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SETS OF ARITHMETICAL INVARIANTS

IN TRANSFER KRULL MONOIDS

ALFRED GEROLDINGER AND QINGHAI ZHONG

Abstract. Transfer Krull monoids are a recent concept including all commutative Krull domains and
also, for example, wide classes of non-commutative Dedekind domains. We show that transfer Krull
monoids are fully elastic (i.e., every rational number between 1 and the elasticity of the monoid can be
realized as the elasticity of an element). In commutative Krull monoids which have sufficiently many
prime divisors in all classes of their class group, the set of catenary degrees and the set of tame degrees
are intervals. Without the assumption on the distribution of prime divisors, arbitrary finite sets can be
realized as sets of catenary degrees and as sets of tame degrees.

1. Introduction

A transfer Krull monoid is a monoid having a weak transfer homomorphism to a commutative
Krull monoid or, equivalently, to a monoid of zero-sum sequences. A successful strategy to study
the arithmetic of a transfer Krull monoid H runs as follows: first, study the arithmetic of a
monoid of zero-sum sequences B with methods from additive combinatorics and then pull back
arithmetic properties from B to the monoid H with the help of the transfer homomorphism.
By definition, commutative Krull domains are transfer Krull but, in order to mention a non-
commutative example, also wide classes of hereditary noetherian prime rings turned out to be
transfer Krull. Our main results are formulated in the abstract setting of transfer Krull monoids.
The objects we have in mind are discussed in Subsection 2.5 and in Example 4.4.

Let H be a cancellative monoid and, for simplicity of discussion, suppose that H is commu-
tative. The ascending chain condition on principal ideals of H guarantees that every element of
H can be written as a finite product of irreducible elements. But in general such a factorization
need not be unique. Indeed, all factorizations are unique (i.e., the monoid H is factorial) if and
only if H is a commutative Krull monoid with trivial class group. Arithmetical invariants, such
as elasticities, catenary and tame degrees, describe the non-uniqueness of factorizations. For
an element a ∈ H, the elasticity of a is the supremum of ℓ/k over all k, ℓ for which there are
factorizations of the form a = u1 · . . . · uk = v1 · . . . · vℓ, where all ui and vj are irreducibles.
The catenary degree c(a) of a is the smallest integer N with the following property: for each
two factorizations z, z′ of a, there exist factorizations z = z0, . . . , zk = z′ of a such that, for each
i ∈ [1, k], zi arises from zi−1 by replacing at most N atoms from zi−1 by at most N new atoms.
The elasticity ρ(H) of H is the supremum over all ρ(a) and the catenary degree c(H) of H is
the supremum over all c(a). By definition, we have c(H) = 0 if and only if H is factorial and

2010 Mathematics Subject Classification. 20M13, 13A05, 13F05, 16H10, 16U30.
Key words and phrases. Krull monoids, bounded hereditary prime rings, maximal orders, sets of lengths, sets

of distances, elasticities, catenary degrees.
This work was supported by the Austrian Science Fund FWF, Project Number P28864-N35.

1

http://arxiv.org/abs/1805.02911v1


2 ALFRED GEROLDINGER AND QINGHAI ZHONG

if this holds, then ρ(H) = 1. The elasticity and the catenary degree are classical invariants in
factorization theory but only in the last couple of years the full set of elasticities {ρ(a) | a ∈ H}
and the set of all catenary degrees {c(a) | a ∈ H} found attention in the literature. Their study
is the goal of the present paper.

In Section 3 we show that in a transfer Krull monoid H every rational number lying between
1 and ρ(H) can be realized as the elasticity of an element a ∈ H (Theorem 3.1). In Section
4 we study sets of catenary degrees and related sets of distances and of minimal relations, and
in Section 5 we study the set of tame degrees. The main results are Theorems 4.1 and 5.2.
Roughly speaking, these results say that, if a commutative Krull monoid has sufficiently many
prime divisors in all classes, then all sets of invariants under consideration are intervals. It is
comparatively easy to show that without any assumption on the distribution of prime divisors
any finite set can occur as any of these sets of invariants (Propositions 4.3 and 5.5).

2. Background on the arithmetic of transfer Krull monoids

2.1. Notation. We denote by N the set of positive integers and set N0 = N ∪ {0}. If a, b ∈ R,
we write [a, b] = {x ∈ Z | a ≤ x ≤ b} for the discrete interval from a to b. Let A,B ⊂ Z be
subsets of the integers. Then A + B = {a + b | a ∈ A, b ∈ B} denotes their sumset and for
m ∈ Z we set m + A = {m} + A. If A = {a1, . . . , ak} with k ∈ N0 and a1 < . . . < ak, then
∆(A) = {aν+1 − aν | ν ∈ [1, k − 1]} is the set of distances of A. If A ⊂ N is nonempty, then
ρ(A) = supA/minA ∈ Q≥1 ∪ {∞} is the elasticity of A and if A = {0}, then ρ(A) = 1. For
every n ∈ N, we denote by Cn a cyclic group of order n.

2.2. Atomic monoids and sets of lengths. By amonoid, we mean a left and right cancellative
semigroup with identity element and all monoid homomorphisms are assumed to respect the
identity element. For a ring R, we denote by R• the monoid of regular elements of R. Let H be
a multiplicatively written monoid. We denote by H× the group of units of H and we say that
H is reduced if H× = {1H}. An element a ∈ H is irreducible (an atom) if a /∈ H× and if, for
all b, c ∈ H, a = bc implies that b ∈ H× or c ∈ H×. We denote by A(H) the set of atoms of H.
The monoid H is called atomic if every noninvertible element can be written as a finite product
of atoms of H. If a = u1 · . . . · uk ∈ H, where k ∈ N and u1, . . . , uk ∈ A(H), then k is called a
factorization length of a and

L(a) = {k ∈ N | a has a factorization of length k} ⊂ N

is called the set of lengths of a. For convenience we set L(a) = {0} for all a ∈ H×. For two
elements a, b ∈ H, we have L(a) + L(b) ⊂ L(ab) and, clearly, L(a) = {1} if and only if a is an
atom. We call

L(H) = {L(a) | a ∈ H}

the system of sets of lengths of H. The monoid H is said to be

• half-factorial if H is atomic and |L| = 1 for all L ∈ L(H),

• a BF-monoid if H is atomic and all L ∈ L(H) are finite.
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2.3. Commutative Krull monoids. For a set P , we denote by F = F(P ) the free abelian
monoid with basis P . Then every a ∈ F has a unique representation in the form

a =
∏

p∈P

pvp(a) ,

where vp : F → N0 denotes the p-adic exponent. We call supp(a) = {p ∈ P | vp(a) > 0} ⊂ P
the support of a and |a|F = |a| =

∑

p∈P vp(a) ∈ N0 the length of a. We gather the basics on

commutative Krull monoids (detailed presentations of the theory of Krull monoids are given in
[39] and [29]). Let H be a commutative monoid. Then Hred = H/H× denotes the associated
reduced monoid of H and q(H) the quotient group of H. A monoid homomorphism ϕ : H → D
to a commutative monoid D is called

• a divisor homomorphism if ϕ(a) |ϕ(b) implies that a | b for all a, b ∈ H,

• a divisor theory (for H) if ϕ is a divisor homomorphism, D is free abelian, and for every
α ∈ D there are a1, . . . , am ∈ H such that α = gcd(ϕ(a1), . . . , ϕ(am)).

The monoid H is a Krull monoid if it satisfies one of the following equivalent conditions ([29,
Theorem 2.4.8]) :

(a) H is completely integrally closed and v-noetherian.

(b) H has a divisor theory.

(c) There is a divisor homomorphism from H to a factorial monoid.

Suppose thatH is a commutative Krull monoid. Then there is a free abelian monoid F = F(P )
such that the inclusion Hred →֒ F is a divisor theory. This implies immediately that H is a BF-
monoid. The group C(H) = q(F )/q(Hred) is the (divisor) class group of H and GP = {[p] =
pq(Hred) | p ∈ P} ⊂ C(H) is the set of classes containing prime divisors. A commutative monoid
is factorial if and only if it is Krull with trivial class group.

Next we discuss a Krull monoid with a combinatorial flavour which plays a universal role in the
arithmetic theory of Krull monoids. Let G be an additively written abelian group and G0 ⊂ G
a subset. In additive combinatorics, a sequence over G0 means a finite unordered sequence of
terms from G0 with repetition being allowed. As usual, we consider sequences as elements of the
free abelian monoid over G0 whence let

S = g1 · . . . · gℓ =
∏

g∈G0

gvg(S) ∈ F(G0)

be a sequence over G0. Then |S| = ℓ ∈ N0 is its length and σ(S) = g1 + . . . + gℓ ∈ G is its sum,
and we set −S = (−g1) · . . . · (−gℓ). The monoid

B(G0) = {S ∈ F(G0) | σ(S) = 0} ⊂ F(G0)

denotes the monoid of zero-sum sequences, and since the inclusion B(G0) →֒ F(G0) is a divisor
homomorphism, B(G0) is a Krull monoid by Property (c). The atoms of B(G0) are precisely the
minimal zero-sum sequences over G0 and

D(G0) = sup{|A| | A is a minimal zero-sum sequence over G0} ∈ N0 ∪ {∞}
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denotes the Davenport constant of G0. If G0 is finite, then B(G0) is finitely generated, A(G0) is
finite, and D(G0) < ∞ ([29, Theorem 3.4.2]). Suppose that G ∼= Cn1

⊕ . . .⊕Cnr , where r = r(G)
is the rank of G and n1, . . . , nr ∈ N with 1 < n1 | . . . | nr. Then

(2.1) D∗(G) := 1 +

r
∑

i=1

(ni − 1) ≤ D(G) ,

and equality holds, among others, for p-groups and groups with rank at most two ([29, Theorems
5.5.9 and 5.8.3]). In particular, we see that D(G) = |G| for |G| ≤ 2 and that

(2.2) D(G) = 3 if and only if G ∼= C3 or G ∼= C2 ⊕C2 .

2.4. Transfer Krull monoids. Let H and B be atomic monoids and θ : H → B a homomor-
phism. We consider the following properties:

(T1) B = B×θ(H)B× and θ−1(B×) = H×.

(T2) If a ∈ H, b1, b2 ∈ B, and θ(a) = b1b2, then there exist a1, a2 ∈ H and ε ∈ B× such that
a = a1a2, θ(a1) = b1ǫ

−1, and θ(a2) = εb2.

(WT2) If a ∈ H, n ∈ N, v1, . . . , vn ∈ A(B) and θ(a) = v1 · . . . · vn, then there exist u1, . . . , un ∈
A(H) and a permutation τ ∈ Sn such that a = u1 · . . . · un and θ(ui) ∈ B×vτ(i)B

× for
each i ∈ [1, n].

The map θ is called a transfer homomorphism (resp. a weak transfer homomorphism) if it satisfies
(T1) and (T2) (resp. (T1) and (WT2)). Every transfer homomorphism is a weak transfer
homomorphism and the converse holds if H and B are both commutative ([5, Section 2]; in
general, this is not true as can be seen from [3]). If θ : H → B is a weak transfer homomorphism,
then it is easy to check (e.g., [5, Lemma 2.7]) that

(2.3) θ(A(H)) = A(B) and L(H) = L(B) .

An atomic monoid H is said to be a transfer Krull monoid if one of the following two equivalent
properties is satisfied:

(a) There is a commutative Krull monoid B and a weak transfer homomorphism θ : H → B.

(b) There is an abelian group G, a subset G0 ⊂ G, and a weak transfer homomorphism
θ : H → B(G0).

In case (b) we say that H is a transfer Krull monoid over G0. Since B(G0) is a commutative
Krull monoid, Condition (b) implies Condition (a). Conversely, since every commutative Krull
monoid has a transfer homomorphism to a monoid of zero-sum sequences ([29, Theorem 3.4.10])
and since the composition of weak transfer homomorphisms is a weak transfer homomorphism
again, Condition (a) implies Condition (b).
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2.5. Examples. We provide a first list of examples of commutative Krull monoids and of transfer
Krull monoids (note that transfer Krull monoids need neither be commutative nor completely
integrally closed nor v-noetherian). A more extended list can be found in the survey [27]. In
Example 4.4 we discuss special features of these and of some more examples.

1. (Commutative ring theory) A commutative noetherian domain is a Krull domain if and
only if it is integrally closed, and a commutative integral domain is a Krull domain if and only if
its multiplicative monoid of nonzero elements is a Krull monoid. This generalizes to rings with
zero-divisors. Indeed, in a v-Marot ring the monoid of regular elements is Krull if and only if
the ring is a Krull ring ([32, Theorem 3.5]). For cluster algebras that are Krull we refer to [25].

2. (Module theory) Let R be a ring and C be a class of right R-modules which is closed under
finite direct sums, direct summands, and isomorphisms. If EndR(M) is semilocal for all modules
M in C, then the monoid V(C) of isomorphism classes of modules in C is Krull (see [17, Theorem
3.4] for the original result and also [20, 18, 19, 6]).

3. (Non-commutative ring theory) Let R be a bounded hereditary noetherian prime ring. If
every stably free right R-ideal is free, then the monoid of regular elements of R is transfer Krull
([46, Theorem 4.4]).

3. The set of elasticities

Let H be a BF-monoid. Then

ρ(H) = sup{ρ(L) | L ∈ L(H)} ∈ R≥1 ∪ {∞}

is the elasticity of H, and this is one of the first invariants studied in factorization theory. We say
thatH has accepted elasticity if there is an L ∈ L(H) such that ρ(L) = ρ(H). Every commutative
finitely generated monoid has accepted elasticity ([29, Theorem 3.1.4]). If H is a transfer Krull
monoid over a subset G0 of an abelian group, then we set (as usual) ρ(G0) := ρ

(

B(G0)
)

and
recall that ([29, Theorem 3.4.10])

ρ(H) = ρ(G0) ≤ D(G0)/2 where equality holds if G0 = −G0 .

Furthermore, we say that G0 is half-factorial if the monoid B(G0) is half-factorial. Since the
1990s the elasticity of commutative rings has found wide attention in the literature. The reader
may want to consult the work of D.D. Anderson, D.F. Anderson, S. Chapman, P.J. Cahen,
J.L. Chabert, J. Coykendall, F. Halter-Koch, M. Picavet-L’Hermitte, H. Kim, and others. A
characterization of when the elasticity of finitely generated domains is finite is given in [41]. For
some recent results we refer to [1, 2, 11, 42]). In [15, 9], Chapman et al. initiated the study
of the set {ρ(L) | L ∈ L(H)} ⊂ Q≥1 of elasticities of all sets of lengths. By definition, H is
half-factorial if and only if ρ(H) = 1 and clearly this is equivalent to {ρ(L) | L ∈ L(H)} = {1}.
The reverse extremal case, namely when the set of elasticities is as large as possible, found special
attention. We say that H is fully elastic if for every rational number q with 1 ≤ q < ρ(H) there
is an L ∈ L(H) such that ρ(L) = q.

If every finite subset of N≥2 is a set of lengths of H (a property which holds true for Krull
monoids with infinite class group having prime divisors in all classes [29, Theorem 7.4.1] and
for the ring of integer-valued polynomials over rings of integers [23]), then obviously H is fully
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elastic. But this very strong property is far from being necessary. In [8] it was proved that every
commutative monoid having a prime element is fully elastic.

On the other hand, we know that strongly primary monoids (including one-dimensional local
Mori domains and numerical monoids) are not fully elastic ([34, Theorem 5.5]). The set of
elasticities in numerical monoids was recently studied in [10]. Arithmetic congruence monoids
which are not fully elastic can be found in the survey [7].

As the main result of this section we prove that every transfer Krull monoid is fully elastic.

Theorem 3.1. Every transfer Krull monoid is fully elastic.

We proceed in a series of lemmas. The proof of Theorem 3.1 will be given at the end of this
section.

Lemma 3.2. Let n ∈ N and a1, . . . , an ∈ N be pairwise distinct positive integers. If there exist
x1, . . . , xn ∈ N0 and t ≥ 2 such that a1x1 + . . . + anxn = ta1 . . . an, then there exist x′i ∈ [0, xi],
for all i ∈ [1, n], such that

a1x
′
1 + . . .+ anx

′
n = a1 . . . an .

In particular, there exist x
(j)
i ∈ [0, xi], for all i ∈ [1, n] and j ∈ [1, t], such that

∑

j∈[1,t] x
(j)
i = xi

for every i ∈ [1, n] and
∑

i∈[1,n] aix
(j)
i = a1 . . . an for every j ∈ [1, t].

Proof. The assertion is obvious for n = 1. If n = 2, then a1x1 ≥ a1a2 or a2x2 ≥ a1a2 whence the
assertion follows immediately.

Suppose that n ≥ 3. After renumbering if necessary we assume that a1x1 ≥ ta1...an
n . Since

a1, . . . , an are pairwise distinct positive integers, we obtain max{a1, . . . , an} ≥ n and hence

x1 ≥
2a2 . . . an

n
≥ min{a2, . . . , an} .

For each i ∈ [2, n], we set xi = yia1 + ri with ri ∈ [0, a1 − 1]. Then

a2r2 + . . . + anrn ≤ (a1 − 1)(a2 + . . .+ an) ≤ a1 . . . an .

Therefore a1(x1 + y2a2 + . . . + ynan) ≥ ta1 . . . an − a1 . . . an ≥ a1 . . . an which implies that

x1 + y2a2 + . . . + ynan ≥ a2 . . . an .

If y2a2 + . . .+ ynan ≤ a2 . . . an, then there exists x′1 ∈ [0, x1] such that x′1 + y2a2 + . . .+ ynan =
a2 . . . an and hence a1x

′
1+a2y2a1+ . . .+anyna1 = a1 . . . an. If y2a2+ . . .+ ynan > a2 . . . an, then

we can choose y′i ∈ [0, yi] for each i ∈ [2, n] such that

0 ≤ a2 . . . an − (y′2a2 + . . .+ y′nan) ≤ min{a2, . . . , an} ≤ x1 .

Thus there exists x′1 ∈ [0, x1] such that x′1+y′2a2+ . . . y′nan = a2 . . . an and hence a1x
′
1+a2y

′
2a1+

. . . + any
′
na1 = a1 . . . an.

The in particular statement follows by induction on t. �
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Let H be a BF-monoid, a ∈ H with ρ(L(a)) = ρ(H), and n ∈ N. Then the n-fold sumset
L(a) + . . . + L(a) is contained in L(an) whence

max L(an) ≥ nmax L(a), min L(an) ≤ nminL(a) ,

ρ(H) ≥ ρ(L(an)) ≥
nmax L(a)

nminL(a)
= ρ(L(a)) = ρ(H) , and thus ρ(L(an)) = ρ(H) .

We will use this property without further mention.

Lemma 3.3. Let G be an abelian group, G0 ⊂ G a finite subset, and A ∈ B(G0) with ρ(A) =
ρ(G0) > 1.

1. There exists an atom A0 ∈ A(G0) such that supp(A0) ( supp(A) is half-factorial.

2. There exists an M ∈ N satisfying that for every k ∈ N and every ℓ ∈ N0, there exist
ℓ1, . . . , ℓk ∈ Z with ℓ1 + . . .+ ℓk = ℓ and AMAℓi

0 ∈ B(G0) such that

max L(AMkAℓ
0) =

k
∑

i=1

max L(AMAℓi
0 ) and minL(AMkAℓ

0) =
k
∑

i=1

min L(AMAℓi
0 ) .

3. For every r ≥ M |A|(D(G0)− 1), we have

max L(AMAr
0) = max L(AMA

M |A|(D(G0)−1)
0 ) + r −M |A|(D(G0)− 1) and

min L(AMAr
0) = min L(AMA

M |A|(D(G0)−1)
0 ) + r −M |A|(D(G0)− 1) .

We define rM to be the minimal non-negative integer such that for all r ≥ rM , we have

max L(AMAr
0) = max L(AMArM

0 ) + r − rM and

minL(AMAr
0) = min L(AMArM

0 ) + r − rM .

We define τM to be the maximal non-negative integer ℓ such that ρ(L(AMAℓ
0)) = ρ(L(AM )).

4. For every k, ℓ ∈ N0, there exists an N = N(k, ℓ) ∈ N such that for every t ∈ N we have,

max L((AMkNAℓN
0 )t) = tmax L(AMkNAℓN

0 ) and

minL((AMkNAℓN
0 )t) = tminL(AMkNAℓN

0 ) .

Let N ′ be a multiple of N . Then there exist ℓ1, . . . , ℓkN ′ ∈ Z such that all AMAℓi
0 ∈ B(G),

ℓ1 + . . .+ ℓkN ′ = ℓN ′ and

max L(AMkN ′

AℓN ′

0 ) =

kN ′

∑

i=1

max L(AMAℓi
0 ) and

minL(AMkN ′

AℓN ′

0 ) =

kN ′

∑

i=1

min L(AMAℓi
0 ) .

Moreover, for all ℓ1, . . . , ℓkN ′ ∈ Z satisfying these properties the following holds:
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(a) For distinct i1, i2 ∈ [1, kN ′] and any t1, t2 ∈ N0, we have

max L((AMA
ℓi1
0 )t1(AMA

ℓi2
0 )t2) = t1 max L(AMA

ℓi1
0 ) + t2max L(AMA

ℓi2
0 ) and

min L((AMA
ℓi1
0 )t1(AMA

ℓi2
0 )t2) = t1 min L(AMA

ℓi1
0 ) + t2min L(AMA

ℓi2
0 ) .

(b) If there is some i ∈ [1, kN ′] such that ℓi > τM , then ℓj ≥ τM for all j ∈ [1, kN ′].

(c) If there is some i ∈ [1, kN ′] such that ℓi > rM , then ℓj ≥ rM for all j ∈ [1, kN ′].

(d) If k, ℓ ∈ N such that ℓ/k = rM , then ℓi = rM for all i ∈ [1, kN ′]. In particular,

ρ(L((AMArM
0 )t1)) = ρ(L(AMArM

0 )) for every t1 ∈ N .

Proof. We denote by Z(G0) := F(A(G0)) the factorization monoid of B(G0) and by π : Z(G0) →
B(G0) the factorization homomorphism. If z ∈ Z(G0), then |z| = |z|F(A(G0)) denotes the length
of z.

1. This follows from [34, Lemma 5.4.1].

2. Since supp(A0) ( supp(A), it follows that Ak 6 |Aℓ
0 for any k, ℓ ∈ N. We consider the monoid

S = {(x, y) ∈ Z(G0)× Z(G0) | π(x) = π(y) = AkAℓ
0 ∈ B(G0) for some k ∈ N0 and some ℓ ∈ Z} .

Since Z(G0)×Z(G0) is finitely generated and the inclusion S →֒ Z(G0)×Z(G0) is a divisor ho-
momorphism, S is finitely generated by [29, Proposition 2.7.5]. Let A(S) = {(x1, y1), . . . , (xt, yt)}

and π(xi) = π(yi) = AkiAℓi
0 for every i ∈ [1, t], where t, k1, . . . , kt ∈ N0 and ℓ1, . . . , ℓt ∈ Z.

Without loss of generality, we can assume that {k1, . . . , kt} = {k1, . . . , kt′} for some t′ ∈ [1, t]
and ki < kj for any i, j ∈ [1, t′] with i < j. Since (A0, A0) ∈ A(S), it follows that k1 = 0 and we

define M =
∏t′

i=2 ki.
Let k ∈ N and ℓ ∈ N0. If ℓ = 0, then the claim is clear. Suppose that ℓ > 0. We choose

(x, y) ∈ Z(G0) × Z(G0) with π(x) = π(y) = AMkAℓ
0 such that |x| = min L(AMkAℓ

0) and |y| =
max L(AMkAℓ

0). We set (x, y) =
∏t

i=1(xi, yi)
vi , where vi ∈ N0, and we observe that

Mk =

t
∑

i=1

viki .

If vi 6= 0, then |xi| = minL(AkiAℓi
0 ) and |yi| = max L(AkiAℓi

0 ). Therefore we obtain that

max L(AMkAℓ
0) = |y| =

t
∑

i=1

vi|yi| =
t
∑

i=1

vimax L(AkiAℓi
0 ) and

minL(AMkAℓ
0) = |x| =

t
∑

i=1

vi|xi| =
t
∑

i=1

vi min L(AkiAℓi
0 ) .

Let Ii = {j ∈ [1, t] | kj = ki} for every i ∈ [1, t′]. Since

k

t′
∏

i=2

ki = Mk =

t
∑

i=1

viki =

t′
∑

i=1

(
∑

j∈Ii

vjkj) =

t′
∑

i=1

(
∑

j∈Ii

vjki)
k1=0!
=

t′
∑

i=2

(
∑

j∈Ii

vj)ki ,
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it follows by Lemma 3.2 that there exist x
(j)
i ∈ [0, vi], i ∈ [1, t]\I1, j ∈ [1, k] such that

∑

i∈[1,t]\I1
x
(j)
i ki =

M for every j ∈ [1, k] and
∑k

j=1 x
(j)
i = vi for every i ∈ [1, t] \ I1. Let ℓ′1 =

∑

i∈[1,t]\I1
x
(1)
i ℓi +

∑

i∈I1
viℓi and ℓ′j =

∑

i∈[1,t]\I1
x
(j)
i ℓi for every j ∈ [2, k]. Then ℓ′1 + . . .+ ℓ′k = ℓ and

max L(AMkAℓ
0) ≥

k
∑

j=1

max L(AMA
ℓ′j
0 ) ≥

t
∑

i=1

vimax L(AkiAℓi
0 ) = max L(AMkAℓ

0) ,

min L(AMkAℓ
0) ≤

k
∑

j=1

min L(AMA
ℓ′j
0 ) ≤

t
∑

i=1

vimax L(AkiAℓi
0 ) = min L(AMkAℓ

0) .

3. We set r0 = M |A|(D(G0) − 1), choose r ≥ r0, and consider a factorization of AMAr
0 =

V1 ·. . .·Vz , where Vi ∈ A(G0) for every i ∈ [1, z]. Let I ⊂ [1, z] be minimal such that AM |
∏

i∈I Vi.
Then |I| ≤ M |A|. Since

|(
∏

i∈I

Vi)(A
M )−1| ≤ |I|D(G0)−M |A| ≤ M |A|(D(G0)− 1) = r0 ,

we infer that
∏

i∈I Vi |A
MAr0

0 . Furthermore, the equation

AMAr0
0 (
∏

i∈I

Vi)
−1Ar−r0

0 =
∏

i/∈I

Vi

implies that Ar−r0
0 |

∏

i/∈I Vi. Since supp(
∏

i/∈I Vi) ⊂ supp(A0) is half-factorial, it follows that

z − |I| ∈ L(
∏

i/∈I

Vi) = L(Ar−r0
0 ) + L(

∏

i/∈I

Vi(A
r−r0
0 )−1)

and

z = |I|+ z − |I| ∈L(
∏

i∈I

Vi) + L(Ar−r0
0 ) + L(

∏

i/∈I

Vi(A
r−r0
0 )−1) ⊂ L(AMAr0

0 ) + L(Ar−r0
0 )

= (r − r0) + L(AMAr0
0 ) .

Since this holds true for every factorization of AMAr
0, it follows that

L(AMAr
0) ⊂ L(AMAr0

0 ) + L(Ar−r0
0 ) ⊂ L(AMAr

0)

whence

max L(AMAr
0) = max L(AMAr0

0 ) + r − r0 and min L(AMAr
0) = minL(AMAr0

0 ) + r − r0 .

Therefore, rM and τM are well-defined and, by definition, we have τM < rM .

4. Let k, ℓ ∈ N0 by given and note that for k = 0 or ℓ = 0, the statement is clear. Suppose
that k, ℓ ∈ N. Then [29, Theorem 3.8.1.2] implies that there exists N = N(k, ℓ) ∈ N such that
for every t ∈ N, we have

max L((AMkNAℓN
0 )t) = tmax L(AMkNAℓN

0 ) and min L((AMkNAℓN
0 )t) = tmin L(AMkNAℓN

0 ) .



10 ALFRED GEROLDINGER AND QINGHAI ZHONG

Let N ′ be a multiple of N . It follows from 2. that there exist ℓ1, . . . , ℓkN ′ ∈ Z with ℓ1+. . .+ℓkN ′ =
ℓN ′ such that all AMAℓi

0 ∈ B(G0) and

max L(AMkN ′

AℓN ′

0 ) =

kN ′

∑

i=1

max L(AMAℓi
0 ) and min L(AMkN ′

AℓN ′

0 ) =

kN ′

∑

i=1

min L(AMAℓi
0 ) .

Now let ℓ1, . . . , ℓkN ′ ∈ Z satisfy all these properties.

(a) Let i1, i2 ∈ [1, kN ′] be distinct, say i1 = 1 and i2 = 2, and let t1, t2 ∈ N0, say t =
max{t1, t2}. Obviously, we have
(3.1)

(AMkN ′

AℓN ′

0 )t =
kN ′

∏

i=1

(AMAℓi
0 )

t

=
(

(AMAℓ1
0 )t−t1

)(

(AMAℓ2
0 )t−t2

)(

(AMAℓ1
0 )t1(AMAℓ2

0 )t2
)

(

kN ′

∏

i=3

(AMAℓi
0 )

t

)

and hence we get

t

kN ′

∑

i=1

max L(AMAℓi
0 ) = max L((AMkN ′

AℓN ′

0 )t)

(3.1)

≥ (t− t1)max L(AMAℓ1
0 ) + (t− t2)max L(AMAℓ2

0 )

+ max L
(

(AMAℓ1
0 )t1(AMAℓ2

0 )t2
)

+ t

kN ′

∑

i=3

max L(AMAℓi
0 )

≥ t

kN ′

∑

i=1

max L(AMAℓi
0 ) .

It follows that

max L
(

(AMAℓ1
0 )t1(AMAℓ2

0 )t2
)

= t1 max L(AMAℓ1
0 ) + t2 max L(AMAℓ2

0 ) .

By the similar argument, we can obtain

min L
(

(AMAℓ1
0 )t1(AMAℓ2

0 )t2
)

= t1 minL(AMAℓ1
0 ) + t2 minL(AMAℓ2

0 ) .

(b) Suppose there exist some i ∈ [1, kN ′] such that ℓi > τM , say i = 1. Thus ρ(L(AMAℓ1
0 )) <

ρ(L(AM )) by the definition of τM . Assume to the contrary that there exists some i ∈ [1, kN ′]
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such that ℓi < τM , say i = 2. Then

ρ(L(AM )) = ρ(L(AMAτM
0 )) = ρ(L((AMAτM

0 )ℓ1−ℓ2))

=
max L(AM(ℓ1−ℓ2)A

τM (ℓ1−ℓ2)
0 )

minL(AM(ℓ1−ℓ2)A
τM (ℓ1−ℓ2)
0 )

=
max L

(

(AMAℓ1
0 )τM−ℓ2(AMAℓ2

0 )ℓ1−τM
)

minL
(

(AMAℓ1
0 )τM−ℓ2(AMAℓ2

0 )ℓ1−τM
)

(a)
=

(ℓ1 − τM )max L(AMAℓ2
0 ) + (τM − ℓ2)max L(AMAℓ1

0 )

(ℓ1 − τM )min L(AMAℓ2
0 ) + (τM − ℓ2)min L(AMAℓ1

0 )

< ρ(L(AM )) ,

a contradiction.

(c). Suppose there exist some i ∈ [1, kN ′] such that ℓi > rM , say i = 1. Assume to the
contrary that there exists some i ∈ [1, kN ′] such that ℓi < rM , say i = 2. Then

max L((AMArM
0 )ℓ1−ℓ2) = max L((AMAℓ1

0 )rM−ℓ2(AMAℓ2
0 )ℓ1−rM )

(a)
= (rM − ℓ2)max L(AMAℓ1

0 ) + (ℓ1 − rM )max L(AMAℓ2
0 )

def of rM= (rM − ℓ2)max L(AMArM
0 ) + (rM − ℓ2)(ℓ1 − rM ) + (ℓ1 − rM )max L(AMAℓ2

0 )

= (rM − ℓ2)max L(AMArM
0 ) + (ℓ1 − rM )max L(ArM−ℓ2

0 ) + (ℓ1 − rM )max L(AMAℓ2
0 )

≤ (rM − ℓ2)max L(AMArM
0 ) + (ℓ1 − rM )max L(AMArM

0 )

= (ℓ1 − ℓ2)max L(AMArM
0 )

≤ max L((AMArM
0 )ℓ1−ℓ2) ,

which implies that rM − ℓ2 +maxL(AMAℓ2
0 ) = max L(AMArM

0 ). Since

max L(AMArM
0 ) ≥ max L(AMArM−1

0 ) + 1 ≥ . . . ≥ max L(AMAℓ2
0 ) + rM − ℓ2 = max L(AMArM

0 ) ,

we obtain for every r ≥ ℓ2,

max L(AMAr
0) = max L(AMAℓ2

0 ) + r − ℓ2 .

Similarly, we can prove that min L(AMAr
0) = min L(AMAℓ2

0 ) + r − ℓ2 for every r ≥ ℓ2. Since
ℓ2 < rM , this is a contradiction to the minimality of rM .

(d) Suppose that ℓ/k = rM . Assume to the contrary that there is an i ∈ [1, kN ′] with ℓi > rM ,
then (c) implies that ℓj ≥ rM for all j ∈ [1, kN ′] whence

rM =
ℓN ′

kN ′
=

∑kN ′

j=1 ℓj

kN ′
> rM ,

a contradiction. Thus ℓi ≤ rM for all i ∈ [1, kN ′] and rM =
∑kN′

j=1
ℓj

kN ′ shows that ℓi = rM for all
i ∈ [1, kN ′]. Now the ”in particular” statement follows immediately from (a) (with t2 = 0). �
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Lemma 3.4. Let G be an abelian group and G0 ⊂ G a finite subset. Then {ρ(L) | L ∈ L(G0)} =
{x ∈ Q | 1 ≤ x ≤ ρ(G0)}.

Proof. Since G0 is finite, B(G0) has accepted elasticity ([29, Theorem 3.1.4]) whence there is
A ∈ B(G0) with ρ(A) = ρ(G0). Since the assertion is obvious when ρ(A) = 1, we assume that
ρ(A) > 1. It follows by Lemma 3.3.1 that there exists an atom A0 ∈ A(G0) such that supp(A0) (
supp(A) is half-factorial. Our strategy is to define rational functions f(k/ℓ) = ρ

(

L(AakAbℓ
0 )
)

, for
suitable a, b ∈ N and all k, ℓ ∈ N, which are surjective on the rational interval between 1 and
ρ(G0). This would be very simple if A0 would be a prime but, in general, B(G0) need not contain
prime elements. We proceed in two steps. In the first step we define partitions of the rational
intervals between τM and rM and between 1 and ρ(G0). In the second step we define surjective
rational functions between the constructed subsets.

Step 1. Let M , τM , and rM be defined as in Lemma 3.3 whence, in particular, we have

ρ(L(AMAτM
0 )) = ρ(L(AM )) = ρ(L(A)) = ρ(G0) .

We define a subset IM ⊂ [τM , rM ] by saying that an element t ∈ [τM , rM ] lies in IM if and only
if for every n ∈ N, we have

• max L((AMAt
0)

n) = nmax L(AMAt
0) and min L((AMAt

0)
n) = nminL(AMAt

0).

By Lemma 3.3.4.d, we have rM ∈ IM , and since for every n ∈ N, ρ(L((AMAτM
0 )n)) = ρ(L(AMAτM

0 )),
it follows that that τM ∈ IM .

We set IM = {t0, . . . , ts} with s ∈ N and τM = t0 < . . . < ts = rM . For any i, j ∈ [0, s] with
i < j, we have that

ρ(L(AMAti
0 )) = ρ(L((AMAti

0 )
tj−t0)) = ρ(L((AMAt0

0 )
tj−ti(AMA

tj
0 )

ti−t0))

≥
(tj − ti)max L(AMAt0

0 ) + (ti − t0)max L(AMA
tj
0 )

(tj − ti)min L(AMAt0
0 ) + (ti − t0)min L(AMA

tj
0 )

≥ min{ρ(L(AMAt0
0 )), ρ(L(A

MA
tj
0 ))}

= ρ(L(AMA
tj
0 )) .

Thus it suffices to prove that

{q ∈ Q | ρ(L(AMA
tj+1

0 )) < q < ρ(L(AMA
tj
0 ))} ⊂ {ρ(L) | L ∈ L(G0)} for every j ∈ [0, s − 1] and

{q ∈ Q | 1 < q < ρ(L(AMArM
0 ))} ⊂ {ρ(L) | L ∈ L(G0)} .

Step 2. Let k, ℓ ∈ N with ℓ/k > τM . Then Lemma 3.3.4 implies that there exists N = N(k, ℓ) ∈
N such that for every t ∈ N,

max L((AMkNAℓN
0 )t) = tmax L(AMkNAℓN

0 ) , min L((AMkNAℓN
0 )t) = tmin L(AMkNAℓN

0 ) ,

and there are ℓ1, . . . , ℓkNt ∈ Z such that

(3.2) ℓ1 + . . .+ ℓkNt = ℓNt
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and

(3.3) max L(AMkNtAℓNt
0 ) =

kNt
∑

i=1

max L(AMAℓi
0 ) and min L(AMkNtAℓNt

0 ) =
kNt
∑

i=1

min L(AMAℓi
0 ) .

Let t ∈ N. Since ℓ/k > τM , there exists some i ∈ [1, kNt] such that ℓi > τM . Then Lemma
3.3.4.b implies that ℓj ≥ τM for all j ∈ [1, kNt]. Now we choose ℓ1, . . . , ℓkNt ∈ N≥τM with the
above properties such that

Ct =
∣

∣

∣
IM ∩

[

min{ℓi | i ∈ [1, kNt]},max{ℓi | i ∈ [1, kNt]}
]

∣

∣

∣

is minimal. Let t∗ ∈ N such that Ct∗ = min{Ct | t ∈ N} and ℓ1, . . . , ℓkNt∗ are the associated
integers in N≥τM . We distinguish two cases.

CASE 1: ℓ/k > rM .
Then there exists some i ∈ [1, kNt∗] such that ℓi > rM . Lemma 3.3.4.c implies that ℓj ≥ rM

for all j ∈ [1, kNt∗]. Therefore, by (3.3) and by the definition of rM ,

ρ(L(AMkNt∗AℓNt∗
0 )) =

∑kNt∗

i=1 max L(AMAli
0 )

∑kNt∗

i=1 min L(AMAli
0 )

=

∑kNt∗

i=1 (ℓi − rM ) + kNt∗max L(AMArM
0 )

∑kNt∗

i=1 (ℓi − rM ) + kNt∗ min L(AMArM
0 )

=
ℓ
k − rM +max L(AMArM

0 )
ℓ
k − rM +min L(AMArM

0 )
,

which implies that

{ρ(L(AMkNt∗AℓNt∗
0 )) | k, ℓ ∈ N with ℓ/k > rM} = {q ∈ Q | 1 < q < ρ(L(AMArM

0 ))} .

CASE 2: τM < ℓ/k ≤ rM .
Since ℓ1, . . . , ℓkNt∗ ∈ N≥τM , Lemma 3.3.4.c. implies that ℓi ∈ [τM , rM ] for all i ∈ [1, kNt∗]. It

follows by Lemma 3.3.4.a (with t2 = 0) that ℓi ∈ IM for all i ∈ [1, kNt∗]. After renumbering if
necessary we suppose that

ℓ1 = max{ℓi | i ∈ [1, kNt∗]} and ℓ2 = min{ℓi | i ∈ [1, kNt∗]} .

Assume to the contrary that Ct∗ ≥ 3. Then there is a y ∈ Im such that ℓ2 < y < ℓ1. We set
S = ℓ1 · . . . · ℓkNt∗ ∈ F(N) and distinguish two cases.

CASE 2.1: vℓ1(S)(ℓ1 − y) ≤ vℓ2(S)(y − ℓ2).
We will define integers ℓ′1, . . . , ℓ

′
kNt∗(y−ℓ2)

∈ N≥τM satisfying (3.2) and (3.3) such that Ct∗(y−ℓ2) <

Ct∗ , which will be a contradiction to the minimality of Ct∗ .
We define

ℓ′1 · . . . · ℓ
′
kNt∗(y−ℓ2)

:= ℓ
(y−ℓ2)vℓ2(S)−vℓ1

(S)(ℓ1−y)

2 y(ℓ1−ℓ2)vℓ1(S)
kNt∗
∏

i=3

ℓy−ℓ2
i ∈ F(N≥τM ) .
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Clearly, we have
∑kNt∗(y−ℓ2)

i=1 ℓ′i = ℓNt∗(y− ℓ2) and hence (3.2) holds. Furthermore, since y ∈ IM
and by Lemma 3.3.4.a we get
(3.4)

(ℓ1 − ℓ2)max L(AMAy
0) = max L((AMAy

0)
ℓ1−ℓ2) =

max L((AMAℓ1
0 )y−ℓ2(AMAℓ2

0 )ℓ1−y) = (y − ℓ2)max L(AMAℓ1
0 ) + (ℓ1 − y)max L(AMAℓ2

0 )

and
(3.5)

(ℓ1 − ℓ2)min L(AMAy
0) = min L((AMAy

0)
ℓ1−ℓ2) =

minL((AMAℓ1
0 )y−ℓ2(AMAℓ2

0 )ℓ1−y) = (y − ℓ2)min L(AMAℓ1
0 ) + (ℓ1 − y)min L(AMAℓ2

0 ) .

Putting all together we obtain that, by using Lemma 3.3.4 (with t = y − ℓ2) and (3.3) (with t∗)
for (∗),

max L(AMkNt∗(y−ℓ2)A
ℓNt∗(y−ℓ2)
0 )

(∗)
= (y − ℓ2)

kNt∗
∑

i=1

max L(AMAℓi
0 )

(3.4)
=

kNt∗(y−ℓ2)
∑

i=1

max L(AMA
ℓ′i
0 )

min L(AMkNt∗(y−ℓ2)A
ℓNt∗(y−ℓ2)
0 )

(∗)
= (y − ℓ2)

kNt∗
∑

i=1

minL(AMAℓi
0 )

(3.5)
=

kNt∗(y−ℓ2)
∑

i=1

min L(AMA
ℓ′i
0 ) .

Therefore, (3.3) holds and since Ct∗(y−ℓ2) < Ct∗ , we get a contradiction to the minimality of Ct∗ .

CASE 2.2: vℓ1(S)(ℓ1 − y) ≥ vℓ2(S)(y − ℓ2).
The proof runs along the same lines as the proof of CASE 2.1.

Therefore, we obtain that Ct∗ ≤ 2. Let j ∈ [0, s− 1] such that tj < ℓ/k < tj+1. Note that

ℓ2 = min{ℓi | i ∈ [1, kNt∗]} ≤

∑kNt∗

i=1 ℓi
kNt∗

=
ℓ

k
≤ max{ℓi | i ∈ [1, kNt∗]} = ℓ1 .

If ℓ1 = ℓ2, then ℓ/k = ℓ1, a contradiction to tj < ℓ/k < tj+1. Thus we get that ℓ2 < ℓ/k < ℓ1.
Since tj is the maximal element of IM that is smaller than ℓ/k and tj+1 is the minimal element
of IM that is larger than ℓ/k, we obtain that ℓ2 ≤ tj < tj+1 ≤ ℓ1 whence {tj , tj+1} ⊂ IM ∩ [ℓ2, ℓ1].
Since Ct∗ ≤ 2 and {ℓi | i ∈ [1, kNt∗]} ⊂ IM ∩ [ℓ2, ℓ1], it follows that

(3.6) {ℓi | i ∈ [1, kNt∗]} = IM ∩ [ℓ2, ℓ1] = {tj , tj+1} .

Then

ρ(AMkNt∗AℓNt∗

0 ) =
max L(AMkNt∗AℓNt∗

0 )

min L(AMkNt∗AℓNt∗
0 )

(3.3)
=

∑kNt∗

i=1 max L(AMAℓi
0 )

∑kNt∗

i=1 min L(AMAℓi
0 )

=
x1 max L(AMA

tj
0 ) + x2max L(AMA

tj+1

0 )

x1 minL(AMA
tj
0 ) + x2min L(AMA

tj+1

0 )
,
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where by (3.6)

x1 = |{i ∈ [1, kNt∗] | ℓi = tj}| and x2 = |{i ∈ [1, kNt∗] | ℓi = tj+1}| .

Comparing exponents of A and A0 we obtain the equations

x1tj + x2tj+1 = ℓNt∗ and x1M + x2M = MkNt∗

whence

(x1, x2) =

(

(ktj+1 − ℓ)Nt∗

tj+1 − tj
,
(ℓ− ktj)Nt∗

tj+1 − tj

)

.

Plugging in this expression for (x1, x2) we obtain that

ρ(AMkNt∗AℓNt∗
0 ) =

(ktj+1 − ℓ)max L(AMA
tj
0 ) + (ℓ− ktj)max L(AMA

tj+1

0 )

(ktj+1 − ℓ)min L(AMA
tj
0 ) + (ℓ− ktj)min L(AMA

tj+1

0 )

=
(tj+1 − ℓ/k)max L(AMA

tj
0 ) + (ℓ/k − tj)max L(AMA

tj+1

0 )

(tj+1 − ℓ/k)min L(AMA
tj
0 ) + (ℓ/k − tj)min L(AMA

tj+1

0 )
.

Thus, if ℓ/k varies between tj and tj+1, then ρ(AMkNt∗AℓNt∗
0 ) varies between ρ(L(AMA

tj+1

0 )) and

ρ(L(AMA
tj
0 )).

{q ∈ Q | ρ(L(AMA
tj+1

0 )) < q < ρ(L(AMA
tj
0 ))} ⊂ {ρ(L) | L ∈ L(G0)} . �

Proof of Theorem 3.1. Suppose that H is a transfer Krull monoid over the subset G0 of an
abelian group G. By (2.3), we have L(H) = L(G0) whence it is sufficient to prove the assertion
for B(G0). Let q ∈ Q with 1 ≤ q < ρ(G0). Since

ρ(G0) = sup
{

ρ
(

L(B)
)

| B ∈ B(G0)
}

,

there exists a B ∈ B(G0) with ρ(L(B)) > q. Then G1 = supp(B) is finite and ρ(G1) ≥ ρ(L(B)) >
q. Thus Lemma 3.4 implies that

q ∈ {ρ(L) | L ∈ L(G1)} ⊂ {ρ(L) | L ∈ L(G0)} . �

4. The set of catenary degrees and related sets

In Subsection 4.1 we introduce catenary degrees and related invariants. The main results are
formulated in Subsection 4.2 where also crucial examples are discussed. The proof of the main
results are given in Subsection 4.3.
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4.1. Factorizations and catenary degrees. Transfer Krull monoids need not be commutative
but they allow to shift the study of catenary degrees to the commutative setting (see Lemma
4.5). Thus we only briefly recall the concepts of factorizations, distance functions, and catenary
degrees in general monoids and refer to the exposition by Baeth and Smertnig [5, Section 4] for
details. We provide additional explanations in the commutative case because this is the setting
we are working in.

LetH be a BF-monoid. We denote by Z∗(H) the monoid of rigid factorizations, by π : Z∗(H) →
H the factorization homomorphism, and by

d : {(z, z′) ∈ Z∗(H)×Z∗(H) | π(z) = π(z′)} → N0

a distance function. For an element a ∈ H, the catenary degree cd(a) ∈ N0∪{∞} (of a with respect
to the distance function d) is the minimal N ∈ N0 ∪ {∞} such that for any two factorizations
z, z′ of a there are factorizations z = z0, z1, . . . , zn = z′ of a such that d(zi−1, zi) ≤ N for all
i ∈ [1, n]. Since cd(a) ≤ max L(a), the catenary degrees of all elements are finite. Then

Cad(H) = {cd(a) | a ∈ H with cd(a) ≥ 2} ⊂ N0

denotes the set of catenary degrees and its supremum cd(H) = supCad(H) is called the catenary
degree ofH (we use the convention that sup ∅ = 0). Note that cd(a) = 0 for every atom a ∈ A(H).
We impose that restriction cd(a) ≥ 2 in order to simplify the statements of our results (see (4.5)
and the discussion proceeding Proposition 4.2). If θ : H → B is a transfer homomorphism, then
cd(H, θ) denotes the catenary degree in the fibres.

Closely related to the set of catenary degrees is the set of minimal relations Rd(H) which is
defined as the set of all d ∈ N≥2 with the following property:

There are an element a ∈ H and two distinct factorizations z, z′ of a with d(z, z′) = d
such that there is no (d− 1)-chain of factorizations concatenating z and z′.

The set of distances of H (also called the delta set of H), defined as

∆(H) =
⋃

L∈L(H)

∆(L) ⊂ N ,

is one of the oldest invariants in factorization theory. It is easy to check that min∆(H) =
gcd∆(H) ([29, Proposition 3]). The set

k∗(H) = {min(L(uv) \ {2}) | u, v ∈ A(H), |L(uv)| > 1}

= {min(L \ {2}) | 2 ∈ L ∈ L(H), |L| > 1} ⊂ N≥3 ,

is a technical tool to study sets of catenary degrees. We have

(4.1) k∗(H) ⊂ 2 + ∆(H) ⊂ N≥3 ,

(4.2) Cad(H) ⊂ Rd(H), supCad(H) = supRd(H) , and

(4.3) if H is commutative, then k∗(H) ⊂ R(H) ⊂ N≥2 .
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The inclusion (4.1) follows from the definitions. We refer to [21, Lemma 2.1] for the (very simple)
proof of (4.2) and (4.3) in the commutative setting. The proof of (4.2) in the general setting
runs along the same lines, but (4.3) need not hold in the general setting (see [5, Remark 4.3]).
We freely use the relations (4.1), (4.2), and (4.3).

Now we shed some extra light on these invariants in the commutative setting. Suppose that H
is a commutative BF-monoid. The free abelian monoid Z(H) = F(A(Hred)) with basis A(Hred)
is the factorization monoid of H, π : Z(H) → Hred is the factorization homomorphism, and
Z(a) = π−1(a) is the set of factorizations of a for every a ∈ H. The permutable distance function
dp coincides with the usual distance d. Thus, if u1, . . . , uk, v1, . . . , vℓ, w1, . . . , wm are atoms of
Hred such that vi 6= wj for all i ∈ [1, ℓ] and all j ∈ [1,m], then for the factorizations

z = u1 · . . . · ukv1 · . . . · vℓ ∈ Z(H) and z′ = u1 · . . . · ukw1 · . . . · wm ∈ Z(H)

we have

(4.4) d(z, z′) = max{ℓ,m} ∈ N0 .

We briefly set

c(a) = cd(a), c(H) = cd(H), Ca(H) = Cad(H), and R(H) = Rd(H) .

Note that c(a) = 0 if and only if |Z(a)| = 1. If |Z(a)| ≥ 2, then (4.4) shows (details can be found
in [29, Lemma 1.6.2]) that

(4.5) 2 + max∆(L(a)) ≤ c(a) whence 2 + max∆(H) ≤ c(H) .

In the non-commutative setting cd(a) = 1 can happen ([5, Remark 4.3]), but for distances of
interest in HNP rings we have cd(a) ∈ {0} ∪N≥2 ([46, Proposition 4.12]). For a subset G0 of an
abelian group, we set (as usual)

Ca(G0) := Ca
(

B(G0)
)

, ∆(G0) := ∆
(

B(G0)
)

,

and similarly for all the remaining invariants.

4.2. Main Results and Examples. We formulate the main results of this section (Theorem
4.1 and Proposition 4.2) which state that - under the given assumptions - all the sets introduced
in Subsection 4.1 are intervals. Recall that, by (2.2), we have D(G) = 3 if and only if G ∼=
C3 or G ∼= C2 ⊕ C2.

Theorem 4.1. Let H be a transfer Krull monoid having a transfer homomorphism θ : H → B(G)
to an abelian group G and a distance d with cd(H, θ) ≤ 2.

1. If D(G) ≤ 2, then ∆(H) = k∗(H) = ∅ and if D(G) = 3, then ∆(H) = {1} and k∗(H) =
{3}.

2. Suppose that G is finite with D(G) ≥ 4. Then ∆(H), k∗(H), and Cad(H) = Rd(H) =
[2, cd(H)] are intervals. If D(G) = D∗(G), then

k∗(H) ∪ {2} =
(

2 + ∆(H)
)

∪ {2} = Cad(H) = Rd(H) = [2, cd(H)] .



18 ALFRED GEROLDINGER AND QINGHAI ZHONG

3. If G is infinite, then ∆(H) = N, k∗(H) = N≥3, and Cad(H) = Rd(H) = N≥2.

It remains to study the set of catenary degrees and the set of minimal relations in case
D(G) ≤ 3. If H is a commutative monoid, then H is factorial if and only if H is a Krull monoid
with trivial class group if and only if c(H) = 0. If H is non-commutative, then in general the
catenary degree cd(H) depends on the distance function d ([5, Remark 4.7] and [48, Example
5.7] for examples). Even for a principal ideal domain R it can happen that cd(R

•) > 0 ([5,
Example 7.13]). We do not go into these details but provide the results in case D(G) ≤ 3 only
for commutative Krull monoids.

Proposition 4.2. Let H be a commutative Krull monoid with class group G such that every
class contains a prime divisor.

1. If |G| = 1, then Ca(H) = R(H) = ∅.

2. If |G| = 2, then Ca(H) = R(H) = {2}.

3. Suppose that D(G) = 3. If one nonzero class contains at least two distinct prime divisors,
then Ca(H) = R(H) = [2, 3] and otherwise we have Ca(H) = R(H) = {3}.

Let G be a finite abelian group with |G| ≥ 3, say G ∼= Cn1
⊕ . . . ⊕ Cnr with 1 < n1 | . . . | nr.

By [29, Theorem 6.4.2], we have

(4.6)
{

nr, 1 +
r
∑

i=1

⌊ni

2

⌋}

≤ c(G) ≤ D(G) .

Furthermore, we have c(G) = D(G) if and only if G is either cyclic or an elementary 2-group
([29, Theorem 6.4.7]). The groups G satisfying c(G) ∈ [3, 4] or c(G) = D(G)−1 are characterized
([36]), but beyond that the precise value of c(G) in terms of the group invariants are unknown.
In contrast to the set of (all) distances ∆(G), the set of minimal distances ∆∗(G) ⊂ ∆(G) is
far from being an interval (e.g., [45]). However, there is a characterization of when ∆∗(G) is an
interval ([49, Theorem 1.1]).

In general, the inclusions in (4.1), (4.2), and (4.3) can be strict and the sets need not be
intervals. Indeed, even in case of commutative Krull monoids every finite set can be realized
as the set of catenary degrees and the same is true for the remaining sets of invariants. More
precisely, we have (see [21, Proposition 3.2] and [33, Theorem 1.1]).

Proposition 4.3. Let C ⊂ N be a finite nonempty subset.

1. There is a finitely generated commutative Krull monoid H with finite class group such that
R(H) = Ca(H) = C \ {1} and k∗(H) = C \ {1, 2}.

2. If minC = gcdC, then there is a finitely generated commutative Krull monoid H with
∆(H) = C.

The above realization result for abstract Krull monoids together with Claborn’s Realization
Theorem ([29, Chapter 3.7]) and the realization theorem of Facchini and Wiegand ([20, Theorem
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3.4]) shows that there are Dedekind domains and monoids of modules (as discussed in Example
2.5.2) whose sets of arithmetical invariants have the given form (details are worked out for the
set of distances in [33, Corollary 1.2]). Apart from such abstract realization theorems, there is a
variety of results on these sets for very specific monoids and domains (e.g., [14, 26, 44, 37, 16, 43],
[22, Theorem 4.11]). To provide an explicit example where, say the set of distances, is not an
interval, consider the numerical monoid H generated by A(H) = {n, n+ 1, n2 − n− 1} for some
n ∈ N≥3. Then ∆(H) = [1, n−2]∪{2n−5} ([12]). We end this subsection with a list of examples
satisfying the assumptions in Theorem 4.1.

Example 4.4. We provide examples of transfer Krull monoids over finite abelian groups and,
in particular, examples of commutative Krull monoids having prime divisors in all classes.

1. (Commutative Krull monoids having prime divisors in all classes) Let H be a commutative
Krull monoid with class group G and let GP ⊂ G denote the set of classes containing prime
divisors. Then there is a transfer homomorphism θ : H → B(GP ) with c(H, θ) ≤ 2 ([29, Theorem
3.4.10]). We continue with explicit examples where GP = G holds.

(a) The ring of integers OK of an algebraic number field is a Dedekind domain with finite
class group and each class contains infinitely many prime divisors, and the same is true for
holomorphy rings in global fields. The distribution of prime divisors in the classes of a given
Dedekind domain is a problem which received a lot of attention (see [29, Theorem 3.7.8] and the
subsequent discussion for a survey).

(b) (Regular congruence monoids) Let R be a commutative Dedekind domain, f ⊂ R a nonzero
ideal, Γ ⊂ R/f a multiplicatively closed subset, and HΓ = {a ∈ R• | a + f ∈ Γ}. If aR + f = R
for all a ∈ HΓ, then HΓ is a regular congruence monoid and hence it is Krull. If every class of R
contains a prime divisor, then the same is true for the regular congruence monoids defined in R
([29, Chapter 2.11]).

(c) (Semigroup rings) If R[H] is a Krull monoid domain, then every class contains a prime
divisor ([13]).

(d) (Finitely generated domains) If R is an integral separable finitely generated algebra over
an infinite field K with dimK(R) ≥ 2, then R is noetherian and every class of its v-class group
contains infinitely many prime divisors ([40]).

(e) Let G be an abelian group with |G| 6= 2. Then B(G) is a commutative Krull monoid with
class group isomorphic to G and each class contains precisely one prime divisor ([29, Proposition
2.5.6]). This generalizes to relative block monoids ([38, 4]). Let K ⊂ G be a subgroup and let
BK(G) = {S ∈ F(G) | σ(S) ∈ K}. Then BK(G) is Krull, its class group is isomorphic to G/K
(apart from the case where |G| = 2 and K = {0}), and each class contains precisely |K| prime
divisors.

2. (Commutative transfer Krull monoids which are not completely integrally closed) Let O be
an order in an algebraic number field K, OK its ring of integers, and let π : spec(OK) → spec(O)
be the natural map defined by π(p) = p ∩ O. If O is seminormal, π is bijective, and there is an
isomorphism Pic(O) → Pic(OK), then there is a transfer homomorphism θ : O• → B(Pic(O))
with c(O•, θ) ≤ 2 (see [31, Theorem 5.8], where a more general result is given in the setting of
weakly Krull monoids).

3. (Non-commutative transfer Krull monoids) Let OK be the ring of integers of an algebraic
number field K, A a central simple K-algebra, and R a classical maximal OK -order of A. Let d
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be a distance on R• that is invariant under conjugation by normalizing elements. If every stably
free left R-ideal is free, then there is a transfer homomorphism θ : R• → B(G) with cd(R

•, θ) ≤ 2,
where G is a ray class group of OK ([47, Theorem 1.1] and [5, Corollary 7.11 and Theorem 7.12]).

4.3. Proof of the Main Results. We start with two lemmas.

Lemma 4.5. Let H be a BF-monoid, B a commutative reduced BF-monoid, d a distance on H,
and θ : H → B a transfer homomorphism.

1. For every a ∈ H we have c
(

θ(a)
)

≤ cd(a) ≤ max{c
(

θ(a)
)

, cd(H, θ)
}

.

2. Suppose that cd(H, θ) ≤ 2. Then Ca(B) ⊂ Cad(H), and if c(B) ≥ 2, then cd(H) = c(B).

3. ∆(H) = ∆(B) and k∗(H) = k∗(B).

Proof. 1. A proof of the upper bound can be found in [5, Proposition 4.6]. The lower bound
is obvious in our setting (a proof in a much more general setting can be found in [22, Theorem
2.22]).

2. We suppose that Ca(B) 6= ∅ whence we have minCa(B) ≥ 2. If b ∈ B with c(b) ≥ 2,
then there is an a ∈ H with θ(a) = b and the inequalities in 1. imply that c(b) = cd(a). Thus
Ca(B) ⊂ Cad(H). If c(B) ≥ 2, then 1. implies that cd(H) = c(B).

3. Since L(H) = L(B) by (2.3), the assertions follow. �

Lemma 4.6. Let G be a finite abelian group with |G| ≥ 3.

1. For every B ∈ B(G) with c(B) ≥ 4 there exists B′ ∈ B(G) with |B′| < |B| and c(B′) ≥
c(B)− 1.

2.

Ca(G) =

{

{3}, D(G) = 3,

[2, c(G)], D(G) ≥ 4 .

Proof. 1. Let B ∈ B(G) with c(B) ≥ 4. Then there exists an element B0 ∈ B(G) with |B0| being
minimal such that c(B0) = c(B). Then |B0| ≤ |B| and since it is sufficient to prove the assertion
for B0, we may assume that B0 = B. We set d = c(B) and observe that B ∈ B(G \ {0}) by the
minimality of |B|. By the definition of c(B), there exist two distinct factorizations

z0 = U1 · . . . · Uk ∈ Z(B) and z′0 = V1 · . . . · Vℓ ∈ Z(B) ,

where k ≤ ℓ ∈ N and U1, . . . , Uk, V1, . . . , Vℓ ∈ A(G), with d(z0, z
′
0) = d and such that there is

no (d − 1)-chain concatenating z0 and z′0. Let g1, g2 ∈ G with g1g2 |U1 and, without loss of
generality, we assume that g1g2 |V1V2. We define

B′ = B(g1 + g2)(g1g2)
−1, U ′

1 = U1(g1 + g2)(g1g2)
−1, and V ′ = V1V2(g1 + g2)(g1g2)

−1 .
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Then |B′| < |B|, U ′
1 ∈ A(G), and we consider a factorization of V ′, say V ′ = W1 · . . . ·Ws, where

s ∈ N, W1, . . . ,Ws ∈ A(G), and g1 + g2 |W1. We obtain two factorizations of B′, namely

z = U ′
1U2 · . . . · Uk ∈ Z(B′) and z′ = W1 · . . . ·WsV3 · . . . · Vℓ ∈ Z(B′) .

We assert that there is no (d − 2)-chain of factorizations concatenating z and z′ which implies
that c(B′) ≥ d− 1 = c(B)− 1. If this holds, then 1. is proved.

Assume to the contrary that there exists a (d−2)-chain (z = z′1, . . . , z
′
m = z′) of factorizations

of B′ concatenating z and z′. For every i ∈ [1,m], we set

z′i = Xi,1 · . . . ·Xi,ti ∈ Z(B′) ,

where ti ∈ N, Xi,1, . . . ,Xi,ti ∈ A(G), and with g1 + g2 |Xi,1. Then X ′
i,1 = Xi,1g1g2(g1 + g2)

−1 ∈
B(G) and we fix a factorization Yi,1 ·. . .·Yi,ri ∈ Z(X ′

i,1), where ri ∈ [1, 2] and Yi,1, . . . , Yi,ri ∈ A(G).

Thus, for each i ∈ [1,m], we obtain a factorization

z2i = Yi,1 · . . . · Yi,riXi,2 · . . . ·Xi,ti ∈ Z(B) .

We choose i ∈ [1,m− 1] and distinguish three cases.
First, if there exists j0 ∈ [1, ti+1] such that Xi,1 = Xi+1,j0 , then we set

z2i+1 = Yi,1 · . . . · Yi,ri ·
∏

j∈[1,ti+1]\{j0}

Xi+1,j ∈ Z(B) ,

which implies that d(z2i, z2i+1) ≤ d− 2 ≤ d− 1 and d(z2i+1, z2i+2) ≤ 3 ≤ d− 1.
Second, if there exists j0 ∈ [1, ti] such that Xi,j0 = Xi+1,1, then we set

z2i+1 = Yi+1,1 · . . . · Yi+1,ri+1
·

∏

j∈[1,ti]\{j0}

Xi,j ∈ Z(B) ,

which implies that d(z2i, z2i+1) ≤ 3 ≤ d− 1 and d(z2i+1, z2i+2) ≤ d− 2 ≤ d− 1.
Finally, if none of the previous two conditions holds, then d(z2i, z2i+2) ≤ d− 2+1 = d− 1 and

we set z2i+1 = z2i.
Clearly, we have d(z0, z2) ≤ 3 ≤ d− 1 and thus there is a (d− 1)-chain concatenating z0 and

z2m = Ym,1 · . . . · Ym,rmW2 · . . . ·WsV3 · . . . · Vℓ ∈ Z(B) .

Thus V1V2 = Ym,1 · . . . ·Ym,rmW2 · . . . ·Ws. Since ℓ ≥ c(B) ≥ 4, we obtain |V1V2| < |B| and hence
c(V1V2) ≤ d − 1 by the minimality of |B|. Therefore there is a (d − 1)-chain concatenating z2m
and z′0 and hence there is a (d− 1)-chain concatenating z0 and z′0, a contradiction.

2. If D(G) = 3, then (4.6) shows that c(G) = 3 and it easily follows that Ca(G) = {3}.
Suppose that D(G) ≥ 4. Then (2.1) and (4.6) imply that c(G) ≥ 4. Let B ∈ B(G) such that
c(B) = c(G). Then 1. implies that there exist B = B0, B1, . . . Bk ∈ B(G), where k < |B|, such
that c(Bi) ≥ c(Bi+1)−1 for each i ∈ [0, k−1] and c(Bk) = 3. It remains to verify that 2 ∈ Ca(G)
and we distinguish three cases.

If there is an element g ∈ G with ord(g) = n ≥ 4, then 2 = c
(

gn((n− 2)g)(2g)
)

∈ Ca(G).
If there are two independent elements e1, e2 ∈ G with ord(e1) = ord(e2) = 3, then 2 =

c
(

(e1 + e2)
4e21e

2
2

)

∈ Ca(G).
If there are three distinct elements e1, e2, e3 with ord(e1) = ord(e2) = ord(e3) = 2, then

2 = c
(

e1e2e3(e1 + e2 + e3)(e1 + e2)
2
)

∈ Ca(G). �
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Proof of Theorem 4.1. Let θ : H → B(G) be a transfer homomorphism to an abelian group G
and let d be a distance on H with cd(H, θ) ≤ 2. By Lemma 4.5.2, we have Ca(G) ⊂ Cad(H) and,
if c(G) ≥ 2, then c(G) = cd(H). By (2.3), we have L(H) = L(G) whence ∆(H) = ∆(G) and
k∗(H) = k∗(G).

1. If D(G) ≤ 2, then B(G) is half-factorial whence ∆(G) = k∗(G) = ∅. If D(G) = 3, then
∆(G) and k∗(G) have the asserted values by (4.5) and (4.6).

2. Suppose that G is finite with D(G) ≥ 4. Then cd(H) = c(G) ∈ [3,D(G)] by (4.6). Since
B(G) is a Krull monoid with class group isomorphic to G and each class contains a prime divisor,
∆(G) is an interval with min∆(G) = 1 by [35, Theorem 1.1]. The set k∗(G) is an interval with
mink∗(G) = 3 by [21, Proposition 3.3]. By (4.1) and (4.5), we have k∗(G) ⊂ 2+∆(G) ⊂ [2, c(G)].
Thus by Lemma 4.6.2, we obtain that

[2, cd(H)] = [2, c(G)] = Ca(G) ⊂ Cad(H) ⊂ Rd(H) ⊂ [2, cd(H)] ,

whence we have equality throughout. If D(G) = D∗(G), then maxk∗(G) = 2+max∆(G) = c(G)
by [28, Corollary 4.1]. Since ∆(H) and k∗(H) are intervals, we infer that

Cad(H) = [2, cd(H)] = k∗(H) ∪ {2} =
(

2 + ∆(H)
)

∪ {2} = [2, cd(H)] .

3. Suppose that G is infinite. Then for every finite set L ⊂ N≥2 there is an a ∈ H such
that L(a) = L ([29, Theorem 7.4.1]). This implies that ∆(H) = N and k∗(H) = N≥3. Since
Ca(G) ⊂ Cad(H) ⊂ Rd(H), it remains to show that N≥2 ⊂ Ca(G).

Suppose that G is an infinite torsion group. Then [29, Lemma 6.4.1] implies that for every
k ∈ N≥3, there exists Ak ∈ B(G) such that c(Ak) = k. It follows by Lemma 4.6.2 that 2 ∈ Ca(G).
Therefore N≥2 ⊂ Ca(G).

Suppose there exists an element g ∈ G with ord(g) = ∞. Then for every n ∈ N≥2, we
set U = gn(−ng), V = g(−g), and V ′ = ng(−ng). It follows that Z(gn(−g)nng(−ng)) =
{U(−U), V nV ′} which implies that c(gn(−g)nng(−ng)) = n + 1 whence N≥3 ⊂ Ca(G). If
W = (−g)2(−4g)2(2g)2(3g)2, then

Z(W ) = {((−g)(−4g)2g3g)2 , (−g)22g · (−4g)22g(3g)2 , (−4g)(2g)2 · (−g)2(−4g)(3g)2}

which implies that 2 = c(W ) ∈ Ca(G). �

Proof of Proposition 4.2.
1. If |G| = 1, then H is factorial whence c(H) = 0 and Ca(H) = R(H) = ∅.

2. Suppose that |G| = 2. Since H is not factorial, we obtain that 0 < c(H) ≤ D(G) = 2 by
(4.6) whence Ca(H) = {2}. Since Ca(H) ⊂ R(H) and the maxima of the sets coincide by (4.2),
it follows that R(H) = {2}.

3. Suppose that D(G) = 3. Then c(G) = 3 by (4.6) whence ∆(H) = {1} and k∗(H) = {3}.
If there is a nonzero class containing at least two distinct prime divisors, then minCa(H) =
minR(H) = 2 hence Ca(H) = R(H) = [2, 3] and otherwise we have R(H) = Ca(H) = {3} by
[21, Proposition 3.4]. �
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5. The set of tame degrees

Local tameness (i.e., the finiteness of all local tame degrees) is a basic finiteness property (in
commutative factorization theory) in the sense that in many settings local tameness has to be
guaranteed first before one proceeds to establish further arithmetical finiteness properties (we
refer to the proof of the Structure Theorem for sets of lengths [29, Chapter 4.3] which serves as a
prototype for this procedure). Tame degrees have been introduced also in the non-commutative
setting ([5, Section 5]) but have not yet proved their usefulness in that context. Thus in this
section we restrict to commutative Krull monoids. We introduce tame degrees in Subsection 5.1,
formulate our main results in Subsection 5.2, and prove them in Subsection 5.3.

5.1. Tame degrees. Let H be commutative BF-monoid. The tame degree t(a, u) of an element
a ∈ H and an atom u ∈ H is the smallest integer N with the following property: if a ∈ uH,
then for any factorization a = v1 · . . . · vn, with v1, . . . , vn ∈ A(H), there is a subproduct which
is a multiple of u, say v1 · . . . · vm, and a refactorization of this subproduct which contains u, say
v1 · . . . · vm = uu2 · . . . · uℓ such that max{ℓ,m} ≤ N . More formally, for a ∈ H and u ∈ A(Hred),
tH(a, u) = t(a, u) is the smallest N ∈ N0 ∪ {∞} having the following property:

• If Z(a) ∩ uZ(H) 6= ∅ and z ∈ Z(a), then there exists some z′ ∈ Z(a) ∩ uZ(H) such that
d(z, z′) ≤ N .

By convention, Z(a) ∩ uZ(H) = ∅ implies that t(a, u) = 0. If Z(a) ∩ uZ(H) 6= ∅, then t(a, u) = 0
if and only if Z(a) ∩ uZ(H) = Z(a) (in other words, if every factorization of a is divisible by u).
Since t(a, u) ≤ max L(a), all tame degrees are finite. We call

Ta(H) = {t(a, u) | a ∈ H,u ∈ A(Hred), t(a, u) > 0} ⊂ N0

the set of tame degrees of H, t(H,u) = sup{t(a, u) | a ∈ H} is the local tame degree (at u), and

t(H) = supTa(H) = sup{t(H,u) | u ∈ A(Hred)} ∈ N0 ∪ {∞}

is the (global) tame degree of H (with the convention that sup ∅ = 0). We say that H is

• locally tame if t(H,u) < ∞ for all u ∈ A(Hred), and

• (globally) tame if t(H) < ∞.

It is easy to check that t(H,u) = 0 if and only if u is a prime whence H is factorial if and only
if t(H) = 0. Furthermore, we have ([29, Theorem 1.6.6])

c(H) ≤ t(H), and if H is not factorial, then max{2, ρ(H)} ≤ t(H) .

If G is an abelian group, G0 ⊂ G a subset, A ∈ B(G0), and U ∈ A(G0), then we set (as usual)

t(G0, U) = t
(

B(G0), U
)

, t(G0) = t
(

B(G0)
)

, and Ta(G0) = Ta
(

B(G0)
)

.
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5.2. Main Results. We formulate the main results and discuss them afterwards.

Theorem 5.1. Let H be a commutative Krull monoid whose class group G is an elementary
2-group, say G = Cr

2 with r ∈ N0, and suppose that every class contains a prime divisor.

1. If r = 0, then Ta(H) = Ta(G) = ∅ and if r = 1, then Ta(H) = {2} and Ta(G) = ∅.

2. If r = 2, then Ta(G) = {3}, and if one nonzero class contains at least two distinct prime
divisors, then Ta(H) = [2, 3].

3. If r = 3, then Ta(G) = [2, 4], and if one nonzero class contains at least two distinct prime
divisors, then Ta(H) = [2, 5].

4.

Ta(H)

{

= Ta(G) = [2, 1 + r2

2 ] if r ≥ 4 is even,

⊃ Ta(G) ⊃ [2, 2 + r(r−1)
2 ] if r ≥ 5 is odd.

Theorem 5.2. Let H be a commutative Krull monoid with class group G such that D(G) ≥ 3
and suppose that every class contains a prime divisor.

1. Ta(C3) = Ta(C2 ⊕ C2) = {3}. If G is finite and either D(G) ≥ 4 or there is a nonzero
class containing at least two distinct prime divisors, then [2,D(G)] ⊂ Ta(H).

2. If every class contains at least D(G) + 1 prime divisors, then Ta(H) = [2, t(H)].

3. If G is infinite, then Ta(H) = N≥2.

Let H be a commutative Krull monoid with class group G and let GP ⊂ G denote the set of
classes containing prime divisors. The relationship between the tame degrees of H and the tame
degrees of B(GP ) is not as close as it was with the catenary degrees. We will have again the basic
inclusion Ta(GP ) ⊂ Ta(G) (Lemma 5.3). However, it is not true that H is globally tame (i.e.,
supTa(H) < ∞) if and only if B(GP ) is globally tame (i.e., supTa(GP ) < ∞; see [24, Remark
3.4]). Moreover, it is an open problem whether for all finite abelian groups G with D(G) ≥ 5 (or
with D(G) being sufficiently large), we have t(H) = t(G). Theorem 5.1.3 reveals that this fails
for D(G) = 4. Proposition 5.5 shows that every finite nonempty subset can be realized as the
set of tame degrees of a commutative Krull monoid, if we do not impose any assumption on the
distribution of prime divisors. The standing conjecture for G = Cr

2 is that, for odd r ≥ 5, we
have t(H) = 2+r(r−1)/2. If this holds true, then all inclusions in Theorem 5.1.4. are equalities.
The precise value of t(G) (in terms of the group invariants) is unknown apart from the groups
given in Theorem 5.1 and a couple of small groups.

Let G be an abelian group. Then B(G) is locally tame if and only if G is finite ([30, Theorem
4.4]). If G is finite with |G| ≥ 3, then for all U ∈ A(G) we have the bounds ([29, Proposition
6.5.1])

(5.1) t(G,U) ≤ 1 +
|U | (D(G) − 1)

2
and D(G) ≤ t(G) ≤ 1 +

D(G)(D(G) − 1)

2
.
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5.3. Proof of the Main Results. We start with some lemmas.

Lemma 5.3. Let H be a commutative Krull monoid with class group G and let GP ⊂ G denote
the set of classes containing prime divisors.

1. H is locally tame if and only if B(GP ) is locally tame.

2. Ta(GP ) ⊂ Ta(H) and hence t(GP ) ≤ t(H).

3. If there is a nonzero class containing at least two distinct prime divisors, then 2 ∈ Ta(H).

Proof. We may suppose that H is reduced. Let the inclusion H →֒ F = F(P ) be a divisor
theory of H. Then G = q(F )/q(H) = {[a] = aq(H) | a ∈ F} is the class group of H and
GP = {[p] | p ∈ P} is the set of classes containing prime divisors. Let β : H → B(GP ) be the
transfer homomorphism defined by β(p1 · . . . · pℓ) = [p1] · . . . · [pℓ], where p1, . . . , pℓ ∈ P (see [29,
Proposition 3.4.8]).

1. See [24, Proposition 3.3].
2. Let A ∈ B(GP ) and U ∈ A(GP ) be given with t(A,U) > 0. Thus U |A and U 6= A, say

U = g1 · . . . · gk and A = Ugk+1 · . . . · gℓ with ℓ ∈ N and k ∈ [1, ℓ − 1]. For every i ∈ [1, ℓ]
we choose a prime element pi ∈ gi ∩ P , and we do it in such a way that gi = gj implies that
pi = pj for all i, j ∈ [1, ℓ]. Then u = p1 · . . . · pk ∈ A(H), a = upk+1 · . . . · pℓ ∈ H, β(u) = U ,
and β(a) = A. Clearly, there is a bijection from ZH(a) to ZB(GP )(A), and this implies that
t(A,U) = t(a, u) ∈ Ta(H).

3. Let g ∈ GP with ord(g) = n ≥ 2 and p, q ∈ g be two distinct prime divisors. Then
u = pn, v = qn ∈ A(H) and for a = uv = (pn−1q)(pqn−1) we have t(a, u) = 2. �

Lemma 5.4. Let n ∈ N, (Hi)
n
i=1 be a family of commutative BF-monoids, and H = H1×. . .×Hn.

Then Ta(H) =
⋃n

i=1 Ta(Hi).

Proof. Without loss of generality, we may assume that H1, . . . ,Hn are reduced. Then H1, . . . ,Hn

are divisor closed submonoids of H whence
⋃n

i=1 Ta(Hi) ⊂ Ta(H). Thus we have to verify the
reverse inclusion, and by an inductive argument it suffices to do this for n = 2.

Let a ∈ H and u ∈ A(H) with tH(a, u) > 0. Therefore u | a (in H) and there exist a1 ∈ H1 and
a2 ∈ H2 such that a = a1a2. Note that A(H) = A(H1) ∪ A(H2) and ZH(a) = ZH1

(a1)ZH2
(a2).

Thus there exists i ∈ [1, 2], such that u ∈ A(Hi), say i = 1. Since u | a in H, it follows that u | a1
in H1 whence tH(a, u) = tH1

(a1, u) ∈ Ta(H1). �

Proposition 5.5. For every finite nonempty subset C ⊂ N≥2 there is a finitely generated com-
mutative Krull monoid H with finite class group such that Ta(H) = C.

Proof. Let C = {d1, . . . , dn} ⊂ N≥2 be a finite nonempty subset with n ∈ N and d1, . . . dn ∈ N≥2.
Let G be a finite abelian group with G ∼= Cd1 ⊕ . . . ⊕ Cdn and (e1, . . . , en) be a basis of G
with ord(ei) = di for all i ∈ [1, n]. We define Hi = B({ei,−ei}) for all i ∈ [1, n]. Then
H = H1 × . . . ×Hn is a finitely generated Krull monoid with finite class group, and by Lemma
5.4, it is sufficient to prove that Ta(Hi) = {di} for each i ∈ [1, n].
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Let i ∈ [1, n]. Then A(Hi) = {Ui = edii ,−Ui = (−ei)
di , Vi = ei(−ei)}, Ui(−Ui) = V di

i

and hence {di} = t
(

Ui(−Ui), Ui) ∈ Ta(Hi). It remains to show that for all A ∈ Hi we have
t(A,Ui), t(A,−Ui), t(A,Vi) ∈ {0, di}.

Let A = esi (−ei)
t ∈ F({ei,−ei}) with s, t ∈ N0. Then A ∈ Hi if and only if s ≡ t (mod di). If

this holds and s0 ∈ [0, di − 1] such that t ≡ s0 (mod di), then

ZHi
(A) =

{

U
s−s0
di

−j

i (−Ui)
t−s0
di

−j
V s0+jdi
i

∣

∣

∣
j ∈

[

0,min

{

s− s0
di

,
t− s0
di

}]}

which shows the assertion. �

Lemma 5.6. Let G be an abelian group. If G is finite, then [3,D(G)] ⊂ Ta(G) and if G is
infinite, then N≥3 ⊂ Ta(G).

Proof. Let m ∈ N≥3, and if G is finite, we suppose that m ≤ D(G). It is sufficient to show that
m ∈ Ta(G).

Clearly, there is a U ∈ A(G) with |U | = m, say U = g1 · . . . · gm. For i ∈ [1,m], we set Vi =
(−gi)gi. We consider the element A = (−U)U ∈ B(G) and claim that t(A,U) = m. Obviously,
Z ′ = (−U)U is the only factorization of A divisible by U . Thus, if Z = V1 · . . . · Vm ∈ Z(A), then
d(Z,Z ′) = m. Since every factorization Z ′′ ∈ Z(A) not divisible by U has length |Z ′′| ≤ m, it
follows that d(Z ′′, Z ′) ≤ max{|Z ′′|, |Z ′|} ≤ m. Thus we obtain that t(A,U) = m. �

Proof of Theorem 5.1. If r = 0, then |G| = 1 and both H and B(G) are factorial whence
t(H) = t(G) = 0 and Ta(H) = Ta(G) = ∅. Let r ≥ 1, (e1, . . . , er) be a basis of G = Cr

2 , and let
e0 = e1 + . . .+ er. We use that D(G) = r + 1, t(H) ∈ Ta(H), and that

[3,D(G)] ⊂ Ta(G) ⊂ Ta(H) .

If there is a nonzero class having at least two distinct prime divisors, then 2 ∈ Ta(H) by Lemma
5.3.3. For every s ∈ [1, r], B(Cs

2) is a divisor-closed submonoid of B(Cr
2) whence Ta(C

s
2) ⊂ Ta(G).

By [24, Theorem 5.1], we have

• If r = 1, then t(H) = 2 and t(G) = 0.

• If r = 2, then t(H) = t(G) = 3.

• If r = 3, then t(G) = 4, and if one nonzero class contains at least two distinct prime
divisors, then t(H) = 5.

1. If r = 1, then t(H) = 2 whence Ta(H) = {2}, and B(G) is factorial whence t(G) = 0 and
Ta(G) = ∅.

2. Suppose that r = 2. Then t(H) = t(G) = 3. It is easy to see that Ta(G) = {3}. If H is
a commutative Krull monoid having at least two distinct prime divisors in a nonzero class, then
Ta(H) = [2, 3].

3. Suppose that r = 3. We set

U = e0e1e2e3, W = (e1 + e2)
2, X = e0(e1 + e2)e3, and Y = (e1 + e2)e1e2 .
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Then A = UW = XY and t(A,U) = 2 which implies that minTa(G) = 2. Since t(G) = 4
and Ta(C2

2 ) ⊂ Ta(G), it follows that Ta(G) = [2, 4]. Suppose that H is a commutative Krull
monoid having at least two distinct prime divisors in a nonzero class, then t(H) = 5 and hence
Ta(G) = [2, 4] implies that Ta(H) = [2, 5].

4. We continue with the following assertions.

A1. Let r ≥ 4 be even. Then there are a U ∈ A(G) and, for every ν ∈ [1, r], an A(ν) ∈ B(G)

such that t(A(ν), U) = 2− ν + r2/2.

A2. Let r ≥ 5 be odd. Then there are a U ∈ A(G) and, for every ν ∈ [1, r−1], an A(ν) ∈ B(G)

such that t(A(ν), U) = 2− ν + r(r − 1)/2.

A3. . Let r ≥ 4 be congruent two modulo 4. Then there are a U ∈ A(G) and, for every

ν ∈ [1, r − 2], an A(ν) ∈ B(G) such that t(A(ν), U) = 3− ν + r(r − 2)/2.

A4. . Let r ≥ 3 be divisible by 4. Then there are a U ∈ A(G) and, for every ν ∈ [1, r − 2], an
A(ν) ∈ B(G) such that t(A(ν), U) = 2− ν + r(r − 2)/2.

Proof of A1. We set U = e0
∏r

j=1(e0 + ej) and, for all i, ν ∈ [1, r], we define

Ui = e2i , Vi = (e0 + ei)e
−1
i

r
∏

j=1

ej , V
(ν)
0 = e0(e1 + . . .+ eν)

r
∏

j=ν+1

ej ,

W (ν) = (e1 + . . .+ eν)e1 · . . . · eν , and A(ν) = V
(ν)
0

r
∏

j=1

Vj .

Then U, V
(ν)
0 ,W (ν), V1, . . . , Vr, U1, . . . , Ur ∈ A(G),

z = V
(ν)
0

r
∏

j=1

Vj ∈ Z(A(ν)), z′ = UW (ν)
ν
∏

j=1

U
(r−2)/2
j

r
∏

j=ν+1

U
r/2
j ∈ Z(A(ν)) ,

and z′ is the only factorization of A(ν) which is divisible by U . Therefore we obtain that

t(A(ν), U) = d(z, z′) = |z′| = 2 + ν(r − 2)/2 + (r − ν)r/2 = 2− ν + r2/2 .

�[Proof of A1.]

Proof of A2. We set U =
∏r

j=1(e0 + ej) and, for all i ∈ [1, r] and all ν ∈ [1, r − 1], we define

Ui = e2i , Vi = (e0 + ei)e
−1
i

r
∏

j=1

ej , V
(ν)
0 = (e0 + er)(e1 + . . .+ eν)

r−1
∏

j=ν+1

ej,

W (ν) = (e1 + . . .+ eν)e1 · . . . · eν , and A(ν) = V
(ν)
0

r−1
∏

j=1

Vj .
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Then U, V
(ν)
0 ,W (ν), V1, . . . , Vr, U1, . . . , Ur ∈ A(G),

z = V
(ν)
0

r−1
∏

j=1

Vj ∈ Z(A(ν)), z′ = UW (ν)
ν
∏

j=1

U
(r−3)/2
j

r
∏

j=ν+1

U
(r−1)/2
j ∈ Z(A(ν)) ,

and z′ is the only factorization of A(ν) which is divisible by U . Therefore we obtain that

t(A(ν), U) = d(z, z′) = |z′| = 2 + ν(r − 3)/2 + (r − ν)(r − 1)/2 = 2− ν + r(r − 1)/2 .

�[Proof of A2.]

Proof of A3. Consider G as an F2-vector space and set Ui = e2i for all i ∈ [1, r]. Obviously,

U = e0(e0 + e1 + e2)(e0 + e2 + e3) · . . . · (e0 + er−2 + er−1)(e0 + er−1 + e1)

is a zero-sum sequence of length |U | = r. Since

(e0 + e1 + e2, e0 + e2 + e3, . . . , e0 + er−2 + er−1, e0 + er−1 + e1) = (e1, . . . , er) · A

and

A =























0 1 1 1 . . . 1 0
0 0 1 1 . . . 1 1
1 0 0 1 . . . 1 1
1 1 0 0 . . . 1 1
...

...
... . . .

...
...

1 1 1 1 . . . 0 0
1 1 1 1 . . . 1 1























∈ Mr,r−1(F2)

has rank r − 1, it follows that U ∈ A(G). For all i ∈ [1, r] and all ν ∈ [1, r − 2], we define

Vν = (e0 + eν + eν+1)e
−1
ν e−1

ν+1

r
∏

j=1

ej, Vr−1 = (e0 + er−1 + e1)e
−1
r−1e

−1
1

r
∏

j=1

ej ,

V
(ν)
0 = e0(e1 + . . . + eν)

r
∏

j=ν+1

ej , W (ν) = (e1 + . . . + eν)e1 · . . . · eν ,

A(ν) = V
(ν)
0

r−1
∏

j=1

Vj , and Ui = e2i .

Then V
(ν)
0 ,W (ν), V1, . . . , Vr−1, U1, . . . , Ur ∈ A(G),

z = V
(ν)
0

r−1
∏

j=1

Vj ∈ Z(A(ν)), z′ = UW (ν)
ν
∏

j=1

U
(r−4)/2
j

r−1
∏

j=ν+1

U
(r−2)/2
j U r/2

r ∈ Z(A(ν)) ,

and z′ is the only factorization of A(ν) which is divisible by U . Therefore we obtain that

t(A(ν), U) = d(z, z′) = |z′| = 2 + ν(r − 4)/2 + (r − 1− ν)(r − 2)/2 + r/2 = 3− ν + r(r − 2)/2 .
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�[Proof of A3.]
Proof of A4. We set er+1 := e1 and define

U = (e0 + e1 + e2)(e0 + e2 + e3) · . . . · (e0 + er + e1) .

Since r is divisible by 4, we infer that U ∈ A(G) and clearly we have |U | = r. For all i ∈ [1, r]
and all ν ∈ [1, r − 2], we define

Ui = e2i , Vi = (e0 + ei + ei+1)e
−1
i e−1

i+1

r
∏

j=1

ej , V
(ν)
0 = (e0 + er−1 + er)(e1 + . . .+ eν)

r−2
∏

j=ν+1

ej,

W (ν) = (e1 + . . .+ eν)e1 · . . . · eν , and A(ν) = V
(ν)
0

∏

j∈[1,r]\{r−1}

Vj .

Then V
(ν)
0 ,W (ν), V1, . . . , Vr, U1, . . . , Ur ∈ A(G),

z = V
(ν)
0

∏

j∈[1,r]\{r−1}

Vj ∈ Z(A(ν)), z′ = UW (ν)
ν
∏

j=1

U
(r−4)/2
j

r
∏

j=ν+1

U
(r−2)/2
j ∈ Z(A(ν)) ,

and z′ is the only factorization of A(ν) which is divisible by U . Therefore we obtain that

t(A(ν), U) = d(z, z′) = |z′| = 2 + ν(r − 4)/2 + (r − ν)(r − 2)/2 = 2− ν + r(r − 2)/2 .

�[Proof of A4.]

5. We suppose that r ≥ 4 and will proceed by induction on r. If r is even, then [24, Theorem
5.1] implies that

t(H) = t(G) = 1 + r2/2 ,

and
[2,D(G)] ⊂ Ta(G) ⊂ Ta(H) ⊂ [2, t(H)] = [2, t(G)] = [2, 1 + r2/2] .

whence it remains to show that

(5.2) [r + 2, r2/2] = [D(G) + 1, r2/2] ⊂ Ta(G) .

If r is odd, then 2 + r(r − 1)/2 ∈ Ta(G) and by the induction hypothesis

[2, 1 + (r − 1)2/2] = Ta(Cr−1
2 ) ⊂ Ta(G)

whence it remains to show that

(5.3) [2 + (r − 1)2/2, 1 +
r(r − 1)

2
] ⊂ Ta(G) .

(i) Suppose that r = 4. By (5.2), it remains to show that [6, 8] ⊂ Ta(G), and this follows from
A1.

(ii) Suppose that r = 5. By (5.3), remains to show that [10, 11] ⊂ Ta(G), and this follows
from A2.
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(iii) Let r ≥ 6 be even. By the induction hypothesis, we have

[2, 3 + r(r − 3)/2] = [2, 2 + (r − 1)(r − 2)/2] ⊂ Ta(Cr−1
2 ) ⊂ Ta(G)

whence it remains to show that

[4 + r(r − 3)/2, r2/2] ⊂ Ta(G) .

By A1, we infer that

[2 + r(r − 2)/2, 1 + r2/2] ⊂ Ta(G) ,

whence it remains to verify that

[4 + r(r − 3)/2, 1 + r(r − 2)/2] ⊂ Ta(G) .

If r is divisible by 4, this follows from A4. If r is congruent 2 modulo 4, this follows from A3.
(iv) Let r ≥ 7 be odd. By (5.3), it remains to show that

[2 + (r − 1)2/2, 1 + r(r − 1)/2] ⊂ Ta(G) .

By A2, the interval [2+(r−1)(r−2)/2, 1+r(r−1)/2] ⊂ Ta(G) whence the assertion follows. �

Proof of Theorem 5.2. We may suppose that H is reduced and we consider a divisor theory
H →֒ F = F(P ). Then G = q(F )/q(H) is the class group of H, and for an element a ∈ F ,
|a|F = |a| ∈ N0 denotes the length of a with respect to F .

1. and 3. Suppose that every class contains a prime divisor. Theorem 5.1.2 shows that
Ta(C2 ⊕ C2) = {3} and Similarly, we can show that Ta(C3) = {3}. Lemma 5.6 implies that
[3,D(G)] resp. N≥3 ⊂ Ta(G). If there is a nonzero class containing at least two prime divisors,
then 2 ∈ Ta(H) by Lemma 5.3.3. Since Ta(G) ⊂ Ta(H) by Lemma 5.3.2, it remains to show that
2 ∈ Ta(G) whenever D(G) ≥ 4. We distinguish four cases.

(i) Suppose that G contains an element g of infinite order. Then U = (2g)(−g)2 and
V = (−3g)(2g)g are atoms. Since Z(UV ) = {UV, (−g)g(−3g)(2g)(2g)(−g)}, it follows that
t(UV,U) = 2.

(ii) Suppose that G contains an element g with ord(g) = n ≥ 4. Then U = gn and V =
(−2g)(2g) are atoms. Since Z(UV ) = {UV, gn−2(2g) · (−2g)g2}, it follows that t(UV,U) = 2.

(iii) If all elements of G have order two, then 2 ∈ Ta(G) by Theorem 5.1.4.
(iv) Suppose that all elements of G have order three, and let e1 and e2 be two independent

elements of order 3. Then U = (e1 + e2)
3 and V = (e1 + e2)e

2
1e

2
2 are atoms. Since Z(UV ) =

{UV, e1e2(e1 + e2)
2 · e1e2(e1 + e2)

2}, it follows that t(UV,U) = 2.

2. Suppose that every class contains at least D(G) + 1 prime divisors. We start with the
following assertion.

A. For every a ∈ H and every u ∈ A(H) with t(a, u) ≥ D(G) + 1 there exists b ∈ H with
|b| < |a| and t(b, u) ≥ t(a, u)− 1.
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Proof of A. Let a ∈ H and u ∈ A(H) with t(a, u) ≥ D(G) + 1. By definition of t(a, u), there
exists a factorization z = u1 · . . . · uk ∈ Z(a), where k ∈ N and u1, . . . , uk ∈ A(H), such that for
all factorization z′ ∈ Z(a) ∩ uZ(H), we have d(z, z′) ≥ t(a, u).

For every atom v ∈ H, we have |v| ∈ [1,D(G)] ([29, Theorem 5.1.5]) and v is a prime in H if
and only if |v| = 1. Since t(a, v) = 0 for all primes v ∈ H, we infer that u is not a prime. If v
is a prime dividing a, then Z(a) = vZ(v−1a) whence t(a, u) = t(av−1, u). Thus we may assume
without restriction that a is not divisible by any prime of H. This implies that max L(c) ≤ |c|/2
for every divisor c of a.

Suppose there exists an i ∈ [1, k], say i = 1, such that u | Fu2 · . . . ·uk. We define b = u2 · . . . ·uk
and clearly we have |b| < |a|. Assume to the contrary that t(b, u) ≤ t(a, u) − 2. Then for
z1 = u2 · . . . ·uk ∈ Z(b) there exists a factorization z′1 = uw1 · . . . ·ws, with s ∈ N and w1, . . . , ws ∈
A(H), such that d(z1, z

′
1) ≤ t(a, u) − 2. Setting z′ = u1uw1 · . . . · ws ∈ Z(a) we obtain that

d(z, z′) ≤ d(z1, z
′
1) ≤ t(a, u)− 2, a contradiction.

Now we suppose that u does not divide (in F ) any subproduct of u1 · . . . · uk. This implies
k ≤ |u|. If |au−1| ≤ k, then

t(a, u) ≤ max{k, 1 + |au−1|/2} ≤ k ≤ |u| ≤ D(G) ,

a contradiction. Thus |au−1| ≥ k + 1. Therefore there exist i ∈ [1, k], say i = 1, and p1, p2 ∈ P
with p1p2 |F u1 such that u |F a(p1p2)

−1. If u1 = p1p2, then u |F u2 · . . . · uk, a contradiction.
Thus u1 6= p1p2. Since every class contains at least D(G) + 1 prime divisors and |u| ≤

D(G), there exists a p ∈ P with p ∤F u and [p] = [p1] + [p2]. We define u′1 = u1p(p1p2)
−1

and b = ap(p1p2)
−1. Then u′1 ∈ A(H) and b ∈ H with |b| < |a|. Assume to the contrary

that t(b, u) ≤ t(a, u) − 2. Then for z2 = u′1u2 · . . . · uk ∈ Z(b) there exists a factorization
z′2 = uw1 · . . . · ws ∈ Z(b) such that d(z2, z

′
2) ≤ t(a, u) − 2, where s ∈ N and w1, . . . , ws ∈

A(H). Since p ∤F u, we have u′1 6= u. If there exists j ∈ [1, s] such that wj = u′1, then
z∗ = uw1 · . . . ·wj−1u1wj+1 · . . . ·ws is a factorization of a and d(z, z∗) = d(z2, z

′
2) ≤ t(a, u)− 2, a

contradiction. Thus u′1 6∈ {u,w1, . . . , ws}. Since p |F b but p ∤F u, there exists i ∈ [1, s], say i = 1,
such that p |F w1 and w1 6∈ {u′1, u2, . . . , uk}. Then w′

1 = w1p1p2p
−1 is a product of at most two

atoms, say w′
1 = v1v2, where v1 ∈ A(H) and v2 ∈ A(H)∪{1H}, and z′ = uv1v2w2 · . . . ·ws ∈ Z(a)

with d(z, z′) ≤ d(z2, z
′
2) + 1 ≤ t(a, u)− 1, a contradiction. �[Proof of A.]

By 1., we have [2,D(G)] ⊂ Ta(H) whence the assertion follows if t(H) ≤ D(G). We suppose
that t(H) ≥ D(G) + 1 and have to verify that [D(G), t(H)] ⊂ Ta(H). Let a ∈ H and u ∈ A(H)
such that t(a, u) = t(H). Since t(b, v) ≤ max L(b) ≤ |b| for all b ∈ H and v ∈ A(H), A implies
that there exist a = b0, . . . , bk ∈ H with k ∈ N, |b0| > . . . > |bk|, and t(bi+1, u) ≥ t(bi, u) − 1 for
every i ∈ [1, k − 1] such that t(bk, u) ≤ D(G). Therefore [D(G), t(H)] ⊂ {t(bi, u) | i ∈ [0, k]} ⊂
Ta(H). �

References

[1] D.D. Anderson and J.R. Juett, Long length functions, J. Algebra 426 (2015), 327–343.

[2] , Length functions in commutative rings with zero divisors, Comm. Algebra 45 (2017), no. 4, 1584–1600.

[3] D. Bachman, N. Baeth, and J. Gossell, Factorizations of Upper Triangular Matrices, Linear Algebra Appl.
450 (2014), 138 – 157.

[4] N.R. Baeth and J. Hoffmeier, Atoms of the relative block monoid, Involve. A Journal of Mathematics 2 (2009),
29 – 36.



32 ALFRED GEROLDINGER AND QINGHAI ZHONG

[5] N.R. Baeth and D. Smertnig, Factorization theory: From commutative to noncommutative settings, J. Algebra
441 (2015), 475 – 551.

[6] N.R. Baeth and R. Wiegand, Factorization theory and decomposition of modules, Amer. Math. Monthly 120

(2013), 3 – 34.

[7] P. Baginski and S.T. Chapman, Arithmetic Congruence Monoids: a Survey, Combinatorial and Additive
Number Theory: CANT 2011 and 2012, Proceedings in Mathematics and Statistics, vol. 101, Springer, 2014,
pp. 15 – 38.

[8] P. Baginski, S.T. Chapman, C. Crutchfield, K.G. Kennedy, and M. Wright, Elastic properties and prime

elements, Result. Math. 49 (2006), 187 – 200.

[9] P. Baginski, S.T. Chapman, M. Holden, and T. Moore, Asymptotic elasticity in atomic monoids, Semigroup
Forum 72 (2006), 134 – 142.

[10] T. Barron, C.O’Neill, and R. Pelayo, On the set of elasticities in numerical monoids, Semigroup Forum 94

(2017), 37 – 50.

[11] M. Batell and J. Coykendall, Elasticity in polynomial-type extensions, Proc. Edinb. Math. Soc. (2) 59 (2016),
no. 3, 581–590.

[12] C. Bowles, S.T. Chapman, N. Kaplan, and D. Reiser, On delta sets of numerical monoids, J. Algebra Appl.
5 (2006), 695 – 718.

[13] Gyu Whan Chang, Every divisor class of Krull monoid domains contains a prime ideal, J. Algebra 336 (2011),
370 – 377.

[14] S.T. Chapman, M. Corrales, A. Miller, Ch. Miller, and Dh. Patel, The catenary and tame degrees on a

numerical monoid are eventually periodic, J. Australian Math. Soc. 97 (2014), 289 – 300.

[15] S.T. Chapman, M. Holden, and T. Moore, Full elasticity in atomic monoids and integral domains, Rocky Mt.
J. Math. 36 (2006), 1437 – 1455.

[16] S. Colton and N. Kaplan, The realization problem for delta sets of numerical monoids, J. Commut. Algebra
9 (2017), 313 – 339.

[17] A. Facchini, Direct sum decomposition of modules, semilocal endomorphism rings, and Krull monoids, J.
Algebra 256 (2002), 280 – 307.

[18] , Krull monoids and their application in module theory, Algebras, Rings and their Representations
(A. Facchini, K. Fuller, C. M. Ringel, and C. Santa-Clara, eds.), World Scientific, 2006, pp. 53 – 71.

[19] , Direct-sum decompositions of modules with semilocal endomorphism rings, Bull. Math. Sci. 2 (2012),
225 – 279.

[20] A. Facchini and R. Wiegand, Direct-sum decomposition of modules with semilocal endomorphism rings, J.
Algebra 274 (2004), 689 – 707.

[21] Y. Fan and A. Geroldinger, Minimal relations and catenary degrees in Krull monoids, J. Commut. Algebra,
to appear. http://arxiv.org/abs/1603.06356.

[22] Y. Fan and S. Tringali, Power monoids: A bridge between factorization theory and arithmetic combinatorics,
https://arxiv.org/abs/1701.09152.

[23] S. Frisch, S. Nakato, and R. Rissner, Integer-valued polynomials on rings of algebraic integers of number fields

with prescribed sets of lengths of factorizations, https://arxiv.org/abs/1710.06783.

[24] W. Gao, A. Geroldinger, and W.A. Schmid, Local and global tameness in Krull monoids, Commun. Algebra
43 (2015), 262 – 296.
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