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We study the dynamical system approach of non minimally coupled scalar field to induced gravity
on the brane in the framework of the AdS/CFT correspondence. In this context, we derive the
modified Friedmann equation and the equation of motion. The dynamics of this model are studied
by rewriting the cosmological field equations in the form of a system of autonomous differential
equations. In particular, the analysis is considered by investigating an exponential potential and
a monomial form of the non minimal coupling function. We show that, for sufficient conditions, a
past de Sitter attractor solution is obtained in the case of a minimal coupling, meanwhile a future
de Sitter attractor solutions is obtained for a conformal coupling and for a non minimal coupling.
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I. INTRODUCTION

In recent years, extra dimensional space-time has taken
considerable research interest such as braneworld models
in which ordinary matter fields are considered to live on
the boundary of a high-dimensional bulk space-time, the
brane. In particular, Randall and Sundrum [1] proposed
a model (RSII) in which a brane with a positive tension
is embedded in five dimensional anti de Sitter space. The
cosmology of this model shows that at low energies gen-
eral relativity on the brane can be recovered, while in
high energy limit gravity becomes five dimensional. The
RSII model can also be considered as an example of the
holographic principle [2–5] that has emerged in M the-
ory. Indeed, holography suggests that higher-dimensional
gravitational dynamics may be determined from knowl-
edge of the fields on a lower-dimensional boundary. A
concrete illustration of this holographic principle is The
AdS/CFT correspondence. This kind of correspondence
asserts that there is an equivalence between a gravi-
tational theory in d-dimensional anti de Sitter space-
time and a conformal field theory living in a (d − 1)-
dimensional boundary space-time [6]. This equivalence
or duality is best understood in the context of string the-
ory with d=5, where the duality relates type IIB super-
string theory on AdS5 × S5, and N = 4 supersymmetric
Yang Mills theory with gauge group SU(N) in four di-
mensions [7, 8]. The RSII model with its AdS5 metric
satisfies this correspondence to lowest perturbative order
[9]. In this paper, the AdS/CFT correspondence is the
subject of our framework in order to derive the modified
equations.

On the other hand, Dvali, Gabadadze and Porrati [10]
suggested a model with a bulk as a flat Minkowski space-
time, but a reduced gravity term appears on the brane
without tension. This setup is based on a modification of

∗ a.bargach@ump.ac.ma
† f.bargach@ump.ac.ma
‡ ouali ta@yahoo.fr

the gravitational theory in an induced gravity perspec-
tive [11–14]. Generally, induced gravity (IG) effect can be
viewed as a quantum correction in any braneworld model
for instance the Randall-Sundrum model. The cosmol-
ogy of IG corrections to RS models have been treated
by many authors [15–21]. In the spirit of IG corrections,
one can consider a non-minimal coupling (NMC) of the
scalar field to the intrinsic curvature on the brane. Scalar
fields arise in a natural way in particle physics and act
as a candidate for both models of the early universe and
late-time acceleration. Trapped on a brane, scalar fields
provide a simple dynamical model for matter fields and
have been investigated widely in the literature [22–26].
The motivation for including a NMC term arises at the
quantum level when quantum corrections to the scalar
field theory are considered. This kind of NMC to gravity
has been discussed enough in four dimensions [27–41], in
extra dimensions [42–45] and also in IG [46]. It turns
out that in general relativity, the coupling constant is
valued to 1/6 [47]. We analyze this coupling value as a
particular case.

This work is also a complementary of the minimally
coupled scalar field to the gravity [48] where the au-
thors considered the dynamics of a scalar field in a Dvali-
Gabadadze-Porrati brane, of those of [49, 50] where the
scalar field is trapped in the RSII brane and of the IG of
a NMC scalar field [42, 43]. Both of above the works used
the geometrical approach to derive the effective Einstein
equations projected onto the brane. Here, we use the
AdS/CFT correspondence to derive the modified equa-
tions and investigate the effects of such modifications to
the dynamic behavior of the universe where the scalar
field is localized in the brane.

Since explicit solutions of the evolution equations
cannot be obtained in this setup, the theory of dynam-
ical systems has proven to be a very powerful scheme
to obtain exact solutions and a qualitative description
of the global dynamics. Dynamical systems methods
are widely used in cosmology and have been applied
to extended theories of gravity [51–56], to braneworld
theories [49, 57–60] and to a NMC scalar fields [61–63].
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This motivates us to consider these techniques in order
to obtain exact solutions and a qualitative description
of the global dynamics of our model.

In the present paper, we study the impact of the mod-
ifications of the Friedmann equation of non minimally
coupled scalar field to induced gravity on the brane in
the framework of the AdS/CFT correspondence using
the DSA. We apply the DSA to study a specific potential
and a NMC function choices, namely an exponential
potential and a monomial form of NMC function. By
applying dynamical system methods, we focus on the
early and late time attractors behavior of the state of
the universe.

This paper is organized as follows. In Sec. II,
we present the model and then use the AdS/CFT
correspondence to give the effective Einstein equations
projected on the brane. In Sec. III, we present the
basic cosmological equations to describe the evolution
of a NMC scalar field such as the modified Friedmann
equation and the equation of motion. In Sec. IV, a
DSA is developed by fixing the choice of an exponential
potential and a monomial form of the coupling function.
The stability behavior of critical points is examined
using linear stability analysis and when necessary center
manifold theory as well as numerical perturbation
techniques. Using the DSA we show that this model
present a de Sitter brane as attractor solutions. We
present our summary and conclusions in Sec. V. Finally,
in appendix A we apply the center manifold theory
to study the stability properties of the non hyperbolic
critical point.

II. THE SETUP

In this work, we will analyse the model described by
the action [42, 43]

S =

ˆ
bulk

d5x
√
−g(5)

(
1

2κ25
R5 − Λ5

)
+

ˆ
brane

d4x
√
−g (−Λ4 + Lφ) , (2.1)

where κ25 is the 5D gravitational constant, R5 is the Ricci
scalar of the five-dimensional metric g(5) and Λ5 is the
bulk cosmological constant. g is the induced metric on
the brane, Λ4 is the brane tension and Lφ, the Lagrangian
density of the non minimal scalar field localized on the
brane, is defined as

Lφ = f(φ)R+
1

2
gµν∇µφ∇υφ− V (φ). (2.2)

where ∇µ is the covariant derivative associated with the
induced metric on the brane, V (φ) is the scalar field po-

tential, and f(φ) ≡ 1
2

(
1
κ2
4
− α(φ)

)
is a coupling between

the scalar field φ and the induced gravity R.
The gravitational field equations through the

AdS/CFT correspondence are obtained by extrem-
izing the variation of the dual action with respect to the
metric tensor [64–66]

1

8πGN
G(4)
µν = Tµν + TCFTµν − λgµν . (2.3)

where GN denotes the Newton’s constant (8πGN = κ24),
Tµν is the total energy-momentum tensor and TCFTµν

1

denotes the CFT energy momentum tensor.
The total energy-momentum tensor Tµν and the effective
cosmological constant on the brane λ are given by [42]

Tµν = T (φ)
µν + T (f)

µν − 2f(φ)Gµν , (2.4)

λ =
κ2

2
Λ5 +

κ4

12
Λ2
4. (2.5)

The energy-momentum tensor of the conformal field the-
ory, T CFT

µν , cannot be written in the local covariant form,
however its trace writes [66]

TCFT µ
µ = c

(
RαβR

β
α −

1

3
R2

)
, (2.6)

where c is the conformal anomaly related to the
AdS/CFT length.
The total energy-momentum tensor Eq. (2.4) has been
split of into a scalar field energy-momentum tensor,

T (φ)
µν = ∇µφ∇νφ−

1

2
gµν(∇φ)2 − gµνV (φ), (2.7)

and into a non-minimal coupling energy momentum ten-
sor

T (f)
µν = 2∇µ∇νf(φ)− 2�f(φ)gµν . (2.8)

For a spatially flat Friedmann-Robertson-Walker uni-
verse (FRW), we may define the conformal field energy
momentum tensor as [64, 66]

Tµ CFTν ≡
(
−σ σ
0 σpδ

i
j

)
. (2.9)

The Bianchi identity, ∇µGµν = 0, and the equation of
conservation of the energy-momentum, ∇µTµν = 0, im-
plies that ∇µTCFTµν = 0, which amounts to

σ̇ + 3H(σ + σp) = 0, (2.10)

where H is the Hubble parameter.

1 TCFTµν represents the term Vµν in Refs. [64, 66].



3

Furthermore, the trace of the conformal anomaly equa-
tion (2.6) simplifies to

σ − 3σp = 24cH2(Ḣ +H2), (2.11)

and Eq. (2.10) becomes

σ̇ + 4Hσ − 24cH3(H2 + Ḣ) = 0, (2.12)

whose solution reads

σ = χrad + 6cH4, (2.13)

where χrad is an effective radiation term. During
inflation, this term is rapidly redshifted as a−4 away and
its contribution can be neglected [66].

III. BASIC COSMOLOGICAL EQUATIONS

In this section we will consider the following spatially
flat isotropic and homogeneous FRW brane

ds2 = −dt2 + a(t)δijdx
idxj , (3.1)

where a(t) is the scale factor, δij is a symmetric
3−dimentional metric and xi, i = 1, 2, 3 are the comov-
ing spatial coordinates.
From the (00)-component of the field equations (2.3) to-
gether with the equations (2.4) and (2.13), the modified
Friedmann equation on this spatially flat brane can be
obtained as

H2 =
κ2eff

3

(
ρ+ λ+ 6cH4

)
, (3.2)

where ρ is the total energy density and the effective grav-
itational coupling, κ2eff , is given by

κ2eff =
κ24

2− κ24α(φ)
. (3.3)

Following the notation introduced in [42], we can write
the total energy density and the pressure of the universe
respectively as

ρ = ρ(φ) + ρ(α), p = p(φ) + p(α), (3.4)

where

ρ(φ) =
1

2
φ̇2 + V (φ), p(φ) =

1

2
φ̇2 − V (φ), (3.5)

ρ(α) = 3H
dα(φ)

dt
and p(α) = −2H

dα(φ)

dt
− d2α(φ)

dt2
.

(3.6)
The modified Friedmann equation Eq.(3.2) can be

rewritten as

H2 =
1

4cκ2eff

[
1±

√
1− (ρ+ λ)

ρmax

]
, (3.7)

where ρmax = 3
8cκ4

eff
.

In the limit α(φ) → 0 we recover the modified Freid-
mann equation of the Randall-Sundrum cosmology in the
context of the AdS/CFT correspondence [64, 66] with a
minimally coupled scalar field.

Furthermore, the modified Raychaudhuri equation can
be deduced from Eq. (2.3) as

ä

a
= −

κ2eff
6

(
ρ+ 3p− 2λ− 12cH2(2

ä

a
−H2)

)
. (3.8)

Finally, minimising the action (2.1) with respect to vari-
ation of the scalar field, φ, we obtain the equation of
motion in the FRW geometry as

φ̈+ 3Hφ̇+
1

2
α′(φ)R+ V ′(φ) = 0, (3.9)

where the prime denotes the derivative with respect to
the scalar field φ.
The intrinsic Ricci scalar for a flat FRW brane is

R = 6(Ḣ + 2H2). (3.10)

IV. A DYNAMICAL SYSTEMS APPROACH

In order to simplify the analysis of Eqs (3.2), (3.8)
and (3.9), the method taken up is the dynamical systems
study. In this section, we present the phase space of
the non-minimally coupled scalar field in detail, exact
solutions and their stability.

The first step in the implementation of the Dynami-
cal System Approach (DSA) is the introduction of the
general dimensionless variables

x1 ≡
1√
cκ4H

, x2 ≡
√
|α(φ)|√
2cH

, x3 ≡
α̇(φ)

2cH3
,

y ≡ φ̇√
12cH2

, z ≡
√
V (φ)√
6cH2

. (4.1)

The Friedmann constraint Eq. (3.2) with respect to the
dimensionless variables (4.1) becomes

1 = x21(1−Ax21)− x22 − y2 − z2 − x3. (4.2)

The dynamical variables Eq. (4.1) are non-compact, i.e.
their values do not have finite bounds as in [51–53, 67].
We will come back to this point in the conclusion.
The cosmological equations become equivalent to the fol-
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lowing autonomous system:

dx1
dN

= −x1
Ḣ

H2
(4.3a)

dx2
dN

=
x3
2x2
− x2

Ḣ

H2
(4.3b)

dx3
dN

= 6Γy2 − 6qx2(3y − 6qx2 + rz)− 3(x3 + 6q2x22)
Ḣ

H2

(4.3c)

dy

dN
= −3y − 6qx2 − rz −

Ḣ

H2
(2y + 3qx2) (4.3d)

dz

dN
= ry − 2z

Ḣ

H2
(4.3e)

where

Ḣ

H2
=

3

2

x21(1−Ax21) + x22(−1 + 12q2) + y2(1− 2Γ)− z2 − 2
3
x3 − 1 + 2qx2(3y + rz)

1− x21 + (1− 9q2)x22
, (4.4)

the derivative is with respect to N which is related to
the scale factor a by N = ln a, and we define

Γ ≡ α′′(φ), r ≡ V ′(φ)√
2V (φ)H

,

q ≡ α′(φ)√
6α(φ)

and A ≡ cκ44
6
λ. (4.5)

The prime denotes the derivative with respect to the
scalar field φ.

From the first equation of the dynamical system (4.3a)-
(4.3e), one can notice that the system has two invariant

manifolds x1 = 0 and Ḣ/H2 = 0. The most interesting,

from a physical point of view, is the last one Ḣ/H2 = 0.
The critical points of any dynamical system can be

extracted by setting dxi/dN = 0 (i = 1, 2, ...n), while
their properties are determined by the eigenvalues µi of
its Jacobian matrix, J , which is also called the stability
matrix

J =


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fn
∂x1

· · · ∂fn
∂xn

 , (4.6)

where fi ≡ (dxi/dN).
The critical points are classified according to the sign of
their eigenvalues by using linear stability method as:

• Attractor critical point, If all eigenvalues have
negative real parts. In this case the point would at-
tract all nearby trajectories and is viewed as stable.

• Repeller critical point, If all eigenvalues have
positive real parts where trajectories are repelled
from the fixed point and we speak in this situation
of an unstable point.

• If there is mixture of both positive and negative
real parts of eigenvalues, then the corresponding
critical point is called a saddle. This point will
attract nearby trajectories in some directions but
repels them along others.

However, If at least one of the eigenvalues is zero, the
linear stability theory fails to describe the stability of
the critical point which is called non-hyperbolic. In this
case other techniques have to be employed to study the
stability properties, such as the Centre Manifold Theory
(CMT) [68–71], the Lyapunov function method [72–74]
and Kosambi-Cartan-Chern theory [75].

A. Example of α(φ) and V (φ)

Since the dynamical system Eqs. (4.3a)-(4.3e) is com-
plicated to analyze in its full generality, we consider a
particular case in order to illustrate our purpose. Con-
cerning the scalar field potential, we choose an exponen-
tial function which has many implications in cosmological
inflation [76, 77]

V = V0 e
−bκ4φ, (4.7)

where V0 corresponds to the maximum value of the po-
tential and b is a constant and we choose the following
form of the coupling α(φ) as

α(φ) = α0 φ
2, (4.8)

where α0 is a constant parameter. If one chooses this
monomial form of α(φ), the set of phase space variables
(4.1) reduces to a four dimensional by writing the variable
x3 as

x3 = 2
√

6α0 y x2. (4.9)
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In order to determine the energy density contribution
of different components, we define dimensionless density
parameters in terms of the above introduced dynamical
variables

Ωφ ≡
κ2
4ρφ

6H2
=
y2 + z2

x21
,Ωλ ≡

κ2
4λ

6H2
= Ax21,Ωc ≡ κ2

4cH
2 =

1

x21
,

Ωα ≡ κ2
4α0(

φ

2
+
φ̇

H
) =

x2
x21

(x2 + 2
√

6α0y), (4.10)

which represent, respectively, the dimensionless energy
densities of scalar field, effective cosmological constant,
AdS/CFT correspondence effect and contribution due to
the NMC corrections.
These dimensionless density parameters are related as

Ωφ + Ωα + Ωλ + Ωc = 1. (4.11)

In the next subsections we will consider first two special
values of α0, namely the minimal coupling for α0 = 0 and
the conformal coupling for α0 = 1/6.

1. Minimal coupling

To illustrate our purpose, we begin by the simple case,
namely the minimal one where α0 = 0. In that case the
variable x2 and the energy density due to the NMC effect
Ωα are equal to zero . Using the Friedmann constraint
Eq. (4.2) and Eq.(4.7), the system (4.3a)-(4.3e) reduces
to the following autonomous two-dimensional system in
terms of the dynamical variables

dx1
dN

= − 3x1y
2

1− x21
, (4.12a)

dy

dN
= −3y(1 +

2y2

1− x21
) +
√

3b
−1− y2 + x21(1−Ax21)

x1
.

(4.12b)

This nonlinear autonomous system has four critical
points A± and B±. Their properties are given in Ta-
ble I and are summarized below.

• Critical points A± exist for A ≤ 1/4 (see Eq. (4.5))
i.e. the effective cosmological constant on the brane
satisfy λ ≤ λmax where, λmax ≡ 3/2cκ44. These
points correspond to the case where the kinetic en-
ergy density of the scalar field and its potential en-
ergy density V vanish (as the Hubble rate remains
finite). This means that there is no dynamical mo-
tion of the the scalar field.
The Freidmann equation of these fixed points
writes

H = ±
√

Λ−
3
, (4.13)

where Λ− =
λκ2

4

1−
√

1− λ
λmax

.

Therefore, we conclude that the dynamic of the
universe is governed by the effective cosmological
constant. we notice also that the critical point A+

corresponds to an expanding de Sitter universe
while A− represents a contracting one.

• Critical points B± exist only for a positive effec-
tive cosmological constant, in which the conformal
anomaly is given by the condition 0 < c ≤ 3/2κ44λ.
These points correspond to the solution:

H = ±
√

Λ+

3
, (4.14)

where Λ+ =
λκ2

4

1+
√

1− λ
λmax

.

Similar to the previous case, there is no dynam-
ical motion of the the scalar field, and we have
an expanding de Sitter universe for the point B+.
The point B− represents a contracting de Sitter uni-
verse.

The eigenvalues corresponding to the critical points A+

and B+
2 are (µ1 = 0, µ2 = −3). We notice that these

points are non hyperbolic. The stability properties of
these points are obtained by applying the CMT to the
2D-system Eqs. (4.12a) and (4.12b) (the analysis details
are given in the Appendix A). Around the critical point
A+ the stability depends on the value of the constant A.
For A < 0 (i.e. λ < 0), the critical point A+ is saddle,
whereas for 0 < A ≤ 1

4 both critical points A+ and B+ are
unstable. Fig. 1 shows the phase space and the position
of the critical points of the system (4.12a)-(4.12b).

We conclude that in the case of minimal coupling, the
resulting Hubble rate can be considered as solutions at
early times with the energy density dominated by the
effective cosmological constant and the AdS/CFT cor-
respondence effect (Ωλ + Ωc = 1). This means that in
the past, each trajectory begins in a de Sitter state as
the solution behaves like a cosmological constant of an
arbitrary value for A > 0.

2. Conformal coupling

We now consider the case of a conformally coupled
scalar field on the brane [42, 78], with conformal coupling
α0 = 1

6 , and a vanishing potential 3. In what follows, we
present the results of our dynamical system (4.3a)-(4.3e)

2 We restrict our analysis to the critical points A+ and B+ since
we are assuming an expanding universe, i.e. H > 0.

3 The Klein-Gordon equation (3.9) is conformally invariant if V =
0 or V = λφ4 for the conformal coupling [42, 78–80].
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Fixed points x1 y z Existence Eigenvalues Stability Physical State

A± ±
√

2
1+
√
1−4A

0 0 A 6 1
4

µ1 = 0, µ2 = −3 Saddle for A < 0 de Sitter

Unstable for 0 < A 6 1
4

universe

B± ±
√

1+
√
1−4A
2A

0 0 0 < A 6 1
4
µ1 = 0, µ2 = −3 Unstable de Sitter

universe

TABLE I. Coordinates of the critical points of the system (4.12a)-(4.12b), with an exponential potential (4.7) and their
properties.

(a) We have taken A = −1 and b = −2. (b) We have taken A = 1/8 and b = 1.

FIG. 1. Phase plot (blue arrows) and critical points (colored dots) of the system (4.12a)-(4.12b), for a minimal coupled scalar
field with an exponential potential (4.7). It seems that point B± is saddle, but in fact it is not, it is unstable from CMT point
of view, see Appendix A.

for the conformal coupling. The system reduces to

dx1
dN

= −x1 g(x1, x2, y), (4.15a)

dx2
dN

= y − x2 g(x1, x2, y), (4.15b)

dy

dN
= −3y − 2x2 − (2y + x2) g(x1, x2, y), (4.15c)

where

g(x1, x2, y) =
3x21(1−Ax21) + x22 + y2 + 2x2y − 3

2(1− x21)
. (4.16)

In table II, we present the coordinates of each critical
point and the results of their stability analysis by means
of the signs of the real parts of the eigenvalues of the
Jacobian matrix.

• Critical points C± exist for A ≤ 1/4 and amount to
assume that the solution is a de Sitter universe

(H, φ) = (±
√

Λ−
3
, 0). (4.17)

The stability of these two points depend on the
value of the constant A given by (4.5).
For A < 0 (i.e. λ < 0), the critical points C± are

stable since all eigenvalues are negative, whereas
for 0 < A ≤ 1

4 , the two critical points C± are
saddle since one of the eigenvalues is positive while
the others are negative.

• Critical points D± exist for 0 < A ≤ 1/4 and rep-
resent also a de Sitter universe

(H, φ) = (±
√

Λ+

3
, 0). (4.18)

Finally, accordingly to their eigenvalues, the critical
points D± are saddle points.

We notice that in the conformal coupling case, the crit-
ical point4 C+ is the future attractor if and only if λ is
negative while the critical point D+ is always a saddle
point meaning that it cannot be the past attractor. Both
C+ and D+ correspond to the energy density dominated
by the effective cosmological constant and the AdS/CFT
correspondence effect (Ωλ + Ωc = 1).
To confirm the stability of the critical point C+, we per-
turb the solutions around this point in order to analyse

4 We ignore C− since we are assuming only expanding universe.



7

Point x1 x2 y Existence Eigenvalues Stability Physical State

C± ±
√

1−
√
1−4A
2A

0 0 A 6 1
4

µ1 = 3(1−4A+
√
1−4A)

2A
, µ2 = −2, µ3 = −1 Stable for A < 0 de Sitter

Saddle for 0 < A 6 1
4

universe

D± ±
√

1+
√
1−4A
2A

0 0 0 < A 6 1
4
µ1 = 3(1−4A+

√
1−4A)

2A
, µ2 = −2, µ3 = −1 Saddle de Sitter

universe

TABLE II. Coordinates of the critical points of the system (4.15a)-(4.15c), and their properties.

(a) Projection of perturbations along x1-axis. (b) Projection of perturbations along x2-axis.

(c) Projection of perturbations along y-axis. (d) Slow roll parameter, ε.

FIG. 2. Projection of perturbations of C+ along x1, x2, y axis and slow roll parameter, ε, vs the e-fold number, N , for A = −1/4.

numerically this property. In Figs. 2a, 2b and 2c, we plot
the projection of perturbations of the system (4.15a)-
(4.15c) along x1-axis, x2-axis and y-axis respectively with
respect to N .
From these figures we notice that trajectories of the
perturbed solutions approach the coordinates of C+ for
A = −1/4, i.e. x1 ' 0.91, x2 = 0 and y = 0 respectively
as N →∞. From these behaviours, we can conclude that
the critical point C+ is an attractor solution which is in
agreement with our analytical result. Furthermore, this

point corresponds to a slow roll parameter ε ≡ − Ḣ
H2 = 0

which means that this point may sustain inflation. As we
can notice from Fig. 2d, the universe remains eternally

in the inflation era even though we perturb it around this
attractor solution.

3. Non minimal coupling

In what follows we will assume a positif non-minimal
coupling constant α0 non equal to 0 and 1/6.
In this subsection and due to the complexity of our sys-
tem, we shall restrict our analysis to the case of λ = 0,
by choosing Λ4 =

√
−6Λ5/κ2 for Λ5 < 0 in Eq. (2.5).

The set of the differentiable Eqs. (4.3a)-(4.3e) reduces
by considering the constraint Eq. (4.2) to the following
autonomous system
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dx1
dN

= −x1 g(x1, x2, y), (4.19)

dx2
dN

=
√

6α0y − x2 g(x1, x2, y), (4.20)

dy

dN
= −y(3 +

√
3b

x1
(y + 2

√
6α0x2))− x2(2

√
6α0 +

√
3b

x1
x2) +

√
3bx1 −

√
3b

x1
− (2y +

√
6α0x2) g(x1, x2, y), (4.21)

where

g(x1, x2, y) =
3y2

(
x1(1− 2α0) +

√
6α0bx2

)
+ 3x2

√
2α0b

(
x22 − x21

)
+ 2
√

6α0x2y(2x1 + 3
√

6α0bx2) + 3x2(4α0x1x2 +
√

2α0b)

x1(1− x21 + x22(1− 6α0))
.

(4.22)

The fixed points of the system (4.19)-(4.21) are illus-
trated in table III.

• The critical point E is formed of a continuous line
of critical points, called a critical line or line of non-
isolated equilibrium points [81]. This critical line
exists for an infinite number of critical points for all
values of x1 that verify the condition of existence
x1 > 1 and b > 0. The dynamics of the universe
for this critical line is dominated by the potential
energy density, i.e. V 6= 0 and φ̇ = 0 such that
φ = φc. The Friedmann equation and the equation
of motion of the scalar field of this critical line write
respectively as

H2 =
1

4cκ2
eff,c

1±

√
1−

8cκ2
eff,c

3
V (φc)

 , (4.23)

V ′(φc) = −6α′(φc)H
2, (4.24)

where V (φc) <
3

8cκ2
eff,c

.

The slow-roll parameter ε is equal to zero (ε = 0),
which means that this critical line corresponds to
inflation.

(4.25)

• The critical line F exists for x1 < −1. We restrict
our analysis to the critical line E since we assume
an expanding universe (H > 0). Indeed, the critical
line F does not correspond to an expanding universe
due to the condition of existence for x1 ∝ H−1 (see
table III).

In order to discus the stability analytically, we use
the linear theory. The stability of these lines is shown
in5 Fig. 3. From both figures 3a and 3b, we conclude

5 Note that the stability analysis of these critical lines depends on
the value of the variable x1, and the parameters of our model α0

and b which makes the eigenvalues of the jacobian matrix very
lengthy this is why we plot the stability region according to the
signs of these eigenvalues.

that the critical lines E and F are either stable or sad-
dle. Consequently, the critical line E corresponds to a
non-minimally coupled inflation attractor solution for a
specific values of our model parameters α0 and b in ad-
dition to the choice of the value of the dimensionless
variable x1. This solution is dominated by the scalar
field, the AdS/CFT correspondence effect and the NMC
contribution(Ωφ + Ωc + Ωα = 1).
However the stability can also be found numerically by
perturbing the system around the critical line. We plot
in Fig. 4 the projection plots on x1, x2, y and z sepa-
rately for α0 = 0.2 and b = 1. From Fig. 4a it seems
that the trajectories are parallel to an horizontal axis,
and that any perturbation of the system near x1 makes
it an arbitrary constant as N →∞.
We can also see from Fig. 4b and 4d, that for each value
of x1, the corresponding trajectories of x2 and z also ap-
proach the value (

√
b2 (x21 − 1) + 2α0x21−

√
2α0x1/b) and√

2x1
√

2α0(b2 (x21 − 1) + 2α0x21)− 4α0x21/b respectively

as N → ∞. Some numerical values of any perturbation
near x1, x2 and z are also shown in Fig. 4. For example
for x1 = 2.20 the corresponding critical point coordinates
x2 and z are 1.01 and 1.67 respectively as N →∞.
From Fig. 4c, we notice that trajectories of the perturbed
solutions approach y = 0 as N →∞.
From these behaviours it is evident that the system comes
back to the critical point following the perturbation,
which means that the critical line E is an attractor line
for α0 = 0.2 and b = 1. These plots support strongly our
analytical findings.

In order to obtain a complete information about the
structure of the phase space of the dynamical system
(4.3a)-(4.3e) it is necessary to investigate the dynamical
behavior for α0 < 0. To this aim, we extend the previous
study by including negative values of α0 in Eq. (4.8) to
search for any possible attractor solutions.
To keep the definition of the dimensionless variables as
in (4.1), one has to consider a non-minimal function as
ζ(φ) ≡ −α(φ), where α0 ≡ −ζ0 and ζ0 is a positif con-
stant. It deserves to be mentioned that the constraint
equation Eq. (4.2) reads in this case

z2 = −1 + x21 + x22 + 2
√

6α0yx2 − y2. (4.26)
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Point x1 x2 y z ε Existence Stability Description

E x1
−
√

2α0x1+
√

2α0x
2
1+b

2(−1+x21)

b
0

√√√√√ 2x1

√
2α0(b2

(
x21−1

)
+2α0x

2
1)−4α0x

2
1

b2
0 x1 > 1 & b > 0 Stable/ Saddle Potential

Fig. 3a domination

F x1
−
√

2α0x1−
√

2α0x
2
1+b

2(−1+x21)

b
0

√√√√√−2x1

√
2α0(b2

(
x21−1

)
+2α0x

2
1)−4α0x

2
1

b2
0 x1 < −1 & b < 0 Stable/ Saddle Potential

Fig. 3b domination

TABLE III. Critical lines, Stability, and the existence of the system (4.19)-(4.21) for an exponential potential (4.7) and a
non-minimal function (4.8) with λ = 0.

(a) Line E. (b) Line F.

FIG. 3. Blue region corresponds to the stable region of the critical lines E and F, while it is saddle otherwise.

(a) Projection of perturbations along x1-axis. (b) Projection of perturbations along x2-axis.

(c) Projection of perturbations along y-axis. (d) Projection of perturbations along z-axis.

FIG. 4. Projection of perturbations along x1, x2, y axis for α0 = 0.2 and b = 1.
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The set of differential Eqs. (4.3a)-(4.3e) reduces to the following dynamical system

dx1
dN

= −x1 g(x1, x2, y), (4.27)

dx2
dN

=
√

6ζ0y − x2 g(x1, x2, y), (4.28)

dy

dN
= −y(3 +

√
3b

x1
(y − 2

√
6ζ0x2)) + x2(2

√
6ζ0 +

√
3b

x1
x2) +

√
3bx1 −

√
3b

x1
+ (−2y +

√
6ζ0x2) g(x1, x2, y), (4.29)

where

g(x1, x2, y) =
3y2

(
x1(1 + 2ζ0)−

√
2ζ0bx2

)
+ 3x2

√
2ζ0b

(
x22 + x21

)
+
√

6ζ0x2y(−4x1 + 6
√

6ζ0bx2) + 3x2(4ζ0x1x2 −
√

2ζ0b)

x1(1− x21 − x22(1 + 6α0))
.

(4.30)

(a) Line G.

(b) Line H.

FIG. 5. Blue (Green) region corresponds to the stable (saddle)
region of the critical lines G and H.

The system formed by the equations (4.27)-(4.29) has
two critical lines. The coordinates of these critical lines
with their qualitative behaviour are given in table IV.

• For both critical lines G and H the dynamic of
the universe is dominated by the potential energy
density (as φ̇ vanishes while V (φ) 6= 0) in addition

to the contribution of the AdS/CFT and the NMC
effects (Ωφ + Ωc + Ωα = 1), with the solution of
the Hubble parameter writes as Eq. (4.23). The
parameter ε evaluated at these critical lines is also
equal to 0 which means that these lines correspond
to inflation.

Examination of the stability conditions Fig. 5 indicates
that the state can be stable (or saddle) during inflation.
The critical line G is always saddle in the region of exis-
tence (b < 0), while H is an attractor solution for x1 > 1

and −
√

2ζx2
1

x2
1−1

< b < 0. To check the stability of the crit-

ical line H numerically, we perturb the solutions around
the critical point. We again plot the projections plots on
x1, x2, y and z separately for ζ0 = 0.2 and b = −0.1.
Like previous case, from Figs. 6a-6d, it is clear that the
critical line H is an attractor for ζ0 = 0.2 and b = −0.1.

V. SUMMARY AND CONCLUSIONS

The present work is devoted to the dynamical system
analysis, in order to study the cosmological dynamics
of NMC scalar field to the Ricci curvature within the
AdS/CFT correspondence. We have considered an expo-
nential potential V = V0 exp(−bκ4φ) and a NMC func-
tion of the form f(φ) = 1

2κ2
4
− 1

2α0φ
2. The set of param-

eters characterizing our model are (α0, λ, c, b), i.e. the
coupling constant, the effective cosmological constant,
the conformal anomaly coefficient and the free param-
eter of the potential, respectively.

The stability analysis of critical points is handled by
using the linear stability analysis, the center manifold
theory in the case of a non hyperbolic critical points and
numerical techniques to support our results. The main
results of this investigation can be summarized as follows
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Point x1 x2 y z ε Existence Stability Description

G x1

√
−x21b2+b2+2ζ0x

2
1−
√

2ζ0x1
b

0

√√√√√ 4ζ0x
2
1−2

√
2ζ0x1

√
b2−x21

(
b2−2ζ0

)
b2

0 x1 > 1 &−
√

2ζx21
x21−1

< b < 0 Stable Potential d.

H x1
−
√
−x21b2+b2+2ζ0x

2
1−
√

2ζ0x1
b

0

√√√√√ 4ζ0x
2
1+2

√
2ζ0x1

√
b2−x21

(
b2−2ζ0

)
b2

0 b < 0 Saddle Potential d.

TABLE IV. Critical lines, Stability, and the existence of the system Eqs. (4.27)-(4.29).

• In the minimal coupling case, α0 = 0, the dynam-
ics of the model is very simple. It consists of one
non hyperbolic critical point B, which behaves as
a past time attractor and a non hyperbolic criti-
cal point A corresponding to an unstable solution
for 0 < λ < 3/2cκ44 and to a saddle solution for
λ < 0. We have used the CMT to obtain sufficient
conditions for their asymptotic stability. We also
note that the solutions are described by a de Sit-
ter state with the energy density dominated by the
effective cosmological constant and the AdS/CFT
correspondence effect (Ωλ + Ωc = 1).

• Similar to the MC case, the solutions of the confor-
mal coupling, α0 = 1/6 and V = 0, are described
by a de Sitter state with domination of the effective
cosmological constant and AdS/CFT effect. We
have identified two critical points C and D, the last
one is always saddle while the point C is a future
attractor point for λ < 0 otherwise it behaves as a
saddle point.

• In the non minimal coupling case, for α0 > 0 we
have found one critical line, E, that corresponds to
a future attractor de Sitter inflationary era for spe-
cific values of our model parameters α0 and b (see
Fig. 3a). For α0 < 0, we have found two criti-
cal lines, G and H. The critical line H represents a
saddle line in its region of existence (b < 0), while
the critical line G is always a future attractor solu-
tion describing a de Sitter inflation scenario. For
both α0 < 0 and α0 > 0 the dynamics of the uni-
verse is dominated by the potential energy density
as well as the contribution of the AdS/CFT corre-
spondence and the NMC effects (Ωφ+Ωc+Ωα = 1).

Finally, one of the interesting results of including non-
minimal coupling of the scalar field to the intrinsic cur-
vature on the brane is the fact that we obtain a future
attractor solution which corresponds to a scenario where
the content of the universe is dominated by the expo-
nential potential and a de Sitter inflationary era. An-
other interesting conclusion consists in the fact that all
the solutions are affected by the AdS/CFT correspon-
dence, this can be seen through the contribution of the
dimensionless energy density Ωc. Despite the success of
this study of non-minimal gravity within the AdS/CFT
correspondence, the non compactness of our dynamical
variables makes the analysis incomplete due to lack of the
dynamical analysis at infinity of the phase space. Conse-

quently, there could be missed critical points. This issue
will be the subject of the next forthcoming paper.

ACKNOWLEDGEMENT

The authors would like to thank Mariam Bouhmadi-
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Appendix A: Centre Manifold Theory

In Sec. IV, we have mentioned that if the eigenvalues
of the Jacobian matrix (4.6) has one eigenvalue with zero
real part while the other one is negative, the critical point
is called non-hyperbolic and the linear approach fails to
determine the stability properties. Different methods can
be employed to study the stability properties in this situ-
ation such as the Lyapunov stability [72–74], centre man-
ifold theory (CMT) [68–71] and Kosambi-Cartan-Chern
theory [75].
This Appendix is devoted to show how we get the stable
conditions of the non-hyperbolic critical points A+ and
B+ using the CMT.
In what follows, we present the detailed calculus to find
the stable conditions of the critical point A+. To this
purpose and in order to simplify the dynamical system
Eqs. (4.12a)-(4.12b), we define a new variable τ as
d/dτ = x1(1− x21)d/dN .
We recall that for any dynamical system ẋ = f(x), the
new dynamical system ẋ = χ(x)f(x), where χ(x) is a
positive function, has the same critical points with the
same stability properties.
For the critical point A+, the function{

χ(x) = x1(1− x21) is positive for A < 0

χ(x) = x1(x21 − 1) is positive for A > 0

Our dynamical system (4.12a)-(4.12b) becomes for A < 0

dx1
dτ

= −3x21y
2, (A1a)

dy

dτ
= −3yx1(1− x21 + 2y2)

+
√

3b(−1− y2 + x21(1−Ax21))(1− x21). (A1b)

The first step is to consider a specific transformation:
X = x1−k and Y = y in order to move the critical point
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(a) Projection along x1-axis.

(b) Projection along x2-axis.

(c) Projection along y-axis.

(d) Projection along z-axis.

FIG. 6. Projection of perturbations for ζ0 = 0.2 and b = −0.1.

A+(k, 0) to the origin of the phase space (0, 0), where

k =
√

(1−
√

1− 4A)/2A. We obtain the new dynamical

system

dX

dτ
= −3 Y 2 (k +X)2, (A2a)

dY

dτ
= 3Y (k +X)

(
−1 + (k +X)2 − 2Y 2

)
+
√

3b(k +X − 1)(k +X + 1)

×
(
(k +X)2

(
A(k +X)2 − 1

)
+ Y 2 + 1

)
. (A2b)

Our dynamical system has the required form, i.e. the
fixed point sits at the origin (0, 0) and the system does
not contain any linear term of X in the first equation.
We rewrite the above system as

d

dτ

(
X

Y

)
=

(
µ1 0

0 µ2

)
.

(
X

Y

)
+

(
F (X,Y )

G(X,Y )

)
, (A3)

where µ1 is the eigenvalue equal to zero, µ2 is a non-
zero eigenvalue and, from Eqs. (A2a)-(A2b), the two
functions F and G are

F (X,Y ) = −3Y 2(k +X)2, (A4)

G (X,Y ) = 3Y (k +X)
(
−2Y 2 + (k +X)2 − 1

)
+ Y 2(k +X − 1)(k +X + 1) + 3

√
3bX2k2

(
A
(
5X2 − 2

)
− 2
)

+
√

3bX2
(
15Ak4 + 20Ak3X + 6AkX3 − 4(A+ 1)kX +AX4 − (A+ 1)X2 + 2

)
. (A5)

and satisfy

F (0, 0) = 0, ∇F (0, 0) = 0, (A6)

G(0, 0) = 0, ∇G(0, 0) = 0. (A7)

The centre manifold (CM) suggests that its geometrical
space is tangent at (0, 0) to the eigenspace of the non
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zero eigenvalue µ2. We may assume from the definition
of the CM that Y = H(X) with the following conditions:

H(0) = 0, ∇H(0) = 0.

In this coordinate, the dynamic of the CM, for X suffi-
ciently small, can be written as

dX

dτ
= F (X,H(X)) , (A8)

Assuming that H(X) is of the form

H(X) = a1X
2 + b1X

3 +O(X4), (A9)

and using the Leibnitz rule dY/dτ = (dH/dX)(dX/dτ),
one obtains by combining the second row of Eq. (A3)
and Eq. (A8) the following equation

dH

dX
F (X,H(X)) = µ2H(X) +G (X,H(X)) (A10)

Comparing coefficients of equal order in X of (A10), we
find the coefficients a1 and b1

a1 =
b
(
−15Ak4 + 6(A+ 1)k2 − 2

)
√

3k (k2 − 1)
, (A11)

b1 =
b
(
25Ak6 − (9A+ 14)k4 + 2(A+ 4)k2 − 2

)
√

3k2 (k2 − 1)
2 .

(A12)
Since the system (A2a)-(A2b) has a CM, the evolution
of this system is given by

dX

dτ
= −

b2
(
15Ak4 − 6(A+ 1)k2 + 2

)2
(k2 − 1)

2 X4 +O(X5)

(A13)
We notice that the coefficient of the fourth order of X
is negative for A < 0 and consequently, around the fixed
point A+ the system is saddle in the centre manifold.
We repeat the calculation in the case of A > 0 for the
fixed point A+ and for the fixed point B+ (since its ex-
istence is for A > 0) we conclude that these points are
unstable.
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