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Recently, Opps, Saad and Srivastava gave the recursion formulas of Appell’s
function F2. The first author of this paper then established the recursion
formulas for Appell functions F1, F2, F3 and F4 by the contiguous relations of
hypergeometric series. In this paper, the authors will present the recursion
formulas for q-Appell functions Φ(1),Φ(2),Φ(3) and Φ(4) as the q-analogies of
F1, F2, F3 and F4’s relations.
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Appell functions [1] which are famous in the field of double hypergeometric functions [4, 8, 9] are read
as follows:

F1[a; b1, b2; c;x, y] :=
∑

m,n≥0

(a)m+n(b1)m(b2)n
(c)m+n

xm

m!

yn

n!
;

F2[a; b1, b2; c1, c2;x, y] :=
∑

m,n≥0

(a)m+n(b1)m(b2)n
(c1)m(c2)n

xm

m!

yn

n!
;

F3[a1, a2; b1, b2; c;x, y] :=
∑

m,n≥0

(a1)m(a2)n(b1)m(b2)n
(c)m+n

xm

m!

yn

n!
;

F4[a; b; c1, c2;x, y] :=
∑

m,n≥0

(a)m+n(b)m+n

(c1)m(c2)n

xm

m!

yn

n!
.

Then, Jackson [5, 6] first discussed the q-Appell functions Φ(1),Φ(2),Φ(3) and Φ(4):

Φ(1)[a; b, b′; c;x, y] =
∑

m,n≥0

(a; q)m+n(b; q)m(b′; q)n
(q; q)m(q; q)n(c; q)m+n

xmyn;

Φ(2)[a; b, b′; c, c′;x, y] =
∑

m,n≥0

(a; q)m+n(b; q)m(b′; q)n
(q; q)m(q; q)n(c; q)m(c′; q)n

xmyn;

B Corresponding author;
E-mail: xiaoxiawang@shu.edu.cn (X. Wang) and weichuanan78@126.com(C. Wei);
This work is supported by National Natural Science Foundations of China (11661032).

http://arxiv.org/abs/1805.02864v1


2 Xiaoxia Wang–Chuanan Wei

Φ(3)[a, a′; b, b′; c;x, y] =
∑

m,n≥0

(a; q)m(a′; q)n(b; q)m(b′; q)n
(q; q)m(q; q)n(c; q)m+n

xmyn;

Φ(4)[a; b; c, c′;x, y] =
∑

m,n≥0

(a; q)m+n(b; q)m+n

(q; q)m(q; q)n(c; q)m(c′; q)n
xmyn;

which are the q-analogies of F1, F2, F3 and F4.

When |q| < 1, the shifted factorial of infinite order is well-defined as

(x; q)∞ :=
∞
∏

k=0

(1− xqk) and (x; q)n =
(x; q)∞

(xqn; q)∞
for n ∈ Z.

The research of recursion formulas of hypergeometric function are important and interesting. Opps,
Saad and Srivastava [7] established some recursion formulas for the function F2 by the contiguous rela-
tions of the Gauss hypergeometric series 2F1, and then applied the relations to radiation field problem.
Wang [10] gave the recursion formulas for Appell’s four functions F1, F2, F3 and F4 which including
Opps, Saad and Srivastava’s results. Chu andWang [2, 3] have reviewed many hypergeometric summa-
tion formulas by the recursion formulas which are obtained by Abel’s lemma on summation by parts.
In this paper, the authors will present the recursion formulas for q-Appell functions Φ(1),Φ(2),Φ(3)

and Φ(4), and all the results are verified by Mathematica.

1. Recursion formulas of Φ(1)

In this part, we will present the recursion formulas for q-Appell function Φ(1) with five theorems as
follows. First, we present the recursion formulas of Φ(1) with the numerator parameter a.

Theorem 1 (The recursion formulas of Φ(1) with parameter a).

Φ(1)[aqn; b, b′; c;x, y] = Φ(1)[a; b, b′; c;x, y] +
ax(1 − b)

(1− c)

n
∑

k=1

qk−1Φ(1)[aqk; bq, b′; cq;x, y]

+
ay(1− b′)

(1− c)

n
∑

k=1

qk−1Φ(1)[aqk; b, b′q; cq;xq, y]; (1)

Φ(1)[aq−n; b, b′; c;x, y] = Φ(1)[a; b, b′; c;x, y] −
ax(1 − b)

(1− c)

n
∑

k=1

q−kΦ(1)[aq1−k; bq, b′; cq;x, y]

−
ay(1− b′)

(1− c)

n
∑

k=1

q−kΦ(1)[aq1−k; b, b′q; cq;xq, y]. (2)

Proof. From the definition of q−Appell’s function Φ(1) and the transformation (aq; q)m+n = (a; q)m+n[1+
a(1−qm)

1−a
+ aqm(1−qn)

1−a
], we get the following contiguous relation:

Φ(1)[aq, b, b′; c;x, y] = Φ(1)[a, b, b′; c;x, y] +
ax(1 − b)

(1− c)
Φ(1)[aq, bq, b′; cq;x, y]

+
ay(1− b′)

(1− c)
Φ(1)[aq, b, b′q; cq;xq, y]. (3)
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Applying the above contiguous relation on function Φ(1) with parameter aq2, we have

Φ(1)[aq2, b, b′; c;x, y] = Φ(1)[aq, b, b′; c;x, y] +
aqx(1 − b)

(1− c)
Φ(1)[aq2, bq, b′; cq;x, y]

+
aqy(1− b′)

(1− c)
Φ(1)[aq2, b, b′q; cq;xq, y] = Φ(1)[a, b, b′; c;x, y]

+
ax(1− b)

(1− c)

{

Φ(1)[aq, bq, b′; cq;x, y] + qΦ(1)[aq2, bq, b′; cq;x, y]
}

+
ay(1− b′)

(1− c)

{

Φ(1)[aq, b, b′q; cq;xq, y] + qΦ(1)[aq2, b, b′q; cq;xq, y]
}

.

Iterating this computation on Φ(1) for n−times, we get the recursion formula (1) with parameter aqn.
Performing the replacement a → aq−1 in the contiguous relation (3), we have

Φ(1)[aq−1, b, b′; c;x, y] = Φ(1)[a, b, b′; c;x, y] −
ax(1− b)

q(1 − c)
Φ(1)[a, bq, b′; cq;x, y]

−
ay(1− b′)

q(1− c)
Φ(1)[a, b, b′q; cq;xq, y]. (4)

Applying this contiguous relation on function Φ(1) for n-times, we obtain the recursion formula (2) as
same as we have done in the proof of (1). �

By the known contiguous relations (3) and (4), we can express the hypergeometric functions Φ(1) with
aqn and aq−n in another expressions.

Theorem 2 (The recursion formulas of Φ(1) with parameter a in another expression).

Φ(1)[aqn, b, b′; c;x, y] =

n
∑

k=0

k
∑

i=0

[

n

k

][

k

i

]

(b; q)k−i(b
′; q)i

(c; q)k
q2(

k

2)akxk−iyi

× Φ(1)[aqk, bqk−i, b′qi; cqk;xqi, y]; (5)

Φ(1)[aq−n, b, b′; c;x, y] =

n
∑

k=0

k
∑

i=0

[

n

k

][

k

i

]

(b; q)k−i(b
′; q)i

(c; q)k
q(

k

2)−nk(−a)kxk−iyi

× Φ(1)[a, bqk−i, b′qi; cqk;xqi, y]. (6)

Proof. Here, we just prove the recursion formula (5) by the induction method for example. The
relation (6) can be proved by the similarly method. When n = 1, formula (5) reduces to relation (3)
obviously. Suppose that the result (5) is true for n ≤ t and the recursion formula (5) reads as follows
when n = t:

Φ(1)[aqt, b, b′; c;x, y] =
t

∑

k=0

k
∑

i=0

[

t

k

][

k

i

]

(b; q)k−i(b
′; q)i

(c; q)k
q2(

k

2)akxk−iyi Φ(1)[aqk, bqk−i, b′qi; cqk;xqi, y].
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Now we only need to confirm the correction of (5) with n = t+1. Performing the replacement a → aq
in the above relation, we have

Φ(1)[aqt+1, b, b′; c;x, y]

=

t
∑

k=0

k
∑

i=0

[

t

k

][

k

i

]

(b; q)k−i(b
′; q)i

(c; q)k
q2(

k

2)(aq)
k
xk−iyiΦ(1)[aqk+1, bqk−i, b′qi; cqk;xqi, y]

=

t
∑

k=0

k
∑

i=0

[

t

k

][

k

i

]

(b; q)k−i(b
′; q)i

(c; q)k
q2(

k

2)(aq)
k
xk−iyi

{

Φ(1)[aqk, bqk−i, b′qi; cqk;xqi, y]

+
aqkxqi(1− bqk−i)

(1− cqk)
Φ(1)[aqk+1, bq1+k−i, b′qi; cqk+1;xqi, y]

+
aqky(1− b′qi)

(1− cqk)
Φ(1)[aqk+1, bqk−i, b′qi+1; cqk+1;xqi+1, y]

}

.

In the second equality, we have applied the contiguous relation (3) with the replacements a → aqk, b →
bqk−i, b′ → b′qi, c → cqk and x → xqi. Simplifying the above result, we have

Φ(1)[aqt+1, b, b′; c;x, y] (7)

=

t
∑

k=0

k
∑

i=0

[

t

k

][

k

i

]

(b; q)k−i(b
′; q)i

(c; q)k
q2(

k

2)+kakxk−iyiΦ(1)[aqk, bqk−i, b′qi; cqk;xqi, y]

+

t
∑

k=0

k
∑

i=0

[

t

k

][

k

i

]

(b; q)k+1−i(b
′; q)i

(c; q)k+1
q2(

k

2)+2k+iak+1xk+1−iyiΦ(1)[aqk+1, bqk+1−i, b′qi; cqk+1;xqi, y]

+

t
∑

k=0

k
∑

i=0

[

t

k

][

k

i

]

(b; q)k−i(b
′; q)i+1

(c; q)k+1
q2(

k

2)+2kak+1xk−iyi+1Φ(1)[aqk+1, bqk−i, b′qi+1; cqk+1;xqi+1, y].

Extracting the coefficient of

(b; q)k−i(b
′; q)i

(c; q)k
q2(

k

2)akxk−iyi Φ(1)[aqk, bqk−i, b′qi; cqk;xqi, y]

on the right-hand side of (7) and applying the relations qk
[

n− 1

k

]

+

[

n− 1

k − 1

]

=

[

n

k

]

and

[

n

m

]

≡ 0

with m > n or m < 0, we have

qk
[

t

k

][

k

i

]

+ qi
[

t

k − 1

][

k − 1

i

]

+

[

t

k − 1

][

k − 1

i− 1

]

=

[

t+ 1

k

][

k

i

]

,

which is exactly the coefficient of Φ(1) with n = t+1 in (5). Now, we certified the result (5). Applying
the relation (4), we can confirm the recursion formula (6) by induction method too. This completes
the proof of this theorem. �

Second, we establish the recursion formulas of Φ(1) about the numerator parameter b. The recursion
formulas about b′ can be obtained by the similar method.

Theorem 3 (The recursion formulas of Φ(1) with parameter b).

Φ(1)[a, bqn, b′; c;x, y] = Φ(1)[a, b, b′; c;x, y] +
bx(1− a)

(1− c)

n
∑

k=1

qk−1Φ(1)[aq, bqk, b′; cq;x, y]; (8)

Φ(1)[a, bq−n, b′; c;x, y] = Φ(1)[a, b, b′; c;x, y]−
bx(1− a)

(1− c)

n
∑

k=1

q−kΦ(1)[aq, bq1−k, b′; cq;x, y]. (9)
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Proof. From the definition of q-Appell function Φ(1) and (bq; q)m = (b; q)m[1 + b
1−b

(1 − qm)], we can
easily get the following contiguous relation:

Φ(1)[a, bq, b′; c;x, y] = Φ(1)[a, b, b′; c;x, y] +
bx(1− a)

(1− c)
Φ(1)[aq, bq, b′; cq;x, y]. (10)

Replacing b → bq in the above relation, we have

Φ(1) [a, bq2, b′; c;x, y] = Φ(1)[a, bq, b′; c;x, y] +
bqx(1− a)

(1 − c)
Φ(1)[aq, bq2, b′; cq;x, y]

= Φ(1)[a, b, b′; c;x, y] +
bx(1− a)

(1− c)

{

Φ(1)[aq, bq, b′; cq;x, y] + qΦ(1)[aq, bq2, b′; cq;x, y]
}

,

where we have applied the contiguous relation (10) in the second equality. Iterating this method on
Φ(1) for n times, we have

Φ(1) [a, bqn, b′; c;x, y] = Φ(1)[a, bqn−1, b′; c;x, y] +
bqn−1x(1 − a)

(1− c)
Φ(1)[aq, bqn, b′; cq;x, y]

= Φ(1)[a, b, b′; c;x, y] +
bx(1− a)

(1− c)

{

Φ(1)[aq, bq, b′; cq;x, y] + · · ·+ qn−1Φ(1)[aq, bqn, b′; cq;x, y]
}

= Φ(1)[a, b, b′; c;x, y] +
bx(1− a)

(1− c)

n
∑

k=1

qk−1Φ(1)[aq, bqk, b′; cq;x, y],

which is exactly the recursion formula (8).

Performing the replacement b → b/q in relation (10), we have

Φ(1)[a, b/q, b′; c;x, y] = Φ(1)[a, b, b′; c;x, y]−
bx(1 − a)

q(1− c)
Φ(1)[aq, b, b′; cq;x, y]. (11)

Applying this relation on function Φ(1) with the parameter bq−n for n−times, we arrive at the recursion
formula (9). This completes the proof of this theorem. �

In fact, we have another expression of recursion formulas for hypergeometric functions Φ(1) with the
parameters bqn and bq−n.

Theorem 4 (The recursion formulas of Φ(1) with parameter b in another expression).

Φ(1)[a, bqn, b′; c;x, y] =

n
∑

k=0

[

n

k

]

q2(
k

2) (bx)
k(a; q)k

(c; q)k
Φ(1)[aqk, bqk, b′; cqk;x, y]; (12)

Φ(1)[a, bq−n, b′; c;x, y] =

n
∑

k=0

[

n

k

]

q(
k

2)−nk (−bx)k(a; q)k
(c; q)k

Φ(1)[aqk, b, b′; cqk;x, y]. (13)

Proof. This theorem can be proved by inductive method as we have done in Theorem 5. Here, we
just prove the recursion formula (12) for example. The formula (13) can be proved by the similarly
method. When n = 1, the formula (12) is exactly (10). Suppose that the recursion formula (12) is
true for n ≤ t, and (12) reduces to the following result when n = t:

Φ(1)[a, bqt, b′; c;x, y] =
t

∑

k=0

[

t

k

]

q2(
k

2) (bx)
k(a; q)k

(c; q)k
Φ(1)[aqk, bqk, b′; cqk;x, y].
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Performing the replacement b → bq in the above result, we have

Φ(1)[a, bqt+1, b′; c;x, y] =

t
∑

k=0

[

t

k

]

q2(
k

2) (bqx)
k(a; q)k

(c; q)k
Φ(1)[aqk, bqk+1, b′; cqk;x, y]

=

t
∑

k=0

[

t

k

]

q2(
k

2) (bqx)
k(a; q)k

(c; q)k

{

Φ(1)[aqk, bqk, b′; cqk;x, y]

+
bqkx(1− aqk)

1− cqk
Φ(1)[ak+1, bk+1, b′; ck+1;x, y]

}

=

t
∑

k=0

[

t

k

]

q2(
k

2)+k (bx)
k(a; q)k

(c; q)k
Φ(1)[aqk, bqk, b′; cqk;x, y]

+

t
∑

k=0

[

t

k

]

q2(
k

2)+2k (bx)
k+1(a; q)k+1

(c; q)k+1
Φ(1)[aqk+1, bqk+1, b′; cqk+1;x, y]

=

t+1
∑

k=0

{

qk
[

t

k

]

+

[

t

k − 1

]

}

q2(
k

2) (bx)
k(a; q)k

(c; q)k
Φ(1)[aqk, bqk, b′; cqk;x, y]

=

t+1
∑

k=0

[

t+ 1

k

]

q2(
k

2) (bx)
k(a; q)k

(c; q)k
Φ(1)[aqk, bqk, b′; cqk;x, y],

where, we have applied the contiguous relation (10) in the second equality and qk
[

t

k

]

+

[

t

k − 1

]

=
[

t+ 1

k

]

and

[

m

n

]

≡ 0 when n > m and n < 0 in the fifth equality. Now we completes the proof of the

recursion formula (12). Applying the contiguous relation (11), we can get the recursion formula (13)
by the similarly method. Here, we completes the proof of this theorem. �

Finally, we present the recursion formulas of Φ(1) about the denominator parameter c.

Theorem 5 (The recursion formulas of Φ(1) with parameter c).

Φ(1)[a, b, b′; cq−n;x, y] =
1

(q/c; q)n

n
∑

k=0

[

n

k

]

(−c)k−nq(
n+1−k

2 )−1Φ(1)[a; b, b′; c;xqk, yqk]; (14)

Φ(1)[a, b, b′; cqn;x, y] =

n
∑

k=0

[

n

k

]

ckq2(
k

2)(cqk; q)n−kΦ
(1)[a; b, b′; cqk;xqk, yqk]. (15)

Proof. From the definition of q-Appell function Φ(1) and the transformation

1

(c/q; q)m+n

=
1

(c; q)m+n

{ c

c− q
qm+n −

q

c− q

}

,

we get the following contiguous relation:

Φ(1)[a, b, b′; c/q;x, y] =
1

1− q/c
Φ(1)[a, b, b′; c;xq, yq]−

q/c

1− q/c
Φ(1)[a, b, b′; c;x, y]. (16)

Obviously, the relation (14) is exactly right when n = 1. Suppose that the result (14) is correct when
n = t as follows:

Φ(1)[a, b, b′; cq−t;x, y] =
1

(q/c; q)t

t
∑

k=0

(−c)k−tq(
t+1−k

2 )−1

[

t

k

]

Φ(1)[a, b, b′; c;xqk, yqk].
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we just need to proof that the result is right with n = t+1 by the induction method. Performing the
replacement c → c/q in the above identity, we have

Φ(1)[a, b, b′; cq−t−1;x, y] =
1

(q2/c; q)t

t
∑

k=0

(−c/q)k−tq(
t+1−k

2 )−1

[

t

k

]

Φ(1)[a, b, b′; c/q;xqk, yqk]

=
1

(q2/c; q)t

t
∑

k=0

(−c/q)k−tq(
t+1−k

2 )−1

[

t

k

]

×
{ 1

1− q/c
Φ(1)[a, b, b′; c;xqk+1, yqk+1]−

q/c

1− q/c
Φ(1)[a, b, b′; c;xqk, yqk]

}

=
1

(q/c; q)t+1

t
∑

k=0

(−c)k−tq(
t+1−k

2 )+t−k−1

[

t

k

]

Φ(1)[a, b, b′; c;xqk+1, yqk+1]

+
1

(q/c; q)t+1

t
∑

k=0

(−c)k−t−1q(
t+1−k

2 )+t−k

[

t

k

]

Φ(1)[a, b, b′; c;xqk, yqk]

=
1

(q/c; q)t+1

t
∑

k=0

(−c)k−t−1q(
t+2−k

2 )+t−k
{

[

t

k − 1

]

+ qk−t−1

[

t

k

]

}

Φ(1)[a, b, b′; c;xqk, yqk]

=
1

(q/c; q)t+1

t+1
∑

k=0

(−c)k−t−1q(
t+2−k

2 )−1

[

t+ 1

k

]

Φ(1)[a, b, b′; c;xqk, yqk],

where, we have applied the transformation

qk−t−1

[

t

k

]

+

[

t

k − 1

]

= qk−t−1

[

t+ 1

k

]

.

Performing c → cq in contiguous relation (16), we get

Φ(1)[a, b, b′; cq;x, y] = (1− c)Φ(1)[a, b, b′; c;x, y] + c Φ(1)[a, b, b′; cq;xq, yq].

Applying this contiguous relation, we can arrive at the recursion formula (15) by induction method.
This completes the proof of this theorem. �

2. Recursion formulas of Φ(2)

In this part, we will list the recursion formulas of q-Appell function Φ(2) with the parameters a, b and
c. All the theorems can be proved by the similarly method as we have done in part one.

By the definition of Φ(2), we can get the following two contiguous relations of Φ(2) with parameter a
as:

Φ(2)[aq, b, b′; c, c′;x, y] = Φ(2)[a, b, b′; c, c′;x, y] +
ax(1 − b)

1− c
Φ(2)[aq, bq, b′; cq, c′;x, y]

+
ay(1− b′)

1− c′
Φ(2)[aq, b, b′q; c, c′q;xq, y];

Φ(2)[aq−1, b, b′; c, c′;x, y] = Φ(2)[a, b, b′; c, c′;x, y] −
ax(1 − b)

q(1− c)
Φ(2)[a, bq, b′; cq, c′;x, y]

−
ay(1− b′)

q(1− c′)
Φ(2)[a, b, b′q; c, c′q;xq, y].

From the above relations, we can establish the recursion formulas of Φ(2) with parameter a in the
following two theorems.
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Theorem 6 (The recursion formulas of Φ(2) with parameter a).

Φ(2)[aqn, b, b′; c, c′;x, y] = Φ(2)[a, b, b′; c, c′;x, y] +
ax(1 − b)

(1− c)

n
∑

k=1

qk−1Φ(2)[aqk, bq, b′; cq, c′;x, y]

+
ay(1− b′)

(1− c′)

n
∑

k=1

qk−1Φ(2)[aqk, b, b′q; c, c′q;xq, y];

Φ(2)[aq−n, b, b′; c, c′;x, y] = Φ(2)[a, b, b′; c, c′;x, y] −
ax(1 − b)

(1− c)

n
∑

k=1

q−kΦ(2)[aq1−k, bq, b′; cq, c′;x, y]

−
ay(1− b′)

(1− c′)

n
∑

k=1

q−kΦ(2)[aq1−k, b, b′q; c, c′q;xq, y].

Theorem 7 (The recursion formulas of Φ(2) with parameter a in another expression).

Φ(2)[aqn, b, b′; c, c′;x, y] =

n
∑

k=0

k
∑

i=0

[

n

k

][

k

i

]

(b; q)k−i(b
′; q)i

(c; q)k−i(c′; q)i
q2(

k

2)akxk−iyi

× Φ(2)[aqk, bqk−i, b′qi; cqk−i, c′qi;xqi, y];

Φ(2)[aq−n, b, b′; c, c′;x, y] =

n
∑

k=0

k
∑

i=0

[

n

k

][

k

i

]

(b; q)k−i(b
′; q)i

(c; q)k−i(c′; q)i
q(

k

2)−nk(−a)kxk−iyi

× Φ(2)[a, bqk−i, b′qi; cqk−i, c′qi;xqi, y];

Applying the contiguous relations of Φ(2) with parameter b as follows

Φ(2)[a, bq, b′; c, c′;x, y] = Φ(2)[a, b, b′; c, c′;x, y] +
bx(1− a)

1− c
Φ(2)[aq, bq, b′; cq, c′;x, y];

Φ(2)[a, bq−1, b′; c, c′;x, y] = Φ(2)[a, b, b′; c, c′;x, y]−
bx(1 − a)

q(1− c)
Φ(2)[aq, b, b′; cq, c′;x, y],

we can establish the recursion formulas with parameter b in two expressions in the following two
theorems.

Theorem 8 (The recursion formulas of Φ(2) with the parameter b).

Φ(2)[a, bqn, b′; c, c′;x, y] = Φ(2)[a, b, b′; c, c′;x, y] +
bx(1− a)

(1− c)

n
∑

k=1

qk−1Φ(2)[aq, bqk, b′; cq, c′;x, y];

Φ(2)[a, bq−n, b′; c, c′;x, y] = Φ(2)[a, b, b′; c, c′;x, y]−
bx(1− a)

(1− c)

n
∑

k=1

q−kΦ(2)[aq, bq1−k, b′; cq, c′;x, y].

Theorem 9 (The recursion formulas of Φ(2) with the parameter b in another expression).

Φ(2)[a, bqn, b′; c, c′;x, y] =

n
∑

k=0

[

n

k

]

q2(
k

2) (bx)
k(a; q)k

(c; q)k
Φ(2)[aqk, bqk, b′; cqk, c′;x, y];

Φ(2)[a, bq−n, b′; c, c′;x, y] =

n
∑

k=0

[

n

k

]

q(
k

2)−nk (−bx)k(a; q)k
(c; q)k

Φ(2)[aqk, b, b′; cqk, c′;x, y].

Theorem 10 (the recursion formulas with the parameter c).

Φ(2)[a, b, b′; cq−n, c′;x, y] =
1

(q/c; q)n

n
∑

k=0

[

n

k

]

(−c)k−nq(
n+1−k

2 )−1Φ(2)[a, b, b′; c, c′;xqk, y],

Φ(2)[a, b, b′; cqn, c′;x, y] =
n
∑

k=0

[

n

k

]

ckq2(
k

2)(cqk; q)n−kΦ
(2)[a; b, b′; cqk, c′;xqk, y].
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The above theorem can be proved by the following contiguous relations

Φ(2)[a, b, b′; cq, c′;x, y] = (1− c)Φ(2)[a, b, b′; c, c′;x, y] + cΦ(2)[a, b, b′; cq, c′;xq, yq];

Φ(2)[a, b, b′; cq−1, c′;x, y] =
1

1− q/c
Φ(2)[a, b, b′; c, c′;xq, yq]−

q/c

1− q/c
Φ(2)[a, b, b′; c, c′;x, y],

which can be established easily by the definition of Φ(2).

3. Recursion formulas of Φ(3)

In this part, we will present the recursion formulas for q−Appell’s hypergeometric function Φ(3) with
the parameters b and c. Applying the following two contiguous relations of Φ(3) with parameter b,

Φ(3)[a, a′, bq, b′; c;x, y] = Φ(3)[a, a′, b, b′; c;x, y] +
bx(1− a)

1− c
Φ(3)[aq, a′, bq, b′; cq, c′;x, y];

Φ(3)[a, a′, bq−1, b′; c, c′;x, y] = Φ(3)[a, a′, b, b′; c, c′;x, y]−
bx(1 − a)

q(1− c)
Φ(3)[aq, b, b′; cq, c′;x, y],

we can establish the recursion formulas with parameter b in two expressions in the following two
theorems.

Theorem 11 (The recursion formulas with parameter b).

Φ(3)[a, a′, bqn, b′; c;x, y] = Φ(3)[a, a′, b, b′; c;x, y] +
bx(1− a)

(1− c)

n
∑

k=1

qk−1Φ(3)[aq, a′; bqk, b′; cq;x, y];

Φ(3)[a, a′; bq−n, b′; c;x, y] = Φ(3)[a, a′; b, b′; c;x, y]−
bx(1− a)

(1− c)

n
∑

k=1

q−kΦ(3)[aq, a′; bq1−k, b′; cq;x, y].

Theorem 12 (The recursion formulas with parameter b in another expression).

Φ(3)[a, a′; bqn, b′; c;x, y] =

n
∑

k=0

[

n

k

]

q2(
k

2) (bx)
k(a; q)k

(c; q)k
Φ(3)[aqk, a′; bqk, b′; cqk, c′;x, y];

Φ(3)[a, a′; bq−n, b′; c;x, y] =
n
∑

k=0

[

n

k

]

q(
k

2)−nk (−bx)k(a; q)k
(c; q)k

Φ(3)[aqk, a′; b, b′; cqk;x, y].

Theorem 13 (The recursion formulas with parameter c).

Φ(3)[a, a′; b, b′; cq−n;x, y] =
1

(q/c; q)n

n
∑

k=0

[

n

k

]

(−c)k−nq(
n+1−k

2 )−1 Φ(3)[a, a′; b, b′; c;xqk, yqk]

Φ(3)[a, a′; b, b′; cqn;x, y] =

n
∑

k=0

[

n

k

]

ckq2(
k

2)(cqk; q)n−k Φ
(3)[a, a′; b, b′; cqk;xqk, yqk].

This theorem can be proved by the contiguous relation

Φ(3)[a, a′, b, b′; cq;x, y] = (1− c)Φ(3)[a, a′, b, b′; c;x, y] + cΦ(3)[a, a′, b, b′; cq;xq, yq];

Φ(3)[a, a′, b, b′; cq−1;x, y] =
1

1− q/c
Φ(3)[a, a′, b, b′; c;xq, yq]−

q/c

1− q/c
Φ(3)[a, a′, b, b′; c;x, y].

All the recursion formulas of Φ(3) are established with the similarly method as the results of function
Φ(1). Here, we will present with no details.

4. Recursion formulas of Φ(4)

Here, we present the recursion formulas of q-Appell function Φ(4) about parameters a and c by different
expressions.
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Applying the following two contiguous relations of Φ(4) with parameter a,

Φ(4)[aq, b; c, c′;x, y] = Φ(4)[a, b; c, c′;x, y] +
ax(1− b)

(1− c)
Φ(4)[aq, bq; cq, c′;x, y]

+
ay(1− b)

(1− c′)
Φ(4)[aq, bq; c, c′q;xq, y];

Φ(4)[aq−1, b; c, c′;x, y] = Φ(4)[a, b, b′; c, c′;x, y] −
ax(1− b)

q(1− c)
Φ(4)[a, bq; cq, c′;x, y]

−
ay(1− b)

q(1− c′)
Φ(4)[a, bq; c, c′q;xq, y],

we can establish the recursion formulas of Φ(4) with parameter a in two expressions in the following
two theorems.

Theorem 14 (The recursion formulas with parameter a).

Φ(4)[aqn; b; c, c′;x, y] = Φ(4)[a; b; c, c′;x, y] +
ax(1 − b)

(1− c)

n
∑

k=1

qk−1Φ(4)[aqk; bq; cq, c′;x, y]

+
ay(1− b)

(1− c′)

n
∑

k=1

qk−1Φ(4)[aqk; bq; c, c′q;xq, y];

Φ(4)[aq−n; b; c, c′;x, y] = Φ(4)[a; b; c, c′;x, y] −
ax(1 − b)

(1− c)

n
∑

k=1

q−kΦ(4)[aq1−k; bq; cq, c′;x, y]

−
ay(1− b)

(1− c′)

n
∑

k=1

q−kΦ(4)[aq1−k; bq; c, c′q;xq, y].

Theorem 15 (The recursion formulas with parameter a in another expression).

Φ(4)[aqn, b, b′; c, c′;x, y] =
n
∑

k=0

k
∑

i=0

[

n

k

][

k

i

]

(b; q)k
(c; q)k−i(c′; q)i

q2(
k

2)akxk−iyi

× Φ(4)[aqk; bqk; cqk−i, c′qi;xqi, y];

Φ(4)[aq−n; b; c, c′;x, y] =

n
∑

k=0

k
∑

i=0

[

n

k

][

k

i

]

(b; q)k
(c; q)k−i(c′; q)i

q(
k

2)−nk(−a)kxk−iyi

× Φ(4)[a, bqk; cqk−i, c′qi;xqi, y];

By the following contiguous relation

Φ(4)[a, b; cq, c;x, y] = (1− c)Φ(4)[a, b; c, c′;x, y] + cΦ(4)[a, b; cq, c′;xq, yq];

Φ(4)[a, b; cq−1;x, y] =
1

1− q/c
Φ(4)[a, b; c, c′;xq, yq]−

q/c

1− q/c
Φ(4)[a, b; c, c′;x, y].

we can get the following results.

Theorem 16 (The recursion formulas with parameter c).

Φ(4)[a, b, b′; cq−n, c′;x, y] =
1

(q/c; q)n

n
∑

k=0

[

n

k

]

(−c)k−nq(
n+1−k

2 )−1 Φ(4)[a; b; c, c′;xqk, y];

Φ(4)[a, b, b′; cqn, c′;x, y] =

n
∑

k=0

[

n

k

]

ckq2(
k

2)(cqk; q)n−k Φ
(4)[a; b, b′; cqk, c′;xqk, yqk].

The results in this part can be obtained similarly as the recursion formula of Φ(1) in the first part.
Here, we will present with no details.
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In fact, by contiguous relations, we can establish the recursion formulas of multiply q-hypergeometric
functions. The interested author can do by themselves.

References
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