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Abstract

An edge labeling of a connected graph G = (V,E) is said to be local antimagic if it
is a bijection f : E → {1, . . . , |E|} such that for any pair of adjacent vertices x and y,
f+(x) 6= f+(y), where the induced vertex label f+(x) =

∑

f(e), with e ranging over all
the edges incident to x. The local antimagic chromatic number of G, denoted by χla(G),
is the minimum number of distinct induced vertex labels over all local antimagic labelings
of G. In this paper, we give counterexamples to the lower bound of χla(G ∨ O2) that was
obtained in [Local antimagic vertex coloring of a graph, Graphs and Combin., 33 : 275 - 285
(2017)]. A sharp lower bound of χla(G ∨ On) and sufficient conditions for the given lower
bound to be attained are obtained. Moreover, we settled Theorem 2.15 and solved Problem
3.3 in the affirmative. We also completely determined the local antimagic chromatic number
of complete bipartite graphs.
Keywords: Local antimagic labeling, Local antimagic chromatic number
2010 AMS Subject Classifications: 05C78; 05C69.

1 Introduction

A connected graph G = (V,E) is said to be local antimagic if it admits a local antimagic edge
labeling, i.e., a bijection f : E → {1, . . . , |E|} such that the induced vertex labeling f+ : V → Z

given by f+(x) =
∑

f(e) (with e ranging over all the edges incident to x) has the property that
any two adjacent vertices have distinct induced vertex labels. The number of distinct induced
vertex labels under f is denoted by c(f), and is called the color number of f . The local antimagic
chromatic number of G, denoted by χla(G), is min{c(f) : f is a local antimagic labeling of G}.
In [3], Haslegrave proved that the local antimagic chromatic number is well-defined for every
connected graph other than K2. Thus, for every connected graph G 6= K2, χla(G) ≥ χ(G), the
chromatic number of G.

For any graph G, the graph H = G∨On, n ≥ 1, is defined by V (H) = V (G)∪{vi : 1 ≤ i ≤ n}
and E(H) = E(G)∪{uvi : u ∈ V (G)}. In [1, Theorem 2.16], it was claimed that for any G with
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order m ≥ 4,

χla(G) + 1 ≤ χla(G ∨O2) ≤

{

χla(G) + 1 if m is even,

χla(G) + 2 if m is odd.

In Section 2, we give counterexamples to the above lower bound for each m ≥ 3. A sharp
lower bound is then given. Moreover, sufficient conditions for the above lower bound to be
attained are also presented. In Section 3, we settled [1, Theorem 2.15] and solved [1, Problem 3.3]
in the affirmative. In Section 4, we completely determined the local antimagic chromatic number
of complete bipartite graphs.

2 Counterexamples and sharp bound

In this section, we will make use of the existence of magic rectangles. From [2,8], we know that
a h×k magic rectangle exists when h, k ≥ 2, h ≡ k (mod 2) and (h, k) 6= (2, 2). For a, b ∈ Z and
a ≤ b, we use [a, b] to denote the set of integers from a to b. We first introduce some notation
about matrices.

Let m,n be two positive integers. For convenience, we use Mm,n to denote the set of m× n
matrices over Z. For any matrix M ∈ Mm,n, let ri(M) and cj(M) denote the i-th row sum and
the j-th column sum of M , respectively.

We shall assign the integers in [1, q + r + qr] to matrices PR ∈ M1,r, QR ∈ Mq,r and
QP = (PQ)T ∈ Mq,1 such that the matrix

M =

(

∗ PR
QP QR

)

has the following properties:

P.1 Each integer in [1, q + r + qr] appears once.

P.2 ri+1(M) is a constant not equal to r1(M) + c1(M), 1 ≤ i ≤ q.

P.3 cj+1(M) is a constant not equal to ri+1(M) or r1(M) + c1(M), 1 ≤ j ≤ r.

Let {u}, {v1, v2, . . . , vq} and {w1, w2, . . . , wr} be the three independent vertex set ofK(1, q, r),
r ≥ q ≥ 2. For 1 ≤ i ≤ q, 1 ≤ j ≤ r, let the i-entry of QP be the edge label of uvi, the j-entry
of PR be the edge label of uwj , the (i, j)-entry of QR be the edge label of viwj . It follows that
r1(M) + c1(M) is the sum of all the incident edge labels of u, ri+1(M) is the sum of all the
incident edge labels of vi, and cj+1(M) is the sum of all the incident edge labels of wj. Thus, M
corresponds to a local antimagic labeling of K(1, q, r) with χla(K(1, q, r)) = 3 if such M exists.

Theorem 2.1. For r ≥ 2, χla(K(1, 2, r)) = 3.

Proof. Suppose r is even. If r = 2, a required labeling is given by

M =





∗ 1 5
6 7 2
8 3 4
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Consider r ≥ 4. Let A be a 3× (r+1) magic rectangle. Exchanging columns and exchanging
rows if necessary so that 3(r + 1) is put at the (1, 1)-entry of A. Now, M is obtained by letting
PR be the 1× r matrix obtained from the first row of A by deleting the (1, 1)-entry; letting QP
be the 3× 1 matrix obtained from the first column of A by deleting the (1, 1)-entry; and letting
QR be the 2× r matrix obtained from A by deleting the first row and the first column.

It is easy to check that c1(M)+r1(M) = (r+4)(3r+4)
2 −6(r+1) 6= r2(M) = r3(M) = (r+1)(3r+4)

2

6= cj+1 =
3(3r+4)

2 , 1 ≤ j ≤ r.
Suppose r is odd. If r = 3, a required labeling is given by

M =





∗ 2 4 6
8 5 11 3
10 9 1 7





Consider r ≥ 5. Now for r ≡ 1 (mod 4), let r = 4s + 1, s ≥ 1. The entries of a required
labeling matrix M is given in tabular form as follows.

PR = 1 3 · · · 4s− 5 4s− 3 4s − 1 10s+ 3 2 4 · · · 4s− 4 4s− 2 4s

QP +QR =
12s+ 5 12s + 3 6s+ 1 · · · 4s+ 5 10s + 5 4s+ 3 4s+ 1

12s+ 4 6s+ 2 12s + 2 · · · 10s+ 6 4s + 4 10s+ 4 4s+ 2

10s+ 2 8s+ 1 · · · 6s+ 5 8s + 4 6s + 3

8s+ 2 10s+ 1 · · · 8s+ 5 6s + 4 8s + 3

Clearly, we get c1(M) + r1(M) = 8s2 + 36s + 12 6= r2(M) = r3(M) = 32s2 + 27s + 6 6=
cj+1(M) = 18s + 6, 1 ≤ j ≤ r.

Finally for r ≡ 3 (mod 4), let r = 4s+3, s ≥ 1. To get PR, we assign 2k− 1 to column k if
1 ≤ k ≤ 2s + 2, and assign 2k − 4s − 4 to column k if 2s + 3 ≤ k ≤ 4s + 3. For row 1 of QR,
we assign 6s + 6 − k to column k if k = 1, 3, 5, . . . , 2s + 1; assign 12s + 10 − k to column k if
k = 2, 4, 6, . . . , 2s + 2; assign 10s + 9 − k to column k if k = 2s + 3, 2s + 5, 2s + 7, . . . , 4s + 3;
and assign 12s + 10 − k to column k if k = 2s + 4, 2s + 6, 2s + 8, . . . , 4s + 2. For row 2 of QR,
we assign 12s + 10 − k to column k if k = 1, 3, 5, . . . , 2s + 1; assign 6s + 6 − k to column k if
k = 2, 4, 6, . . . , 2s + 2; assign 12s + 10 − k to column k if k = 2s + 3, 2s + 5, 2s + 7, . . . , 4s + 3;
and assign 10s + 9 − k to column k if k = 2s + 4, 2s + 6, 2s + 8, . . . , 4s + 2. For QP , the two
entries are 12s + 10 and 12s + 11. Lastly, we exchange the labels 4s − 1 and 4s + 6; the labels
4s − 2 and 6s + 8; and the labels 4s + 2 and 8s + 7. The resulting matrices are given by the
following tables.

PR = 1 3 5 · · · 4s − 3 4s + 6 4s+ 1 4s+ 3 2 4 · · · 4s− 4 6s + 8 4s 8s + 7

QP +QR =
12s+ 10 6s+ 5 12s + 8 6s+ 3 · · · 4s+ 7 10s + 10 4s + 5 10s+ 8

12s+ 11 12s + 9 6s+ 4 12s+ 7 · · · 10 + 11 4s − 1 10s + 9 4s+ 4

8s + 6 10s + 6 · · · 8s+ 10 4s − 2 8s + 8 6s+ 6

10s+ 7 8s + 5 · · · 6s+ 9 8s + 9 6s + 7 4s + 2

Thus, we now have a required M with c1(M)+ r1(M) = 8s2+44s+49 6= r2(M) = r3(M) =
32s2 + 59s + 19 6= cj+1(M) = 18s + 15, 1 ≤ j ≤ r.
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Observe that K(1, 2, r) = K(1, r) ∨O2. Obviously, χla(K(1, r)) = r + 1, r ≥ 2.

Corollary 2.2. For each m ≥ 3, there exists a graph G of order m such that χla(G ∨ O2) −
χla(G) = 3−m ≤ 0.

Corollary 2.2 serves as counterexamples to the lower bound of [1, Theorem 2.16]. Interested
readers may refer to [4] for more general results on χla(K(p, q, r)), r ≥ q ≥ p ≥ 1. The next
theorem gives a sharp lower bound of χla(G ∨On) for n ≥ 1.

Theorem 2.3. For n ≥ 1, χla(G ∨On) ≥ χ(G) + 1 and the bound is sharp.

Proof. It is obvious that for n ≥ 1, we have χla(G ∨ On) ≥ χ(G ∨ On) = χ(G) + 1. In [5], the
authors obtained that for h ≥ 2, k ≥ 1, χla(C2h ∨ O2k) = 3 and χla(C2h−1 ∨ O2k−1) = 4. Since
χ(C2h) = 2 and χ(C2h−1) = 3, the bound is sharp.

Observe that if χla(G) = χ(G), then χla(G ∨ On) ≥ χ(G ∨ On) = χ(G) + 1 = χla(G) + 1.
Thus we have proved the sufficiency of the following conjecture.

Conjecture 2.1. For n ≥ 1, χla(G ∨On) ≥ χla(G) + 1 if and only if χla(G) = χ(G).

In [1], we have for m ≥ 2, χ(C2m−1) = χla(C2m−1) = 3 = χla(C2m) and χ(C2m) = 2. This
provides a supporting evidence that the conjecture holds.

Let ai,j be the (i, j)-entry of a magic (m,n)-rectangle with row constant n(mn + 1)/2 and
column constant m(mn+ 1)/2. The following theorems partially answer Conjecture 2.1.

Theorem 2.4. Suppose G is of order m ≥ 3 with m ≡ n (mod 2) and χ(G) = χla(G). If (i)
n ≥ m, or (ii) m ≥ n2/2 and n ≥ 4, then χla(G ∨On) = χla(G) + 1.

Proof. Let G has size e such that V (G) = {ui : 1 ≤ i ≤ m} and V (On) = {vj : 1 ≤ j ≤ n}.
Suppose f is a local antimagic labeling of G that induces a t-coloring of G.

Define g : E(G ∨On) → [1, e +mn] by

g(uv) = f(uv) for each uv ∈ E(G),

g(uivj) = e+ ai,j for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

It is clear that g is a bijection such that

g+(ui) = f+(ui) + ne+ n(mn+ 1)/2 for 1 ≤ i ≤ m,

g+(vj) = me+m(mn+ 1)/2 for 1 ≤ j ≤ n.

(i) Suppose n ≥ m, we have g+(ui) > g+(vj) for all i and j.

(ii) Suppose m ≥ n2/2 and n ≥ 4. We proceed to show that g+(vj) − g+(ui) = (m −
n)e + (m − n)(mn + 1)/2 − f+(ui) > 0 for all i and j. Note that e ≤ m(m − 1)/2, and
f+(ui) ≤ e+ (e− 1) + · · · + (e−m+ 2) = (2e−m+ 2)(m− 1)/2. Thus, 2(g+(vj)− g+(ui)) ≥
2(m−n)e+(m−n)(mn+1)−(2e−m+2)(m−1) = 2(1−n)e+(m−n)(mn+1)+(m−2)(m−1) ≥
(1 − n)m(m − 1) + (m − n)(mn + 1) + (m − 2)(m − 1) = 2m2 + mn − 3m − mn2 − n + 2 >
m(2m− n2) +m(n− 4) + (m− n) ≥ 0.

In either case, g is a local antimagic labeling that induces a (t+1)-coloring of G∨On. Hence,
χla(G∨On) ≤ χla(G)+1. Since χla(G∨On) ≥ χ(G∨On) = χ(G)+1 = χla(G)+1, the theorem
holds.
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Hence, we may assume that m > n.

Theorem 2.5. Suppose G is an r-regular graph of order m ≥ 3 with m ≡ n (mod 2) and

χ(G) = χla(G). If m > n and r ≥ (m−n)(mn+1)
2mn , then χla(G ∨On) = χla(G) + 1.

Proof. Let V (G) = {ui : 1 ≤ i ≤ m} and V (On) = {vj : 1 ≤ j ≤ n}. Note that the size of G
is mr/2. Suppose f is a local antimagic labeling of G that induces a t-coloring of G. Define
g : E(G ∨On) → [1,mr/2 +mn] by

g(uv) = f(uv) +mn for each uv ∈ E(G),

g(uivj) = ai,j for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

It is clear that g is a bijection such that

g+(ui) = f+(ui) +mnr + n(mn+ 1)/2 for 1 ≤ i ≤ m,

g+(vj) = m(mn+ 1)/2, for 1 ≤ j ≤ n.

Now, 2(g+(ui)− g+(vj)) = 2f+(ui) + 2mnr + (n−m)(mn+ 1). Since r ≥ (m−n)(mn+1)
2mn , we

have g+(ui) > g+(vj). This means g is a local antimagic labeling that induces a (t+1)-coloring of
G∨On. Hence, χla(G∨On) ≤ χla(G)+1. Since χla(G∨On) ≥ χ(G∨On) = χ(G)+1 = χla(G)+1,
the theorem holds.

From [1, Theorem 2.14] and [5], for odd m ≥ 3, n ≥ 1, χla(Cm) = χ(Cm) = 3 and χla(Cm ∨
On) = 4 = χ(Cm) + 1.

Problem 2.1. Show that the condition n ≥ m in Theorem 2.4 or the condition r ≥ (m−n)(mn+1)
2mn

in Theorem 2.5 can be omitted.

3 Affirmative answers to [1, Theorem 2.15 and Problem 3.3]

In [1, Theorem 2.15], the authors show that 3 ≤ χla(Wn) ≤ 5 for n ≡ 0 (mod 4). We now give
the exact value of χla(Wn).

Theorem 3.1. For k ≥ 1, χla(W4k) = 3.

Proof. Let V (W4k) = {v} ∪ {ui : 1 ≤ i ≤ 4k} and E(W4k) = {vui : 1 ≤ i ≤ 4k} ∪ {uiui+1 : 1 ≤
i ≤ 4k}, where u4k+1 = u1. For k = 1 and 2, we have the labelings f in figures below for W4

and W8 showing that c(f) = 3.
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For k ≥ 3, we consider the following two tables.

Table 1.

C1 C2 C3 . . . Ck−2 Ck−1 Ck Ck+1 Ck+2 Ck+3 . . . C2k−2 C2k−1 C2k

1 3 5 . . . 2k − 5 2k − 3 2k − 1 2 4 6 . . . 2k − 4 2k − 2 2k

3k 3k − 1 3k − 2 . . . 2k + 3 2k + 2 2k + 1 4k 4k − 1 4k − 2 . . . 3k + 3 3k + 2 3k + 1

8k 8k − 1 8k − 2 . . . 7k + 3 7k + 2 7k + 1 7k − 1 7k − 2 7k − 3 . . . 6k + 2 6k + 1 6k

Table 2.

C1 C2 C3 . . . Ck−2 Ck−1 Ck Ck+1 Ck+2 Ck+3 Ck+4 . . . C2k−1 C2k

3k + 2 3k + 1 3k . . . 2k + 5 2k + 4 2k + 3 2k + 2 2k 4k 4k − 1 . . . 3k + 4 3k + 3

1 3 5 . . . 2k − 5 2k − 3 2k − 1 2k + 1 2 4 6 . . . 2k − 4 2k − 2

6k − 1 6k − 2 6k − 3 . . . 5k + 2 5k + 1 5k 5k − 1 7k 5k − 2 5k − 3 . . . 4k + 2 4k + 1

Observe that

(i) all integers in row 1 and row 2 of each table are in [1, 4k];

(ii) the two rows 3 of both tables collectively give all integers in [4k + 1, 8k];

(iii) Table 1 has constant column sum of 11k + 1 and Table 2 has constant column sum of
9k + 2;

(iv) in Table 1, all integers from column C1 to Ck, and from Ck+1 to C2k of each row form an
arithmetic progression;

(v) in Table 2, all integers from column C1 to Ck+1, and from Ck+2 to C2k of each row (or
from Ck+3 to C2k for row 1 and row 3) form an arithmetic progression.

Consider the following three sequences obtained by taking the first two entries of a particular
column of Table 1 and the first two entries of a particular column of Table 2 alternately. Both
entries taken are written in ordered pair respectively.

For even k, we have

(a) (1, 3k), (3k, 5), (5, 3k−2), (3k−2, 9), (9, 3k−4), (3k−4, 13), . . ., (2k−7, 2k+4), (2k+4, 2k−3),
(2k − 3, 2k + 2), (2k + 2, 2k + 1);

(b) (2k+1, 2k− 1), (2k− 1, 2k+3), (2k+3, 2k− 5), (2k− 5, 2k+5), . . ., (3k− 3, 7), (7, 3k− 1),
(3k − 1, 3), (3, 3k + 1);

(c) (3k + 1, 2k), (2k, 2), (2, 4k), (4k, 4), (4, 4k − 1), (4k − 1, 6), (6, 4k − 2), (4k − 2, 8), . . .,
(2k−6, 3k+4), (3k+4, 2k−4), (2k−4, 3k+3), (3k+3, 2k−2), (2k−2, 3k+2), (3k+2, 1).

Here, sequences (a) and (b) are of length k and sequence (c) is of length 2k.
Observe that T = (a)+(b)+(c) is a sequence of 4k ordered pairs with every integers in [1, 4k]

appearing exactly twice, once as the left entry of an ordered pair and once as the right entry of
another ordered pair. Therefore, taking the left entry of every ordered pair gives us a sequence
S with 4k distinct integers in [1, 4k]. Define, f : E(C4k) → S such that f(ei) = f(uiui+1) is the
i-th entry of S, 1 ≤ i ≤ 4k and u4k+1 = u1. Let f(vui+1) be the value in row 3 of the column that
corresponds to the i-th entry of S. For 1 ≤ j ≤ 2k, since all the (2j−1)-st ordered pairs of T are
from Table 1 and all the 2j-th ordered pairs are from Table 2, we now have f+(u2j) = 11k + 1

6



and f+(u2j−1) = 9k + 2. Moreover, f+(v) = (4k + 1) + · · · + (8k) = 2k(12k + 1). Thus, f is a
local antimagic labeling of W4k with c(f) = 3.

For odd k, we shall have different sequence (a) and sequence (b) as follows.

(a) (1, 3k), (3k, 5), (5, 3k−2), (3k−2, 9), (9, 3k−4), (3k−4, 13), . . ., (2k−5, 2k+3), (2k+3, 2k−1);

(b) (2k−1, 2k+1), (2k+1, 2k+2), (2k+2, 2k−3), (2k−3, 2k+4), (2k+4, 2k−7), (2k−7, 2k+6),
. . ., (3k − 3, 7), (7, 3k − 1), (3k − 1, 3), (3, 3k + 1).

Here, sequences (a) and (b) are of length k − 1 and k + 1, respectively.
By an argument similar to that for even k, we also can obtain a local antimagic labeling f

of W4k with c(f) = 3 such that f+(u2j) = 11k + 1 and f+(u2j−1) = 9k + 2 for 1 ≤ j ≤ 2k, and
f+(v) = 2k(12k + 1). Since χla(W4k) ≥ χ(W4k) = 3, the theorem holds.

Example 3.1. For k = 3, the tables defined in the proof of Theorem 3.1 are

Table 1.
C1 C2 C3 C4 C5 C6

1 3 5 2 4 6

9 8 7 12 11 10

24 23 22 20 19 18

Table 2.
C1 C2 C3 C4 C5 C6

11 10 9 8 6 12

1 3 5 7 2 4

17 16 15 14 21 13

Thus, sequence T is given by:

(a) (1,9), (9,5);

(b) (5,7), (7,8), (8,3), (3,10);

(c) (10,6), (6,2), (2,12), (12,4), (4,11), (11,1)

and S = {1, 9, 5, 7, 8, 3, 10, 6, 2, 12, 4, 11}. Hence we have the following labeling:
u1

u3

u4

u5u8

u9

u2

u67u

u10

u11

u12

21

20
22

14

13

19 17
24

15

2316
18

29
1

11
4

2

12

6

10
3

8

7

5

9

29

29

29

29

29

34

34

34

34

34

34

222

In [1, Problem 3.3], the authors also asked:

Problem 3.1. Does there exist a graph G of order n with χla(G) = n − k for every k =
0, 1, 2, . . . , n− 2?

The following theorem in [6] is needed to answer Problem 3.1. For completeness, the proof
is also given.

Theorem 3.2. Let G be a graph having k pendants. If G is not K2, then χla(G) ≥ k + 1 and
the bound is sharp.
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Proof. Suppose G has size m. Let f be any local antimagic labeling of G. Consider the edge
uv with f(uv) = m. We may assume u is not a pendant. Clearly, f+(u) > m ≥ f+(z) for every
pendant z. Since all pendants have distinct induced colors, we have χla(G) ≥ k + 1.

For k ≥ 2, since χla(Sk) = k + 1, where Sk is a star with maximum degree k, the lower
bound is sharp. The labeling in figure below shows that the lower bound is sharp for k = 1.

14 147

7

7

7

3 4

16

25 7

For m ≥ 2, t ≥ 1, let CT (m, t) be the coconut tree obtained by identifying the central
vertex of a K(1, t) with an end-vertex of a path Pm. Note that CT (2, t) = K(1, t + 1) with
χla(K(1, t + 1)) = t+ 2. Moreover, CT (m, 1) = Pm+1.

Theorem 3.3. For m ≥ 2, t ≥ 1, χla(CT (m, t)) = t+ 2.

Proof. By [1, Theorem 2.7], the theorem holds for t = 1. Consider t ≥ 2. Let Pm = v1v2 · · · vm
and E(K(1, t)) = {vmxj : 1 ≤ j ≤ t}. Denote by ei the edge vivi+1 for 1 ≤ i ≤ m − 1. Define
f : E(CT (m, t)) → [1,m+ t− 1] by

(i) f(ei) = (i+ 1)/2 for odd i,

(ii) f(ei) = m− i/2 for even i,

(iii) f(vmxj) = m+ j − 1 for 1 ≤ j ≤ t.

It is easy to verify that f is a bijection with f+(xj) = m+j−1 for 1 ≤ j ≤ t, f+(vm) ≥ 2m+1,
f+(v1) = 1, f+(vi) = m+ 1 for even 1 < i < m and f+(vi) = m+ 2 for odd 1 < i < m. Thus,
f is a local antimagic labeling that induces a (t+2)-coloring so that χla(CT (m, t)) ≤ t+2. By
Theorem 3.2, we know that χla(CT (m, t)) ≥ t+ 2. Hence, χla(CT (m, t)) = t+ 2.

Theorem 3.4. For each possible n, k, there exists a graph G of order n such that χla(G) = n−k
if and only if n ≥ k + 3 ≥ 3.

Proof. By definition, k ≥ 0 and n ≥ 3. Suppose n ≥ k + 3 ≥ 3. Let G = CT (m, t) of order
n = m+ t ≥ 3. For t ≥ 1, we have that χla(CT (m, t)) = t+2 = n− (m− 2). Letting m− 2 = k,
we have χla(CT (k + 2, n − k − 2)) = n − k. Thus, for every possible 0 ≤ k ≤ n − 3, there is a
graph G of order n such that χla(G) = n− k. This proves the sufficiency.

We prove the necessity by contrapositive. Suffice to assume n = k + 2. It is easy to check
that there is no graph G of order n = 3, 4 such that χla(G) = n− k = 2.

Theorem 3.4 and the following theorem in [6] solve Problem 3.1 completely. For completeness,
the proof is stated as well.

Theorem 3.5. Suppose n ≥ 3. There is a graph G of order n with χla(G) = 2 if and only if
n 6= 3, 4, 5, 7.
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Proof. Suppose n = 3, 4, 5, 7, it is routine to check that all graphs G of order n has χla(G) ≥ 3.
This proves the necessity by contrapositive.

We now prove the sufficiency. Suppose n is odd and n ≥ 9. Since n = 6s + 1 (s ≥ 2),
n = 6s+ 3 (s ≥ 1) or 6s + 5 (s ≥ 1), we consider the following three cases.

Case (a). n = 6s + 1. Suppose s ≥ 3. We shall construct a bipartite graph G with
bipartition (A,B), where |A| = 3 and |B| = 6s− 2, such that all vertices in B are of degree 2. If
G exists, then G is of order 6s+ 1 and size 12s− 4. Suppose there is a local antimagic labeling
f of G such that c(f) = 2, then f corresponds to a labeling matrix M of size 3× (6s− 2) such
that each of its entry is either an integer in [1, 12s−4] or ∗. Moreover, each integer in [1, 12s−4]
appears as entry of A once. Note that the total sum of integers in [1, 12s−4] is 3(6s−2)(4s−1).
We now arrange integers in [1, 12s − 4] to form matrix M as follows:

(1). In row 1, assign k to column k if k = 2, 4, 6, . . . , 4s− 2, 6s− 2; assign 12s− 3− k to column
k if k = 3, 5, 7, . . . , 4s − 1.

(2). In row 2, assign k to column k if k = 1, 2s− 1, 2s+ 1, 2s+ 3, . . . , 6s− 3; assign 12s− 3− k
to column k if k = 2s, 2s + 2, 2s + 4, . . . , 6s − 4.

(3). In row 3, assign 12s− 4 to column 1; assign k to column k if k = 3, 5, 7, . . . , 2s− 3, 4s, 4s+
2, 4s + 4, . . . , 6s − 4; assign 12s − 3 − k to column k if k = 2, 4, 6, . . . , 2s − 2, 4s + 1, 4s +
3, 4s + 5, . . . , 6s − 3, 6s − 2.

(4). All the remaining columns of each row is assigned with ∗.

The resulting matrix is given by the following table:
∗ 2 12s − 6 · · · 2s− 2 10s − 2 2s 10s − 4 · · ·

1 ∗ ∗ · · · ∗ 2s− 1 10s− 3 2s+ 1 · · ·

12s − 4 12s − 5 3 · · · 10s − 1 ∗ ∗ ∗ ∗

8s 4s− 2 8s− 2 ∗ . . . ∗ ∗ ∗ 6s − 2

4s− 3 8s− 1 4s− 1 8s − 3 · · · 6s− 5 6s+ 1 6s− 3 ∗

∗ ∗ ∗ 4s · · · 6s+ 2 6s− 4 6s 6s − 1

It is easy to check that the first row contains 4s − 1 numbers, the second row contains 4s
numbers and the third row contains 4s− 3 numbers. Moreover, each column sum is 12s− 3 and
each row sum is (6s − 2)(4s − 1). Thus, G exists and χla(G) = 2.

When s = 2 (n = 13), a required labeling matrix is as follow:

M =

∗ 2 18 4 16 6 14 ∗ ∗ 10

1 ∗ 3 17 5 15 7 13 9 ∗

20 19 ∗ ∗ ∗ ∗ ∗ 8 12 11

Case (b). n = 6s + 3. Similar to Case (a), a labeling matrix M of size 3 × 6s such that
each of its entry is either an integer in [1, 12s] or ∗ can be obtained.

For s ≥ 1, we let the matrix M =
(

M1 M2 M3

)

, where each Mi is a 3 × 2s matrix.
For the first matrix, we assign 1, 2, . . . , 2s at the first row; ∗ at each entry of the second row;
12s, 12s− 1, . . . , 10s+1 at the third row. We then swap the (1, j)-entry with (3, j)-entry of this
matrix when j ≡ 2, 3 (mod 4) and 2 ≤ j ≤ 2s. The resulting matrix is M1. Similarly, for the
second matrix, we assign 10s, 10s − 1, . . . , 8s + 1 at the first row; 2s + 1, 2s + 2, . . . , 4s at the
second row; ∗ at each entry of the third row. We then swap the (1, j)-entry with (2, j)-entry
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of this matrix when j ≡ 2, 3 (mod 4) and 2 ≤ j ≤ 2s. The resulting matrix is M2. For the
third matrix, we assign ∗ at each entry of the first row; 8s, 8s− 1, . . . , 6s+1 at the second row;
4s + 1, 4s + 2, . . . , 6s at the third row. We then swap the (2, j)-entry with (3, j)-entry of this
matrix when j ≡ 2, 3 (mod 4) and 2 ≤ j ≤ 2s. The resulting matrix is M3.

So when s is odd, we have

M1 =
1 12s− 1 12s− 2 4 5 12s− 5 · · · 10s+ 4 2s− 2 2s− 1 10s+ 1
∗ ∗ ∗ ∗ ∗ ∗ · · · ∗ ∗ ∗ ∗
12s 2 3 12s− 3 12s− 4 6 · · · 2s− 3 10s+ 3 10s+ 2 2s

M2 =
10s 2s+ 2 2s+ 3 10s− 3 10s− 4 2s+ 6 · · · 4s− 3 8s+ 3 8s+ 2 4s

2s+ 1 10s− 1 10s− 2 2s+ 4 2s+ 5 10s− 5 · · · 8s+ 4 4s− 2 4s− 1 8s+ 1
∗ ∗ ∗ ∗ ∗ ∗ · · · ∗ ∗ ∗ ∗

M3 =
∗ ∗ ∗ ∗ ∗ ∗ · · · ∗ ∗ ∗ ∗
8s 4s+ 2 4s+ 3 8s− 3 8s− 4 4s+ 6 · · · 6s− 3 6s+ 3 6s+ 2 6s

4s+ 1 8s− 1 8s− 2 4s+ 4 4s+ 5 8s− 5 · · · 6s+ 4 6s− 2 6s− 1 6s+ 1

One may check that the first row sum of M1, the second row sum of M2 and the third row
sum of M3 are the same which is 12s+ 1

4(2s− 2)(24s + 2) = 12s2 + s− 1. It is easy to see that
the third row sum of M1, the first row sum of M2 and the second row sum of M3 also are the
same and equals (12s + 1)(2s) − (12s2 + s − 1) = 12s2 + s + 1. Hence each row sum of M is
24s2 + 2s and each column sum is 12s+ 1.

When s is even, we have

M1 =
1 12s− 1 12s− 2 4 5 · · · 2s− 4 2s− 3 10s+ 3 10s+ 2 2s
∗ ∗ ∗ ∗ ∗ · · · ∗ ∗ ∗ ∗ ∗
12s 2 3 12s− 3 12s− 4 · · · 10s+ 5 10s+ 4 2s− 2 2s− 1 10s+ 1

M2 =
10s 2s+ 2 2s+ 3 10s− 3 10s− 4 · · · 8s+ 5 8s+ 4 4s− 2 4s− 1 8s+ 1

2s+ 1 10s− 1 10s− 2 2s+ 4 2s+ 5 · · · 4s− 4 4s− 3 8s+ 3 8s+ 2 4s
∗ ∗ ∗ ∗ ∗ · · · ∗ ∗ ∗ ∗ ∗

M3 =
∗ ∗ ∗ ∗ ∗ · · · ∗ ∗ ∗ ∗ ∗
8s 4s+ 2 4s+ 3 8s− 3 8s− 4 · · · 6s+ 5 6s+ 4 6s− 2 6s− 1 6s+ 1

4s+ 1 8s− 1 8s− 2 4s+ 4 4s+ 5 · · · 6s− 4 6s− 3 6s+ 3 6s+ 2 6s

One may check that all the numerical row sum of Mi are the same which is 1
4(2s)(24s+2)+

10s + 2 = 12s2 + s. Hence each row sum of M is 24s2 + 2s and each column sum is 12s + 1.
Thus, G exists and χla(G) = 2.
Case (c). n = 6s + 5. Suppose s ≥ 2. We shall construct a bipartite graph G with

bipartition (A,B), where |A| = 3 and |B| = 6s + 2, such that B has a vertex of degree 1 and
the remaining 6s + 1 vertices are of degree 2. If G exists, then G is of order 6s + 5 and size
12s + 3. Note that the total sum of integers in [1, 12s + 3] is 3(6s + 2)(4s + 1). Similar to the
above construction, we want to arrange integers in [1, 12s + 3] to form a 3× (6s+ 2) matrix M
as follows:

(1). In row 1, assign k to column k if k = 2, 4, 6, . . . , 4s + 2, 6s; assign 12s + 3− k to column k
if k = 3, 5, 7, . . . , 4s + 1.

(2). In row 2, assign k to column k if k = 1, 2s+ 1, 2s+ 3, 2s+ 5, . . . , 6s+ 1; assign 12s+ 3− k
to column k if k = 2s, 2s + 2, 2s + 4, . . . , 6s − 2.
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(3). In row 3, assign 12s + 2 to column 1 and 12s + 3 to column 6s + 2; assign k to column
k if k = 3, 5, 7, . . . , 2s − 1, 4s, 4s + 2, 4s + 4, . . . , 6s − 2; assign 12s + 3 − k to column k if
k = 2, 4, 6, . . . , 2s − 2, 4s + 3, 4s + 5, 4s + 7, . . . , 6s+ 1.

(4). All the remaining columns of each row is assigned with ∗.

The resulting matrix is given by the following table:
∗ 2 12s 4 · · · 10s + 4 2s 10s + 2 · · · 4s

1 ∗ ∗ ∗ · · · ∗ 10s+ 3 2s+ 1 · · · 8s+ 3

12s + 2 12s + 1 3 12s − 1 · · · 2s− 1 ∗ ∗ · · · ∗

8s+ 2 4s+ 2 ∗ · · · ∗ ∗ 6s ∗ ∗

4s+ 1 8s+ 1 4s+ 3 · · · 6s+ 5 6s− 1 ∗ 6s+ 1 ∗

∗ ∗ 8s · · · 6s− 2 6s+ 4 6s+ 3 6s+ 2 12s + 3
It is easy to check that the first row contains 4s+1 numbers, the second row contains 4s+2

numbers and the third row contains 4s numbers. Moreover, each column sum is 12s + 3 and
each row sum is (6s + 2)(4s + 1).

When s = 1 (n = 11), a required labeling matrix is as follow:

M =

1 3 4 5 6 8 13 ∗

∗ 12 ∗ 10 9 7 2 ∗

14 ∗ 11 ∗ ∗ ∗ ∗ 15

Thus, G exists and χla(G) = 2.

Suppose n ≥ 6 is even. In [1, Theorem 2.11] (see Theorem 4.1), we have χla(Kp,q) = 2,
where p 6= q and n = p+ q ≥ 6 is an even integer. Therefore, there exists a graph G of order n
such that χla(G) = 2 for every even n ≥ 6.

Example 3.2. Let n = 19, we have

M =

∗ 2 30 4 28 6 26 8 24 10 22 ∗ ∗ ∗ ∗ 16

1 ∗ ∗ ∗ 5 27 7 25 9 23 11 21 13 19 15 ∗

32 31 3 29 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 12 20 14 18 17

Let n = 21, we have

M =

1 35 34 4 5 31 30 8 9 27 26 12 ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ 7 29 28 10 11 25 24 14 15 21 20 18

36 2 3 33 32 6 ∗ ∗ ∗ ∗ ∗ ∗ 13 23 22 16 17 19

Let n = 15, we have

M =

1 23 22 4 20 6 7 17 ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ 5 19 18 8 16 10 11 13

24 2 3 21 ∗ ∗ ∗ ∗ 9 15 14 12

Let n = 17, we have

M =

∗ 2 24 4 22 6 20 8 18 10 ∗ 12 ∗ ∗

1 ∗ ∗ 23 5 21 7 19 9 17 11 ∗ 13 ∗

26 25 3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 16 15 14 27
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4 Complete Bipartite Graphs

Theorem 4.1. [1, Theorems 2.11-12] For p, q ≥ 1 and (q, p) 6= (1, 1),

χla(Kp,q) =











q + 1 if q > p = 1,

3 if p = 2, q = 2 or q is odd,

2 if p ≥ 2, p 6= q and p ≡ q (mod 2).

We next determine χla(Kp,q) for all p, q not considered in Theorem 4.1. Suppose f is a local
antimagic labeling of Kp,q and M is a p× q matrix with row sums and column sums correspond
to the vertex labels under f accordingly.

The following lemma [5] is needed.

Lemma 4.2. Let G be a graph of size q. Suppose there is a local antimagic labeling of G inducing
a 2-coloring of G with colors x and y, where x < y. Let X and Y be the numbers of vertices of
colors x and y, respectively. Then G is a bipartite graph whose sizes of parts are X and Y with
X > Y , and xX = yY = q(q+1)

2 .

Theorem 4.3. For p ≥ 3, χla(Kp,p) = 3.

Proof. By Lemma 4.2, χla(Kp,p) ≥ 3. Suppose p ≥ 4 is even. Let A be a magic rectangle of size
p×2 by using integers in [1, 2p] and B be a magic rectangle of size p×(p−2) by using integers in
[2p + 1, p2]. Note that, for the construction of magic rectangles, one may find from [2,8]. Now,
for M =

(

A B
)

, each row sum is 1
2p(p

2 + 1), each of the first two column sums is 1
2p(2p + 1),

and each other column sum is 1
2p(p+ 1)2. Thus, χla(Kp,p) = 3 for even p ≥ 2.

Suppose p = 2n+1 ≥ 3 is odd. Consider the (2n+1)× (2n+1) magic square A constructed
by Siamese method:
Starting from the (1, n + 1)-entry (i.e, A1,n+1) with the number 1, the fundamental movement
for filling the entries is diagonally up and right, one step at a time. When a move would leave
the matrix, it is wrapped around to the last row or first column, respectively. If a filled entry
is encountered, one moves vertically down one box instead, then continuing as before. One may
find the detail in [7].

Note that each of the ranges [1, p], [p+ 1, 2p], . . . , [p2 − p+ 1, p2] occupies a diagonal of the
matrix, wrapping at the edges. Namely, the range [1, p] starts at A1,n+1 and ends at A2,n; the
range [p+1, 2p] starts at A3,n ends at A4,n−1; the range [2p+1, 3p] starts at A5,n−1 and ends at
A6,n−2, etc. In general, the range [ip + 1, (i + 1)p] starts at A2i+1,n+1−i and ends at A2i+2,n−i,
where 0 ≤ i ≤ p − 1 and the indices are taken modulo p. It is easy to see that the (n + 1)-st
column of A is (1, p + 2, . . . , p2) which is an arithmetic sequence with common difference p+ 1.

Now let M be the matrix obtained from A by shifting up the (n + 1)-st column by one
entry (the top entry moves to the bottom). Hence each column sum of M is still the magic
number 1

2p(p
2 + 1). Each row sum of M is 1

2p(p
2 + 1) + p+ 1 except the last row sum which is

1
2p(p

2 + 1)− p2 + 1. Thus, we conclude that χla(Kp,p) = 3.

Example 4.1. Suppose p = 5. We have the following magic square of order 5:

A =













17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9
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Now

M =

17 24 7 8 15 71
23 5 13 14 16 71
4 6 19 20 22 71
10 12 25 21 3 71
11 18 1 2 9 41

65 65 65 65 65 sum

Theorem 4.4. For p, q ≥ 3 and p 6≡ q (mod 2), χla(Kp,q) = 3.

Proof. If χla(Kp,q) = 2, then the corresponding matrix M is a magic rectangle. Since there is
no magic rectangle of size p × q for p 6≡ q (mod 2), we know χla(Kp,q) ≥ 3. Without loss of
generality, assume q ≥ 3 is odd and p ≥ 4 is even.

Consider p ≥ 6. Let A be a 3×q magic rectangle using integer in [1, 3q] and B be a (p−3)×q

magic rectangle using integers in [3q + 1, qp]. Let M =

(

A
B

)

. Thus, each column sum of M is

y = 1
2(qp+1)p, each of the first three row sums of M is x = 1

2 (3q+1)q, and each other row sum
of M is z = 1

2(qp+ 3q + 1)q. Clearly x < z.
Suppose p > q. It is easy to see that x < y. Consider 2(y − z) = (qp + 1)(p − q) − 3q2. If

p ≥ q+3, then y− z > 0. Suffice to consider p = q+1. In this case, 2(y− z) = −2q2+ q+1 6= 0
when q ≥ 3. So M corresponds a local antimagic labeling of Kp,q for this case.

Suppose q > p. 2(x− y) = 3q2 + (1− p2)q − p ≡ −p (mod q). So x− y 6= 0 since q > p ≥ 6.
Now 2(y − z) = (qp+ 1)(p− q)− 3q2 < 0. So M corresponds a local antimagic labeling of Kp,q

for this case.
The remaining case is when p = 4. Let A be a 4× q matrix whose first row is the sequence of

odd integers in [1, 2q] in natural order; second row is the sequence of even integers in [2q+1, 4q]
in reverse natural order; third row is the sequence of even integers in [1, 2q] in natural order;
last row is the sequence of odd integers in [2q + 1, 4q] in reverse natural order. It is clear that
each column sum is 2(4q + 1), the first row sum is q2, the second row sum is 3q2 + q, the third
row sum is q2 + q, and the last row sum is 3q2.

Suppose q ≡ 3 (mod 4). Now A1,(3q+3)/4 (the (1, (3q + 3)/4)-entry of A) and A2,(3q+3)/4 are
(

(3q + 1)/2
(5q + 1)/2

)

, respectively. Swap these two entries to obtain a matrix M . Thus, the first row

sum of M is q2 + q, the second row sum is 3q2, the third row sum is q2 + q, and the last row
sum is 3q2.

Suppose q ≡ 1 (mod 4). Now the A1,(3q+5)/4 and A2,(3q+5)/2 are

(

(3q + 3)/2
(5q − 1)/2

)

, respectively.

To obtain M we swap these two entries first, and then swap A1,1 with A3,1 and swap A2,1 with
A4,1. Now, the first row sum of M is q2 + q − 1, the second row sum is 3q2 + 1, the third row
sum is q2 + q − 1, and the last row sum is 3q2 + 1.

It is easy to see that the column sum 8q + 2 cannot be equal to each row sum. Hence this
completes the proof.
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Example 4.2. Consider the graph K4,7. Let

A =

1 3 5 7 9 11 13 49
28 26 24 22 20 18 16 154
2 4 6 8 10 12 14 56
27 25 23 21 19 17 15 147

58 58 58 58 58 58 58 Sum

After swapping A1,6 with A2,6 we have

M =

1 3 5 7 9 18 13 56
28 26 24 22 20 11 16 147
2 4 6 8 10 12 14 56
27 25 23 21 19 17 15 147

58 58 58 58 58 58 58 Sum

Next we consider the graph K4,5. Let

A =

1 3 5 7 9 25
20 18 16 14 12 80
2 4 6 8 10 30
19 17 15 13 11 75

42 42 42 42 42 Sum

After swapping the A1,5 with A2,5, A1,1 with A3,1, and A2,1 with A4,1 we have

M =

2 3 5 7 12 29
19 18 16 14 9 76
1 4 6 8 10 29
20 17 15 13 11 76

42 42 42 42 42 Sum

Corollary 4.5. For q ≥ p ≥ 1 and q ≥ 2,

χla(Kp,q) =











q + 1 if q > p = 1,

2 if q > p ≥ 2 and p ≡ q (mod 2),

3 otherwise.
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