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Abstract

We solve the analytic integrability problem for differential systems in the plane
whose origin is an isolated singularity and the first homogeneous component is a
quadratic Lotka-Volterra type. As an application, we give the analytically integrable
systems of a class of systems & = x(P1+P), ¥ = y(Q1+Q2), being P;, Q; homogeneous
polynomials of degree i.

1 Introduction and statement of the main result

We focus on the study of the analytic integrability of a planar differential system
x = F(x) (1.1)

where F is analytic in a neighborhood of the origin.

Writing the Taylor expansion F = F,, + F,,;1 +---, F,, # 0, we notice that the
condition of polynomial integrability of F,,, lowest degree homogeneous term of the
vector field, is a necessary condition in order to be F analytically integrable.

The analytically integrable differential systems with non-null linear part, i.e. n =1,
and F; polynomially integrable, are orbitally linearizable. Indeed, it has the following
cases in function the eigenvalues of D(F1)(0): if A1 Az # 0, the origin is either a saddle,
or node or a non-degenerate monodromic singular point (with complex eigenvalues).
If A1 = 0 and Ay # 0, the origin is a saddle-node. Finally if A\; = Ay = 0, it has a
nilpotent singular point. The nodes and saddle-nodes are not analytically integrable.
A non-degenerate monodromic point is analytically integrable if, and only if, it is
orbitally equivalent to (—y,z)”, and a resonant saddle has an analytic first integral
around the singular point if, and only if, it is orbitally equivalent to (px, —qy)” with
p,q € N, see [12 [16]. The most studied systems whose origin is a resonant saddle are
the Lotka-Volterra systems, see [7, 8 [, [10, 111 13} 14} [I7] and references therein.

Recently, it is proved that a nilpotent singular point is analytically integrable if,
and only if, the vector field is orbital equivalent to its lowest degree quasi-homogeneous
term, see [5].

For vector fields with null linear part (a degenerate singular point) some partial
results are known. Not any analytically integrable vector field with null linear part is
orbitally equivalent to its first quasi-homogeneous component, see [3} [4]. The analytic
integrability problem when the first quasi-homogeneous component of F is conservative
whose Hamiltonian function h has only simple factors is completely solved in [2]. In
[1] it is studied a particular case with h having multiple factors.
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In this work, we deal with perturbations of homogeneous quadratic Lotka-Volterra
systems,

F = F2 + - ) FQ(xvy) = (xPl(x,y),le(x,y))T

with P; and @7 homogeneous polynomials of degree one (vector field with null linear
part) and the origin is an isolated singular point of x = Fa(x).

Here, we solve the analytic integrability problem for these systems. More specifi-
cally, we prove that, under the condition of polynomial integrability of Fo, the vector
field F is analytically integrable if, and only if, it is orbitally equivalent to its lowest
degree component. (Theorem [B.13)).

As consequence, we characterize its analytic integrability through the existence of
a Lie symmetry (Theorem BI4) and of an inverse integrating factor (Theorem B.13]).

We emphasize that for the vector fields F = F3 + ---, whose first homogeneous
component is F3(z,y) = (2P (z,y), yQ2(x,y))T, with P, and Q2 homogeneous poly-
nomials of degree two, the existence of an analytic first integral is not equivalent
to the orbital equivalence of its lowest degree component. In fact, the vector field
(x(=3y? — 22),y(y* + 32%))T + (y*,0)T is a perturbation of a cubic Lotka-Volterra
type, analytically integrable since it is Hamiltonian. Nevertheless, it is not possible
to transforms it into its lowest degree component. So, for n > 3, the problem is still
open.

Finally, in Section Ml we calculate the systems

&\ _ [ x(-z+3y) n x(az0z? + a1y + ap2y?)
Y y(Bz —y) y(b2ox® + birxy + boay?)
with an analytic first integral at the origin.

1.1 Invariant curves and first integrals of vector fields

First we give the definition of invariant curve and its associated cofactor.

We deal with a vector field F = (P,Q)7 with P,Q analytic at the origin and
P(0) = Q(0) = 0. Throughout the paper, we will denote by F' the operator associated
to the vector field F, that is, F' := PJd, + QJ,. We recall the concept of invariant curve
and its associated cofactor.

Definition 1.1 It is said that C € Cl[z,y]] (algebra of formal power series in x,y
over C), with C(0) = 0, is an invariant curve of the vector field F, if there exists
K € Cl[z,y]], named cofactor of C, such that F(C) = KC.

Moreover, if K =0, it is said that F is formally integrable and C is a first integral of
F.

Let note that any formal function C' with C(0) # 0, satisfies F(C) = KC with
K =F(C)/C € Cllz,y]].

We will denote by Py, the vector space of homogeneous scalar polynomials of degree
k, and by Qj, the vector space of polynomial homogeneous vector fields of degree k. We
will use Taylor expansion of functions and vector fields without to consider questions of
convergence. We note that analytic integrability is equivalent to formal integrability,
see Mattei & Moussu [15].

Throughout the paper, we will be denoted by D = (z,5)7 € Q; (dissipative
homogeneous vector field) and by X;, = (—9h/dy,dh/0z)T (Hamiltonian vector field
associated to the polynomial h).

The following splitting of a homogeneous vector field plays a main role in our study.

Proposition 1.2 [2, Prop.2.7] Fvery Fi € Qi can be uniquely written as Fp =

Xp + puD with h = kL_H(D AFg) € Pry1 (product wedge of both vector fields) and

W= %_Hdiv(Fk) € Pi_1 (divergence of Fy).



We give the Taylor expansion of a formal invariant curve of a formal vector field.

Proposition 1.3 Consider F = Z >n Fj Fj € Q; with Fy, # 0. Let C a formal
invariant cuve of F with cofactor K. Then, C = >2,5,Cj, Cj € Pj and K =
ijn K;, K; € P;, being the polynomial Cs an invariant curve of the polynomial
vector field ¥, with cofactor K,.

Proof. 1t is enough to consider the lowest degree homogeneous term of the equality
F(C)—-KC=0. |

The following two results show the invariant curves of a homogeneous vector field.

Proposition 1.4 FEvery homogeneous polynomial invariant curve of a homogeneous
vector field F,, is given by g7 g5° ... gnm being each g; a polynomial invariant curve

of Fp,.
Moreover, its cofactor is ni Ky + -+ + npy Kpy, being K; the cofactor of g;.

Proof. 'We suppose that g = g1p, (g1 an irreducible homogeneous polynomial), is
an invariant curve of F,, with K, cofactor of g. It has that F,(g1p) = g1Fn(p) +
pF,(g1) = Kngip, that is, g1(pK,, — F.(p)) = pF.(g1). From the irreducibility of
g1, it has two situations: either g; is an irreducible invariant curve of F,,, in such
case, p is also an invariant curve of F,, and we repeat the process for p. Or p = qg1,
iLe. g = g7q. We now have that F,(97q) = 97F.(q) +2991Fn(91) = Kng?q. Thus,
91(gK, — F.(q)) = 2qF,(g1). Reasoning of similar way, it completes the proof.

The second part is obtained easily. ]

Proposition 1.5 Given F,, € Q,,, any factor of h is an invariant curve of ¥,,. Con-
versely, any homogeneous polynomial invariant curve of ¥, is a factor of h.

Moreover, if I is a polynomial first integral of ¥, then I = g7 g52---ghm where
91, ---,Gn,, are all the irreducible factors of h and n; > 0.
Proof. We know that F,, = X + uD with p = ?d iv(F,). Let f € P, a factor

of h then h = fg and Fu(f) = X5o(f) + uD(f) = FXo(f) +snf = (X,(f) + su)f
Therefore, f is an invariant curve of F,,.

If f € Pt is an irreducible invariant curve of F,, with cofactor K,, then K, f = F,,(f) =
Xn(f)+uD(f) = Xn(f)+spf. Thus, Xp(f) = (K, —sp)f and f is an invariant curve
of Xy,. So, f divides to h.

Last on, if I is a first integral of F,,, it is an invariant curve of F,, that is, from
Proposition [[L4] a factorization of I is formed by the irreducible factors of h. On the
other hand, a first integral is zero on every invariant curve. So, n; > 0. ]

1.2 Necessary condition of analytic integrability

Now we study the integrability problem for a vector field whose first homogeneous
component is a quadratic type Lotka-Volterra. The following result determines the
expression of the lowest degree component in the case of polynomial integrability of
this class of vector fields.

Proposition 1.6 (Necessary condition of analytic integrability) LetF = Fy+
h.o.t. be with Fy = (z(a1z + a2y), y(biz + bay))T such that the origin of x = Fa(x) is
isolated (ay, ba, asby — a1by are different from zero). If F is formally integrable, then
b1 — a1, ba — a2 are different from zero, and there exists ®1 € Qy, det (D®1(0)) # 0
such that G := (1), F = Ga + h.o.t., being

Gy = (z(—qz + (g +7)y), y(p+ )z —py)", p.q¢,7 €N, ged(p,q,7) =1

and Iy = 2Pyd(y — )" is a polynomial first integral of G of degree M =p+ q + .



Proof. Let I = Iny + h.o.t. be a formal first integral of F. Equation F(I) = 0 for
degree N +11is F5(In) = 0, i.e. Fa is polynomially integrable and Iy is a first integral
of FQ.

Polynomial h associated to Fa is h = zay((by — a1)x + (b2 — az)y).

We suppose that a; = by (analogously for as = b2). From Proposition [[F] if there
would exist a first integral of Fa, it would have the expression Iy = 2"'y™* with
n; > 0. So, F5(In) = 0 becomes

nia; + TLle = O, n2b2 +nia2 = 0.

Therefore, ny = no = 0 since asb; — a1by # 0. This contradicts the existence of the
first integral.

We assume that by # a; and by # as. From Proposition [[L3] the first integral is
Ings = aP5y?((by — a1)x + (ba — az)y)™® with p, ¢, 7, s natural numbers, ged(p, ¢,7) =1
and M = p+ ¢+ r. By imposing F5(Ips5) = 0, it has that

(p+1)ai+gbi =0, (g +7)ba +pas =0,

ie. ay = _baletr) 419 by = _ai(ptr)

P qg

The linear change @1 (z,y,t) = (—paix, —gbay, st/pq) transforms Fy into Go = (x(—qz+
(g+7)y),y((p +7)x — py))T being Iy = 2Pyi(y — x)" a first integral of Go.

|

2 Normal Form for perturbations of homogeneous
quadratic Lotka-Volterra systems

We will not consider questions of convergence in the normal forms because the formal
integrability is equivalent to the analytical integrability for the vector fields analyzed,
see [15].

In [5], the authors provide an orbital normal form of the vector field whose first
quasi-homogeneous term is non-conservative. Here, we provide the expression of the
normal form for the vector field F = F5 + h.o.t. with Fy = X + uD € Qs.

For every k € N, we fix the subspaces Ao such that Prio = Ao @ hPr_1. We
consider the linear operators:

gk : ka,1 — ﬂ)z
k-1 — Fa(nr-1),

and

Civs ¢+ Agyo —> Apys
grra — Proya,, (Fa — 2254D)(gr+2)-

Theorem 2.7 Let F =}, F;, F; € Q;. If Ker (655) = {0} for all k € N then F

is orbitally equivalent to

G=Fy+» Gy, withG; =X, , +n,1D € Q;,

§>2

where gj11 € Cor (£5,,) and ;1 € Cor (¢;j_1). (where Cor(-) is a complementary
subspace to Range(+)).

Next results are referred to vector fields whose first homogeneous component is
polynomially integrable and quadratic Lotka-Volterra type.



Lemma 2.8 Consider Fy = (z(—qz+ (¢+7)y), y((p+7)x —py))T with p, q,r natural
numbers. It has that for all k € N, Ker (65 4) = {0}. Moreover, Cor (¢5, ) = {0}.

Proof. Vector field Fy = Xj, + puD with h = B2 gy(z — y) and = 1((—2¢+p +
r)z + (g + 7 — 2p)y). We choose the bases Ay g = (xF+2 zh+ly, y’”‘?) and Agys =

(@43, vy, yo43)
Consider
G —F, - SopD = ( E;j_; ﬂﬂzsﬁjr:ﬁ)fﬁ ) .
3+k 3tk
We have that
GUHD 2542y = A,k t3 4 Brakty,
ng+3) (@"+ly) =  Aga* 2yt BozFtly? = (A + By)aFt2y — pifj_rxkhv
GU (yh+2) = Agayt? + Baybt3 = A2y + Ashpy(z,y) + Baybt?
with
A= Bk
B = giZ(Qq—i— gk + 2r + rk + 2p),
Ay+ By = —(p+q+r+rk>
As = EE(2p+pk+ 2r + rk + 2q),
By = —Hik(p+pk+q+7")7

and pr homogeneous polynomial of degree k. In this way, the determinant of the
matrix of the operator £, 5 is

(k+2)°

m(tﬁ—qk+p+r)(Q+p+rk+T)(p+pk+q+r),

which is different from zero. Therefore, both Ker (é% +3) and Cor (62 +3) are trivial
subspaces. [ |

For computing Cor (¢;,) with k > n, we need the following two technical lemmas.

Lemma 2.9 Consider F,, € Q,, irreducible and f € Clz,y] an irreducible invariant
curve of Fp. If Fy,(pr) € (f) with px, € Pk, then pr € (f).

Proof. If F,(pr) = 0 then pj is a first integral of x = F,,. A first integral of F,,
vanishes on any invariant curve of it, i.e., pg(x) = 0 when f(x) = 0. Therefore, by
Hilbert‘s Nullstellensatz pi € rad (f). Since (f) is a prime ideal, then (f) = rad (f),
in consequence p € (f).

If F,(pr) # 0, let v € Clz,y] \ {0} such that fv = F,(pg). Consider v(t), real
or complex, a solution curve of x = F,,(x) which is a parametrization of f(x) = 0.
We assume that lim;, . y(t) = 0, (the other case lim;_, ;- y(t) = 0 is proved in a
similar way). Taking into account that py(0) = 0 then

() = pe(v()) — pa(0) = / dp(y(e))ds _ / Vopn - Fo(1(s))ds

— 00

- / Fo (i) (7(s))ds = / FH () (s))ds = 0.

Recalling that f(x) = 0 is the union of orbits, we have that py(x) = 0 when f(x) =
Therefore, by Hilbert‘s Nullstellensatz py € rad (f). Since (f) is a prime ideal, then
(fy =rad(f), in consequence py € (f). [



Remark. The hypothesis of the irreducibility of the invariant curve is fundamental.
For instance, if we consider Fy := (=222, —32% — 27y + 3y*)T € Q, irreducible and
the invariant curve (y — x)?, for p3 = 2?(y — x) we have that Fy(ps3) = 32%(y — 2)? €
{(y — 7)?) and nevertheless p3 ¢ ((y — z)?).

Lemma 2.10 Consider Fo = (x(—qx+(q+7)y),y((p+7)x—py))T with p, q, r natural
numbers. Let k and m natural numbers with p4+q+r # p%, p+q+r # q%, p+q+r #
T%v .]: 17"'5m_1' prk € j)k such thatFQ(pk) € <fz’m>5 bemg fl =, f2 =Y, f3 =
x —y, mwvariant curves of Fa, then py € (f), i=1,2,3.

Proof. 'We prove the case i =1, (f1 = ), the cases i = 2,3 are analogous.
Lemma proves the statement for m = 1.

We first consider the case m = 2. We denote by K1 = —qx + (¢ + r)y the cofactor
of . If Fy(pk) € (z%) then Fy(px) € (z) and by Lemma 20 we have that there exists
Pr_1 € Pr_1 such that pr = xpir_1, therefore

Fo(pr) = Fa(zpp—1) = pr—1F2(z) + 2 Fa(pr—1) = pr—1 K12 + 2F2(pr—1)
= @ (ErDprs) + Falpio)) = 2(Fy + £5D)(picy) € (o).

Hence (Fz + %D)(pk,l) € (). Vector field

1 _
F, + kli11D: rk(—qz + (¢ +7)y) )

k—1 ( y(lp+r)k—p—q—r)z+(-pk+p+q+r)y)

is irreducible if, and only if, p + g + r # pk. Applying Lemma we have that
pr—1 € (z) and consequently py € (2?).

Consider now the case m = 3. If Fy(px) € () then Fy(px) € (2?) and by the
previous paragraph we have that there exists py_o € Pr_o such that pp = 22ps_o,
therefore

Foy(pr) = Fo(2®pr_2) = proFo(2?) + 22 Fy(pr_2) = 20k o K122 + 2° Fy(p_»)
= a2° (il_(éD(pkfz) + F2(pk72)) = 2*(Fy + 255 D) (pr—2) € (2%).

Hence (F> + 251D)(pp—2) € (z) and as Fo + 251D is irreducible if, and only if,
pt+q+r # p%, applying Lemma 2.9 we have that px_o € (x) and consequently
pi € {(x3). Reasoning by induction we get the result for m € N.

Reasoning as before, it is easy to prove that for fo =y and f3 = x — y, the conditions

arep—i—q—i—r;éq% andp—i—q—i—r;ér%, j=1,..., m—1, respectively. [ ]

Next statement establishes a cyclicity relation between the co-ranges of the oper-
ators /y,.

Lemma 2.11 Consider Fo = (x(—qx+(q+7)y),y((p+7)x—py))T with p, q, r natural
numbers and M = p+ q+ r. For k > 2, it is always possible to choose Cor({xinr),
a complementary subspace to Range(li4 ), such that Cor(€i4ar) = IpCor(€y) being

T

In = aPy(z —y)"
Proof. We first see that both subspaces have the same dimension. Indeed, by Lemma
210, Ker(¢y) = (IY,) if k—1 = IM. Otherwise, Ker({x) = {0}. Thus, dim(Cor(¢;)) =
2 if k = IM and dim(Cor(¢;)) = 1, otherwise; i.e., dim(Cor(¢y)) = dim(Cor (L1 ar)).

For completing the proof it is enough to prove that Ip;Cor(¢y) C Cor(€xiar) or
equivalently that Ip;Cor(¢x) N Range({x+nr) = {0} by reductio ad absurdum. Let
pr € Cor () \ {0} such that pplps € Range (£r4ar), then there exists pryy—1 €
?Z+M71 \ {O} such that ékJrM(karM,l) = prlpr, that is, £k+M(pk+M71) is multiple



of Iny. As BEHN o oM g1 p— 1y @D Sy =1 -
w > M, 5=1,...,7 — 1, by applying Lemma [2.10] we have that pxirr—1 =
pr—11n with pr_1 € Pt \ {0} and consequently

Pl = Fo(prani—1) = Fo(pr—1Im) = I Fo(pr—1).

Hence pr = Fa(pr—1), that is, px € Range (£) N Cor (¢;) which gives a contradiction.
| ]

Next result provides an orbital normal form of vector field whose first homogeneous
component is integrable and quadratic Lotka-Volterra type. This normal form depends
on the first integral of the first homogeneous component of the vector field and it is a
suitable normal form for the applications.

Theorem 2.12 Vector field F = Fy + h.o.t. with Fo = (x(—qx + (¢ + r)y),y((p +
r)x —py))T, p,q,r natural numbers and M = p + q + r is orbitally equivalent to

M+1 oo M-+1

x=F+ > 7"D+Y Y 9P1,D,
j=2

i=1 j=2
with nj(»i) € Cor(¢;) and In; = 2Pyl(z —y)".

Proof. Applying Theorem 2.7 and Lemma 2.8, we can assert that F is orbital equiv-
alent to Fa + 3., n;D with n; € Cor (¢;). In order to finish the proof it is sufficient
to apply Lemma Z.T1] for the components of the normal form of degree greater than
M +1. [

3 Main results

Our purpose is to characterize the analytic integrable vector fields which are pertur-
bations of quadratic Lotka-Volterra type. For that, we will assume that the lowest
degree component of the vector field satisfies the necessary condition of analytic inte-
grability given in Proposition [[.6] i.e. we deal with the vector field F = F5 + h.o.t.
with Fo = (z(—qz + (¢ + 7)), y((p + )z —py))T, p,q,r € N, ged(p,q,7) = 1.

We give the main result of our study. It solves the analytic integrability problem for
vector fields which are perturbations of quadratic Lotka-Volterra vector fields whose
first component is polynomially integrable. It also gives the expression of a first
integral.

Theorem 3.13 Let F = Fa + h.o.t. be with Fo = (z(—qz + (¢ + m)y),y((p + )z —
py) T, p,q,7 €N, ged(p,q,7) = 1. The vector field F is analytically integrable if, and
only if, it is orbitally equivalent to F.

Moreover, in such a case, F has an analytic first integral of the form I = Ip; + h.o.t.
being Iny = 2Py%(x — y)" a primitive first integral of Fa.

Proof. We see the sufficiency. The polynomial is In; = 2Py?(y — x)" is a first integral
of Fy which it is transformed into a formal first integral I = Ij; 4+ h.o.t. of F and from
[Theorem A,[15]] F is analytically integrable.

We see the necessity of the condition. Applying Theorem 21 and Lemma 2.8 we can
assert that F is orbital equivalent to G = F2 + > -, 1;D with n; € Cor (¢;).

Let note that F has an analytic first integral equivalents to G has a formal first
integral. Assume that G is formally integrable and not all the 7; are zero. Let N
defined by N = min{j > 1:n; #0}. A formal first integral of G is of the form
I=1, + >_j>an Lj with I; € P;. Imposing the integrability condition we have

0 = (GU)Nn+an = (onD)(Ihy) + Fo(Innign—1)
= MinnIh + banen (Inpien—1) -



But this equation is incompatible since by Lemma 2.17] Mlanf\/_[ € Cor ({p14n) and
Caniaen (Innien—1) = —MinnI,, € Range ({ar4n) which is a contradiction. Conse-
quently, G = F5, i.e. F is orbitally equivalent to Fs.

We now see the second part. First integrals of Fy are U([s) for any formal function
U. So, first integrals of F are U(Ip; + h.o.t.) since F is orbitally equivalent to Fa.
Thus, Ipr + h.o.t. is also a first integral of F. ]

The following theorem characterizes the analytic integrability of a vector field
whose first homogeneous component is quadratic Lotka-Volterra type through the
existence of a Lie symmetry.

Theorem 3.14 Let F = Fa + h.o.t. be with Fy = (z(—qz + (¢ + m)y),y((p + r)z —
py)T, p,q,r € N, ged(p,q,v) = 1. Then F is analytically integrable if, and only if,
there exist a formal vector field G = ijl G;, Gj € Q;j, G = (z,y)T and a formal
scalar function v, v(0) =1 such that [F, G] = VF, i.e. F has a Lie symmetry.

The proof of Theorem B.I4 follows from Theorem .13 and applying [6], Theorem 1.3].

We solve the analytic integrability problem through the existence of a formal in-
verse integrating factor.

Theorem 3.15 Let F = Fa + h.o.t. be with Fy = (z(—qz + (¢ + m)y),y((p + r)z —
py) T, p,q,r €N, ged(p,q,v) = 1. Then F is analytically integrable if, and only if, it
has a formal inverse integrating factor of the form V = xy(x — y) + h.o.t..

Proof. We prove that the condition is necessary. We assume that F is analytically
integrable. From Theorem B3] it is orbitally equivalent to Fo = X, + uD being
h =P gy(x —y) and = 2((—2¢+p+7r)z + (¢+r — 2p)y), which has the inverse
integrating factor h. Undoing the change, it has that F has a formal inverse integrating
V =h+ho.t.

Now we will see the sufficiency of the condition. Let V = h + h.o.t. a formal
inverse integrating factor of F. Since Theorem 27 and Lemma 2§ we can assert
that F is orbital equivalent to G = Fa + >, m;D with n; € Cor (¢;). Therefore,
F has a formal inverse integrating factor if, and only if, G has it too. Moreover, the
formal inverse integrating factor W of G is also of the form W = h 4 h.o.t.. On the
other hand, the unique invariant curves of G are x,y,z — y and any u formal with
u(0) = 1, w is an unit element. So, we get W = hu being u formal and u(0) = 1.
Equation G(W) — Wdiv(G) =0 is

0 = uG(h) + hG(u) — hudiv(G).

As G(h) =3hp+3 ;.5 3hn; and div(G) = 3u + 3°;.5(j + 2)n;, it has that

0= h(G(u) —u)_(j = 1))

j>2

Expanding u = 1+ >,5, u;, it is easy to prove that the equation to degree i + 1

becomes
i—1

0= Ga(us) —imiy1 + »_(2k — i)mi—py1 (3.2)
k=1

We see that n; = 0 for all j. Indeed, otherwise, let jo = min{j € N:n,;4; # 0}.
Equation 2] to degree jo + 1 is
Jo—1

G2(ujo) = Jomjo+1 — Z (2k = jo)mjo —k+1Uk-
k=1

8



As njy—r1 =0 for 1 <k < jo — 1, we get Ga(ujy) = Jonjo+1, i-e. njg41 € Cor (£j,41)
and nj,+1 € Range (¢,+1) . We conclude that 1,41 = 0. [ |

4 An application

Consider the analytic integrability problem of the following system

( T > _ ( r(3y — ) > + < z(az02? + a112y + ap2y?) ) (4.3)

vy ) \yBz-y) y (b0 + biwy + boay®) ) '
The first homogeneous component of the vector field is Fo = (z(—z + 3y), y(3z —

y))T, where Fy = X}, + uD with h = $zy(z — y) and = 1(z + y). The vector field

F, is polynomially integrable and a primitive first integral is I = zy(z — y)%.
The following result solves the integrability problem for this family.

Theorem 4.16 System ({{.3) is analytically integrable if, and only if, one of the fol-
lowing conditions holds:

(1) bi1 + 5boz = bag + 2boz = a11 + 3bo2 = azo — bo2 = agz = 0,

(2) bi1 + 3boz = aoz + 2bo2 = a11 + 5bo2 = azg — boz = bag =0,

(3) 2a11 + 2a02 — 3bag — 3b11 — Sboz = ag2bao + ao2bi1 + 3ag2bo2 + 2b20bo2 = 2a20 +
bag + b11 + 3bo2 = 0,

(4) ao2 + 5boz = a1 + b1 = Sazo + bao,

(5) a11 + b11 = azo + bo2 = ap2 = b,

(6) bzo — bo2 = ao2 + bo2 = a11 + bi1 = ago + boz.

Proof. To prove the necessary condition, it has computed the first coefficients of the
normal form given in Theorem 212l By Theorem[3.13] the vanishing of the coefficients
leads us to the integrability. In this case, it has been necessary the coefficients of the
normal form up order 7,

(z, y)T =Fy+ (ang + asx® + oyt + asxly + Bsyls + a6x214)(:1:, y)T.

The coefficients aw, ag, oy, as, ag and S5 are polynomials too long, so we do not given
them here. Their vanishing arrives to systems (A3]) for cases 1-6.

We prove the sufficiency. System (43]) for case 1 has an analytic first integral
ay(x —y — boox? + $bo2wy)*(1 — boow — bo2y) 3.
System ([@3) for case 2 is transformed into system (3] for case 1 by using the invo-
lution (z,y) < (y,x).
System (A3]) for case 3 has an inverse integrating factor zy(x — y)(2 + baox + b1z +
3bgax — 2bg2y) whose first component is h. Applying Theorem [B.15] the vector field is
analytically integrable.
System ([@3) for case 4 has a polynomial first integral xy(3x — 3y — 3agx? + by1zy +
3bo2y?)?.
System ([{3)) for case 5 has an analytic first integral

Iy(3$ — 3y + (bOQ + bll)Iy)2(2 + 2b02$ — 2b02y + (b02b11 + bg2)$y)73.

System ([@3]) in the case 6, for bj; = —2bga, has an inverse integrating factor xy(x —
Y)(1 + boaz — bo2y). Otherwise, we have not found the expression of an inverse inte-
grating factor starting by h. In this case, we center on proving its existence in order
to apply Theorem

Consider V = zyC(x,y) with C the invariant curve given by Lemma[.T7 It has that
F(V) = zyF(C)+zCF(y)+yCF(z) = V(KW 4+ K@+ K®) with K, K?) and K®)
the cofactors of z,y and C, respectively, K1) = —z+3y—bgox?® —by12y—booy?, K =

32 — y + boax® + biyiwy + bay? and KG) = —(z + y)(1 + 2bgaz — 2bg2y) and as
KO+ K@ 4+ KO = 2 4y — 2bgaa?® + 2bgoy? = div(F), V is an inverse integrating
factor of F. This concludes the proof. [ ]



Lemma 4.17 System ({{.3) for case 6 has an invariant curve C = x —y + h.o.t. with
cofactor K = —(x + y)(1 + 2bgax — 2bpay).

Proof. System (&3] for case 6 is x = Fy + F3 with Fy = (z(—z + 3y), y(3z —y))?
and F3 = (x(—b02x2 — bllxy — b02y2), y(b02I2 + bllxy + bogyz))T.

We claim that there exists a formal invariant curve of F of the form C = ) i>1Cj
with B

Coj1=Agj a2’ My H(w —y), Coj =2’ "y~ (Ag;a® + Byjay — Agjy°), (4.4)

for any j > 1, with cofactor K + K, being K1 = —x —y and Ky = —2bgax? + 2bgoy>.
We are going to verify that C satisfies F/(C) — KC = 0 degree to degree.

For the degree 2, F»(C1) — K1C; = 0 arrives to C; = x — gy, and for the degree 3,
F2(CQ) + F3(Cl) — (K1 — C1 K9 =0, we get Cy = b02$2 + %(bll - 4b02)$y + b02y2.
Thus, C; and Cs have the form given by ([@4]). Assume that (@3] is true for 255 — 1
and 2jp and we prove that also it holds for 2jy + 1 and 2jy + 2.

Equation F(C) — KC = 0 for degree 2jo + 2 is

Fy(Cajyr1)=Cojo 1K1 = —F3(Cajy ) +Caj, Ko = 227y (w—y) (z+y) (Azj, br1— Bajoboa).-
A solution of this equation is Cajo+1 = (Azj,b11 — Baj,bo2)z? ~tyio=(z — y), i.e.
ng0+1 is of the form given by (IE) with A2j0+1 = Agjo bll — B2j0 bog.
Analogously, equation F(C) — KC = 0 for degree 2jy + 3 is

Fy(Cajot2) — CajosaK1 = —Agjy1137°y”° (x + y) (boza® — (b11 + 4bo2)xy + bo2y?).
A solution of this equation is

bo2 224 ( b1 4(2j0 + 1)boz Yoy bo y2>
2jo — 1 2jo+3 " (2o —1)(2jo +3) 2jo—17 )"

Cajot2 = Agjo 1270y (—

i.e. Cgjy42 is of the form given by (f4]). Therefore, the result is proved. [ |
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