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THE SAME n-TYPE STRUCTURE OF THE SUSPENSION OF THE
WEDGE PRODUCTS OF THE EILENBERG-MACLANE SPACES

DAE-WOONG LEE

ABSTRACT. For a connected CW-complex, we let SNT(X) be the set of all homotopy types
[Y] such that the Postnikov approximations X and Y™ of X and Y, respectively, are
homotopy equivalent for all positive integers n. In 1992, McGibbon and Mgller (|22, page
287]) raised the following question: Is SNT(XCP®°) = x or not? In this article, we give an
answer to the more generalized version of this query: The set of all the same n-types of the
suspended wedge sum of the Eilenberg-MacLane spaces of various types of both even and

odd integers is the set which consists of only one element as a single homotopy type of itself.

1. INTRODUCTION

Let Y be a connected CW-space and let Y™ denote its nth Postnikov approximation up
through dimension n. We recall that Y™ can be obtained from Y by attaching cells of
dimension n + 2 and higher cells in order to achieve a new space all of whose homotopy groups
are zero in dimensions greater than n; that is, to kill off the generators of the homotopy groups
of Y in dimensions above n. In this case, there exist maps f, : ¥ — Y("),n > 1 such that
fog 2 m(Y) — 7;(Y (™) is an isomorphism for i < n and m(Y(™) = 0 for all i > n + 1.
Furthermore, there exist maps pp41 : Y **1 — Y such that

K(mpi1(Y),n+1) — =yt 7y
is a fibration. We say that two connected CW-spaces Y and Z have the same n-type if the nth
Postnikov approximations Y™ and Z( of Y and Z, respectively, are homotopy equivalent
for each n > 1.

Back in the middle of the 20th century, the following question is mainly due to J. H. C.
Whitehead ([29] and [30]): If two CW-complexes are of the same n-type for all n, are they
necessarily of the same homotopy type? It is well known that the answer to this query is yes
if Y is either finite dimensional or if Y has only a finite number of nonzero homotopy groups.
However, the answer is generally no! In 1957, Adams [I] showed that if K is a simply connected
finite noncontractible CW-complex and if Y =[], -, K (") with the direct limit topology, then
Y and Y x K have the same n-type for all n, but they are not of the same homotopy type. We
note that the Adam’s example does not have finite type. In 1966, Gray [14] constructed one
with finite type.

In this paper, we work on the pointed homotopy category so that we do not distinguish
notationally between a base point preserving continuous map and its homotopy class. As
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usual, we denote Z , Z and Q by the sets of all positive integers, integers and rational numbers,
respectively. And we will make use of the notations ¥ and §2 for the suspension functor and
the loop functor in the pointed homotopy category, respectively.

Let SNT(X) denote the set of all homotopy types [Y] such that the Postnikov approxima-
tions X (™ and Y™ of X and Y, respectively, have the same homotopy types for all integers
n > 1. This is a base point set with the base point * = [X]. In 1976, Wilkerson [31, Theorem
I] showed that there is a bijection of pointed sets SNT'(X) ~ @i{Aut(X("))}, where X is a

connected C'W-complex, 1&1711(—) is the first derived limit of groups in the sense [10, page 251]

of Bousfield-Kan and Aut X (™ is the group of homotopy classes of homotopy self-equivalences of
X () Therefore, it can be seen that the torsion subgroups of a graded homotoy group 7, (X (”))
can be ignored in the l'm; computation if X is a space of finite type. For m > 2, an Eilenberg-
MacLane spaces K (Z,m) of type (Z,m) is infinite dimensional and it has a lot of torsion ele-
ments in homotopy groups for sufficiently large m and it is unique up to homotopy. Fortunately,
it is well known that the set of all the same n-types for the [th suspension of the Eilenberg-
MacLane space of type (Z,2a + 1) is trivial for [ > 0; that is, SNT(X!K(Z,2a + 1)) = *.
One of the reasons of this fact is that X'k (Z, 2a + 1) has a rational homotopy type of a single
n-dimensional rationalized sphere Sg, where n = [+ 2a + 1. The even dimensional case, how-
ever, is much more complicated in that XK (Z,2a) has a rational homotopy type of a bouquet
of infinitely many rationalized spheres of dimensions 2a + 1,4a + 1,...,2an + 1,.... So it is
natural for us to ask in the case of even integers. First, the interesting case (a = 1) is the
following question posed by McGibbon and Mgller (|22, page 287]): Is SNT (XK (Z,2)) = * or
not? The positive answer to this question was given in [I8]. Secondly, the original question
was how we know whether or not the set of all same n-type structures of the one suspension of
the Eilenberg-MacLane space K(Z,2a),a > 2 of type (Z, 2a) is trivial in the same n-type point
of view. The answer to this question was also given in [19] saying that it is the one element set
which consists of a single homotopy type of itself; see [20] 21] for the same n-type structures
of the suspension of the smash products of those spaces or a wedge of K(Z,2a)s.

More generally, what will happen in the case of the suspended wedge sum of the Eilenberg-
MacLane spaces of some types of both even and odd integers? The wedge product can be
considered as the coproduct in the homotopy category of pointed spaces. After taking sus-
pensions or wedge products of the Eilenberg-MacLane spaces K(Z,2a) and K(Z,2a + 1) for
a > 1 as the infinite loop spaces, they become interesting but much more intractable for us
to deal with. Therefore, it is worth mentioning what it is in the same n-type point of view
up to homotopy. Despite the salient results on this topics, little is known about the same
n-type structures of the wedge product of those spaces. The main purpose of this paper is
to give an answer to this query as the generalized version of the McGibbon-Mgller’s original
question on the same n-types of the suspension of the infinite complex projective space: Let
X =K(Z,2a)V \/j’;l K(Z,2aj + 1) be the wedge product of the Eilenberg-MacLane spaces,
where ‘@’ is a positive integer. Then SNT(XX) = {[ZX]}.

As the dual notion of Hopf spaces with multiplications, co-H-spaces with comultiplications
play a pivotal role in homotopy theory. We note that a non-contractible co-H-space is the space
of Lusternik-Schnirelmann category 2 (see [28, Chapter X] and [27]); that is, cat(X) = 2 which
is bigger than or equal to the R-cup length of the cohomology of this space with coeflicients in a
commutative ring R. One of the most important classes of co-H-spaces consists of all n-spheres
for n > 1, a wedge of spheres (or co-H-spaces), and the suspensions of a pointed space which
we will deal with in this article.

The paper is organized as follows: In Section 2, we construct self-maps, (pure and hy-
brid) iterated commutators and homotopy self-equivalences by using the suspension and loop
structures, and describe the fundamental results of those maps. In Section 3, we consider the
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iterated Samelson (or Whitehead) products which are rationally nonzero homotopy classes in
the homotopy groups module torsions, and show that there exist (pure and hybrid) iterated
commutators on the suspension and loop structures whose phenomena are exactly the same as
the types of the iterated Samelson (or Whitehead) products as basic ingredients on this paper.
Finally, In Section 4, we describe the main theorem of this paper and make use of all the results
in Sections 2 and 3 for the proof of the theorem.

2. SELF-MAPS AND ITERATED COMMUTATORS

In this section, we consider the self-maps of the suspended wedge sum of the FEilenberg-
MacLane spaces and the iterated commutators of those self-maps in order to construct homo-
topy self-equivalences and to find out various properties of those self-maps. We fix the following
notations that are used throughout this paper:

o Let X := K(Z,2a) V V2, K(Z,2aj + 1) denote a CW-space on the wedge product of
the Eilenberg-MacLane spaces, where ‘a’ is a positive integer.

e X,, means the n-skeleton of X.

o (: QXX NQXX — QXX is a commutator map; that is,

C(fhg)=Ff-g-f"-97",
where the multiplication is originated from the loop structure on QXX (~ JX as an
X-cellular space), and f~* and g~! are the loop inverses of f and g, respectively.
We note that X has a CW-decomposition as follows:
X =(58%UT} Uy, e**UTY Up, €590 - UTL | Uq,_, 2% UT!U,, e y...)
V(S UTE) v (ST UTE) v v (SPUTL U TR v (S2eUFDH g T2 v
Here

(1) o+ S2¢0HD=1 5 Xy (i41)—1 is an attaching map for i =1,2,3,.. ;

(2) T} and Tj2 denote the other cells for torsion subgroups or the Moore spaces whose
homology groups are finite for 4,5 = 1,2,3,...; and

(3) 2% is the 2ai-cell for i =2,3,4....

In order to define self-maps of XX, we first consider the base point preserving maps as
follows:

o Let @1 : X — QXX be the canonical inclusion (or the James map).
o We consider cofibrations

Li Pe;
(21) sz'fl C X X/XQaifl

and

G 49
(2.2) Xoaj © X " X/ X4,

where
(1) ¢; and ¢; are inclusions; and
(2) p.,, and p¢,; are projections for i = 2,3,4,... and j = 1,2,3,... (we note that
Xog—1 = *).
o We also consider the following exact sequences

Pfi Lg
(2.1—&) [X/Xgm',l,QzX] E—— [X,QEX] —_— [Xgm',l,QEX]



The same n-type structure of the suspension of the wedge products of the Eilenberg-MacLane spaces 4

and
g #

P, ¢!
(2.2-a) [X/ X205, O0X] — > [X, Q5 X] —> [Xa4;, 2T X]

induced by the cofibrations above for ¢ =2,3,4,...and j =1,2,3,....
© We now take essential maps

pi: X —= Q¥ X

and

bt X —= QXX
in the groups ker(:}) C [X,Q%X] and ker(gf) C [X,QXX], respectively for i =
2,3,4,...and j =1,2,3,....

From the constructions of ¢; : X — QXX and 1@- : X — QXX above, we note that
there exist homotopy classes @; and v; in the groups [X/Xoq; 1, 22 X] and [X/X2a5-1, 2XX],
respectively, such that following diagrams

L; Py

(2.3) Xoai—1© X — X/X2ai1
\@il /
PilXoqi_1 ¥i

19230.¢

and
G Pej
(2.4) X245 € X X/ X2,
1/3]"X2aj ‘/1;1

9530.¢

are commutative up to homotopy for i = 2,3,4,...and 7 =1,2,3,....

The following tables (Table 1 and Table 2) indicate that the restrictions @;|x,,,_, : X24i—1 —
QXX and ¥;]x,.; : Xoaj — QEX of maps ¢; : X — Q¥X and ¢; : X — QXX respectively,
to the corresponding skeletons are inessential for ¢ = 1,2,3,... and j =1,2,3,....

TABLE 1. Maps ¢; : X — QXX and @;|x,,._, : X2aic1 = QXX fori=1,2,3,...

Maps ?1 P2 P3 .. B
Skeletons Xoa—1 Xaa—1 X6a—1 e Xoai—1
Inessential maps G1lXpas | P2lXees | P3lXear | - Pil Xzai_1

TABLE 2. Maps ¢; : X — Q¥X and 9j|x,,, : Xoaj — QXX for j =1,2,3,...

Maps U ¥s b3 e 153‘
Skeletons Xoq X4a X6a s Xaqj

Inessential maps | 1]x,, V2| X4, V3] xe, e Vil Xaa;
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Let Y = S™ v §" V...V S and let p; : S™ — Y be the canonical inclusion for
i =1,2,...,k. We define and order the basic Whitehead products on Y as follows: Basic
Whitehead products of weight 1 are p1, p2,..., pr which are ordered by p; < p2 < -+ < pg.
Assume that the basic Whitehead products of weight < n have already been defined and
ordered so that if r < s < n, any basic Whitehead product of weight r is less than all basic
Whitehead products of weight s. By induction, we define a basic Whitehead product of weight
n by a basic Whitehead product [A, B], where A is a basic Whitehead product of weight « and
B is a basic Whitehead product of weight 8, a4+ 8 =n, A < B, and if B is a basic Whitehead
product [C, D] of basic Whitehead products C and D, then C < A. The basic Whitehead
products of weight n are ordered arbitrarily among themselves and are greater than any basic
Whitehead product of weight < n. Suppose p; occurs I; times, I; > 1 in the basic Whitehead
product w,. Then the height h, of the basic Whitehead product w, is > 1;(n; — 1) + 1.

We describe the beautiful Hilton’s formula [16] in terms of the basic Whitehead products as
follows:

Theorem 2.1. Let wy,ws,...,Wy,... be the basic Whitehead products of
Y =8"v§"y...vSnk

with the height h, of w,, where v=1,2,3,.... Then we obtain
Tm (Y) = @Wm(shv)
v=1

for every m. The isomorphism 0 : @57 Tm (S") — T (Y) is defined by
Ol (5t0) = Wy, T (S™) — (V)
where w, is the basic Whitehead product.
From a CW-decomposition of X := K(Z,2a) V \/;2, K(Z,2aj + 1), we note that
X/Xo4io1 = 524ty higher cells whose dimensions are bigger than 2ai

and
X/X24j = S***1 U higher cells whose dimensions are bigger than 2aj + 1

fori,j=1,2,3,...

Definition 2.2. We define the rationally nonzero homotopy classes #; and Z; of the homotopy
groups modulo torsion subgroups maq; (23X)/torsion and maq;+1(2XX)/torsion by

1 = Q152 1 §?¢ —= QT X;

T = @i|geai 1 S?Y —= Q¥ X;
and
G5 = ] 520041 1 S249T —= O¥VX,

respectively, for : = 2,3,4,...and j =1,2,3,....

We recall that the suspension X gives rise to a covariant functor from the pointed homotopy
category of pointed spaces to itself. An important and fundamental property of this functor
is that it is a left adjoint to the loop functor Q taking a pointed space X to its loop space
QX; that is (X,) is an adjoint pair of covariant functors on the pointed homotopy category.
Therefore, we can define the following:
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Definition 2.3. We define the self-maps ¢; : XX — XX and ¢; : X — XX as the adjointness
of ; : X — QXX and z/AJj : X = QXX, respectively. Similarly, we define maps x; : S2¢+! —
YX and y; : S22 — ¥ X as the adjointness of Z; : §%% — Q¥ X and g; : S? T - O¥X,
respectively for 7,5 =1,2,3,....

We now give an order of the basic Whitehead products of weight 1 on the rationally
nonzero homotopy classes x; and z; of the graded homotopy groups modulo torsion subgroups,
(23X /torsion, as follows:

T <Y1 < T2 <Y <...<x; <Y; <...

for © = 1,2,3,.... We then define and order the basic Whitehead products of weight n on
(23X ) /torsion as just mentioned above.

Based on the above self-maps ¢; : ¥X — XX and ¢; : ¥X — XX for ¢,j =1,2,3,..., we
now construct new self-maps as follows.

Definition 2.4. We define the commutator of self-maps f,, : £X — X£X,t=1,2 on ¥X by
[fors foale = for + foo = for — fon 1 BX — XX

where fs, = s, or Vs, and fs, = @5, or ¥, for s1,s9 = 1,2,3,..., and the addition and
subtraction are derived from the suspension ¥ X of X. Inductively, we also define the iterated
commutator

[fSH[fsl—17""[f517f52]6"-]c]c XX — ¥X

of self-maps fs, : XX — ¥X,t=1,2,...,] on the suspension structure again, where f;, = ¢,
or ¢, for sy =1,2,3,....

Definition 2.5. The iterated commutator

[fSH[fsl—17""[f517f52]6"-]c]c XX — ¥X

is said to be be pure if each map fs,, t =1,2,...,1, on the iterated commutator appears only
as either g, or v, for 7,5 = 1,2,...,1. It is said to be hybrid if it contains at least one (s,
and at least one 1, on the iterated commutator for s;,s; = 1,2,3,... and 4,5 € {1,2,...,1}.

Since the set [ZX, X X] of homotopy classes of pointed maps from X to itself has just a
group structure (not necessarily abelian), the iterated commutators of self-maps above are not
necessarily inessential and thus they are worth considering; see [24] for the infinite complex
projective space. To top it all off, the iterated commutators do make sense because there are
infinitely many non-zero cohomology cup products in X so that the Lusternik-Schnirelmann
category is infinite. Moreover, it is well known that the n-fold iterated commutator is of finite
order if and only if all n-fold cohomology cup products of rational cohomology classes of a
space are all zero; see [2] and [B, Theorem 5.

Definition 2.6. Let 1 : XX — XX be the identity map on XX . Then by using the notations
above, we define the self-maps

1+ [fSH [fsl—17 te [f517f52]c' "]C]C (XX — ZXv
where the addition + is the suspension one.

Remark 2.7. We note that the self-maps on XX in Definition are indeed the homotopy
self-equivalences of XX by the Whitehead theorem.

We refer to the Arkowitz’s works [3, [4] and the Rutter’s book [25] for a survey of the vast
literature about homotopy self-equivalences and related topics; see also [6], [7] and [§].
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Let Xg be the rationalization (i.e., O-localization) of X [I7]. Then it can be seen that the
total rational homotopy group

L= (m(QXXg), <, >) = (m(QEX)2Q, <, >)
of O¥Xg becomes a graded Lie algebra over the field Bbb() of rational numbers with the
Samelson products < , > which is called the rational homotopy Lie algebra of XX . Similarly,
we denote L<24y, by the subalgebra of £ generated by all free algebra generators whose degrees
are less than or equal to 2an; that is,

AégQan = (7T§2an(QEXQ)7 <, >) = (WS2an(QEX) ® Qu <, >)

with rational homotopy generators X1, 71, X2, N2y« « s Die1s Xis Dis«« - » Xnne1s Nn—1, Xn, Where x; :
S2at — 0¥ Xg and 7); : S2% T — Q¥ X are the compositions r o #; and 7o §; of the rationally
nonzero indecomposable elements &; : S2% — QXX of 74, (23X X)/torsion and Uj S2ai+l
QXX of maq,1+1(QXX)/torsion, respectively, for i =1,2,...,nand j =1,2,...,n— 1, with the
topological rationalization map r : QXX — QY Xg. The adjoint pair of functors (3, 2) on the
pointed homotopy category makes us think about the following graded quasi-Lie algebra

£§2an+1 = (7T§2an+1(EX) ®Q, [ ) ])

which is called the Whitehead algebra with the rational homotopy generators x1, 71, X2, 72, - - -,
Mie1sXisMis- -+ > Xn—1,Mn—1, Xn and the Whitehead products [, ] as brackets, where y; : S2*+1 —
Y Xg and n; : $?%12 — ¥ X are obtained by the adjointness of the rationally nonzero inde-
composable elements X; and 7); above, respectively, for i =1,2,...,nand 5 =1,2,...,n — 1.

Let Aut(Y) be the group of pointed homotopy classes of all homotopy self-equivalences
of a connected CW-space Y. Then, in rational homotopy theory, the automorphism of the
Whitehead algebras

R £§2an+1 — £§2an+1;

defined by x(x;) = x; + decomposables and #(n;) = n; + decomposables are corresponding to
our homotopy self-equivalences

1+ [fsl’ [fsl—17"'7[f51’f52]c"']C]C € AUt(EX>a

inducing the identity automorphism 1p, (sx,g) on homology with rational coefficients in the
group of automorphisms Aut(H,(XX;Q)), where f,, are selfmaps of XX with f;, = s, or
Ys,,t=1,2,...land s =1,2,3,....

Remark 2.8. In general, if A is a finite CW-complex or locally compact, and if f,g: A — QB
are the pointed preserving continuous maps satisfying f|a. ~ ¢, and gla, >~ cb,, where ¢,
is the constant loop at by € B, then it can be shown that the restriction of the commutator
[f,g] : A — QB to the n-skeleton of A is inessential, where n = s+t + 1.

Thus, by the constructions of self-maps on X as adjoint maps (see Tables 1 and 2) and by
using induction, we have the following (see also [20, Lemma 3.4]):

Remark 2.9. (a) Let the iterated commutator F : X — XX be pure. If

F1 = [‘PSLN[(PSH—U R [<P515%052]C c ']C]C : EX — ZXv

then
F1|2Xk1 ~ ok EXkl — XX

for k1 = 2a(s1 +s2+ -+ s,). If
F2 = [1/15127 [1/1512—15 L} [¢S17¢S2]C' . ']C]C : EX — EX)
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then
F2|2Xk2 ~ ok Esz — XX

for ko = 2a(s1 + so+ -+ -+ s1,) + lo.
(b) Let the iterated commutator

F= [fsza [szflv'"7[f517f52]0"']0]0 (XX = XX

be hybrid which contains both the ¢-times of ¢, and the (I—t)-times of ¢),;, where 1 <t <[—1.
Then
F|2Xk Z*SEX]C;)EX

for k =2a(s1 +sa+---+s)+1—1t.
Let
i1:Y Y XxY

and
i:Y Y XY

be the first and second inclusion maps; that is, i1(y) = (y,y0) and i2(y) = (y0,y). Then a
primitive element is an element p € H,(Y) that satisfies

Au(p) =i1.(p) +i2.(p) =p@1+1®p,
where A : Y — Y x Y is the diagonal map. It is very easy to show that each element of H,,(S™)

is primitive for n > 1.

Proposition 2.10. The images of @;, : Hoai(X) — Hzei (X)) and 1/Ajj* : Hogjr1(X) —
Hoaj+1(QXX) are primitive for each i,j =1,2,3,....

Proof. In general, we first note that if f : X — Y is continuous map and if x is a primitive
element of H,(X;TI) with coefficients in a principal ideal domain I, then from the commutative
diagram

Ho (X3 1) — s HL(Y51)

| |-
(fxf)«

H(X xX;I)——= H.(Y xY;I),
we have

Aco(fu(@) = (f % [« 0 Aulw)
= (f x f)elir.(@) +i2.(2))

= i1, (fe (@) + 2. ([ (2)),

where i1,i9 : W — W x W is the first and second inclusions on W = X or Y; that is, the
homomorphic image of the primitive elements is also primitive.
The constructions of the maps

@i+ X/ X24im1 — QXX (resp. ¥ : X/ X4 — QXX)

assert that the maps
G X = QXX (resp. ¢ : X — QXX)

can be factored through the projections

P+ X = X/ Xoqio1 (resp. pe; : X = X/ Xoaj)
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and

©; - X/Xgm‘_l — O¥XX (resp. ’lzj : X/Xgaj — QEX)
up to homotopy for each i = 2,3,4,... and j = 1,2,3,.... For i = 1, we also note that the
following diagram

X 19230.¢

X =X/Xoq—1

is strictly commutative due to the fact that Xo,_1 = *. Since X/Xo4;_1 is (2ai — 1)-connected,
by the Hurewicz isomorphism, we can see that every homology class of Hai(X/Xo4i—1) is
spherical. Since every spherical homology class is primitive, it is primitive. It can be seen that
the image of

9271‘* : Hgm'(X) — HQM(QEX)
lies in the set of all primitive homology classes PHo,; (23X X) in Houi (22X X) for each i =
1,2,3,.... The argument for the other case is completely similar. O

The following is the generalized version of [I8, Lemma 3.2].

Proposition 2.11. Let z,,, be a rationally nonzero homotopy class of maam+1(XX). Then

(1+ [‘Pszl ) [80511—17 s [Ps1s Psale el )i (@m) = $m+[905117 [90511—17 oo (P51 Pssle - ']C]Cu(xm)a

where m = s1 + sa+ - - -+ s1,, and the first addition is the one of suspension structure on XX,
while the second addition refers to the one of homotopy groups.

Proof. Let F1 = [ps,, [0s1,_1»- -+ [Ps15 Psale - lele : EX — XX Then we first show that the
following diagram
gram+1 o sy L wx

SZam-H V. SZam-H T YXVEX

is commutative up to homotopy. Here

(1) v §2am+l  GZamitly g2amtl g the (homotopically unique) standard comultiplication
of the sphere;
(2) 14+ Fy : XX — XX is defined by the homotopy class of the composite

v F;
(2.5) TX L nXxvEX L vxvEX . v,

\_/

(17F1)

where v : XX — ¥ X V XX is the standard suspension comultiplication of ¥X (which
we also denote as v), and V : XX VX — XX is the folding map; and

(3) (1,F1) : X VEX — XX is defined by the homotopy class of the composition of the
latter two maps of (2.5).
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As usual, we let X Xo4,, be the 2am-skeleton of XX . Then from the construction of the self-

maps ¢; and ¢; of XX for ¢,j =1,2,3,..., we now have the following commutative diagram
I3
»X »X
% P
YX/YXXoam,

where YXp¢, . is the projection and F} is the extension obtained from the cofibration

Em E m
2 X aam e DX L SX /S X,

The Remark suggests that the extension
P SX/S Xoam — EX

will be possible. We now consider the following commutative diagram:

Tm

S2am+1 X
l ‘/ 1xXpe,, JoA
A A
T X Tom 1xXpe,,
Sg2am+1 o g2am+41 _TTTM sy oY " Y X YX/YXoam,

where A is the diagonal map. Since v : §2em+l _ G2am+ly, g2am+1 jg the unique standard
comultiplication and v : ¥X — XX V XX is the standard comultiplication, the following
triangles

§amtl y g2amtl  4nq o wx 8 vy vy

x m x Aion

SZam-i—l V, SZam-i—l YXVEX

S2am+1

are homotopy commutative. Since XX /Y. Xo4,, is 2am-connected, from the fibration
TXPEX — =YX VIEX ——= ¥X x XX,

where b is the flat product, we have an isomorphism of homotopy groups

Toams1 (EX V EX/EXo0m) ——> Toami1 (DX X DX/ Xoam)
sending the homotopy class of
(1VZEpe,)o(@mVam)ov=(1VEp,)ovoty,
to the homotopy class of
(1 x Epc,,) 0 (Tm X Ty) 0 A (1 X Epe,, ) 0 Aoz,

We finally have the following commutative diagram up to homotopy

G2am+1 Tm 10.¢ 1+F nx
v L(lvzio%?
1
(1vzp(m)o(m7nvw7n)

SQaerl vV SQG«TTL“Fl »X V EX/EXQam
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as required. O

Remark 2.12. Similarly, if w,, and ws are homotopy classes of 7,(XX)/torsion, then it can
also be shown that

(1 + [¢5l25 [1/)512—17 R [1/}5151/}52]6 . ]C]C)ﬂ(wn) = Wn + [1/15127 [1/1512—15 L} [1/)517¢S2]C . ]c]cﬁ(wn)

and

(L4 [fors [fsiorsevos [fsis foale - -]C]C)ﬁ(wS) = Ws + [fo, [fsi 15 [fsrs fsale - -]C]Cﬁ(wS)
by using the same method in Proposition 2111

Just like the (iterated) commutator on the suspension structure, we also consider the com-
mutator on the loop structure
[fs1s fsn)e: X — QXX

defined by

[f51=f52]0(x) = f51 (x) : st(x) : f;l(x) : fszl(x)

where

(1) fsl = (P, O 1/351 and f52 = (g, O 1/352 for s1,80 =1,2,3,...;
(2) the operation ‘- is the loop multiplication, and the inverse is the loop inverse v :
QXX — QXX defined by v(g) = ¢g=* with g71(s) = g(1 — s).

By induction, we define the (pure and hybrid) iterated commutator
[fsn [fvﬂ—l’ trt [f517f52]c e ']C]C X — O¥X

of maps fst X - QX X, t=1,2,...,1 on the loop structure again, where fs, = @5, or ¢, for
se=1,2,3,....

Proposition 2.13. Let ¢1 : X — QXX be the canonical inclusion. Then

s Ui oos sns Foale - Jele 0 @1 = s s o5 [ons Foale - Jeles
where fs, = s, or s, fort =1,2,... 1 and sy =1,2,3,....
Proof. We note that the canonical inclusion
o1: X = QXX

sends
z @1(x): I = XX,
with
¢1(x)(t) = [t, 2]
in XX, where [t,z] € ¥X. Similarly, the maps

Q[szv [f51—17 B [f517f52]c .- ']C]c opr: X — QXX,
sends
T = Q[fs” [fsl—l’ EER [fsl’ f52]0 e ']C]C © @1(I) I — ZXv
and
(2.6) ((fsi fsimrs - Usis foale - Jele 0 @1)(@) (&) = [fsi, fsizas -5 [fsas fsale - - ele([t, 2)),

forallt €I and z € X.
The adjointness (X, 2) shows that there is an isomorphism

ad="": [ZX,2X] > [X, QX X]
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of groups (not necessarily abelian), and we obtain

(27) ad[fslv [fﬂ—l""5[f515f52]c"']c]c = [fSH [fsl—l""5[f515f52]c"']c]c X — QXX

as homotopy classes. Therefore, we have

(2.8) (@d[fos,, [fsivsee o [fsrs fale - Jele(@) (@) = [fors [fsiois o [fsrs Foale - ele([t, 2])
for allt € I and z € X. By (2.6), (2.7) and (2.8), we complete the proof. O

3. ITERATED SAMELSON (OR WHITEHEAD) PRODUCTS AND HOMOTOPY GENERATORS

Let Aut(Y(")) denote the discrete group of homotopy classes of all homotopy self-equivalences
of Y™ and let Aut(m<,(Y)) be the group of automorphisms of a graded group 7<,(Y) that
preserve the pairs of the Whitehead products. In 1992, McGibbon and Mgller [22, Theorem 1]
proved the following theorem as the Eckmann-Hilton dual of [23] Theorem 3]:

Theorem 3.1. LetY be a simply connected space with finite type over some subring of the ring
of rational numbers. Assume that Y has the rational homotopy type of a bouquet of spheres.
Then the following three conditions are equivalent:
(a) SNT(Y) = x;
(b) the map Aut(Y) Aut(Y ™) has a finite cokernel for each n; and
(c) the map Aut(Y) _Th Aut(n<,(Y)) has a finite cokernel for each n,

f,_)f(")

where x denotes the set consisting of a single homotopy type {[Y]}.

We note that the Leray-Serre spectral sequence of a path space fibration of the Eilenberg-
MacLane spaces says that the rational cohomology H*(K (Z,2a); Q) is isomorphic to the poly-
nomial algebra Q[a] over Q generated by a of dimension 2q; that is, « is a rational generator
of H**(K(Z,2a);Q) satisfying < a®, &; >= d4, where &; is a rational homology generator of
dimension 2at. Similarly, there is an isomorphism of algebras

H*(K(Z,2aj 4+ 1); Q) = A[B;],

where A[3;] is the exterior algebra on the cohomology class §; of odd dimension 2aj + 1 for
each j =1,2,3,....

Generally, if X is a connected Hopf space of finite type, then it has k-invariants of finite
order, and its rational cohomology is isomorphic to the tensor product of the polynomial algebra
of even degree generators and the exterior algebra of odd degree generators as algebras. We
note that the multiplication map for the loop structure p : QXX x QXX — QXX provides
the homology and cohomology of Q23X with an algebra structure that is natural with respect
to Hopf maps. Specifically, the loop structure of 2XX makes the graded rational homology
H.(QXX;Q) into the graded algebra which is called the Pontryagin algebra of QXX .

In reduced homology of X := K(Z,2a)V \/;2, K(Z,2aj + 1) with rational coefficients, we
obtain

H*(X,@) = Q{ul,UQ,U3,...,’U,i,...;U17U2,U3,...,’Uj,...}
as a graded Q-module, where u; € Hoqi(X;Q) and v; € Haqj+1(X;Q) are the standard gen-
erators of rational homology groups for i,7 = 1,2,3,.... It is well known in [J] that the
Pontryagin algebra H, (22X ;Q) is isomorphic to the tensor algebra T'H,(X;Q); that is, the
rational homology of QXX is the tensor algebra

TH.(X;Q) ET[Ul,Uz,U&---vuz‘,---§01,U2703,---7Uj7---]

generated by {ui, ug,us, ..., U, ...;01,02,03,...,0;,...}.
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For the moment, we will make use of the following notations:

Usy,so,st b X2a(s14sa+ts) — X 18 the inclusion.
é;,tsz,...,sl : Xoa(si4sotts)+t < X is the inclusion for 1 <¢ <1 —1.
Csyis2,0s1 ¢ X2a(sy4sat-ts)+l <> X is the inclusion.

 Xog(sytsatots) — G2a(sits24+s1) js the projection to the top cell of

X2a(51+52+--~+51)'
it : Xoa(si4sotts)+t = G2a(sitsat+s)+t i the projection to the top cell of
s

X2a(51+82+~~~+51)+t for 1 S t S [ —1.
® TCoi ooy b X2a(s1dsatots)tl = G2a(sitsat+s1)+l ig the projection to the top cell of

¥2a(51+82+m+51)+l-
e A: X — X A X be the reduced diagonal map; that is, the composite of the diagonal

A : X — X x X with the natural projection X x X — X A X onto the smash product.

We now have the following:

Lemma 3.2. If <, > is the Samelson product, then
(@) [@s;Ps;le Otsys; = < By, ds; > Oy, Xoa(sitsy) = QXX
(b) [¢5i7/¢)5j]6 o gsli,sj- ~ < j:Si’gSj > Oﬂ-ﬁéhsj : X2a(si+5j)+l — QZX; and
(C) Wgﬂ/@]a o Csl’,sj- ~ < :’jsngsj' > OWCsi,sj : X2a(si+s]~)+2 — Q¥ X
fori,j=1,2,...,l withl>2 and s;,5; =1,2,3,....
Proof. We prove the second part; the proofs of the first and last parts are similar with the

second one. Let p,, : X — X/Xo4s,—1 and pe., X — X/Xs4s; be the natural projections.
Then the composite

Csjtsj A Pus,; Ap{sj

X2a(5i+5j)( X XANX —— X/X2asi—1 /\X/XQasj

is inessential by the cellular approximation theorem and by the cell structure of X A X, i.e.,
(Pro, APCy) 0 D0 Copsy 2 5.
Therefore, there is a map
D X/ Xoa(s,4s;) — X/ Xoas;i—1 N X/ Xoas,

satisfying

ope, .., P, ADc., oA,
where Ploprs; X — X/X2a(5i+sj) is the projection; that is, the map ® makes the following
diagram

X2a(si+5j)
)

*

CsiJrSj

A pﬁsi /\pCSj
X2 XAX L X/ Xpge 1 A X/ Xaa,

pCsi+s]'

o

X/XQa(smLs]')
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commute up to homotopy. This is due to the exact sequence

#

PCSi+3j C§i+5j
[X/Xza(SiJrSj)’ Y] (X, Y] [XQ(I(Si +s5)> Y]
induced by a cofibration
Csitsy 2
X2a(8»;+sj) C X X/XQII(S»;-"-S]')?

where Y = X/Xgasifl A X/XQasj.
Let
C:QEXNQEX = Q¥ X

be the commutator map with respect to the loop multiplication. Then the following diagram

Coitsy A

X2a(si+sj)( X XANX
pCSi+3]‘ Pus,; /\pCSj
Xoa(erts, )11 X/ Xoa(sits,) X/ Xoasi-1 A X/ Xaqs, ———> QXX AQEX

c
el s
095

N <Ts;,Ps;>
G2a(sits;)+1 =  _ g2asi p G2as;+1 S ONX

is homotopy commutative (see also [24] in the special case of the infinite complex projective
space). Here, the commutativity of the three triangles on the right-hand side of the diagram
above is guaranteed by

(1) the constructions of ¢, , 1/35]., @s, and 1), in (2.3) and (2.4);

(2) the definitions of &5, and g, in Definition 2.2} and

(3) the Samelson products of Z,, and s,
for i,j = 1,2,...,0 with [ > 2 and s;,s; = 1,2,3,.... The homotopy commutative diagram
above shows that

[9251' ) ws]']c o gsli,sj =< jsw?}s]' >0 7756%1_‘3],

as required. O

We now consider the general case as follows:

Theorem 3.3. Let <,<,...,<, >...>> denote the iterated Samelson product.
(a) If the iterated commutators [fs,, [fs,_1s---» [ [s1s [sale---c]e are pure, where l =1y or ly
with l1,lo > 2, then

[@Sll ’ [@Sll—la cety [@sl,gﬁsz]c c -]c]cole,...,sll =< jjsll ’ < isllflv ety < jslvjsz > >> O7TL51 ,,,,, sl
and
[1/15127 [1/1512,1, RS [1/15171/)52]0 .. -]c]co<51,...7512 =< 23512 » < gszzfla < gsugSz > >> Oﬂ-Csl ,,,,, sy "

2

(b) If the iterated commutator [fe,, [fs, .+ [fers fsale- - Jele is hybrid which contains both
the t-times of @s, and the (I —t)-times of ¥s, for 1 <t <1 —1, then

S L . . A o
[Fois Usiise s [fous Foale - Jele 0 €0t o) ™ < sy, < Zspiysvoy < Zsyy By > 0. >> OMp—s

Esl,.,.,sl
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Here,
(1) f QPleafszz @SQ?" -afslt = QPSH
(2) for, = Gosyo Fory = Bpres Sy = sy,
(3) ésn Bs, s Zsiy = Tsiys e 25% :CSH - and
(4) 25]‘1 = gsjl ; 257'2 = gs]é IR Zs]l . stH ’
where (Siyy Sigy -y SipsSivs Sjas-- 38514 )s (Sivy Siny---s8i,) and (Sjy,8jy,---,85,_,) are permuta-

tions of the symmetric groups Sy, s,....s,} of degreel, 5{51,52,...,51}7{57'1,sz,...,sj-l,t} of degree t,

and Sis;, s, of degree | —t, respectively.

SN

Proof. We argue by induction on l; (I3 or I). The proof in case of the 2-fold commutators and
the 2-fold Samelson products is followed by Lemma[3.2l We suppose the results are true for the
(pure and hybrid) iterated commutators and the iterated Samelson products of length i3 — 1
(resp. lo — 1 or [ — 1). Then there exists a map

v X/XZa(51+S2+--~+sll)fl — X/X2a511—1 A X/X2a(51+52+---+51171)71
such that the following diagram

X2a(51+52+---+sll)—1

&(S1+82+~‘~+Sll)
A

X XNX

lpL(51+52+m+sll) lpwll /\PL(51+52+...+51171)
4
X/XQa(squserersll)fl - X/XQasll—l A X/X2a(51+52+~“+511,1)71

commutes up to homotopy (similarly for the other cases). That is, the proof in case of the ;-
fold (resp. lo-fold or I-fold) iterated commutators and the corresponding l1-fold (resp. lo-fold or
[-fold) iterated Samelson products can be proven inductively on a case-by-case basis by substi-

tuting @5, (resp. 12’812 or fsz) and [927811717 oy [Psrs Pszle - - e (resp. [@[A’szrlv cees [¢51 ) @/382]0 e

or [fslfl, ce [fsl,f52]c ...]e) for ¢y, (resp. 1/351 or fsl) and ¢, (resp. 1/352 or f52), respectively,
as just proved in Lemma O

In the rest of this paper, we will abbreviate notations by writing the following in order
to avoid repeating the same letters (except for the hybrid iterated commutators and their
corresponding Samelson products and Whitehead products).

b [ Szla[‘Psh 17-'-7[92381792352]0 ] ] Szl,[SL1 Lo [81,82]c. ]e]er

hd [ Sig) W}Sz2 19 W)Sl ) 1/152]6 ]C] 1/}[512, 812 1s- [51;52]c~~~]c]c;

b [@Sll ) [‘PSH 1900 [90517</752]C ]C] Plsiy 811, [51,82]c.Jele?

L ["/1512 ["/1512 190 [wﬁ ) '4[152]0 ] ] Q/J[Slgv 512 1re[81,82]c. e)e

b <x811 <x811717"'7< j517$52 > >>= x<szl,<51171,~~.,<s1752>...>>;
o gslz , < stlz,l, < stl,ﬂ@ > >>= :’j<312,<512,1,...,<51,S2>...>>;
b [‘Tsll ) [$511717 ceey [$51 ) 5552] .- ]] = Llsyy sy —15e-5[51,82).-.]]5 and

°

[yszza [yszzfu cee [yslays2] .- ]] = Ylsiyilsig—1,---[51,82]...]]

Corollary 3.4. Let h: m,(QXX) — H.(QXX;Q) be the Hurewicz homomorphism.
(a) If the iterated commutator [fs,, [for .+ [fsrs fsale - - Jele is pure, where 1 =1y or ly with
ll,lz > 2, then

Plsiy 811 —1,0[s1,82]c.Jele, (um) = h($<511 ,<Sll71,...,<S1,82>...>>);
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and

1#[512,[%,1 ..... [51,52]6...]C]C* (wn) = h(g<sz2,<sz2717~~~,<s1752>...>>)
for the rational homology generators u,, and w, of dimensions 2a(sy + s2 + -+ + s;,) and
2a(s1 + s2+ -+ -+ 81,) + lo2, respectively. Here
(1) m=s1+s2+---+s5,; and
(2) if la is odd, namely, lo = 2ab+ 1, then w, = v, and n =81+ sa+ -+ s, + b, or if
ly is even, namely, loa = 2ab, then wy, = u, and n = s1 + s2 +---+ s, + b.

(b) Let [fors [fsrrs-os [fors Fsale - Jeles fsil,f;jl,ésil and Zs; be as in Theorem[3.3. Then
sis s Usns Fale - Jele, (ws) = h(< 2oy < Bgyysv o < Zayy gy > o >)

for a rational generator ws of dimension 2a(sy + sa+ -+ s;1) + 1 —t in rational homology.

Proof. By applying the results of Theorem [3.3] to the homology with rational coefficients, we
have the proof. O

We note that h(< &s,,2s, >) = [h(Zs,), h(Zs,)] in homology with rational coefficients [IT,
page 141], where [h(Zs,), h(Zs,)] = b, )h(iEs,) — (=1)IME NGB (E, )R (s, ).

Under the notations in Theorem and Corollary [3.4] we now have the following theorem
as one of the fundamental ingredients for the proof of the main theorem in Section 4.

Theorem 3.5. For each iterated Samelson product such as
~ . Q2am
Tesy ,<siy 1y <s,80> 3> 10 — QXX

U1y, <1y 1,0 <51,85>..>> S 5 %X (6=1,2)

and
< By < Baprs s < Bayy Bay > . >> 1 SRalnitsatds)H—t g5y

in the graded homotopy group m«(QX.X), there exist iterated commutator maps
s0[5117[511—1>~~~7[81ysz]cw]c]c (XX — EX’
w[slz»[512—1>~~~>[51752]c~~~]c]c (XX = XX

and

s [fsiiseoos [fsis fsale - Jele 1 2X — BX
which correspond to the types of the iterated Samelson products such that

Qw[sll»[511—17~-->[51>82]c~~~]c]cu(Im) = O T<sy, ,<spq—150.,<81,82>...>>)

51y sty 10 f152 ] Jeley (0n) = B Gy <ty a <t 82> >>

and

Qlfsis [formrs o5 s Faale - deley(s) =7+ < 2oy < Zspiyyoo oy < 2oy ey >0 >>
Here

(1) «, 8 and ~ are all nonzero;

(2) &m, W, and Wy are rationally nonzero homotopy classes of homotopy groups modulo
torsion subgroups m.(QXX)/torsion in dimensions 2a(s1+ s2+---+ 51, ), 2a(s1 + s2 +
<o+ 58,)+lo and 2a(s1+s2+ - -+ 81) +1 —t, respectively, where m = s1+s2+- -+ 81,5
if ly is odd, namely, lo = 2ab+ 1, then W, = §n and n =s1+s2+---+ 85, + b, orif
ly 1s even, namely, lo = 2ab, then W, = &, andn =51+ Ss2+---+ s, +b; Ws = T, or
Js depending on the parity of 2a(s1 + sz + -+ +s1) + 1 —t; and
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(3) fo, : BX — XX is the adjoint of fs, : X — QXX as one of the maps ¢, or Vs, ; that
18, fo, = s, O g, fori=1,2,...,1.

Proof. To prove the theorem, we need the two lemmas as follows:

Lemma 3.6. (Cartan and Serre) Let F be an arbitrary field of characteristic zero. If'Y is
a simply connected space of finite type, then the Hurewicz homomorphism induces a linear
isomorphism

h:m(QY)®F —— = PH,(QY;F),
where PH,(QY;F) is the primitive subspace of H,(QY;TF).
Proof. See [12, page 231] for details. O
Lemma 3.7. Let C be a co-H-space and let D be a CW-complex. Then the map

Q:[C, D [QC, QD]y

defined by Q([f]) = [Qf] is a bijection as sets, where [QC, QD] is the set of homotopy classes
of Hopf maps.
Proof. See 26, page 75]) for more details. O

Let r : QXX — Q¥ Xq be the rationalization map. Then we have the following commutative
diagram:

<
*
>
|

=

T.(QXX) —— 71, (08 Xg) —— PH.(QYX;Q)

QF; ‘( QFq, ‘/QF*

mn(QSX) — s 1, (QXXg) — > PH,(05X;Q),

1R

R

il

where h = hor,, Fp : ¥Xg — £ Xg, and

Plsiy [s1; -1, [51,82]c-Jele or
=9 Yoty sty 10 l51,52]-- 1l or
[fsl7 [fsl—l" ) [fsl’f52]c" ']C]C'

Since Z,,,w, and w, are rationally nonzero indecomposable homotopy classes, from the com-
mutative diagram above, we have the following:
(@) W) =t + Du(TH.(X5Q))
(b) h(iy) = B1 - vn + Dp(TH.(X;Q)), where dim(wy,) is odd;
(c) h(iy) = P2 -un+ Dy (TH (X, Q)), where dim(w;,) is even;
(d) h(ws) =71 - vs + Ds(TH(X;Q)), where dim(w;) is odd; and
) h(s) = ) )

Y2 - us + Ds(TH(X;Q)), where dim(w;) is even.

(1) all the coefficients «, 81, B2, 71 and 2 are nonzero;
(2) u; and v; are rational homology generators of the rational homology of QXX as a
tensor algebra

TH.(X;Q) ET[Ul,Uz,U&---vuz‘,---§01,U2703,---7Uj7---]

in which the homology dimensions of u; and v; are 2ai and 2aj + 1, respectively; and
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(3) D;(TH.(X;Q)) indicates the decomposable elements consisting of the sum of tensor
products in the tensor algebra.

Since X and Q) are adjoint functors, by Lemma [B.7], we have the following commutative diagram:

o

(3.1) [(Xieo1, O8X] —— [B(Xp_1), BX] ——= [QXX,_1, QX Xy

i/iu ¢ iy ismiﬁ

~ ~

X, 05X] ——— [2X,£X] —— [Q5X, QX X]y,

where ¢ : X1 — X is the inclusion. By using the results above, we first obtain
(3.2)

o (Pl s, 1lsnsaleJeley) @m) = (Pl s, 1.ofsnslen el ) © 1(@m)
= (Q@[Sll7[Sl171;~~~7[51;52]c~--]c]c*)(a U+ Dm(TH* (X; Q)))
Since the restriction of the iterated commutator

90[511;[Sll—1;~~~7[51752]c~~~]c]c|(EX)I¢ : (ZX)k - XX

to the k-skeleton is inessential, where k = 2a(s1 + s2+ -+ -+ s1,) (see Remark 29 with k = k),
by using the commutative diagram (B.I) and adjointness, we see that the restriction of the
iterated commutators on the loop structure of QXX

¢[Sll7[Sl171;~~~7[51;52]c~~~]c]c|Xk71 P X1 — QXX
is inessential, and thus the restriction
Qw[sll7[Sl1—17~~~;[51;52]c~~~]c]c|£22Xk71 (XX — QXX

of the Hopf map Q@[sh,[51171,...,[81752]0..]0]0 Q¥ X — QXX is also homotopically trivial.

We note that the tensor algebra T'H,(X;Q) has the universal property. In particular, the
identity map 1, (x,0) on H.«(X;Q) extends uniquely to a homomorphism E : H.(QXX;Q) —
H,.(X;Q); that is, the following diagram

1o, (x;0)

H,(QXX;Q)

is strictly commutative (indeed, we also note that ¢ : X — QXX has a left homotopy inverse).
By (B3) and Remark [2.9] we have

(3.4) (QP(sy, 51,1 51,52]e--1e]e ) (D (THA(X;Q))) = 0.

By B2), (34), Proposition T3] and Corollary 34l we now have the following:

ho (Q0(sy, sty —1,olsnsaledeleg) (Em) = (Qbpsy, sty 1.l sl ]ele, ) (@ Um)
= (PLsy, 51, 1000 51,50]e0 ] ee ) PLL (O Uin)
= Plory foty —1reenlsrselen. Jele, (@ Um)
=h

(Of : CE<511 ,<81171,...,<S1,82>~~~>>)'
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Since the homomorphic images of the iterated Samelson products
N 2
‘T<Sll,<81171,...,<S1,82>n~>> : S am — QEX?

where m = s1+$2+- - -+5;,, are spherical, thus primitive in rational homology, the Cartan-Serre
theorem shows that

Q¢[5117[51171 »»»»» [51152]0»»](:]%)(‘%'771) = O T<sy, ,<spy—1,..,<51,82>...>>

as required.
A little elaboration of the argument gives the proofs for the other two cases. O

The Hopf-Thom theorem asserts that the loop space and the suspension of a CW-space are
rationally homotopy equivalent to the products of Eilenberg-MacLane spaces and the wedge
products of rational spheres, respectively. In the homotopy category of G-spectra, any (G, ¢)-
spectrum splits as a product of Eilenberg-MacLane spectra [I5]. In our case, ¥X has the
rational homotopy type of the wedge product of infinite number of spheres; that is,

1D, ¢ ~0 52a+1 v S2a+2 Vi S4a+1 Vi S4a+2 VeV S2an+1 Vi S2an+2 VA

for all n > 1. The following table below (TABLE 3) is a list of various kinds of rationally
nonzero indecomposable generators, and pure and hybrid decomposable generators as the basic
Whitehead products on the graded rational homotopy group 7.(XX) ® Q. We point out that

the rational generators of my;, 43 (S’é”“) were not described on the table for convenience.

Remark 3.8. We observe that there are many different types of basic Whitehead products
whenever the homotopy dimensions are on the increase. Take the basic Whitehead products

[[X17 771]7 [Xlu X2]] in dimension 127 and [[X17 771]7 [Xlu 772]]7 [[Xlu 771]7 [7717 X?]]7 [[Xlu 771]7 [Xlu [X17 771]]]
in dimension 13 as examples. By ignoring (or killing) all torsion subgroups of the homotopy

groups and considering the homotopy groups rationally, we have
rankzm, (XX)/torsion = dimgm.(XX) @ Q;

that is, the number of generators on the homotopy groups modulo torsion subgroups is exactly
the same as the dimension of the rational vector spaces. Therefore, one can construct the
corresponding indecomposable generators, and pure and hybrid decomposable elements on the
graded homotopy groups modulo torsion subgroups . (XX )/torsion.

4. THE MAIN THEOREM

By using all the ingredients in Sections 2] and Bl we now describe the main result of this
paper and prove it as follows:

Theorem 4.1. Let X := K(Z,2a)V \/;';1 K(Z,2aj+1) be the wedge product of the Eilenberg-
MacLane spaces, where ‘a’ is a positive integer. Then SNT(3X) = {[EX]}.

Let r: Zy — Z4(m — r,,) be a sequence of positive integers defined by

2an+1 fm=2n-1

Tm =

2an+2 ifm=2n
for all n > 1.
Proof. Tt can be shown that the graded homotopy groups modulo torsion subgroups

qL = 7. (XX)/torsion
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TABLE 3. Generators on 7.(XX) ® Q when a =1

Dimension Indecomposables| Pure Decomposables Hybrid Decomposables
3 X1 - -
4 " - -
5 X2 - -
6 12 - [x1, ]
7 X3 X1, X2] -
3 73 X1, 2]y s Xzl
[X17 [X1, 771]]
9 X4 [x1, x3), [xas Ixa, xall, (71, [x1, m]]
[7717772]
10 N4 - X113, [x2, M2,
[771,X3]7 [XQa [Xlanl]]v
[771, [X17 X2]]7
[le [Xla"h]]v
xa, [xa, [xa, ml]]
11 X5 [x1, x4, [0, m3], (71, [x1,m2]],
[X ] [XQv [le XQ]]a [nla [7717 XQ]]v
[x 1a[X17X3]] [, [x1, [x1, m]]
[x1, [x1, [X1, X2]]]
12 5 (11, 1, m2]] [x1, mals xas Dxas malll,
[le [le [X17772]]]v
[X17 [X1, [X17 [X1, 771]]]],
[771,X4] [771, [Xl,X3]]7
[771, [X17 [X1, Xz]]],
(1, [, Dxas m]ls [xes msl,
[x2, [x1,n2]],
[X27 [771, X2]]
[X27 [X1, [X17 771]]]
[772 ] [772, [Xl,X2]]7
[[Xlﬂh] [x1, x2]]
13 X6 [x1, xs), [x1, [x1, xall, (71, Ix1, m3]l,
[X1, [X17 [X1, [X1,X2]]]] [771, [771, X3]]
[x1, [x1, [x1, X3l [, [x1, [x1, m2l]ls
(11, mal, [X2, X4), (1, [xa, [xas Dxa, mll]s
[X2, [X17 X3]] [771, [771, [X1, Xz]]]
[X2, [X17 [X1, X2]]] [X27 [771, 772]]
[772, 3] [X2,[7717[X1,771] ]7
[772? [X17772]] [7727 [7717X2]]7
(2, [x1, [x1, m]l;
(X1, mls [xa, mells
[[Xlﬂh] [771,X2]]7
[[Xlﬂh] [Xl,[Xlﬂh]]]
2n+1 Xn [XlaXn—l]a---
[Xl,T]nfl],

2n+ 2

Tn
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and
qL<,, = m<r, (2X)/torsion

have the structures of the quasi-Lie algebras whose brackets are the Whitehead products cor-
responding to £ and L<,,, as the rational homotopy counterparts, respectively.

Let I, (¢L) and D, (qL) be the indecomposable and (pure and hybrid) decomposable com-
ponents, respectively, of the graded homotopy group modulo torsion subgroups 7., (3X)/torsion.
Then, by using the adjointness and the dual of the Samelson products in Theorem B.5 we can
consider the following maps

Plstylst, —1ls1,82]e Jeley | I, (qL) = Dy, (qL),

Dlsiy lstg—1olsnsaleJeley * Trmy (4L) = Dr (aL)

and
s [foizas s [fsas fsale - -]C]Cﬁ P (¢L) — D, (¢L),
where
(1) 7m, =2a(s1 +s2+---+s;,)+ 15
(2) rim, =2a(s1+ 82+ -+ 81,) + 12+ 1; and
(3) rin; =2a(s1+s2+--+s)+1—t+1.

For each iterated Samelson product or for each iterated Whitehead product as the dual
object, by Theorem [B.5lagain, we can guarantee the existence of the iterated commutator which
corresponds to the given iterated Samelson product satisfying that the type of the iterated
Samelson product is exactly the same as the type of the loop of the iterated commutator.
By delooping the iterated commutators and considering the adjointness (3, ), we have the
following correspondence or relationship (see Table 4) between elements of graded homotopy
groups modulo torsion subgroups 7. (XX )/torsion and (pure and hybrid) iterated commutators
of self-maps on XX.

TABLE 4. The correspondence of elements of homotopy groups and iterated commutators

Elements of 7, (XX)/torsion Tterated commutators

[[% 3Ty Wi Y]

i 23, ]s [0, 1952931

Liy Piy

Yi 1/}j1

[‘Th ) xiz] [‘ph ) (piz]
[yj1 ) yj2] W’jl ) 1/}j2]
[Iis ) yjt] [‘Pls ) 1/}jt]
(@i, (@i, y5.]]

(@i, [Pi.> ¥5.]]

i #icls Y5, 93]

[[(pls ’ wit]v [djju’ [sz ’ U)Jt]“

[Isll 9 [Isll—lv ety [Isl ) IS2] . ]]

[‘PSH I [(psll—u L} [<P51,‘p52]c . ']C]C
[y5127 [y512—17 ) [y51 ) y52] s ]] [w5127 [wsbflv ) [1!181 ) %Q]c - ']C]C
Zsys [Zsi_ys s (2515 Zs5) - - -] sis fsizas oo os sus fsale -+ Jele
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Let
m:ql<y,, — Ir, (qL)
and
i : Drnl (qL)) — qLS"‘m

be the projection and the inclusion, respectively. Then by considering the indecomposable and
(pure and hybrid) decomposable generators (see Table 3 when a = 1), we can see that the
following sequence

(4.1)

0 — Hom(I,, (¢L), Dy, (qL)) == Aut(¢L<,,,) —= Aut(qL<,, )@ Aut(l,, (¢L)) — 0

is exact for each m > 1 (see [22, page 289]). Here,
(1) P(=) =1+40(—)om; that is,

PPlsi, Lty —roommlsrisalen Jeley) = 1H 10 (@fsy, s, 1,0 [51,52]C...]C]Cﬁ) o,

P(w[slz;[512—17~~~;[51752]c~~~]c]cﬁ) =1+io (¢[5l2;[512—1;~~~;[51752]c~~~]c]cﬁ) o

and

P([fs, [szflv'"7[f517f52]0"']0]0u) =1+io([fs, [szfn"-7[f51=f52]c"-]0]cu) o,

and
(2) Ris given by the restriction and the projection of the group of automorphisms of ¢L<,,
to ¢L<,,, , and into I, (qL), respectively.

T'm

We remark that there is only one indecomposable generator (if any) in each dimension in the
quasi-Lie algebra
qL = 7. (XX)/torsion.

Thus, we have
I., (¢L)=Z

for each m > 1. Moreover, by considering the indecomposable elements, and pure and hybrid
decomposable elements of 7, (XX)/torsion, we obtain

(1) Aut(maq+1(XX)/torsion) & Zy;

(2) Aut(maqi2(XX)/torsion) 2 Zy;

(3) Aut(myqt1(XX)/torsion) = Zy;

(4) Aut(m<sq+1(XY)/torsion) = Zy @ Zo ® Zz; and

(56) Aut(m<,,, (£X)/torsion) is both nonabelian and infinite for all m > 4.

In order to show that the set of all same n-types of XX is the set consisting of only one element
as a single homotopy type of itself in the homotopical same n-type point of view, we argue by
induction on m. We first consider the map

Auwt(2X) — Aut(qL,,) = Aut(gLog14+1) = Zo
so that the induction step begins. We secondly suppose that the map
Aut(2X) — Aut(¢L<,,, ,)
has a finite cokernel, and then show that
Aut(XX) — Aut(qL<,,,)

has a finite index for each m. For any kinds of iterated Whitehead products

:E[sll ,[511,1 ..... [s1,82]...]] € D2a(sl+52+~~-+sll )+1 (qL)7
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Ysig (151, ls1.52].] € D2a(si+sattsiy)+1a+1(qL)
and
(2505 25115+ 0 (2815 Zsn] - - )] € Daa(sy+satts)+i—t+1(aL)
there are (pure and hybrid) iterated commutators

 YX - ¥X,

@[sll,[81171,...,[81,82]c~~-]c]c
Ylsiy 519100 [51,52] e Jele | 2X — DX

and

s [fsiisoos [fsis fsale - Jele 1 BX — X
corresponding to the the types of iterated Whitehead products, respectively. We note that the
types of iterated Whitehead products are exactly the same as the types of (pure and hybrid)
iterated commutators. By considering the Whitehead theorem and by using the results in
Sections 2 and 3, we now have the homotopy self-equivalences

L+ 0psy, sty 10e[s1,80] e el - 25X — XX,
L Plsiy ls1y—1seesls1,saleJele - 20X = X

and

1+ [fsp [fslflu EERE) [fS17f52]c .- ']c]c (XX =YX,
such that the restrictions to the quasi Lie subalgebras ¢L<,, ,, ¢L<r,, , and qL<,, .,
respectively, are the identity maps; that is,

(L4 Plsiy sty —1enlsnsalenJellaLer,, = laLe,,

(1+ 1/}[5[27[Sl271)~~~7[Sl752]c~~~]c]c)ﬂ|qL§7'7n271 = quger,l

and
(L [fors Usiiase oo [fsrs Fsale - ']C]C)ﬁqung,l = 1ngTm,1'

By using Proposition2.I11]and by delooping and taking the adjointness of the iterated Samelson
products in Theorem [3.5] we have

(L Plory sty —1rels1o52)e- Jele B (Tm) = Tm + Q- Tlsy (51,1 ,onfs1250].]]0
(1 + ¢[5121[51271 ----- [51752]c---]c]c)ﬁ(wn) =wy + 8- Ylsig,[s1g—1,---s[51,82]...]]
and
(1 + [fSH [fsl—17 SRR [f517f52]c .- ']C]C)ﬁ(ws) =ws +7- [ZSZ’ [Zssz SR [ZSUZS2] .- ]]

We should be careful when applying the dimensions of the quasi-Lie algebra to induction; if

2a(s1+s2+ -+ s,-1)+1 or
Tm—1 =1 2a(s1 + 824+ 81,-1) + 12 or
2a(s1+s2+ -+ s-1) +1— 1,
where 1 <t <[ —1, then the next term r,, is determined by the next dimension of the one of
them depending on a,l1,le and [. Finally, by considering the indecomposable and (pure and

hybrid) decomposable generators, induction hypothesis and Theorem [3] we finally complete
the proof of the main theorem of this paper. g

Remark 4.2. We observe that there may be a (pure or hybrid) decomposable homotopy class
of m.(XX)/torsion (a > 2) without an indecomposable homotopy class in a certain dimension.
More precisely, if a = 2, y1 € 7g(XX)/torsion and ya € m10(XX)/torsion, then it can be
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seen that [y1,ys2] is an element of m5(XX)/torsion which is a basic Whitehead product as
a rationally nonzero homotopy class, and that there is no indecomposable generator in this
dimension. However, there is no difficulty in considering the mathematical induction because
the epimorphism of (4-1) becomes an isomorphism because I,.  (¢L) = 0.

For two nilpotent spaces, Y and Z, the space Y is said to be a clone of Z if Y and Z have
the same homotopy n-type for all n and the localizations Y(,) and Z(,) at each prime p are
homotopy equivalent. The main result in this paper says that the set of all clones of XX is the
set consisting of the singe homotopy type.

The reader may have noticed that the kth suspensions X* X, k > 2 were not described in this
paper. Indeed, the homotopy self-equivalences 1 4+ [commutators] € Aut(XX) considered in
this paper are not as well behaved as we might wish on the self-maps of the kth suspension of a
given CW-complex X because the group [©* X, ¥* X] becomes abelian for k > 2. As a matter
of fact, the commutators are all vanishing in this abelian group. However, it is natural for us
to ask that there are many kinds of rationally nontrivial homotopy classes [f] of self-maps on
the abelian group [Z*X,¥¥X], k > 2 such that ©f : [S**1 X, ¥¥T1X] is inessential. We end
this paper with the following question:

Question 4.3. Let G be a finitely generated abelian group. Can we calculate SNT(X*X) for
k > 2, where X is the Eilenberg-MacLane space of type (G,n),n > 1 or the wedge product of
the Eilenberg-MacLane spaces of various types?
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