
AN ANALOGUE OF EDMONDS’ BRANCHING THEOREM FOR
INFINITE DIGRAPHS

J. PASCAL GOLLIN AND KARL HEUER

Abstract. We extend Edmonds’ Branching Theorem to locally finite infinite digraphs.
As examples of Oxley or Aharoni and Thomassen show, this cannot be done using ordinary
arborescences, whose underlying graphs are trees. Instead we introduce the notion of
pseudo-arborescences and prove a corresponding packing result. Finally, we verify some
tree-like properties for these objects, but give also an example that their underlying graphs
do in general not correspond to topological trees in the Freudenthal compactification of
the underlying multigraph of the digraph.

§1. Introduction

Studying how to force spanning structures in finite graphs is a basic task. The most
fundamental spanning structure is a spanning tree, whose existence is already characterised
by the connectedness of the graph. Moving on and characterising the existence of a
given number of edge-disjoint spanning trees via an immediately necessary condition,
Nash-Williams [8] and Tutte [11] independently proved the following famous theorem.

Theorem 1.1. [8, 11], [3, Theorem 2.4.1] A finite multigraph G has k P N edge-disjoint
spanning trees if and only if for every partition P of V pGq there are at least kp|P | ´ 1q
edges in G whose endvertices lie in different partition classes.

Later, Edmonds [6] generalised Theorem 1.1 to finite digraphs, also involving a condition
which is immediately seen to be necessary for the existence of the spanning structures.
In his theorem, Edmonds considers as spanning structures out-arborescences rooted in a
vertex r, i.e. spanning trees whose edges are directed away from the root r. His theorem
immediately implies a corresponding result for in-arborescences rooted in r, i.e. spanning
trees directed towards r, via reversing every edge in the digraph. For this reason we shall
focus in this paper only on out-arborescences and denote them just by arborescences.
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Theorem 1.2. [6], [2, Theorem 9.5.1] A finite digraph G with a vertex r P V pGq has k P N
edge-disjoint spanning arborescences rooted in r if and only if there are at least k edges
from X to Y for every bipartition pX, Y q of V pGq with r P X.

One of the main results of this paper is to extend Theorem 1.2 to a certain class of infinite
digraphs. There has already been work in this area. In order to mention two important
results about this let us call a one-way infinite path all of whose edges are directed away
from the unique vertex incident with only one edge a forwards directed ray. Similarly, we
call the digraph obtained by reversing all edges of a forwards directed ray a backwards
directed ray. Thomassen [10] extended Theorem 1.2 to infinite digraphs that do not contain
a backwards directed ray, while Joó [7] obtained an extension for infinite digraphs without
forwards directed rays using different methods. In contrast to these two results we shall
demand a local property for our digraphs by considering locally finite digraphs, i.e. digraphs
in which every vertex has finite in- and out-degree. Similarly, undirected multigraphs are
called locally finite if every vertex has finite degree.

When trying to extend Theorem 1.2 to infinite digraphs it is important to know that
a complete extension is not possible. The reason for this is that Oxley [9, Example 2]
constructed a locally finite graph without two edge-disjoint spanning trees but fulfilling
the condition in Theorem 1.1. Following up, Aharoni and Thomassen [1, Theorem] gave
a construction for further counterexamples to Theorem 1.2, which are all locally finite
and can even be made 2k-edge-connected for arbitrary k P N. Hence, using ordinary
spanning trees for an extension of Theorem 1.1 to locally finite graphs does not work. This
immediately implies that extending Theorem 1.2 to locally finite digraphs fails as well if
ordinary arborescences are used. While Thomassen and Joó could overcome this problem
by forbidding certain one-way infinite paths, for us it is necessary to additionally change
the notion of arborescence since the counterexamples to direct extensions of Theorem 1.1
and Theorem 1.2 to infinite (di)graphs are locally finite.

For undirected locally finite (connected) multigraphs G the problem of how to extend
Theorem 1.1 has successfully been overcome. The key was to not just consider G but the
Freudenthal compactification |G| [3,4] of the 1-complex of G. Instead of ordinary spanning
trees, now packings of topological spanning trees of G are considered. We call a connected
subspace of |G| which is the closure of a set of edges of G, contains all vertices of G but
contains no homeomorphic image of the unit circle S1 Ď R2, a topological spanning tree
of G. There is an equivalent but more combinatorial, and in particular finitary, way of
defining topological spanning trees of G. They are precisely the closures in |G| of the
minimal edge sets that meet every finite cut of G [3]. As already observed by Tutte, this
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finitary condition can be used to obtain the following packing theorem for disjoint edge
sets each meeting every finite cut, via the compactness principle.

Theorem 1.3. [11] A locally finite multigraph G has k P N disjoint edge sets each meeting
every finite cut of G if and only if for every finite partition P of V pGq there are at
least kp|P | ´ 1q edges in G whose endvertices lie in different partition classes.

By the equivalence noted above, Theorem 1.3 implies a packing result for topological
spanning trees:

Theorem 1.4. [3, Theorem 8.5.7] A locally finite multigraph G has k P N edge-disjoint
topological spanning trees if and only if for every finite partition P of V pGq there are at
least kp|P | ´ 1q edges in G whose endvertices lie in different partition classes.

In the spirit of Tutte’s approach, we prove the following packing theorem generalising
Theorem 1.2 to locally finite digraphs for what we call spanning pseudo-arborescence
rooted in some vertex r. For a locally finite weakly connected digraph G and r P V pGq we
define a spanning pseudo-arborescence rooted in r as a minimal edge set F Ď EpGq such
that F contains, for every bipartition pX, Y q of V pGq with r P X and finitely many edges
between X and Y in either direction, an edge directed from X to Y .

Theorem 1.5. A locally finite weakly connected digraph G with r P V pGq has k P N edge-
disjoint spanning pseudo-arborescences rooted in r if and only if for every bipartition pX, Y q
of V pGq with r P X and finitely many edges between X and Y in either direction there are
at least k edges from X to Y .

In fact we shall prove a slightly stronger version of this theorem, Theorem 4.3, which
requires more notation.

While minimal edges sets meeting every finite cut in an undirected multigraph turn out
to be topological extensions of finite trees, there is no analogous topological interpretation
of spanning pseudo-arborescences in terms of the Freudenthal compactification of the
underlying multigraph. In Section 5 we give an example of a digraph G with underlying
multigraph H for which the closure in |H| of the underlying undirected edges of any
spanning pseudo-arborescence of G contains a homeomorphic image of S1. We shall be
able to extend to pseudo-arborescences, in a suitable topological setting, the property of
finite arborescences of being edge-minimal such that each vertex is still reachable by a
directed path from the root. While in finite arborescences such directed paths are unique,
however, their analogues in pseudo-arborescences are not in general unique. This will be
illustrated by an example given in Section 5.
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In order to formally encode reachability for infinite digraphs for our purpose, we introduce
the notion of topological directed walks and paths via the Freudenthal compactification
in Section 3. This section contains another main contribution of this paper, which is the
extension of fundamental facts about the existence of directed walks and paths in finite
digraphs to infinite ones using methods from topological infinite graph theory.

Finally, we prove the following theorem yielding a structural characterisation for spanning
pseudo-arborescences.

Theorem 1.6. Let G be a locally finite weakly connected digraph and r P V pGq. Then
the following statements are equivalent for an edge set F Ď EpGq containing, for every
bipartition pX, Y q of V pGq with r P X and finitely many edges between X and Y in either
direction, an edge from X to Y .

(i) F is a spanning pseudo-arborescence rooted in r.
(ii) For every vertex v ‰ r of G there is a unique edge in F whose head is v, and no

edge in F has r as its head.
(iii) For every weak component T of GrF s the following holds: If r P V pT q, then T is

an arborescence rooted in r. Otherwise, the underlying multigraph of T is a tree, T
contains a backwards directed ray and all other edges of T are directed away from
that ray.

We prove a slightly more general version of Theorem 1.6 in Section 5 (cf. Theorem 5.3).
The structure of this paper is as follows. In Section 2 we give basic definitions and fix our

notation for directed and undirected (multi-)graphs. We in particular refer to the topology
we consider on locally finite (weakly) connected digraphs and (undirected) multigraphs,
and state some basic lemmas that we shall need for our main results. In Section 3 we
extend fundamental lemmas about directed walks and paths in finite digraphs to locally
finite (weakly) connected digraphs. Section 4 is dedicated to the proof of Theorem 1.5. We
complete the paper in Section 5 with the proof of Theorem 1.6 and a discussion about how
much pseudo-arborescences resemble finite arborescences or topological trees.

§2. Preliminaries

For basic facts about finite and infinite graphs we refer the reader to [3]. As a source for
facts about directed graphs we refer to [2].

Throughout the whole paper we shall often write G “ pV,Eq for a digraph. Then V pGq
will denote its vertex set V and EpGq its set of directed edges E. As for undirected graphs,
we shall call the elements of EpGq just edges. In general, we allow our digraphs to have
parallel edges, but no loops. We view the edges of a digraph G as ordered pairs pa, bq of
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vertices a, b P V pGq and shall write ab instead of pa, bq, although this might not uniquely
determine an edge. For an edge ab P EpGq we furthermore denote the vertex a as the tail
of ab and b as the head of ab.

For two disjoint vertex sets X, Y of a digraph G we denote by EpX, Y q the set of all
edges of G having their head in X and their tail in Y or their head in Y and their tail
in X. By ÝÑE pX, Y q we denote the set of edges of G that have their tail in X and their
head in Y . For a multigraph or digraph G we call the edge set EpX, Y q a cut if pX, Y q is
a bipartition of V pGq. If we introduce a cut EpX, Y q, then we implicitly want pX, Y q to
be the corresponding bipartition of V pGq defining the cut. For a vertex set X Ď V pGq we
set d`pXq :“ |ÝÑE pX, V pGqrXq| and d´pXq :“ |ÝÑE pV pGqrX,Xq|. If X “ tvu for some
vertex v P V pGq, we write d`pvq instead of d`ptvuq and call it the out-degree of v. Similarly,
we write d´pvq instead of d´ptvuq and call it the in-degree of v.

For a finite non-trivial directed path P we call the vertex of out-degree 1 and in-degree 0
in P the start vertex of P . Similarly, we call the vertex of in-degree 1 and out-degree 0
in P the endvertex of P . If P consists only of a single vertex, we call that vertex the
endvertex of P .

We define a finite directed walk as a tuple pW ,ăWq with the following properties:

(1) W is a non-empty weakly connected graph with edge set te1, e2, . . . , enu for some
n P N such that the head of ei´1 is the tail of ei for every i P N satisfying 2 ď i ď n.

(2) ăW is a linear order on EpWq stating that ei ăW ej if and only if i ă j for
all i, j P t1, . . . , nu.

Note that the second condition implies that the edges e1, . . . , en are all distinct, i.e. the
walk traverses its edges only once. We call a directed walk without edges trivial and call its
unique vertex its endvertex. Otherwise, we call the tail of e1 the start vertex of pW ,ăWq

and the head of en the endvertex of pW ,ăWq. If the start vertex and the endvertex of finite
directed walk are equal, we call it closed. Lastly, we call pW ,ăWq a finite directed s–t walk
for two vertices s, t P V pWq if s is the start vertex of pW ,ăWq and t is the endvertex
of pW ,ăWq. We might call a finite graph W a finite directed walk and implicitly assume
that there exists a linear order ăW , which we then also fix, such that pW ,ăWq is a finite
directed walk. In particular, we will say that a finite directed walk pW ,ăWq is contained
in a graph G1 if W is a subgraph of G1. Note that directed paths are directed walks when
equipped with the obviously suitable linear order.

We define a ray to be an undirected one-way infinite path. Any subgraph of a ray R
that is itself a ray is called a tail of R.

We call a weakly connected digraph R a backwards directed ray if there is a unique ver-
tex v P V pRq with d´pvq “ 1 and d`pvq “ 0 while d´pwq “ d`pwq “ 1 holds for every other
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vertex w P V pRqr tvu. A forwards directed ray is analogously defined by interchanging d´

and d`.
For an undirected multigraph G we define an equivalence relation on the set of all rays

in G. We call two rays in G equivalent if they cannot be separated by finitely many vertices
in G. An equivalence class with respect to this relation is called an end of G. We denote
the set of all ends of G by ΩpGq. We define the ends of a digraph D precisely as the ends
of its underlying multigraph. The set of all ends of D is also denoted by ΩpDq. We say
that a directed ray R of D is contained in some end ω P ΩpDq if the underlying ray of R is
contained in the end ω of the underlying multigraph of D.

We call a digraph A an out-arborescence rooted in r if r P V pAq Y ΩpAq and the underlying
multigraph of A is a tree such that d´pvq “ 1 holds for every vertex v P V pAqr tru and
additionally d´prq “ 0 in the case that r P V pAq, while we demand that r contains a
backwards directed ray if r P ΩpAq.

Note that if r P V pAq, then A does not contain a backwards directed ray. In the case
where r P ΩpAq, then r is the unique end of A containing a backwards directed ray, since a
second one would yield a vertex with in-degree bigger than 1 by using that the underlying
multigraph of A is a tree. Also note that if A is a finite digraph, the condition d´prq “ 0
for r P V pAq in the definition of an out-arborescence rooted in r is redundant, because it is
implied by the tree structure of A.

Similarly, an in-arborescence rooted in r is defined with d´ replaced by d`. Corresponding
results about in-arborescences are immediate by reversing the orientations of all edges. For
both types of arborescences we call r the root of the arborescence. In this paper we shall
only work with out-arborescences. Hence, we shall drop the prefix ‘out’ and just write
arborescence from now on.

A multigraph is called locally finite if each vertex has finite degree. We further call a
digraph locally finite if its underlying multigraph is locally finite.

For a vertex set X in a locally finite connected multigraph G we define its combinatorial
closure X Ď V pGq Y ΩpGq as the set X together with all ends of G that contain a ray which
we cannot separate from X by finitely many vertices. Note that for a finite cut EpX, Y q
of G we obtain that pX,Y q is a bipartition of V pGq Y ΩpGq, because every end in X can be
separated from Y by the finitely many vertices of X that are incident with edges of EpX, Y q,
and, furthermore, each ray contains a subray that is either completely contained in X or
in Y since EpX, Y q is finite. The combinatorial closure of a vertex set in a digraph is just
defined as the combinatorial closure of that set in the underlying undirected multigraph.

Let G be a locally finite digraph and Z Ď V pGqr tru with r P V pGq Y ΩpGq. An
edge set F Ď EpGq is called r-reachable for Z if |F XÝÑE pX, Y q| ě 1 holds for every finite
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cut EpX, Y q of G with r P X and Y X Z ‰ ∅. Furthermore, if F is an r-reachable set
for V pGqr tru, we call F a spanning r-reachable set. Note that a spanning r-reachable
set spans V pGq as an edge set. We continue with a very basic remark about spanning
r-reachable sets.

Remark 2.1. Let G be a locally finite digraph with a spanning r-reachable set F
with r P V pGq Y ΩpGq. Then |F XÝÑE pV pGqrM,Mq| ě 1 holds for every non-empty finite
set M Ď V pGq with r RM .

Proof. Since G is locally finite and M is finite, we know that the cut EpV pGqrM,Mq

is finite. The assumption r RM ensures that r P V pGqrM . Using that F is a spanning
r-reachable set and that M , as a non-empty set, contains a vertex different from r, we get
the desired inequality |F XÝÑE pV pGqrM,Mq| ě 1 by the definition of spanning r-reachable
sets. �

Note that for a locally finite digraph G with a spanning r-reachable set F the di-
graph GrF s is spanning. This follows by applying Remark 2.1 to the set M :“ tvu for
every vertex v P V pGq. Furthermore, note that if G is finite, the subgraph induced by a
spanning r-reachable set contains a spanning arborescence rooted in r P V pGq.

We conclude this section with a last definition. We call an inclusion-wise minimal
r-reachable set F for a set Z Ď V pGqr tru a pseudo-arborescence for Z rooted in r.
Moreover, if F is spanning, i.e. Z “ V pGqr tru, we call it a spanning pseudo-arborescence
rooted in r.

2.1. Topological notions for undirected multigraphs. Throughout this subsection
let G “ pV,Eq denote a locally finite connected multigraph. We can endow G together
with its ends with a topology which yields the topological space |G|. A precise definition
of |G| for locally finite connected simple graphs can be found in [3, Chapter 8.5]. However,
this concept and definition directly extends to locally finite connected multigraphs. For a
better understanding we should point out here that a ray of G converges in |G| to the end
of G that it is contained in. An equivalent way of describing |G| is by first endowing G
with the topology of a 1-complex and then compactifying this space using the Freudenthal
compactification [5].

For an edge e P E let e̊ denote the set of points in |G| that correspond to inner points
of the edge e. For an edge set F Ď E we define F̊ “

Ť

t̊e ; e P F u Ď |G|. Given a point
set X in |G|, we denote the closure of X in |G| by X. To ease notation we shall also use
this notation when X denotes an edge set or a subgraph of G, meaning that we apply
the closure operator to the set of all points in |G| that correspond to X. Note that for a
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vertex set its closure coincides with its combinatorial closure in locally finite connected
multigraphs. Hence, we shall use the same notation for these two operators. Furthermore
we call a subspace Z Ď |G| standard if Z “ H for some subgraph H of G.

LetW Ď |G| and ăW be a linear order on E̊ XW . We call the tuple pW,ăW q a topological
walk in |G| if there exists a continuous map σ : r0, 1s ÝÑ |G| such that the following hold:

(1) W is the image of σ,
(2) each point p P E̊ XW has precisely one preimage under σ, and
(3) the linear order ăW equals the linear order ăσ on E̊ XW defined via p ăσ q if and

only if σ´1ppq ăR σ
´1pqq, where ăR denotes the natural linear order of the reals.

We call such a map σ a witness of pW,ăW q. When we talk about a topological
walk pW,ăW q we shall often omit stating its linear order ăW explicitly and just refer
to the topological walk by writing W . In particular, we might say that a topological
walk pW,ăW q is contained in some subspace X of |G| if W Ď X holds. Furthermore, we
call a point x of |G| an endpoint of W if 0 or 1 is mapped to x by a witness of W . Note
that this definition is independent of the particular witness. Similar to finite walks in
graphs we call an endpoint x of W an endvertex of W if x corresponds to a vertex of G.
Furthermore, we denote W as an x–y topological walk, if x and y are endpoints of W . If W
has just one endpoint, which then has to be an end or a vertex by definition, we call it
closed. Note that an x–y topological walk is a standard subspace for any x, y P V Y ΩpGq.
We say that a witness σ of a topological walk W pauses at a vertex v P V if the preimage
of v under σ is a disjoint union of closed nontrivial intervals.

We define an arc in |G| as the image of a homeomorphism mapping into |G| and with the
closed real unit interval r0, 1s Ď R as its domain. Note that arcs in |G| are also topological
walks in |G| if we equip them with a suitable linear order, of which there exist only two.
Since the choice of such a linear order does not change the set of endpoints of the arc if we
then consider it as a topological walk, we shall use the notion of endpoints and endvertices
also for arcs. Furthermore, note that finite paths of G which contain at least one edge
correspond to arcs in |G|, but again there might be infinite subgraphs, for example rays,
whose closures form arcs in |G|. We now call a subspace X of |G| arc-connected if there
exists an x–y arc in X for any two points x, y P X.

Lastly, we define a circle in |G| as the image of a homeomorphism mapping into |G| and
with the unit circle S1 Ď R2 as its domain. We might also consider any circle as a closed
topological walk if we equip it with a suitable linear order, which, however, depends on the
point on the circle that we choose as the endpoint for the closed topological walk, and on
choosing one of the two possible orientations of S1. Similarly as for finite paths, note that
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finite cycles in G correspond to circles in |G|, but there might be infinite subgraphs of G
whose closures are circles in |G| as well.

Using these definitions we can now formulate a topological extension of the notion of
trees. We define a topological tree in |G| as an arc-connected standard subspace of |G| that
does not contain any circle. Note that in a topological tree there is a unique arc between
any two points of the topological tree, which resembles a property of finite trees with
respect to vertices and finite paths. Furthermore, we denote by a topological spanning tree
of G a topological tree in |G| that contains all vertices of G. Since topological spanning
trees are closed subspaces of |G|, they need to contain all ends of G as well.

2.2. Topological notions for digraphs. In this subsection we extend some of the notions
of the previous subsection to directed graphs. Throughout this subsection let G denote a
locally finite weakly connected digraph and let H denote its underlying multigraph. We
define the topological space |G| as |H|. Additionally, every edge e “ uv P EpGq defines
a certain linear order ăe on teu Ď |G| via its direction. For the definition of ăe we first
take any homeomorphism ϕe : r0, 1s ÝÑ teu Ď |G| with ϕep0q “ u and ϕep1q “ v. Now we
set p ăe q for arbitrary p, q P teu if ϕ´1

e ppq ăR ϕ
´1
e pqq where ăR is the natural linear order

on the real numbers. Note that the definition of ăe does not depend on the choice of the
homeomorphism ϕe.

Let pW,ăW q be a topological walk in |G| with witness σ. We call pW,ăW q directed
if ăe æ̊e equals ăW æ̊e for every edge e P EpGq with e̊XW ‰ ∅. If pW,ăW q is directed
and σp0q “ s ‰ t “ σp1q for s, t P |G|, then there is no linear order ă1W such that pW,ă1W q
is a directed topological walk with a witness σ1 satisfying σ1p0q “ t and σ1p1q “ s, because
every topological s–t walk uses inner points of some edge. Hence, if we consider a directed
topological s–t walk pW,ăW q for s, t P |G|, we implicitly assume that σp0q “ s ‰ t “ σp1q
holds for every witness σ of pW,ăW q.

As arcs and circles can be seen as special instances of topological walks, directed arcs and
directed circles are analogously defined. Note that if we can equip an arc with a suitable
linear order such that it becomes a directed topological walk, then this linear order is
unique. Hence, when we call an arc directed we implicitly associate this unique linear order
with it.

2.3. Basic lemmas. The proofs of two lemmas (Lemma 3.1 and Lemma 4.1) rely to some
extent on compactness arguments. At those points it will be sufficient for us to use the
following lemma, which is known as König’s Infinity Lemma.
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Lemma 2.2. [3, Lemma 8.1.2] Let pViqiPN be a sequence of disjoint non-empty finite sets,
and let G be a graph on their union. Assume that for every n ą 0 each vertex in Vn has a
neighbour in Vn´1. Then G contains a ray v0v1 . . . with vn P Vn for all n P N.

We shall heavily work with the topological space |G| of a locally finite multigraph G
appearing as the underlying graph of digraphs we consider. Therefore, we shall make use
of some basic statements and properties of the space |G|, in particular those involving
connectivity. Although the following lemmas are only stated for locally finite graphs, their
proofs immediately extend to locally finite multigraphs.

Proposition 2.3. [3, Lemma 8.5.1] If G is a locally finite connected multigraph, then |G|
is a compact Hausdorff space.

The next lemma is essential for decoding the topological property of arc-connectedness
of standard subspaces of |G| into a combinatorial one.

Lemma 2.4. [3, Lemma 8.5.3] Let G be a locally finite connected multigraph and F Ď EpGq

be a cut with sides V1 and V2.

(i) If F is finite, then V1 X V2 “ ∅, and there is no arc in |G| r F̊ with one endpoint
in V1 and the other in V2.

(ii) If F is infinite, then V1 X V2 ‰ ∅, and there may be such an arc.

Note that for a finite cut EpX, Y q of G we obtain that pX,Y q bipartitions V pGq Y ΩpGq.
The following lemma captures the equivalence of arc-connectedness and connectedness

for standard subspaces of |G|.

Lemma 2.5. [3, Lemma 8.5.4] If G is a locally finite connected multigraph, then every
connected standard subspace of |G| is arc-connected.

We conclude with a convenient lemma which combines the essences of the previous two.

Lemma 2.6. [3, Lemma 8.5.5] If G is a locally finite connected multigraph, then a standard
subspace of |G| is connected if and only if it contains an edge from every finite cut of G of
which it meets both sides.

§3. Fundamental statements about topological directed walks in locally
finite digraphs

In this section we lift several facts about topological walks and arcs to their directed
counterparts. Most of the involved techniques and proof ideas are similar to the ones used
in undirected locally finite connected multigraphs. Nevertheless, because of the overlying
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directed structure on the multigraph, some adjustments and additional arguments are
needed in the proofs. We start with a statement that combinatorially characterises the
existence of directed topological walks in a standard subspace via finite cuts.

Lemma 3.1. Let G be a locally finite weakly connected digraph, s, t P V pGq Y ΩpGq
with s ‰ t and F Ď EpGq. Then the following statements are equivalent.

(i) F contains a directed topological s–t walk.
(ii) |F XÝÑE pX, Y q| ě 1 for every finite cut EpX, Y q of G with s P X and t P Y .
(iii) There is a subset W Ď F such that |W X

ÝÑ
E pX, Y q| “ |W X

ÝÑ
E pY,Xq|` 1 for every

finite cut EpX, Y q of G with s P X and t P Y .

Proof. First we prove the implication from (i) to (iii). Let EpX, Y q be any finite cut of G
with s P X and t P Y . Since F contains a directed topological s–t walk pW,ăW q for an
edge set W Ď EpGq, we know that F X EpX, Y q ‰ ∅ by Lemma 2.6. Note furthermore
that X X Y “ ∅ by Lemma 2.4. As X and Y are closed and |G| is compact by Proposi-
tion 2.3, we get that X and Y are compact too. Now let ϕ be a witness of W . Since Y is
compact and ϕ is continuous, there exists a smallest number q P r0, 1s such that ϕpqq P Y .
Furthermore, there is a biggest number p P r0, qs such that ϕppq P X. Note that p ‰ q

since X X Y “ ∅. Now let M :“ tϕprq P |G| ; p ă r ă qu. Obviously, M contains only
inner points of edges in EpX, Y q. Since M is connected, we obtain M “ e̊ for some
edge e P EpX, Y q. Using that ăW æ̊e equals ăe æ̊e because pW,ăW q is a directed s–t walk,
we see that e P W X

ÝÑ
E pX, Y q. By the continuity of ϕ, we get that ϕpqq “ y for some

vertex y P Y . If |W X
ÝÑ
E pY,Xq| “ 0, we know that |W X

ÝÑ
E pX, Y q| “ 1 since ϕærq, 1s is

connected and hence a subset of Y , and we are done. Otherwise, consider ϕærq, 1s, which is
a witness for pQ,ăQq being a directed y–t walk where Q “ te P W ; @a P e̊ : ϕ´1paq ą qu.
Note that since |W X

ÝÑ
E pY,Xq| ą 0 we get that |QXÝÑE pY,Xq| ą 0 as well by the choice

of q. Therefore, Q also contains an element of X. Similarly as before, let p1 P rq, 1s
denote the smallest number such that ϕpp1q P X and q1 P rq, p1s denote the biggest num-
ber such that ϕpq1q P Y . Now considering the set M 1 :“ tϕprq P |G| ; q1 ă r ă p1u we
obtain as before that M 1 “ f̊ for some edge f P EpX, Y q. More precisely, since Q is
a directed x–t walk, we get that f P QXÝÑE pY,Xq. Finally, we consider the directed
ϕpp1q–t walk pP ,ăP q with witness ϕærp1, 1s where P “ te P W ; @a P e̊ : ϕ´1paq ą p1u.
By the previous observations we know that |P XÝÑE pX, Y q| “ |W X

ÝÑ
E pX, Y q|´ 1 and

|P XÝÑE pY,Xq| “ |W X
ÝÑ
E pY,Xq|´ 1 hold. Using that EpX, Y q contains only finitely many

edges, we inductively get that |W X
ÝÑ
E pX, Y q| “ |W X

ÝÑ
E pY,Xq|` 1 is true.

The implication from (iii) to (ii) is immediate.
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It remains to show that (ii) implies (i). For this we first fix a sequence pSnqnPN of
finite vertex sets Sn Ď V pGq such that Sn Ř Sn`1 for every n P N and

Ť

nPN Sn “ V pGq.
For every n P N let Gn denote the digraph which arises by contracting EpG´ Snq in G.
Since G is locally finite, we know that each Gn is a finite digraph. We call the vertices
of Gn that are not contained in Sn dummy vertices. Note that each dummy vertex of Gn

corresponds to a unique weak component of G´ Sn.
If some v P V pGq Y ΩpGq is not contained in Sn, there exists a unique component Cn

of G´ Sn such that v P Cn. This is obviously true if v is a vertex of G, but also holds
if v is an end of G. To see the latter statement suppose v P ΩpGq is contained in Cn for a
component Cn of G´ Sn. Then the cut EpV pCnq, V pGqr V pCnqq is finite as Sn is finite
and G is locally finite. Hence V pCnq X pV pGqr V pCnqq “ ∅ by Lemma 2.4, which means
that v cannot lie in the closure of another component of G´ Sn. With a slight abuse of
notation, we refer to the dummy vertex of Gn corresponding to Cn as v.

Since for each n P N every cut of Gn corresponds to a finite cut of G, we obtain by
Theorem 1.2 that F X EpGnq contains the edge set of a finite directed s–t walk in the
digraph Gn. Furthermore, any finite directed s–t walk pWn`1,ăWn`1q in Gn`1 induces
a finite directed s–t walk pWn,ăWnq in Gn via EpWnq :“ EpWn`1q X EpGnq and defin-
ing ăWn as ăWn`1 æEpWnq. Note that each maximal interval with respect to ăWn`1

of EpWn`1qr EpWnq corresponds to some v–w walk where v and w are the same dummy
vertex of Gn. Hence each time a dummy vertex of Gn appears as the head of some
edge e P EpWnq there is a corresponding, possibly trivial, walk We

n`1 using edges of of such
a maximal interval with the induced order ăWn`1 æEpWe

n`1q.
For every n P N let Vn denote the set of all finite directed s–t walks in Gn that use only

edges from F . Obviously, each set Vn is finite as Gn is a finite digraph. By the previously
given arguments, none of the sets Vn is empty and each element of Vn`1 induces one of Vn.
Hence, we get a sequence ppWn,ăWnqqnPN of finite directed s–t walks with pWn,ăWnq P Vn

such that EpWn`1q X EpWnq “ EpWnq and ăWn`1 æEpWnq equals ăWn for every n P N
by Lemma 2.2. We define Wn :“ EpWnq for every n P N. Next we set W :“

Ť

nPNWn

and ăW :“
Ť

nPN ăWn . Furthermore, we define a linear order ăW on W̊ as follows
for p, q P W̊ with p ‰ q:

p ăW q if

$

&

%

p P e̊ and q P f̊ with e ăW f for some e, f P W with e ‰ f , or

p, q P e̊ and p ăe q for some e P W.

Now we claim that pW,ăW q is a directed topological s–t walk in |G|. In order to show this
we first have to define a witness ϕ for pW,ăW q. We shall obtain ϕ as a limit of countably
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many certain witnesses ϕn of directed topological walks pWn,ăWn
q in |Gn| that we define

inductively, where ăWn
is defined analogously as ăW but with respect to Wn.

For n “ 0 we start with a witness ϕ0 of the directed topological s–t walk pW0,ăW0
q

in |G0| which pauses at every dummy vertex of G0 contained in W0.
Now suppose that the witness ϕn of pWn,ăWn

q has already been defined such that it
pauses at every dummy vertex of Gn that is contained in Wn. Then we define ϕn`1 as
some witness of pWn`1,ăWn`1

q as follows. For every edge e P Wn whose head is a dummy
vertex of Gn, let W e

n`1 be the edge set of the walk We
n`1 as above and let ϕen`1 be a witness

that We
n`1 is the corresponding directed topological walk that pauses at every dummy

vertex of Gn`1 that is contained in W e
n`1. Starting with ϕn, each time we enter some

dummy vertex d of Gn by an edge e, we replace the image of the interval that is mapped
to d with a rescaled version of ϕen`1.

Using the maps ϕn we are able to define ϕ as follows: For every q P r0, 1s for which there
exists an n P N such that ϕnpqq P |GrSns| Ď |Gn|, we set ϕpqq :“ ϕnpqq. Otherwise, ϕnpqq
corresponds to a contracted component Cn of G´ Sn for every n P N. Since Sn Ř Sn`1

for every n P N and
Ť

nPN Sn “ V pGq, it is easy to check that
Ş

nPNCn “ tωu for some
end ω of G. In this case, we define ϕpqq :“ ω. This completes the definition of ϕ. It is
straightforward to verify that ϕ is continuous and also onto W because each ϕn is onto Wn

and W :“
Ť

nPNWn. This ensures that it is a witness of pW,ăW q being a topological
s–t walk. Note that the linear order ăW æ̊e equals ăe æ̊e for each edge e P W since
each linear order ăWn

has this property. Hence, ϕ witnesses that pW,ăW q is a directed
topological s–t walk in |G| with W Ď F . �

We proceed with a lemma which gives a combinatorial description for a standard subspace
to be a directed arc.

Lemma 3.2. Let G be a locally finite weakly connected digraph, s, t P V pGq Y ΩpGq
with s ‰ t and A Ď EpGq. Then the following statements are equivalent:

(i) A is a directed s–t arc.
(ii) A is inclusion-wise minimal such that |AXÝÑE pX, Y q| ě 1 holds for every finite

cut EpX, Y q of G with s P X and t P Y .
(iii) A is inclusion-wise minimal such that |AXÝÑE pX, Y q| “ |AXÝÑE pY,Xq|` 1 holds

for every finite cut EpX, Y q of G with s P X and t P Y .

Proof. First we show the implication from (i) to (iii). As A is a directed s–t arc, it is also a
directed topological s–t walk. So by Lemma 3.1, we only need to check the minimality of A
for property (iii). Since A is an s–t arc, we know that s and t are in different topological
components of Ar teu for any edge e P A. So no proper subset of A has the property
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that its closure in |G| contains a directed topological s–t walk. Again by Lemma 3.1 we
know that no proper subset of A satisfies statement (iii) of Lemma 3.1. This proves the
minimality of A and hence statement (iii).

Next let us verify that (iii) implies (ii). Assume for a contradiction that statement (iii)
holds, but (ii) does not. Then there must exist a proper subset A1 Ř A meeting ÝÑE pX, Y q
for every finite cut EpX, Y q of G with s P X and t P Y . By Lemma 3.1 we get that A1

satisfies also statement (iii) of Lemma 3.1. This contradicts the minimality of A.
It remains to prove the implication from (ii) to (i). By assuming (ii) we know from

Lemma 3.1 that A contains a directed topological s–t walk and by the minimality of A we
know that A is in fact a directed topological s–t walk, say witnessed by ϕ : r0, 1s ÝÑ |G|.
Now suppose for a contradiction that A is not a directed s–t arc. Then there exists a
point a P V pGq Y ΩpGq that spoils injectivity for ϕ. Note that A is compact because it is
a closed set in |G|, which is a compact space by Proposition 2.3. Since ϕ is continuous
and A is compact, there exists a smallest number x P r0, 1s and a largest number y P r0, 1s
such that ϕpxq “ ϕpyq “ a. We obtain from this that the image of ϕær0, xs is a directed
topological s–a walk and the image of ϕæry, 1s is a directed topological a–t walk. Concate-
nating these two walks yields another directed topological s–t walk, which is the closure
in |G| of some edge set A1 Ď A. Knowing that x ‰ y, we get that A1 Ř A since the image
of ϕærx, ys contains points that correspond to inner points of edges. This is a contradiction
to the minimality of A. �

We conclude this section with the following corollary which allows us to extract a directed
s–t arc from a directed topological s–t walk for distinct points s, t of |G|.

Corollary 3.3. Let s, t P V pGq Y ΩpGq with s ‰ t for some locally finite weakly connected
digraph G. Then every directed topological s–t walk in |G| contains a directed s–t arc.

Proof. Let W be a directed topological s–t walk with W Ď EpGq. So W has property (ii)
of Lemma 3.1. Now consider the set W of all subsets of W that also have property (ii)
of Lemma 3.1. This set is ordered by inclusion and not empty since W P W. Next let
us check that every decreasing chain C Ď W is bounded from below by

Ş

C, which is an
element of W. Obviously,

Ş

C Ď c holds for every c P C. To see that
Ş

C is an element
of W note that for every finite cut EpX, Y q of G with s P X and t P Y there exists a
final segment C 1 of the decreasing chain C such that all c P C 1 contain the same edges
from EpX, Y q. As every c P C has also at least one edge from EpX, Y q, we know that
the same is true for

Ş

C, which shows that
Ş

C P W holds. Now Zorn’s Lemma implies
that W has a minimal element, which is a directed s–t arc by Lemma 3.2. �
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§4. Packing pseudo arborescences

We begin this section with a lemma characterising when a packing of k P N many edge-
disjoint spanning r-reachable sets is possible in a locally finite weakly connected digraph G
with r P V pGq Y ΩpGq. This lemma is the main ingredient to prove our first main result.
The proof is mainly based on a compactness argument.

Lemma 4.1. A locally finite weakly connected digraph G with r P V pGq Y ΩpGq has k P N
edge-disjoint spanning r-reachable sets if and only if every bipartition pX, Y q of V pGq
with r P X and |EpX, Y q| ă 8 satisfies d´pY q ě k.

Proof. The condition that every bipartition pX, Y q of V pGq with r P X and |EpX, Y q| ă 8
satisfies d´pY q ě k is obviously necessary for the existence of k edge-disjoint spanning
r-reachable sets.

Let us now prove the converse. First we fix a sequence pSnqnPN of finite vertex
sets Sn Ď V pGq such that

Ť

nPN Sn “ V pGq. For every n P N let Gn denote the digraph
which arises by contracting, inside of G, each weak component of G´ Sn to a single vertex.
Here we keep multiple edges, but delete loops that arise. Since G is locally finite, we know
that each Gn is a finite digraph.

Note that, as in the proof of Lemma 3.1, if r R Sn, there exists a unique component Cn
of G´ Sn such that r P Cn and we refer to the vertex of Gn corresponding to Cn as r.

Now we define Vn as the set of all k-tuples consisting of k edge-disjoint spanning
r-reachable sets of Gn. As every cut of Gn is finite and also corresponds to a cut of G,
our labelling with r ensures that each Gn has k edge-disjoint arborescences rooted in r by
Theorem 1.2. So none of the Vn is empty. Furthermore, each Vn is finite as Gn is a finite
digraph.

Next we show that every spanning r-reachable set Fn`1 of Gn`1 induces one for Gn

via Fn :“ Fn`1 X EpGnq. So let Fn`1 be given and consider a cut EpXn, Ynq of Gn

with r P Xn. As each component of G´ Sn`1 is contained in a component of G´ Sn, we
can find a cut EpXn`1, Yn`1q of Gn`1 with r P Xn`1 such that ÝÑE pXn, Ynq “

ÝÑ
E pXn`1, Yn`1q

(and in fact also ÝÑE pYn, Xnq “
ÝÑ
E pYn`1, Xn`1q). Since Fn`1 is a spanning r-reachable set

of Gn`1, we obtain that Fn is one of Gn.
Now we can apply Lemma 2.2 to the graph defined on the vertex set

Ť

nPN Vn where
two vertices vn`1 P Vn`1 and vn P Vn are adjacent if the i-th spanning r-reachable set in vn
is induced by the i-th one of vn`1 for every i with 1 ď i ď k. So we obtain a ray r0r1 . . .

with rn P Vn and set F :“ pF 1, . . . , F kq where F i :“
Ť

nPN r
i
n and rin denotes the i-th entry

of the k-tuple rn for every i with 1 ď i ď k. Let us now check that each F i is a spanning
r-reachable set of G. As

Ť

nPN Sn “ V pGq holds, we can find for every finite cut EpX, Y q
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of G with r P X an n P N such that all endvertices of edges of EpX, Y q are contained in Sn.
Hence, there exists a cut EpXn, Ynq of Gn with r P Xn such that ÝÑE pXn, Ynq “

ÝÑ
E pX, Y q

and ÝÑE pYn, Xnq “
ÝÑ
E pY,Xq. Since each F i contains the edges of rin, which is a spanning

r-reachable set of Gn and, therefore, contains an edge of ÝÑE pXn, Ynq, we know that each F i

is a spanning r-reachable set of G. Finally, we get that all the F i are pairwise edge-disjoint
since for every n P N the rin are pairwise edge-disjoint. �

The next lemma ensures the existence of pseudo-arborescences for a set Z Ď V pGqr tru
in the sense that every r-reachable set for Z contains one. The proof of this lemma works by
an application of Zorn’s Lemma and is very similar to the proof of Corollary 3.3. Therefore,
we omit stating its proof.

Lemma 4.2. Let G be a locally finite weakly connected digraph and let Z Ď V pGqr tru
with r P V pGq Y ΩpGq. Then each r-reachable set for Z in G contains a pseudo-arborescence
for Z rooted in r. �

Combining Lemma 4.1 and Lemma 4.2 with Z “ V pGqr tru we now obtain one of our
main results, Theorem 1.5, which we now state in a slightly stronger version.

Theorem 4.3. A locally finite weakly connected digraph G with r P V pGq Y ΩpGq has k P N
edge-disjoint spanning pseudo-arborescences rooted in r if and only if every bipartition pX, Y q
of V pGq with r P X and |EpX, Y q| ă 8 satisfies d´pY q ě k. �

§5. Structure of pseudo-arborescences

The following lemma characterises r-reachable sets in terms of directed arcs. Additionally,
it justifies the naming of r-reachable sets.

Lemma 5.1. Let G be a locally finite weakly connected digraph with sets F Ď EpGq

and Z Ď V pGqr tru and let r P V pGq Y ΩpGq. Then F is an r-reachable set for Z in G
if and only if there exists a directed r–z arc inside F for every z P Z.

Proof. Let us first assume that F is an r-reachable set for Z in G. We fix some z P Z and
prove next that |F XÝÑE pX, Y q| ě 1 holds for each finite cut EpX, Y q with r P X and z P Y .
If z is a vertex, this follows immediately from the definition of an r-reachable set for Z.
In the case that z P ΩpGq, we also get that some vertex of Z lies in Y . This follows,
because z is contained in the closed and, therefore, compact set Z, which implies the
existence of a sequence S of vertices in Z converging to z. Since EpX, Y q is a finite cut
and z P Y , the set O :“ |G| rX Y EpX, Y q is open, contained in GrY s and contains z by
Lemma 2.4. Now O must contain infinitely many vertices of S and hence Y must do so as
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well. Therefore, the desired inequality follows again by the definition of an r-reachable set
for Z.

Now we are able to use Lemma 3.1, which yields that F contains a directed topological
r–z walk. We complete the argument by applying Corollary 3.3 telling us that F contains
also a directed r–z arc.

Conversely, consider any finite cut EpX, Y q with r P X and Y X Z ‰ ∅, say z P Y X Z.
The assumption ensures the existence of a directed r–z arc in F . By Lemma 3.2 we obtain
that |F XÝÑE pX, Y q| ě 1 holds as desired. �

Now let us turn our attention towards spanning pseudo-arborescences rooted in some
vertex or end in a locally finite weakly connected digraph. The question arises how similarly
these objects behave compared to spanning arborescences rooted in some vertex in a finite
graph. A basic property of finite arborescences is the existence of a unique directed path
in the arborescence from the root to any other vertex of the graph. Closely related is
the absence of any cycle, directed ones or even weak ones, i.e. cycles in the underlying
undirected graph, in a finite arborescence since its underlying graph is a tree. Although
we know by Lemma 5.1 that the closure of a spanning pseudo-arborescences contains a
directed arc from the root to any other vertex (or even end) of the graph, we shall see in
the following example that we can neither guarantee the uniqueness of such arcs nor avoid
infinite circles (directed ones or weak ones, i.e. circles of the underlying undirected graph).

Example 5.2. Consider the graph depicted in Figure 5.1. This graph contains spanning
r-reachable sets, for example the bold black edges together with the bold grey edges.
However, every spanning r-reachable set of this graph must contain all bold black edges
because for any head of such an edge there is no other edge of which it is a head. As
this graph has only one end, namely ω, we see that there are infinite circles, directed and
weak ones, containing only bold black edges. This shows already that, in general, it is not
possible to find spanning r-reachable sets that do not contain directed or weak infinite
circles. So there does not exist a stronger version of Theorem 4.3 in the sense that the edges
of the underlying multigraph of every spanning pseudo-arborescences form a topological
spanning tree in the Freudenthal compactification of the underlying multigraph.

The graph in Figure 5.1 shows furthermore that, in general, we cannot find spanning
r-reachable sets F such that there exists a unique directed arc from r to every vertex
and every end of the graph inside F . In the example we have two different directed arcs
from r to the end ω that contain only bold black edges and are therefore in every spanning
r-reachable set of this graph. Hence, we also get two different directed arcs from r to every
vertex on the infinite directed circle that consists only of bold black edges.
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r

!

Figure 5.1. An example of a graph with a marked vertex r where the
closure of any spanning r-reachable set contains an infinite circle and multiple
arcs to the end ω and certain vertices.

Although, in general, spanning pseudo-arborescences do not behave like trees in the sense
that their underlying graphs correspond to topological spanning trees, they do so in a local
sense. We conclude this section with our second main result, Theorem 1.6, characterising
those spanning r-reachable sets that are inclusion-wise minimal via some local tree-like
properties. In particular, we obtain the absence of finite cycles (directed or weak ones) in
any spanning pseudo-arborescence. As mentioned before, we will prove a slightly stronger
version of the theorem.

Theorem 5.3. Let G be a locally finite weakly connected digraph and r P V pGq Y ΩpGq.
Then the following statements are equivalent for a spanning r-reachable set F of G:

(i) F is a spanning pseudo-arborescence rooted in r.
(ii) For every vertex v ‰ r of G there is a unique edge in F whose head is v, and no

edge in F has r as its head.
(iii) For every weak component T of GrF s the following holds: If r P V pT q, then T is an

arborescence rooted in r. Otherwise, T is an arborescence rooted in some end of T .

Proof. We start by proving the implication from (i) to (ii). Let us first suppose for a
contradiction that F contains an edge e whose head is r. Obviously, there is no finite
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cut EpX, Y q of G such that r P X and e P ÝÑE pX, Y q. Hence, F r teu is a smaller spanning
r-reachable set of G contradicting the minimality of F .

Next let us consider an arbitrary vertex v ‰ r of G. We know by Remark 2.1 that F
contains at least one edge of ÝÑE pV pGqr tvu, tvuq. So F contains at least one edge whose
head is v.

Now suppose for a contradiction that there exists some vertex v ‰ r of G which is the
head of at least two edges of F , say e and f . We know by Lemma 5.1 that F contains a
directed r–v arc A. Since the cut EpV pGqr tvu, tvuq is finite and A is a directed r–v arc,
we get that A must contain precisely one edge of ÝÑE pV pGqr tvu, tvuq. Hence, one of the
edges e, f is not contained in A, say e. By the minimality of F , we obtain that F r teu
cannot be a spanning r-reachable set of G. So there must exist a finite cut EpX, Y q of G
with r P X such that e is the only edge in F XÝÑE pX, Y q. Now we have a contradiction
since the head of e is v and lies in Y , which means that the directed arc A contains at least
one edge of ÝÑE pX, Y q by Lemma 3.2, but such an edge is different from e. Therefore, e was
not the only edge in F XÝÑE pX, Y q.

We continue with the proof that statement (ii) implies statement (iii). For this let us fix
an arbitrary weak component T of GrF s. We now show that T is a tree. Suppose for a
contradiction that T contains a directed or weak cycle C.

If C is a directed cycle, each vertex on C would already be a head of some edge of the
cycle. Hence, r cannot be a vertex on C. Applying Remark 2.1 with the finite set V pCq,
we obtain that there needs to be an edge uv of F with v P V pCq and u P V pGqr V pCq.
So v is the head of two edges of F , which contradicts statement (ii).

In the case that C is a cycle, but not a directed one, take a maximal directed path
on C. Its endvertex is the head of two edges of C. So we get again a contradiction to
statement (ii). We can conclude that T is a tree.

If r is a vertex of T , then it is immediate from statement (ii) that T is an arborescence
rooted in r. Otherwise, there needs to be a backwards directed ray R in T as each vertex
different from r is the head of a unique edge of F . Let ω be the end of T which contains R.
Hence, T is an arborescence rooted in ω, completing the proof of this implication.

It remains to show the implication from (iii) to (i). For this we assume statement (iii)
and suppose for a contradiction that F is not minimal with respect to inclusion. Hence,
F 1 “ F r teu is a spanning r-reachable set as well for some e “ uv P F . Let T be the
weak component of GrF s which contains v. As T is an arborescence rooted in r or some
end of T , we get that no edge of F 1 has v as its head. Note that r ‰ v because of the
edge uv P F . Now we get a contradiction by applying Remark 2.1 with F 1 and the set tvu,
which tells us that F 1 needs contains an edge whose head is v. �
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The question might arise whether we can be more specific in statement (iii) of Theorem 5.3
in the case when r is an end of G. Unfortunately, it is not true that there has to exist a
weak component of GrF s whose unique backwards directed ray lies in r. The reason for this
is that the end r might be an accumulation point of a sequence of infinitely many different
weak components of GrF s in |G| each of which contains a backwards directed ray to a
different end of G. It is not difficult to construct an example for this situation and so we
omit such a description here. On the other hand if the end r P ΩpGq is not an accumulation
point of different ends of G, then there exists at least one weak component of GrF s whose
backwards directed ray is contained in r. To see this fix an arbitrary directed r–v arc A
inside F for some vertex v. Since F is a spanning r-reachable set of G, we can find such
an arc. If among all of the weak components of GrF s which are met by A, there is a first
one with respect to the linear order of A, then a backwards directed ray of this component
is an initial segment of A and, therefore, contained in r. Note for the other case that
tails of the backwards directed rays of each component of GrF s that is met by A must be
contained in A. Since A is an arc, all these backwards directed rays must be contained
in different ends of G. These ends, however, would then have r as an accumulation point
in |G| contradicting the assumption on r.
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