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Abstract

We solve the analytic integrability problem for differential systems in the plane
whose origin is an isolated singularity and the first homogeneous component is a
quadratic Lotka-Volterra type. As an application, we give the analytically integrable
systems of a class of systems ẋ = x(P1+P2), ẏ = y(Q1+Q2), being Pi, Qi homogeneous
polynomials of degree i.

1 Introduction and statement of the main result

We focus on the study of the analytic integrability of a planar differential system

ẋ = F(x) (1.1)

where F is analytic in a neighborhood of the origin.
Writing the Taylor expansion F = Fn + Fn+1 + · · · , Fn 6≡ 0, we notice that the

condition of polynomial integrability of Fn, lowest degree homogeneous term of the
vector field, is a necessary condition in order to be F analytically integrable.

The analytically integrable differential systems with non-null linear part, i.e. n = 1,
and F1 polynomially integrable, are orbitally linearizable. Indeed, it has the following
cases in function the eigenvalues of D(F1)(0): if λ1λ2 6= 0, the origin is either a saddle,
or node or a non-degenerate monodromic singular point (with complex eigenvalues).
If λ1 = 0 and λ2 6= 0, the origin is a saddle-node. Finally if λ1 = λ2 = 0, it has a
nilpotent singular point. The nodes and saddle-nodes are not analytically integrable.
A non-degenerate monodromic point is analytically integrable if, and only if, it is
orbitally equivalent to (−y, x)T , and a resonant saddle has an analytic first integral
around the singular point if, and only if, it is orbitally equivalent to (px,−qy)T with
p, q ∈ N, see [12, 16]. The most studied systems whose origin is a resonant saddle are
the Lotka-Volterra systems, see [7, 8, 9, 10, 11, 13, 14, 17] and references therein.

Recently, it is proved that a nilpotent singular point is analytically integrable if,
and only if, the vector field is orbital equivalent to its lowest degree quasi-homogeneous
term, see [5].

For vector fields with null linear part (a degenerate singular point) some partial
results are known. Not any analytically integrable vector field with null linear part is
orbitally equivalent to its first quasi-homogeneous component, see [3, 4]. The analytic
integrability problem when the first quasi-homogeneous component of F is conservative
whose Hamiltonian function h has only simple factors is completely solved in [2]. In
[1] it is studied a particular case with h having multiple factors.
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In this work, we deal with perturbations of homogeneous quadratic Lotka-Volterra
systems,

F = F2 + · · · , F2(x, y) = (xP1(x, y), yQ1(x, y))
T

with P1 and Q1 homogeneous polynomials of degree one (vector field with null linear
part) and the origin is an isolated singular point of ẋ = F2(x).

Here, we solve the analytic integrability problem for these systems. More specifi-
cally, we prove that, under the condition of polynomial integrability of F2, the vector
field F is analytically integrable if, and only if, it is orbitally equivalent to its lowest
degree component. (Theorem 3.13).

As consequence, we characterize its analytic integrability through the existence of
a Lie symmetry (Theorem 3.14) and of an inverse integrating factor (Theorem 3.15).

We emphasize that for the vector fields F = F3 + · · · , whose first homogeneous
component is F3(x, y) = (xP2(x, y), yQ2(x, y))

T , with P2 and Q2 homogeneous poly-
nomials of degree two, the existence of an analytic first integral is not equivalent
to the orbital equivalence of its lowest degree component. In fact, the vector field
(x(−3y2 − x2), y(y2 + 3x2))T + (y4, 0)T is a perturbation of a cubic Lotka-Volterra
type, analytically integrable since it is Hamiltonian. Nevertheless, it is not possible
to transforms it into its lowest degree component. So, for n ≥ 3, the problem is still
open.

Finally, in Section 4, we calculate the systems

(

ẋ
ẏ

)

=

(

x(−x + 3y)
y(3x− y)

)

+

(

x(a20x
2 + a11xy + a02y

2)
y(b20x

2 + b11xy + b02y
2)

)

with an analytic first integral at the origin.

1.1 Invariant curves and first integrals of vector fields

First we give the definition of invariant curve and its associated cofactor.
We deal with a vector field F = (P,Q)T with P,Q analytic at the origin and

P (0) = Q(0) = 0. Throughout the paper, we will denote by F the operator associated
to the vector field F, that is, F := P∂x+Q∂y. We recall the concept of invariant curve
and its associated cofactor.

Definition 1.1 It is said that C ∈ C[[x, y]] (algebra of formal power series in x, y
over C), with C(0) = 0, is an invariant curve of the vector field F, if there exists
K ∈ C[[x, y]], named cofactor of C, such that F (C) = KC.
Moreover, if K ≡ 0, it is said that F is formally integrable and C is a first integral of
F.

Let note that any formal function C with C(0) 6= 0, satisfies F (C) = KC with
K = F (C)/C ∈ C[[x, y]].

We will denote by Pk the vector space of homogeneous scalar polynomials of degree
k, and byQk the vector space of polynomial homogeneous vector fields of degree k. We
will use Taylor expansion of functions and vector fields without to consider questions of
convergence. We note that analytic integrability is equivalent to formal integrability,
see Mattei & Moussu [15].

Throughout the paper, we will be denoted by D = (x, y)T ∈ Q1 (dissipative
homogeneous vector field) and by Xh = (−∂h/∂y, ∂h/∂x)T (Hamiltonian vector field
associated to the polynomial h).
The following splitting of a homogeneous vector field plays a main role in our study.

Proposition 1.2 [2, Prop.2.7] Every Fk ∈ Qk can be uniquely written as Fk =
Xh + µD with h := 1

k+1 (D ∧ Fk) ∈ Pk+1 (product wedge of both vector fields) and

µ := 1
k+1div(Fk) ∈ Pk−1 (divergence of Fk).
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We give the Taylor expansion of a formal invariant curve of a formal vector field.

Proposition 1.3 Consider F =
∑

j≥n Fj , Fj ∈ Qj with Fn 6≡ 0. Let C a formal
invariant cuve of F with cofactor K. Then, C =

∑

j≥s Cj , Cj ∈ Pj and K =
∑

j≥n Kj, Kj ∈ Pj , being the polynomial Cs an invariant curve of the polynomial
vector field Fn with cofactor Kn.

Proof. It is enough to consider the lowest degree homogeneous term of the equality
F (C) −KC = 0.

The following two results show the invariant curves of a homogeneous vector field.

Proposition 1.4 Every homogeneous polynomial invariant curve of a homogeneous
vector field Fn is given by gn1

1 gn2

2 . . . gnm
m being each gj a polynomial invariant curve

of Fn.
Moreover, its cofactor is n1K1 + · · ·+ nmKm, being Kj the cofactor of gj.

Proof. We suppose that g = g1p, (g1 an irreducible homogeneous polynomial), is
an invariant curve of Fn with Kn cofactor of g. It has that Fn(g1p) = g1Fn(p) +
pFn(g1) = Kng1p, that is, g1(pKn − Fn(p)) = pFn(g1). From the irreducibility of
g1, it has two situations: either g1 is an irreducible invariant curve of Fn, in such
case, p is also an invariant curve of Fn and we repeat the process for p. Or p = qg1,
i.e. g = g21q. We now have that Fn(g

2
1q) = g21Fn(q) + 2qg1Fn(g1) = Kng

2
1q. Thus,

g1(qKr − Fr(q)) = 2qFr(g1). Reasoning of similar way, it completes the proof.
The second part is obtained easily.

Proposition 1.5 Given Fn ∈ Qn, any factor of h is an invariant curve of Fn. Con-
versely, any homogeneous polynomial invariant curve of Fn is a factor of h.
Moreover, if I is a polynomial first integral of Fn, then I = gn1

1 gn2

2 · · · gnm
m where

g1, . . . , gnm
are all the irreducible factors of h and ni > 0.

Proof. We know that Fn = Xh + µD with µ = 1
n+1div(Fn). Let f ∈ Ps a factor

of h then h = fg and Fn(f) = Xfg(f) + µD(f) = fXg(f) + sµf = (Xg(f) + sµ)f
Therefore, f is an invariant curve of Fn.
If f ∈ P

t

s is an irreducible invariant curve of Fn with cofactorKn then Knf = Fn(f) =
Xh(f)+µD(f) = Xh(f)+sµf. Thus, Xh(f) = (Kn−sµ)f and f is an invariant curve
of Xh. So, f divides to h.
Last on, if I is a first integral of Fn, it is an invariant curve of Fn, that is, from
Proposition 1.4, a factorization of I is formed by the irreducible factors of h. On the
other hand, a first integral is zero on every invariant curve. So, ni > 0.

1.2 Necessary condition of analytic integrability

Now we study the integrability problem for a vector field whose first homogeneous
component is a quadratic type Lotka-Volterra. The following result determines the
expression of the lowest degree component in the case of polynomial integrability of
this class of vector fields.

Proposition 1.6 (Necessary condition of analytic integrability) Let F = F2+
h.o.t. be with F2 = (x(a1x+ a2y), y(b1x+ b2y))

T such that the origin of ẋ = F2(x) is
isolated (a1, b2, a2b1 − a1b2 are different from zero). If F is formally integrable, then
b1 − a1, b2 − a2 are different from zero, and there exists Φ1 ∈ Q1, det (DΦ1(0)) 6= 0
such that G := (Φ1)∗ F = G2 + h.o.t., being

G2 = (x(−qx + (q + r)y), y((p+ r)x − py))T , p, q, r ∈ N, gcd(p, q, r) = 1

and IM = xpyq(y − x)r is a polynomial first integral of G2 of degree M = p+ q + r.

3



Proof. Let I = IN + h.o.t. be a formal first integral of F. Equation F (I) = 0 for
degree N+1 is F2(IN ) = 0, i.e. F2 is polynomially integrable and IN is a first integral
of F2.
Polynomial h associated to F2 is h = 1

3xy((b1 − a1)x+ (b2 − a2)y).
We suppose that a1 = b1 (analogously for a2 = b2). From Proposition 1.5, if there
would exist a first integral of F2, it would have the expression IN = xn1yn2 with
ni > 0. So, F2(IN ) = 0 becomes

n1a1 + n2b1 = 0, n2b2 + n1a2 = 0.

Therefore, n1 = n2 = 0 since a2b1 − a1b2 6= 0. This contradicts the existence of the
first integral.
We assume that b1 6= a1 and b2 6= a2. From Proposition 1.5, the first integral is
IMs = xpsyqs((b1−a1)x+(b2−a2)y)

rs with p, q, r, s natural numbers, gcd(p, q, r) = 1
and M = p+ q + r. By imposing F2(IMs) = 0, it has that

(p+ r)a1 + qb1 = 0, (q + r)b2 + pa2 = 0,

i.e. a2 = − b2(q+r)
p

and b1 = −a1(p+r)
q

.

The linear change Φ1(x, y, t) = (−pa1x,−qb2y, st/pq) transformsF2 intoG2 = (x(−qx+
(q + r)y), y((p + r)x− py))T being IM = xpyq(y − x)r a first integral of G2.

2 Normal Form for perturbations of homogeneous

quadratic Lotka-Volterra systems

We will not consider questions of convergence in the normal forms because the formal
integrability is equivalent to the analytical integrability for the vector fields analyzed,
see [15].

In [5], the authors provide an orbital normal form of the vector field whose first
quasi-homogeneous term is non-conservative. Here, we provide the expression of the
normal form for the vector field F = F2 + h.o.t. with F2 = Xh + µD ∈ Q2.

For every k ∈ N, we fix the subspaces ∆k+2 such that Pk+2 = ∆k+2

⊕

hPk−1. We
consider the linear operators:

ℓk : Pk−1 −→ P
t

k

ηk−1 −→ F2(ηk−1),

and

ℓck+3 : ∆k+2 −→ ∆k+3

gk+2 −→ Proy∆k+3
(F2 −

3
k+3µD)(gk+2).

Theorem 2.7 Let F =
∑

j≥2 Fj, Fj ∈ Qj. If Ker
(

ℓck+3

)

= {0} for all k ∈ N then F
is orbitally equivalent to

G = F2 +
∑

j>2

Gj , with Gj = Xgj+1
+ ηj−1D ∈ Qj ,

where gj+1 ∈ Cor
(

ℓcj+1

)

and ηj−1 ∈ Cor (ℓj−1). (where Cor(·) is a complementary
subspace to Range(·)).

Next results are referred to vector fields whose first homogeneous component is
polynomially integrable and quadratic Lotka-Volterra type.
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Lemma 2.8 Consider F2 = (x(−qx+(q+ r)y), y((p+ r)x−py))T with p, q, r natural
numbers. It has that for all k ∈ N, Ker

(

ℓck+3

)

= {0}. Moreover, Cor
(

ℓck+3

)

= {0}.

Proof. Vector field F2 = Xh + µD with h = p+q+r
3 xy(x − y) and µ = 1

3 ((−2q + p+
r)x + (q + r − 2p)y). We choose the bases ∆k+2 = 〈xk+2, xk+1y, yk+2〉 and ∆k+3 =
〈xk+3, xk+2y, yk+3〉.
Consider

G
(k+3)
2 = F2 −

3
k+3µD =

(

(−q − −2q+p+r
3+k

)x2 + (q + r − q+r−2p
3+k

)xy

(p+ r − −2q+p+r
3+k

)xy + (−p− q+r−2p
3+k

)y2

)

.

We have that

G
(k+3)
2 (xk+2) = A1x

k+3 +B1x
k+2y,

G
(k+3)
2 (xk+1y) = A2x

k+2y +B2x
k+1y2 = (A2 +B2)x

k+2y − 3B2

p+q+r
xkh,

G
(k+3)
2 (yk+2) = A3xy

k+2 +B3y
k+3 = A3x

k+2y +A3hpk(x, y) +B3y
k+3,

with

A1 = − 2+k
3+k

(q + qk + p+ r),

B1 = 2+k
3+k

(2q + qk + 2r + rk + 2p),

A2 +B2 = 2+k
3+k

(p+ q + r + rk),

A3 = 2+k
3+k

(2p+ pk + 2r + rk + 2q),

B3 = − 2+k
3+k

(p+ pk + q + r),

and pk homogeneous polynomial of degree k. In this way, the determinant of the
matrix of the operator ℓck+3 is

(k+2)3

(k+3)3 (q + qk + p+ r)(q + p+ rk + r)(p+ pk + q + r),

which is different from zero. Therefore, both Ker
(

ℓck+3

)

and Cor
(

ℓck+3

)

are trivial
subspaces.

For computing Cor (ℓk) with k > n, we need the following two technical lemmas.

Lemma 2.9 Consider Fn ∈ Qn irreducible and f ∈ C[x, y] an irreducible invariant
curve of Fn. If Fn(pk) ∈ 〈f〉 with pk ∈ Pk, then pk ∈ 〈f〉.

Proof. If Fn(pk) = 0 then pk is a first integral of ẋ = Fn. A first integral of Fn

vanishes on any invariant curve of it, i.e., pk(x) = 0 when f(x) = 0. Therefore, by
Hilbert‘s Nullstellensatz pk ∈ rad 〈f〉. Since 〈f〉 is a prime ideal, then 〈f〉 = rad 〈f〉,
in consequence p ∈ 〈f〉.

If Fn(pk) 6= 0, let ν ∈ C[x, y] \ {0} such that fν = Fn(pk). Consider γ(t), real
or complex, a solution curve of ẋ = Fn(x) which is a parametrization of f(x) = 0.
We assume that limt→−∞ γ(t) = 0, (the other case limt→+∞ γ(t) = 0 is proved in a
similar way). Taking into account that pk(0) = 0 then

pk(γ(t)) = pk(γ(t))− pk(0) =

∫ t

−∞

dpk(γ(s))ds
ds

=

∫ t

−∞

∇xpk · Fn(γ(s))ds

=

∫ t

−∞

Fn(pk)(γ(s))ds =

∫ t

−∞

f(γ(s))ν(γ(s))ds = 0.

Recalling that f(x) = 0 is the union of orbits, we have that pk(x) = 0 when f(x) = 0.
Therefore, by Hilbert‘s Nullstellensatz pk ∈ rad 〈f〉. Since 〈f〉 is a prime ideal, then
〈f〉 = rad 〈f〉, in consequence pk ∈ 〈f〉.
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Remark. The hypothesis of the irreducibility of the invariant curve is fundamental.
For instance, if we consider F2 := (−2x2,−3x2 − 2xy + 3y2)T ∈ Q2 irreducible and
the invariant curve (y − x)2, for p3 = x2(y − x) we have that F2(p3) = 3x2(y − x)2 ∈
〈(y − x)2〉 and nevertheless p3 /∈ 〈(y − x)2〉.

Lemma 2.10 Consider F2 = (x(−qx+(q+r)y), y((p+r)x−py))T with p, q, r natural
numbers. Let k and m natural numbers with p+q+r 6= pk

j
, p+q+r 6= q k

j
, p+q+r 6=

r k
j
, j = 1, . . . ,m− 1. If pk ∈ Pk such that F2(pk) ∈ 〈fm

i 〉 , being f1 = x, f2 = y, f3 =

x− y, invariant curves of F2, then pk ∈ 〈fm
i 〉 , i = 1, 2, 3.

Proof. We prove the case i = 1, (f1 = x), the cases i = 2, 3 are analogous.
Lemma 2.9 proves the statement for m = 1.

We first consider the case m = 2. We denote by K1 = −qx+ (q+ r)y the cofactor
of x. If F2(pk) ∈ 〈x2〉 then F2(pk) ∈ 〈x〉 and by Lemma 2.9 we have that there exists
pk−1 ∈ Pk−1 such that pk = xpk−1, therefore

F2(pk) = F2(xpk−1) = pk−1F2(x) + xF2(pk−1) = pk−1K1x+ xF2(pk−1)

= x
(

K1

k−1D(pk−1) + F2(pk−1)
)

= x(F2 +
K1

k−1D)(pk−1) ∈ 〈x2〉.

Hence (F2 +
K1

k−1D)(pk−1) ∈ 〈x〉. Vector field

F2 +
K1

k−1D =
1

k − 1

(

xk(−qx+ (q + r)y)
y((p+ r)k − p− q − r)x + (−pk + p+ q + r)y)

)

is irreducible if, and only if, p + q + r 6= pk. Applying Lemma 2.9 we have that
pk−1 ∈ 〈x〉 and consequently pk ∈ 〈x2〉.

Consider now the case m = 3. If F2(pk) ∈ 〈x3〉 then F2(pk) ∈ 〈x2〉 and by the
previous paragraph we have that there exists pk−2 ∈ Pk−2 such that pk = x2pk−2,
therefore

F2(pk) = F2(x
2pk−2) = pk−2F2(x

2) + x2F2(pk−2) = 2pk−2K1x
2 + x2F2(pk−2)

= x2
(

2K1

k−2D(pk−2) + F2(pk−2)
)

= x2(F2 +
2K1

k−2D)(pk−2) ∈ 〈x3〉.

Hence (F2 + 2K1

k−2D)(pk−2) ∈ 〈x〉 and as F2 + 2K1

k−2D is irreducible if, and only if,

p + q + r 6= pk
2 , applying Lemma 2.9 we have that pk−2 ∈ 〈x〉 and consequently

pk ∈ 〈x3〉. Reasoning by induction we get the result for m ∈ N.
Reasoning as before, it is easy to prove that for f2 = y and f3 = x− y, the conditions
are p+ q + r 6= q k

j
and p+ q + r 6= r k

j
, j = 1, . . . , m− 1, respectively.

Next statement establishes a cyclicity relation between the co-ranges of the oper-
ators ℓk.

Lemma 2.11 Consider F2 = (x(−qx+(q+r)y), y((p+r)x−py))T with p, q, r natural
numbers and M = p + q + r. For k ≥ 2, it is always possible to choose Cor(ℓk+M ),
a complementary subspace to Range(ℓk+M ), such that Cor(ℓk+M ) = IMCor(ℓk) being
IM = xpyq(x − y)r.

Proof. We first see that both subspaces have the same dimension. Indeed, by Lemma
2.10, Ker(ℓk) = 〈I lM 〉 if k−1 = lM . Otherwise, Ker(ℓk) = {0}. Thus, dim(Cor(ℓk)) =
2 if k = lM and dim(Cor(ℓk)) = 1, otherwise; i.e., dim(Cor(ℓk)) = dim(Cor(ℓk+M )).

For completing the proof it is enough to prove that IMCor(ℓk) ⊂ Cor(ℓk+M ) or
equivalently that IMCor(ℓk) ∩ Range(ℓk+M ) = {0} by reductio ad absurdum. Let
pk ∈ Cor (ℓk) \ {0} such that pkIM ∈ Range (ℓk+M ), then there exists pk+M−1 ∈
P
t

k+M−1 \ {0} such that ℓk+M (pk+M−1) = pkIM , that is, ℓk+M (pk+M−1) is multiple
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of IM . As p(k+M−1)
j

> pM
j

> M, j = 1, . . . , p − 1; q(k+M−1)
j

> M, j = 1, . . . , q − 1;
r(k+M−1)

j
> M, j = 1, . . . , r − 1, by applying Lemma 2.10 we have that pk+M−1 =

pk−1IM with pk−1 ∈ P
t

k−1 \ {0} and consequently

pkIM = F2(pk+M−1) = F2(pk−1IM ) = IMF2(pk−1).

Hence pk = F2(pk−1), that is, pk ∈ Range (ℓk) ∩ Cor (ℓk) which gives a contradiction.

Next result provides an orbital normal form of vector field whose first homogeneous
component is integrable and quadratic Lotka-Volterra type. This normal form depends
on the first integral of the first homogeneous component of the vector field and it is a
suitable normal form for the applications.

Theorem 2.12 Vector field F = F2 + h.o.t. with F2 = (x(−qx + (q + r)y), y((p +
r)x − py))T , p, q, r natural numbers and M = p+ q + r is orbitally equivalent to

ẋ = F2 +
M+1
∑

j=2

η
(0)
j D+

∞
∑

i=1

M+1
∑

j=2

η
(i)
j IiMD,

with η
(i)
j ∈ Cor(ℓj) and IM = xpyq(x− y)r.

Proof. Applying Theorem 2.7 and Lemma 2.8, we can assert that F is orbital equiv-
alent to F2 +

∑

j≥2 ηjD with ηj ∈ Cor (ℓj). In order to finish the proof it is sufficient
to apply Lemma 2.11 for the components of the normal form of degree greater than
M + 1.

3 Main results

Our purpose is to characterize the analytic integrable vector fields which are pertur-
bations of quadratic Lotka-Volterra type. For that, we will assume that the lowest
degree component of the vector field satisfies the necessary condition of analytic inte-
grability given in Proposition 1.6, i.e. we deal with the vector field F = F2 + h.o.t.
with F2 = (x(−qx + (q + r)y), y((p+ r)x − py))T , p, q, r ∈ N, gcd(p, q, r) = 1.

We give the main result of our study. It solves the analytic integrability problem for
vector fields which are perturbations of quadratic Lotka-Volterra vector fields whose
first component is polynomially integrable. It also gives the expression of a first
integral.

Theorem 3.13 Let F = F2 + h.o.t. be with F2 = (x(−qx + (q + r)y), y((p + r)x −
py))T , p, q, r ∈ N, gcd(p, q, r) = 1. The vector field F is analytically integrable if, and
only if, it is orbitally equivalent to F2.
Moreover, in such a case, F has an analytic first integral of the form I = IM + h.o.t.
being IM = xpyq(x− y)r a primitive first integral of F2.

Proof. We see the sufficiency. The polynomial is IM = xpyq(y− x)r is a first integral
of F2 which it is transformed into a formal first integral I = IM +h.o.t. of F and from
[Theorem A,[15]] F is analytically integrable.
We see the necessity of the condition. Applying Theorem 2.7 and Lemma 2.8, we can
assert that F is orbital equivalent to G = F2 +

∑

j≥2 ηjD with ηj ∈ Cor (ℓj).
Let note that F has an analytic first integral equivalents to G has a formal first
integral. Assume that G is formally integrable and not all the ηj are zero. Let N
defined by N = min {j > 1 : ηj 6≡ 0}. A formal first integral of G is of the form
I = I lM +

∑

j>Ml Ij with Ij ∈ Pj . Imposing the integrability condition we have

0 = (G(I))N+Ml = (ηND)(I lM ) + F2(IMl+N−1)

= MlηNI lM + ℓMl+N (IMl+N−1) .
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But this equation is incompatible since by Lemma 2.11 MlηNI lM ∈ Cor (ℓMl+N ) and
ℓMl+N (IMl+N−1) = −MlηNI lM ∈ Range (ℓMl+N ) which is a contradiction. Conse-
quently, G = F2, i.e. F is orbitally equivalent to F2.

We now see the second part. First integrals of F2 are Ψ(IM ) for any formal function
Ψ. So, first integrals of F are Ψ(IM + h.o.t.) since F is orbitally equivalent to F2.
Thus, IM + h.o.t. is also a first integral of F.

The following theorem characterizes the analytic integrability of a vector field
whose first homogeneous component is quadratic Lotka-Volterra type through the
existence of a Lie symmetry.

Theorem 3.14 Let F = F2 + h.o.t. be with F2 = (x(−qx + (q + r)y), y((p + r)x −
py))T , p, q, r ∈ N, gcd(p, q, r) = 1. Then F is analytically integrable if, and only if,
there exist a formal vector field G =

∑

j≥1 Gj, Gj ∈ Qj, G1 = (x, y)T and a formal
scalar function ν, ν(0) = 1 such that [F,G] = νF, i.e. F has a Lie symmetry.

The proof of Theorem 3.14 follows from Theorem 3.13 and applying [6, Theorem 1.3].

We solve the analytic integrability problem through the existence of a formal in-
verse integrating factor.

Theorem 3.15 Let F = F2 + h.o.t. be with F2 = (x(−qx + (q + r)y), y((p + r)x −
py))T , p, q, r ∈ N, gcd(p, q, r) = 1. Then F is analytically integrable if, and only if, it
has a formal inverse integrating factor of the form V = xy(x− y) + h.o.t..

Proof. We prove that the condition is necessary. We assume that F is analytically
integrable. From Theorem 3.13, it is orbitally equivalent to F2 = Xh + µD being
h = p+q+r

3 xy(x− y) and µ = 1
3 ((−2q+ p+ r)x+(q+ r− 2p)y), which has the inverse

integrating factor h. Undoing the change, it has that F has a formal inverse integrating
V = h+ h.o.t..

Now we will see the sufficiency of the condition. Let V = h + h.o.t. a formal
inverse integrating factor of F. Since Theorem 2.7 and Lemma 2.8, we can assert
that F is orbital equivalent to G = F2 +

∑

j≥2 ηjD with ηj ∈ Cor (ℓj). Therefore,
F has a formal inverse integrating factor if, and only if, G has it too. Moreover, the
formal inverse integrating factor W of G is also of the form W = h + h.o.t.. On the
other hand, the unique invariant curves of G are x, y, x − y and any u formal with
u(0) = 1, u is an unit element. So, we get W = hu being u formal and u(0) = 1.
Equation G(W )−Wdiv(G) = 0 is

0 = uG(h) + hG(u)− hudiv(G).

As G(h) = 3hµ+
∑

j>2 3hηj and div(G) = 3µ+
∑

j>2(j + 2)ηj , it has that

0 = h(G(u)− u
∑

j>2

(j − 1)ηj).

Expanding u = 1 +
∑

i≥1 ui, it is easy to prove that the equation to degree i + 1
becomes

0 = G2(ui)− iηi+1 +

i−1
∑

k=1

(2k − i)ηi−k+1uk (3.2)

We see that ηj = 0 for all j. Indeed, otherwise, let j0 = min {j ∈ N : ηj+1 6≡ 0}.
Equation (3.2) to degree j0 + 1 is

G2(uj0) = j0ηj0+1 −

j0−1
∑

k=1

(2k − j0)ηj0−k+1uk.
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As ηj0−k+1 = 0 for 1 ≤ k ≤ j0 − 1, we get G2(uj0) = j0ηj0+1, i.e. ηj0+1 ∈ Cor (ℓj0+1)
and ηj0+1 ∈ Range (ℓj0+1) . We conclude that ηj0+1 = 0.

4 An application

Consider the analytic integrability problem of the following system
(

ẋ
ẏ

)

=

(

x(3y − x)
y(3x− y)

)

+

(

x(a20x
2 + a11xy + a02y

2)
y(b20x

2 + b11xy + b02y
2)

)

. (4.3)

The first homogeneous component of the vector field is F2 = (x(−x+ 3y), y(3x−
y))T , where F2 = Xh + µD with h = 4

3xy(x − y) and µ = 1
3 (x + y). The vector field

F2 is polynomially integrable and a primitive first integral is I4 = xy(x− y)2.
The following result solves the integrability problem for this family.

Theorem 4.16 System (4.3) is analytically integrable if, and only if, one of the fol-
lowing conditions holds:
(1) b11 + 5b02 = b20 + 2b02 = a11 + 3b02 = a20 − b02 = a02 = 0,
(2) b11 + 3b02 = a02 + 2b02 = a11 + 5b02 = a20 − b02 = b20 = 0,
(3) 2a11 + 2a02 − 3b20 − 3b11 − 5b02 = a02b20 + a02b11 + 3a02b02 + 2b20b02 = 2a20 +
b20 + b11 + 3b02 = 0,
(4) a02 + 5b02 = a11 + b11 = 5a20 + b20,
(5) a11 + b11 = a20 + b02 = a02 = b20,
(6) b20 − b02 = a02 + b02 = a11 + b11 = a20 + b02.

Proof. To prove the necessary condition, it has computed the first coefficients of the
normal form given in Theorem 2.12. By Theorem 3.13, the vanishing of the coefficients
leads us to the integrability. In this case, it has been necessary the coefficients of the
normal form up order 7,

(ẋ, ẏ)T = F2 + (α2x
2 + α3x

3 + α4x
4 + α5xI4 + β5yI4 + α6x

2I4)(x, y)
T .

The coefficients α2, α3, α4, α5, α6 and β5 are polynomials too long, so we do not given
them here. Their vanishing arrives to systems (4.3) for cases 1–6.

We prove the sufficiency. System (4.3) for case 1 has an analytic first integral
xy(x − y − b02x

2 + 1
3b02xy)

2(1− b02x− b02y)
−3.

System (4.3) for case 2 is transformed into system (4.3) for case 1 by using the invo-
lution (x, y) ↔ (y, x).
System (4.3) for case 3 has an inverse integrating factor xy(x − y)(2 + b20x+ b11x +
3b02x− 2b02y) whose first component is h. Applying Theorem 3.15, the vector field is
analytically integrable.
System (4.3) for case 4 has a polynomial first integral xy(3x− 3y− 3a20x

2 + b11xy +
3b02y

2)2.
System (4.3) for case 5 has an analytic first integral

xy(3x− 3y + (b02 + b11)xy)
2(2 + 2b02x− 2b02y + (b02b11 + b202)xy)

−3.

System (4.3) in the case 6, for b11 = −2b02, has an inverse integrating factor xy(x −
y)(1 + b02x − b02y). Otherwise, we have not found the expression of an inverse inte-
grating factor starting by h. In this case, we center on proving its existence in order
to apply Theorem 3.15.
Consider V = xyC(x, y) with C the invariant curve given by Lemma 4.17. It has that
F (V ) = xyF (C)+xCF (y)+yCF (x) = V (K(1)+K(2)+K(3)) withK(1),K(2) andK(3)

the cofactors of x, y and C, respectively, K(1) = −x+3y−b02x
2−b11xy−b02y

2, K(2) =
3x − y + b02x

2 + b11xy + b02y
2 and K(3) = −(x + y)(1 + 2b02x − 2b02y) and as

K(1) +K(2) +K(3) = x + y − 2b02x
2 + 2b02y

2 = div(F), V is an inverse integrating
factor of F. This concludes the proof.
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Lemma 4.17 System (4.3) for case 6 has an invariant curve C = x− y+ h.o.t. with
cofactor K = −(x+ y)(1 + 2b02x− 2b02y).

Proof. System (4.3) for case 6 is ẋ = F2 + F3 with F2 = (x(−x + 3y), y(3x− y))T

and F3 = (x(−b02x
2 − b11xy − b02y

2), y(b02x
2 + b11xy + b02y

2))T .
We claim that there exists a formal invariant curve of F of the form C =

∑

j≥1 Cj

with

C2j−1 = A2j−1x
j−1yj−1(x − y), C2j = xj−1yj−1(A2jx

2 + B2jxy −A2jy
2), (4.4)

for any j ≥ 1, with cofactor K1 +K2 being K1 = −x− y and K2 = −2b02x
2 +2b02y

2.
We are going to verify that C satisfies F (C)−KC = 0 degree to degree.
For the degree 2, F2(C1) − K1C1 = 0 arrives to C1 = x − y, and for the degree 3,
F2(C2) + F3(C1) − C2K1 − C1K2 = 0, we get C2 = b02x

2 + 1
3 (b11 − 4b02)xy + b02y

2.
Thus, C1 and C2 have the form given by (4.4). Assume that (4.4) is true for 2j0 − 1
and 2j0 and we prove that also it holds for 2j0 + 1 and 2j0 + 2.
Equation F (C)−KC = 0 for degree 2j0 + 2 is

F2(C2j0+1)−C2j0+1K1 = −F3(C2j0 )+C2j0K2 = 2xj0yj0(x−y)(x+y)(A2j0b11−B2j0b02).

A solution of this equation is C2j0+1 = (A2j0b11 − B2j0b02)x
j0−1yj0−1(x − y), i.e.

C2j0+1 is of the form given by (4.4) with A2j0+1 = A2j0b11 −B2j0b02.
Analogously, equation F (C) −KC = 0 for degree 2j0 + 3 is

F2(C2j0+2)− C2j0+2K1 = −A2j0+1x
j0yj0(x + y)(b02x

2 − (b11 + 4b02)xy + b02y
2).

A solution of this equation is

C2j0+2 = A2j0+1x
j0yj0

(

−
b02

2j0 − 1
x2 + (

b11
2j0 + 3

+
4(2j0 + 1)b02

(2j0 − 1)(2j0 + 3)
)xy +

b02
2j0 − 1

y2
)

,

i.e. C2j0+2 is of the form given by (4.4). Therefore, the result is proved.
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