

1.1 is not required, it is well-defined for all parameters αi,β j as long as they are p-adic

integers. Define

δ = δ (ααα,βββ ) = max
x∈[0,1]

d

∑
i=1

⌊x+αi⌋−⌊αi⌋+ ⌊−x−βi⌋−⌊−βi⌋.

Then, using Definition 1.4 and the fact that−Λ(m)≤ δ one easily deduces that pδ Gp(ααα,βββ |t)
is a p-adic integer. In [7, Prop 3.1] we find this in a slightly different formulation. How-

ever, it is not clear from the definition whether this value is algebraic or not over Q. It is

the purpose of the present note to be a bit more specific by proving the following theorem.

Theorem 1.5 Let notations be as above and let K be the field extension of Q generated by

the coefficients of A(x) and B(x). Suppose p splits in K, i.e. p factors into [K : Q] distinct

prime ideals in the integers of K. Let ∆ = maxk δ (kααα ,kβββ ) over all integers k relatively

prime with the common denominator of the αi,β j. Then p∆ Gp(ααα,βββ |t) is an algebraic in-

teger in K.

For the proof we construct in Section 2 a generalization of the hypergeometric function

Hq(A,B|t) involving two semisimple finite algebras A and B over Fq. We show that it be-

longs to K and then, in Section 3 identify its p-adic evaluation with Gp(ααα,βββ |t).

2 Gauss sums on finite algebras

The main idea of the proof of Theorem 1.5 is to use Gauss sums on finite commutative

algebras over Fq with 1. Let A be such an algebra. For any x ∈ A we define the trace Tr(x)
and norm N(x) as the trace and norm of the Fp-linear map given by multiplication with x

on A.

Choose an additive character ψ on A which is primitive. That is, to any ideal I ⊂ A, I 6= (0)
there exists x ∈ I such that ψ(x) 6= 1. Any other non-degenerate additive character is of the

form ψ(ax) with a ∈ A×. A multiplicative character χ is called primitive if its kernel does

not contain any subgroup of the form {1+ a|a ∈ I} for some non-zero ideal I in A.

For any multiplicative character χ on A× we can define a Gauss sum
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gA(ψ ,χ) = ∑
x∈A×

ψ(x)χ(x).

When A is not semisimple, the Gauss sum can be 0, as illustrated by the following example.

Example 2.1. Let A = Fp[x]/(x
2). Choose the additive character ψ(a+bx) = ζ b

p . It is easy

to see that this is a primitive character. Note that a+ bx ∈ A× ⇐⇒ a ∈ F×
p . Let χ be a

nontrivial multiplicative character on F×
p and extend it to A× by χ(a+ bx) = χ(a). Then

gA(ψ ,χ) = ∑
a∈F×p ,b∈Fp

ζ b
p χ(a) = 0.

♦

So we restrict ourselves to semisimple algebras. These are precisely the finite sums of finite

field extensions of Fq. In this case there is an obvious choice for the additive character.

Lemma 2.2 Suppose A is a direct sum of finite field extensions of Fq. Then ψ(x) = ζ
Tr(x)
p

is a primitive additive character.

Proof : Let A ∼= ⊕r
i=1Fi with Fi a finite field extension of Fq for all i. Then ψ(x) =

ζ
Tr1(x1)+···+Trr(xr)
p , where Tri stands for the trace function on Fi. If ψ were not primitive

then there exists a ∈ A,a 6= 0 such that ψ(ax) = 1 for all x ∈ A. Suppose a = (a1, . . . ,ar)

and assume, without loss of generality, a1 6= 0. Then ψ(x,0, . . . ,0) = ζ
Tr(a1x)
p = 1 for all

x ∈ F1. By the properties of the trace of a field this is not possible.

✷

From now on we use the trace character on a semisimple algebra A as additive character

and write gA(χ) for the Gauss sum. So we dropped the dependence of the Gauss sum on the

aditive character. The only amount of freedom in the additive character rests on the choice

of ζp.

Proposition 2.3 Let A be a direct sum of finite fields over Fq and ψ(x) = ζ
Tr(x)
p the additive

character. Let χ a multiplicative character. Then there exists a non-negative integer f such

that

|gA(χ)|
2 = q f .

Proof : Again, write A=⊕r
i=1Fi. Then χ can be written as χ(x1, . . . ,xr) = χ1(x1) · · ·χr(xr),

where χi is a multplicative character on F×
i . This implies that

gA(ψ ,χ) =
r

∏
i=1

g(χi),

where g(χi) is the usual Gauss sum on the field Fi. The additive character on Fi is ζ
Tri(x)
p

with the same choice of ζp for each i. Our assertion follows directly.

✷

Choose two finite semisimple algebras A,B over Fq. Choose the trace characters on each

of them with the same choice of ζp and call them ψA,ψB. Let χA,χB be multiplicative

characters on A×,B×. Denote the norms on A,B by NA,NB.

Definition 2.4 We define

Hq(A,B|t) =
−1

gA(χA)gB(χB)
∑

x∈A×,y∈B×,tNA(x)=NB(y)

ψA(x)ψB(−y)χA(x)χB(y),

for any t ∈ Fq.



Fields of definition of finite hypergeometric functions 5

The following theorem gives its Fourier expansion in t.

Theorem 2.5 Let ω be a generator of the multiplicative characters on F×
q . When the con-

text is clear we denote both functions ω(NA(x)) and ω(NB(y)) by ωN . We then have,

Hq(A,B|t) =
1

1− q

q−2

∑
m=0

gA(χAωm
N )gB(χBω−m

N )

gA(χA)gB(χB)
ω(NB(−1)t)m.

Proof : We compute the Fourier expansion ∑
q−2
m=0 cmω(t)m of Hq(A,B|t). The coefficient

cm can be computed using

cm =
1

q− 1
∑

t∈F×q

Hq(A,B|t)ω(t)−m.

When we substitute the definition for Hq(A,B|t) in the summation over t, we get a summa-

tion over t ∈ F×
q ,x ∈ A×,y ∈ B× with the restriction tNA(x) = NB(y). So we might as well

substitute t = NB(y)/NA(x) and sum over x,y. We get,

cm =
1

1− q
∑

x∈A×,y∈B×

1

gAgB

ψA(x)ψB(−y)χA(x)χB(y)
−1ω(NA(x))

mω(NB(y))
−m.

The summation over x yields gA(χAωm
N ). To sum over y we first replace y by −y and then

perform the summation. We get ω(NB(−1))mgB(χBω−m
N ). This proves our theorem.

✷

Example 2.6. As in the previous section take two multisets of hypergeometric parameters

ααα,βββ . Suppose that (q− 1)αi,(q− 1)β j are in Z for all i, j. Take A = B = Fd
q , the direct

sum of d copies of Fq with componentwise addition and multiplication. The norm on A,B
is given by N(x1, . . . ,xd) = x1 · · ·xd . In particular NB(−1) = (−1)d . For both A,B we take

the additive character ψ(x1, . . . ,xd) = ζ
Tr(x1+···+xd)
p , where Tr the trace function on Fq. As

multiplicative characters we take

χA(x1, . . . ,xd) =
d

∏
i=1

ω(xi)
(q−1)αi , χB(x1, . . . ,xd) =

d

∏
j=1

ω(y j)
(q−1)β j .

An easy calculation shows that gA(χAωm
N ) = ∏d

i=1 g(m+(q− 1)αi) and similarly for gB.

So we see that we recover the finite hypergeometric sum of the previous section.

♦

Lemma 2.7 Suppose dimFq
(A) = dimFq

(B). Then Hq(A,B|t) does not depend on the

choice of ζp in the additive characters.

As a corollary, in this equi-dimensional case the values of Hq(A,B|t) are contained in the

field generated by the charactervalues of χA,χB.

Proof : When we choose ζ a
p ,a ∈ F×

p instead of ζp in the definition of the additive character

it is easy to check that gA(χA) gets replaced by χA(a)
−1gA(χA). And similarly for B. As a

corollary any term in the sum in the hypergeometric sum in Theorem 2.4 is multiplied by

ω(NB(a)/NA(a))
m. Since a ∈ Fp is a scalar, NA(a) = NB(a) = ad , where d = dimFq

(A) =
dimFq

(B). Hence, in the case of equal dimensions of A,B the multiplication factor is 1.

Let σ ∈ Gal(Q/Q) be such that it fixes the values of χA,χB but sends ζp to ζ a
p . According

to the above calculation Hq(A,B|t) is fixed under this substitution and hence under σ .

✷
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Let us return momentarily to Example 2.6 and suppose that the parameters ααα have the

property that kααα ≡ ααα(mod Z),kβββ ≡ βββ (mod Z) for all k relative prime with the common

denominator of the αi,β j. Then, for any σ ∈ Gal(Q/Q) there exists a permutation ρ of the

summands of A =⊕d
i=1Fp such that χA(ρ(x)) = χA(x)

σ for all x ∈ A×. A similar permuta-

tion exists for B. Notice also that Tr(ρ(x)) = Tr(x) and N(ρ(x)) = N(x).
A similar situation arises in the case A = Fpr as Fp-algebra. Let χA be a character of order

d dividing pr − 1. Let ρ be the p-th power Frobenius on A, then χA(ρ(x)) = χA(x)
p, a

conjugate of χA(x) for all x ∈ A×. Notice also that Tr(ρ(x)) = x and N(ρ(x)) = N(x).

Definition 2.8 Let A be a finite dimensional Fq-algebra. A ring automorphism ρ : A → A

is called an Fq-automorphism if it is Fq-linear and it fixes both norm and trace of A.

Proposition 2.9 Let A,B be finite commutative semisimple Fq-algebras. Let χA,χB be mul-

tiplicative characters. Consider the subgroup G of Gal(Q/Q) of elements σ for which there

exists an Fq-automorphisms ρA of A and ρB of B with the property that χA(ρA(x)) = χA(x)
σ

and χB(ρB(x)) = χB(x)
σ for every σ ∈ G. Then Hq(A,B|t) lies in the fixed field of G for

every t ∈ F×
q .

Proof : Let σ ∈ G. We first compute the action of σ on gA(χA). Suppose that σ(ζp) = ζ a
p .

gA(χA)
σ = ∑

x∈A×

ζ
aTr(x)
p χA(x)

σ

= ∑
x∈A×

ζ
aTr(x)
p χA(ρ(x))

= ∑
x∈A×

ζ
Tr(ρ−1(x))
p χA(a

−1x)

= χA(a)
−1gA(χA)

A similar calculation holds for B. Now apply σ to the terms in the sum in Definition 2.4. A

similar calculation as above shows that the sum gets multiplied with χA(a)
−1χB(a)

−1. This

cancels the factor coming from gA(χA)gB(χB). Hence Hq(A,B|t) is fixed under all σ ∈ G.

✷

3 Proof of Theorem 1.5

We use the notations from the introduction. In particular

A(x) =
d

∏
j=1

(x− e2π iα j), B(x) =
d

∏
j=1

(x− e2π iβ j)

and K is the field generated by the coefficients of A(x) and B(x). Let p be a prime

which splits completely in K. Then we can consider A(x) as element of Fp[x]. Let

A(x) = A1(x) · · ·Ar(x) be the irreducible factorization of A(x) in Fp[x]. For the Fp-algebra

we take ⊕r
i=1Fp[x]/(Ai(x)). The construction of a multiplicative character on A is as fol-

lows. First we choose a multiplicative character ω on Fp such that its restriction to Fpr has

order pr − 1 for all r ≥ 1 and fix in the remainder of the proof.

Since p splits in K multiplication by p gives a permutation of the multiset ααα modulo Z.

Under this action ααα(mod Z) decomposes into a union of orbits, which we call p-orbits.

Let O be such a p-orbit. Then ∏α∈O(x− e2π iα) is a polynomial and p splits in the field

generated by its coefficients. So we can consider it modulo a prime ideal dividing p and

hence as an element of Fp[x]. It is one of the factors Ai(x) of the mod p factorization
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of A(x). The orbit O will now be denoted by Oi. There are r orbits and we renumber the

indices of the αi such that αi ∈Oi for i= 1, . . . ,r. On Fp[x]/(Ai) we define the multiplicative

character χi = ωαi(qi−1), where qi = pdeg(Ai). If we would have chosen pαi instead of αi,

the new character would simply consist of the Frobenius transform followed by χi. For the

character χA on A = ∑r
i=1Fp[x]/(Ai) we choose

χA(x1, . . . ,xr) =
r

∏
i=1

ω(xi)
αi(qi−1).

Let σ ∈ Gal(Q/K). It acts as ω(x) 7→ ω(x)k for some integer k. Hence

χA(x1, . . . ,xr)
σ =

r

∏
i=1

ω(xi)
kαi(qi−1).

This permutes the factors by a permutation s ∈ Sr and we get

χA(x1, . . . ,xr)
σ =

r

∏
i=1

ω
(

xs−1(i)

)pli αi(qi−1)
,

where 0 ≤ li < deg(Ai) for each i. We used qs(i) = qi. We finally get

χA(x1, . . . ,xr)
σ =

r

∏
i=1

ω
(

x
pli

s−1(i)

)αi(qi−1)
= χA

(

x
pli

s−1(1)
, . . . ,x

plr

s−1(r)

)

.

In other words, χA(x)
σ = χA(ρ(x)) for a suitable Fp-automorphism ρ of A. Notice that

norm and trace of A are preserved by ρ . A similar construction can be performed for B(x).
According to Proposition 2.9 we get Hp(A,B|t) ∈ K for all t ∈ F×

q .

In order to connect to the p-adic function Gp we take the inverse of the Teichmüller char-

acter for ω and compute the terms given in Definition 2.4 p-adically. The Gauss sum

gA(χAωm
N ) is the product of ordinary Gauss sums of the form g(ω(q−1)α+m(1+p+···+pl−1))

over the field Fq with q= pl. The occurrence of m(1+ p+ · · ·+ pl−1) is due to ω(NFq/Fp
(x)m)=

ω(x)m(1+···+pl−1). The Gross-Koblitz theorem for Gauss sums over Fq with q = pl gives us

gq(ω
a) =−

l−1

∏
i=0

π

{

pia
q−1

}

Γp

({

pia

q− 1

})

for every integer a. When applied to a = (q− 1)α +m(q− 1)/(p− 1) this amounts to

−
l−1

∏
i=0

π

{

piα+ m
p−1

}

Γp

({

piα +
m

p− 1

})

.

Note that this is a product over the p-orbit containing α and each factor is precisely of the

type that occur in the definition of the p-adic hypergeometric sum. A similar story goes for

B(x). As a result we get

gA(χAωm
N )gB(χBω−m

N )

gA(χA)gB(χB)
= (−p)Λ(m)

d

∏
i=1

Γp

({

αi +
m

p−1

})

Γp

({

−βi −
m

p−1

})

Γp ({αi})Γp ({−βi})
,

where Λ(m) is as defined in the introduction. So we find that p-adically

Hp(A,B|t) = Gp(ααα,βββ |t).



8 Frits Beukers

Hence we conclude that the values of Gp are in K. It remains to give an estimate for the

denominator. From Definition 2.4 it follows that Hp(A,B|t) has the denominator gAgB.

Hence, by Proposition 2.3 there exists a power pr of p such prHp(A,B|t) is an integer

in K. It remains to determine a value for r. The conjugates of Hp(A,B|t) are obtained by

taking χk
A,χ

k
B as multiplicative characters. The corresponding hypergeometric parameters

are kααα,kβββ . From McCarthy’s work it follows that p∆ Gp(kααα,kβββ |t) is a p adic integer for

all k relatively prime to the common denominator of αi,β j. This implies that p∆ Hp(A,B|t)
is an algebraic integer in K.
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