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Abstract

In this note, we investigate the 3D steady axially symmetric Navier-Stokes equa-

tions, and obtained Liouville type theorems if the velocity or the vorticity satisfies

some a priori decay assumptions.
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1 Introduction

An interesting question about Liouville type theorem of the 3D stationary Navier-Stokes

equations in R3 is as follows: whether the solution of
{

−∆u+ u · ∇u = −∇p,

∇ · u = 0,
(1)

satisfying the vanishing property at infinity

lim
|x|→∞

u(x) = 0, (2)

and the bounded Dirichlet energy

D(u) =

∫

R3

|∇u|2dx < ∞ (3)
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implies u ≡ 0 is still an open problem, which is related to J. Leray (see also P12. Galdi

[7]).

Many conditional criteria have been obtained for this issue. For example, Galdi

proved the above Liouville type theorem by assuming u ∈ L
9
2 (R3) in [7]. Chae in

[2] showed the condition △u ∈ L
6
5 (R3) is sufficient for the vanishing property of u.

Also, Chae-Wolf gave an improvement of logarithmic form for Galdi’s result in [4] by

assuming that
∫

R3 |u|
9
2{ln(2 + 1

|u|)}−1dx < ∞. Seregin obtained the conditional criterion

u ∈ BMO−1(R3) in [12]. Moreover, Kozonoa-Terasawab-Wakasugib proved u ≡ 0 if the

vorticity w = o(|x|− 5
3 ) or ‖u‖

L
9
2 ,∞(R3)

≤ δD(u)1/3 for a small constant δ in [10]. It is

shown that all the above norms u ∈ L
9
2 (R3), the log form of u ∈ L

9
2 (R3) or u ∈ L

9
2
,∞(R3)

can be replaced by the norms in the annular domain BR \BR/2 in [16] by Seregin and the

author, where the following energy description was stated:

∫

BR/2

|∇u|2dx ≤ CR−2

(

∫

BR\BR/2

|u|2dx
)

+ C(q)R2− 9
q ‖u‖3Lq,∞(BR\BR/2)

where BR = BR(0) is a ball centered at 0 and q > 3. Note that the conditions (2) and (3)

are not used in [16] as in [4]. More references, we refer to [3, 13, 14] and the references

therein.

Moreover, the problem is not solved, even for the case of axially symmetric Navier-

Stokes equations, to the best of the author’s knowledge. Motivated by the result Seregin in

[14], where he proved that the condition |u| . 1
|x′|µ with x′ = (x1, x2) and µ ≈ 0.77 implies

u ≡ 0, we are aimed to improve the decay assumption. At first, let us introduce the axially

symmetric Navier-Stokes equations. Let u(x) = ur(t, r, z)er + uθ(t, r, z)eθ + uz(t, r, z)ez ,

where

er = (
x1

r
,
x2

r
, 0) = (cos θ, sin θ, 0),

eθ = (−x2

r
,
x1

r
, 0) = (− sin θ, cos θ, 0),

ez = (0, 0, 1)

and (1) becomes































b · ∇ur −∆0ur +
ur

r2
− u2

θ

r
+ ∂rp = 0,

b · ∇uθ −∆0uθ +
uθ

r2
+

uruθ

r
= 0,

b · ∇uz −∆0uz + ∂zp = 0,

∂r(rur) + ∂z(ruz) = 0,

(4)

where

b = urer + uzez, ∆0 = ∂rr +
1

r
∂r + ∂zz.
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The vorticity is represented as

w = wrer + wθeθ + wzez = (−∂zuθ)er + (∂zur − ∂ruz)eθ +
∂r(ruθ)

r
ez.

There are also many developments on the Liouville type theorems of axi-symmetric

case. For example, Liouville type theorem was proved by assuming no swirl (i.e. uθ = 0),

see Koch-Nadirashvili-Seregin-Sverak [9] or Korobkov-Pileckas-Russo[11]. The condition

ruθ ∈ Lq with some q ≥ 1 or b ∈ L3 is enough, see Chae-Weng in [5]. Specially, for

the axially symmetric case, the decay of the velocity or the vorticity can be obtained:

Choe-Jin [6], Weng [17] proved that

|ur(r, z)| + |uz(r, z)|+ |uθ(r, z)| .
√

ln r

r
,

|wθ(r, z)| . r−( 19
16

)− , |wr(r, z)|+ |wz(r, z)| . r−( 17
16

)−

Recently, Carrillo-Pan-Zhang in [1] gave an alternative method for the decay of u and an

improvement for the decay bound of the vorticity

|wθ(r, z)| . r−
5
4 (ln r)

3
4 , |wr(r, z)| + |wz(r, z)| . r−

9
8 (ln r)

11
8

by using Brezis-Gallouet inequality.

It’s a natural question: whether there exist the sharp constants µ1, µ2 such that

|(ur(r, z), uz(r, z), uθ(r, z))| . 1
rµ1

or |(wr(r, z), wz(r, z), wθ(r, z))| . 1
rµ2

implies that u ≡ 0

for the axially symmetric case?

With the help of energy estimates in [16] we can improve the result in [14] to µ > 2
3
,

which is almost a equivalent form of u ∈ L
9
2
,∞.

Theorem 1.1. Suppose that u is axially symmetric smooth solution of the equation (4)

and for some µ > 2
3
,

|u| ≤ C

(1 + r)µ
.

Then u ≡ 0.

Note that Γ = ruθ satisfies the special structure

b · ∇Γ−△0Γ +
2

r
∂rΓ = 0

and Maximum principle can be applied, thus the condition uθ = o(1
r
) as |x| → ∞ implies u

is trivial. However, it’s still known that whether uθ = o(1
r
) can be replaced by uθ = O(1

r
).

But we show that the condition |b| = O(1
r
) or b ∈ BMO−1(R3) is sufficient, which

improved the assumption b ∈ L3(R3) in [5].
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Here we say a function f ∈ BMO−1(R3) if there exists a vector-value function d ∈ R3

and dj ∈ BMO(R3) such that f = div d = dj,j. It’s well-known that for the BMO space,

we have

Γ(s) = sup
x0∈R3,R>0

(

1

|BR(x0)|

∫

BR(x0)

|d− dx0,R|sdx
)

1
s

< ∞.

for any s ∈ [1,∞).

In details, we obtained the following result.

Theorem 1.2. Suppose that u is axially symmetric smooth solution of the equation (4)

satisfying (2) and (3). Then u ≡ 0 if one of the following conditions is satisfied

(i) b = (ur, uz) ∈ BMO−1(R3);

(ii) |b| ≤ C

r

For the decay of the vorticity, we also state the following corresponding result.

Theorem 1.3. Suppose that u is axially symmetric smooth solution of the equation (4)

satisfying (2) and (3). Moreover,

|(wr, wθ, wz)| ≤
C

rβ
, β >

5

3
.

Then u ≡ 0.

Remark 1. This conclusion generalized the result of [10] to the axially symmetric case,

where the condition |w| = o(|x|− 5
3 ) was put.

Throughout this article, C denotes a constant, which may be different from line to

line.

2 Proof of Theorem 1.1

Recall a Caccioppoli inequality in [16], which is stated as follows.

Proposition 2.1. Let (u, p) be the smooth solution of (1). Then for 0 < δ ≤ 1 and
6(3−δ)
6−δ

< q < 3, we have

∫

BR/2

|∇u|2dx ≤ C

R2

(

∫

BR\BR/2

|u|2dx
)

+C(δ)
(

‖u‖3−δ
Lq,∞(BR\BR/2)

R2− 9−3δ
q

− δ
2

) 2
2−δ
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Proof of Theorem 1.1. Let CR denote the cylindrical region {x; |x′| ≤ R, |z| ≤ R},
then it’s easy to check that

BR ⊂ CR ⊂ B√
2R.

Hence, it follows from Proposition 2.1 that

∫

C√
2

4 R

|∇u|2dx ≤ C

R2





∫

CR\C√
2

4 R

|u|2dx





+C(δ)

(

‖u‖3−δ
Lq,∞(CR\C√

2
4 R

)R
2− 9−3δ

q
− δ

2

)
2

2−δ

≤ C‖u‖2Lq(CR)R
1− 6

q + C(δ, q)
(

‖u‖3−δ
Lq(CR)R

2− 9−3δ
q

− δ
2

)
2

2−δ
(5)

for q > 2, where we used the property of Lorentz space

‖u‖Lq,∞(Ω) ≤ C(q, ℓ)‖u‖Lq,ℓ(Ω)

(for example, see Proposition 1.4.10 in [8]).

For µq > 2, we have

‖u‖Lq(CR) ≤ C

(

R

∫ R

0

(1 + r)1−µqdr

)

1
q

≤ C(µ, q)R
1
q

Then the terms of the right hand side of (5) is controlled by

∫

C√
2

4 R

|∇u|2dx ≤ C(µ, q)R1− 4
q + C(δ, µ, q)

(

R2− δ
2
− 6−2δ

q

)
2

2−δ
(6)

Claim that: for fixed µ > 2
3
, there exist constants δ ∈ (0, 1) and q such that

max{63− δ

6− δ
,
2

µ
} < q < 3, and 2− δ

2
− 6− 2δ

q
< 0 (7)

hence letting R → ∞, by (6) we have

∫

R3

|∇u|2dx = 0,

which implies u ≡ 0.

Proof of (7). First for fixed µ > 2
3
, we choose δ0 ∈ (0, 1) such that

2

µ
< 4

3− δ0

4− δ0

5



Since 0 < δ0 < 1, we have

1− δ0

4
< 1− δ0

6
,

and

6
3− δ0

6− δ0
< 4

3− δ0

4− δ0

so we take

q =
1

2

(

max{63− δ0

6− δ0
,
2

µ
}+ 4

3− δ0

4− δ0

)

Then we have

max{63− δ0

6− δ0
,
2

µ
} < q < 4

3− δ0

4− δ0
< 3,

which implies (7).

Hence the proof of Theorem 1.1 is complete.

3 Proof of Theorem 1.2

Let φ(x) = φ(r, z) ∈ C∞
0 (CR) and 0 ≤ φ ≤ 1 satisfying

φ(x) =

{

1, x ∈ CR/2,

0, x ∈ Cc
R

and

|∇φ| ≤ C

R
, |∇2φ| ≤ C

R2
.

Without loss of generality, by Theorem X.5.1 in [7] we can assume that

lim
|x|→∞

|p|+ |u| = 0.

Note that △p = −∂i∂j(uiuj), then using Calderón-Zygmund estimates and gradient esti-

mates of harmonic function, we have
∫

R3

|p|3 + |u|6dx < CD(u)3,

and

‖∇p‖
L

3
2 (R3)

< CD(u),
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since ‖|∇u|u‖
L

3
2 (R3)

≤ CD(u).

Multiplying φu· on both sides of (1), integration by parts yields that

∫

CR

φ

(

|∇ur|2 + |∇uθ|2 + |∇uz|2 +
u2
r

r2
+

u2
θ

r2

)

dx

≤
∫

CR

(

1

2
|u|2 + p

)

(ur∂r + uz∂z)φdx+ C‖u‖2L6(CR\CR/2)

.
= I + C‖u‖2L6(CR\CR/2)

Case (i). Due to ur, uz ∈ BMO−1(R3), we write

ur = ∂jd1,j, uz = ∂jd2,j, j = 1, 2, 3,

where d1,j, d2,j ∈ BMO(R3). Also, denote f̄ as the mean value of f on the domain CR.

Then we have

I =

∫

CR

(

1

2
|u|2 + p

)

[

∂j(d1,j − d̄1,j)∂r + ∂j(d2,j − d̄2,j)∂z
]

φdx

= −
∫

CR

∂j

(

1

2
|u|2 + p

)

[

(d1,j − d̄1,j)∂rφ+ (d2,j − d̄2,j)∂zφ
]

dx

−
∫

CR

(

1

2
|u|2 + p

)

[

(d1,j − d̄1,j)∂j(∂rφ) + (d2,j − d̄2,j)∂j(∂zφ)
]

dx

Recall that φ(x) = φ(r, z) and

∂j∂zφ = ∂z∂jφ, for j = 1, 2, 3,

∂j∂rφ = ∂z∂jφ, for j = 3,

∂1∂rφ = cos θ∂2
rφ, ∂2∂rφ = sin θ∂2

rφ,

which and the property of BMO function yield that

I ≤ CR−1‖|∇(|u|2)|+ |∇p|‖
L

3
2 (CR\CR/2)

(‖d1,j − d̄1,j‖L3(CR) + ‖d2,j − d̄2,j‖L3(CR))

+CR−2(‖u‖2L6(CR\CR/2)
+ ‖p‖L3(CR\CR/2))(‖d1,j − d̄1,j‖L 3

2 (CR)
+ ‖d2,j − d̄2,j‖L 3

2 (CR)
)

≤ C‖|∇(|u|2)|+ |∇p|‖
L

3
2 (CR\CR/2)

+ C(‖u‖2L6(CR\CR/2)
+ ‖p‖L3(CR\CR/2))

→ 0 (as R → ∞)

Hence, the proof of case (i) is complete.

Case (ii). When |(ur, uz)| ≤ C
r
for r > 0,

I =

∫

CR

(

1

2
|u|2 + p

)

(ur∂r + uz∂z)φdx

7



≤ C

∫

CR

(

1

2
|u|2 + |p|

)

(∂r ln(r)|∂rφ|+ ∂r ln(r)|∂zφ|) dx.

Let g(r) = ln(r) and ḡ be the mean value of g on {x′; |x′| ≤ R}. Then we have

I ≤ −C

∫

CR

∂r(
1

2
|u|2 + |p|)(g − ḡ) (|∂rφ|+ |∂zφ|) dx

−C

∫

CR

(

1

2
|u|2 + |p|

)

(g − ḡ)∂r (|∂rφ|+ |∂zφ|) dx

−C

∫

CR

(

1

2
|u|2 + |p|

)

(g − ḡ)
1

r
(|∂rφ|+ |∂zφ|)dx

.
= I1 + I2 + I3

Note that g ∈ BMO(R2) (see, for example, Chapter IV [15]), and we have

R−1

(
∫

CR

|g − ḡ|3dx
)

1
3

≤ C

(

R−2

∫

|x′|≤R

|g − ḡ|3dx
)

1
3

≤ C

and

R−2

(
∫

CR

|g − ḡ| 23dx
)

2
3

≤ C, R−3

(
∫

CR

|g − ḡ|12dx
)

≤ C

Hence as the arguments of (i), we have

I1 + I2 ≤ C‖|∇(|u|2)|+ |∇p|‖
L

3
2 (CR\CR/2)

+ C(‖u‖2L6(CR\CR/2)
+ ‖p‖L3(CR\CR/2))

For the term of I3, we get

I3 ≤ CR−1(‖u‖2L6(CR\CR/2)
+ ‖p‖L3(CR\CR/2))‖g − ḡ‖L12(CR)‖

1

r
‖
L

12
7 (CR)

≤ CR− 1
4 (‖u‖2L6(CR\CR/2)

+ ‖p‖L3(CR\CR/2))‖g − ḡ‖L12(CR)

≤ C(‖u‖2L6(CR\CR/2)
+ ‖p‖L3(CR\CR/2))

Hence, we can conclude that

I → 0 (as R → ∞)

The proof of Theorem 1.2 is complete.

4 Proof of Theorem 1.3

We are going to prove that
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Proposition 4.1. Assume that the conditions of Theorem 1.3 hold. (1) Let wθ ≤ Cr−β

with β > 1. Then we get for r > 1

|ur(r, z)|+ |uz(r, z)| ≤ C















(1 + r)−
3
2
+ 1

2(β−1) , β > 2,

(1 + r)1−β, 1 < β < 2,

(1 + r)−1 ln(r + 1), β = 2.

(2) Let |wr|+ |wz| ≤ Cr−β with β > 1. Then we get for r > 1

|uθ(r, z)| ≤ C















(1 + r)−
3
2
+ 1

2(β−1) , β > 2,

(1 + r)1−β, 1 < β < 2,

(1 + r)−1 ln(r + 1), β = 2.

Proof of Theorem 1.3. It follows from Proposition 4.1 and Theorem 1.1 directly.

Next we are aimed to prove Proposition 4.1. Firstly, we introduce a representation

formula of ur, uz and uθ with the help of the vorticity. Since b = urer + uzez and

∇× b = wθeθ, ∇× (uθeθ) = wrer + wzez

by Biot-Savart law, we can get the integral representation of the velocity as follows(for

example, see Lemma 2.2 for a local version by Choe-Jin [6], also see Lemma 3.10 by Weng

[17]).

Lemma 4.2. Like the vorticity at the point (r cos θ, r sin θ, z) denoted by (wr, wθ, wz)(r, z),

we write the vorticity at the point (ρ cosφ, ρ sinφ, k) as (wρ, wφ, wk)(ρ, k). Then we have

ur(r, z) =

∫ ∞

−∞

∫ ∞

0

Γ1(r, ρ, z − k)wφ(ρ, k)ρdρdk, (8)

uz(r, z) = −
∫ ∞

−∞

∫ ∞

0

Γ2(r, ρ, z − k)wφ(ρ, k)ρdρdk (9)

uθ(r, z) =

∫ ∞

−∞

∫ ∞

0

Γ3(r, ρ, z − k)wk(ρ, k)ρdρdk

−
∫ ∞

−∞

∫ ∞

0

Γ1(r, ρ, z − k)wρ(ρ, k)ρdρdk (10)

where

Γ1(r, ρ, z − k) =
1

4π

∫ 2π

0

z − k

[r2 + ρ2 − 2rρ cosφ+ (z − k)2]
3
2

cosφdφ

Γ2(r, ρ, z − k) = − 1

4π

∫ 2π

0

ρ− r cosφ

[r2 + ρ2 − 2rρ cosφ+ (z − k)2]
3
2

dφ,

Γ3(r, ρ, z − k) = − 1

4π

∫ 2π

0

ρ− r cosφ

[r2 + ρ2 − 2rρ cosφ+ (z − k)2]
3
2

cosφdφ.

9



Secondly, we give the bounds of estimate of Γ2, Γ3 and Γ1, which will be used in the

proof. This is similar to that in [6], where ρ ≈ r was assumed. Here we consider all ρ > 0

and large r > 0. In details, we have the following estimates.

Lemma 4.3 (Estimate of Γ2, Γ3 and Γ1).

|Γ2(r, ρ, z − k)|+ |Γ3(r, ρ, z − k)| ≤ C

(max{ρ, r})α[(r − ρ)2 + (z − k)2]
2−α
2

, (11)

for r > 1 and 0 ≤ α ≤ 1;

|Γ1(r, ρ, z − k)| ≤ C|z − k|
(max{ρ, r})α[(r − ρ)2 + (z − k)2]

3−α
2

, (12)

where r > 1, 0 ≤ α ≤ 1 for r
4
≤ ρ ≤ 4r, and 0 ≤ α ≤ 3 for ρ < r

4
or ρ ≥ 4r.

Thirdly, we assume Lemma 4.3 holds and complete the proof of Proposition 4.1 and

Lemma 4.3 is proved later.

Proof of Proposition 4.1: At first, we estimate the term of ur(r, z). Let

I = ur(r, z) =

∫ ∞

−∞

∫ ∞

0

Γ1wφρdρdk

=

∫ ∞

−∞

∫ rγ/8

0

Γ1wφρdρdk +

∫ ∞

−∞

∫ r/4

rγ/8

Γ1wφρdρdk +

∫ ∞

−∞

∫ r−rδ/2

r/4

Γ1wφρdρdk

+

∫ ∞

−∞

∫ r+rδ/2

r−rδ/2

Γ1wφρdρdk +

∫ ∞

−∞

∫ 4r

r+rδ/2

Γ1wφρdρdk +

∫ ∞

−∞

∫ ∞

4r

Γ1wφρdρdk

= I1 + · · ·+ I6,

where 0 ≤ γ, δ ≤ 1, to be decided.

For the term I1, by (12) and ‖wφ‖2L2(R3) ≤ CD(u) < ∞ we get

I1 ≤ C

(

∫ ∞

−∞

∫ rγ/8

0

|Γ1(r, ρ, z − k)|2ρdρdk
)

1
2

≤ C

(

∫ ∞

−∞

∫ rγ/8

0

|z − k|2
r2α[r2 + (z − k)2]3−α

ρdρdk

)
1
2

≤ Cr−
3
2

(

∫ ∞

−∞

∫ rγ/8

0

r−2|z − k|2
[1 + r−2(z − k)2]3−α

r−1dk ρdρ

)
1
2

≤ Cr−
3
2
+γ

where 0 ≤ α < 3
2
.

For the term I2, using r > 1, (12) and wθ ≤ Cr−β

I2 ≤ C

∫ ∞

−∞

∫ r/4

rγ/8

Γ1ρ
1−βdρdk

10



≤ C

(

∫ ∞

−∞

∫ r/4

rγ/8

|z − k|
rα[r2 + (z − k)2]

3−α
2

ρ1−βdρdk

)

≤ C











r−1+γ(2−β) (β > 2)

r−1 ln r (β = 2)

r1−β (1 < β < 2)

where 0 ≤ α < 1.

Moreover, for the term I3, by (12) and wθ ≤ Cr−β

I3 ≤ C

∫ ∞

−∞

∫ r−rδ/2

r/4

Γ1ρ
1−βdρdk

≤ C

(

∫ ∞

−∞

∫ r−rδ/2

r/4

|z − k|
rα[(r − ρ)2 + (z − k)2]

3−α
2

ρ1−βdρdk

)

≤ Cr−α−δ+αδ

(

∫ ∞

−∞

∫ r−rδ/2

r/4

r−δ|z − k|
[1
4
+ r−2δ(z − k)2]

3−α
2

r−δdkρ1−βdρ

)

≤ C

{

r2−β−α−δ+δα (β < 2 or β > 2)

r−α−δ+αδ ln r (β = 2)

where 0 ≤ α < 1.

Similarly, for I5 we have

I5 ≤ C

{

r2−β−α−δ+δα (β < 2 or β > 2)

r−α−δ+αδ ln r (β = 2)

where 0 ≤ α < 1.

Furthermore, for 0 ≤ α < 1 by (12) and wθ ≤ Cr−β we have

I4 ≤ C

∫ ∞

−∞

∫ r+rδ/2

r−rδ/2

Γ1ρ
1−βdρdk

≤ C

(

∫ ∞

−∞

∫ r+rδ/2

r−rδ/2

|z − k|
rα[(r − ρ)2 + (z − k)2]

3−α
2

ρ1−βdρdk

)

≤ C

(

∫ r+rδ/2

r−rδ/2

r−α(r − ρ)−1+αρ1−βdρ

)

≤ Cr1−β−α

(

∫ r+rδ/2

r−rδ/2

(r − ρ)−1+αdρ

)

≤ Cr1−β−α+δα (β > 1)

Finally, (12) and wθ ≤ Cr−β yield that

I6 ≤ C

∫ ∞

−∞

∫ ∞

4r

Γ1ρ
1−βdρdk

11



≤ C

(

∫ ∞

−∞

∫ ∞

4r

|z − k|
ρα[ρ2 + (z − k)2]

3−α
2

ρ1−βdρdk

)

≤ Cr1−β (β > 1)

Hence, concluding the estimates of I1, · · · , I6, we have the following arguments.

Case a. β > 2. At this time, we have

I ≤ C
[

r−
3
2
+γ + r−1+γ(2−β) + r2−β−α−δ+δα + r1−β−α+δα + r1−β

]

where 0 ≤ α < 1 and 0 ≤ γ, δ ≤ 1.

First, we choose γ = 1
2(β−1)

such that −3
2
+ γ = −1 + γ(2− β). Furthermore, we take

α ↑ 1, δ ↑ 1 such that

(1− δ)(1− α) ≤ β − 5

2
+

1

2(β − 1)

which implies

−1 + γ(2− β) ≥ 2− β − α− δ + δα

Moreover, note that

2− β − α− δ + δα ≥ 1− β ≥ 1− β − α+ δα

Then, we get for r > 1

|ur(r, z)| ≤ Cr
− 3

2
+ 1

2(β−1) .

Case b. β < 2. At this time, we have

I ≤ C
[

r−
3
2
+γ + r2−β−α−δ+δα + r1−β−α+δα + r1−β

]

where 0 ≤ α < 1 and 0 ≤ γ, δ ≤ 1. We choose γ = 0 and δ = 1, then we get

|ur(r, z)| ≤ Cr1−β.

Case c. β = 2. At this time, we have

I ≤ C
[

r−
3
2
+γ + r−1 ln r + r−α−δ+αδ ln r + r1−β−α+δα + r1−β

]

where 0 ≤ α < 1 and 0 ≤ γ, δ ≤ 1. We choose γ = 0 and δ = 1, then we get

|ur(r, z)| ≤ Cr−1 ln r.

Hence we complete the estimate of ur(r, z).

12



Note that the bound of Γ1 used as above is similar to the estimates of Γ2 and Γ3.

Hence similar arguments hold for uz and uθ. The proof of Proposition 4.1 is complete.

Proof of Lemma 4.3. The remaining part is devoted to proving Lemma 4.3, which

is similar to that of [6], where the case r
4
< ρ < 4r is discussed. Here we consider all the

value ρ > 0 and sketch the proof. First, for k > 0 and β ≥ 1 we find

I =

∫ π
2

0

dφ

(
√

1 + k sin2 φ)β
≤
{

C(δ)min{1, k− δ
2}, β = 1

C(β)min{1, k− 1
2}, β > 1

(13)

for any 0 ≤ δ < 1. Obviously, k ≤ C holds, and next we assume that k is large enough.

Then for 0 < ℓ < 1

I ≤ ℓ+

∫ π
2

ℓ

dφ

(k sin2 φ)β/2

Due to φ ≤ 2 sinφ for φ ∈ (0, π
2
), we have

I ≤ ℓ+ 2k−β/2(ln(
π

2
)− ln ℓ), β = 1,

and

I ≤ ℓ + 2βk−β/2 (
π
2
)1−β − ℓ1−β

1− β
, β > 1,

which yield the required bound (13) by choosing a suitable ℓ.

Obviously, from the formulas of Γ2,Γ3 and Γ1, we have

|Γi(r, ρ, z − k)| ≤ ρ+ r

[(r − ρ)2 + (z − k)2]
3
2

, i = 2, 3; (14)

|Γ1(r, ρ, z − k)| ≤ |z − k|
[(r − ρ)2 + (z − k)2]

3
2

(15)

for all ρ > 0 and r > 0.

Next we go on estimating Γ2, Γ3, and Γ1 carefully, respectively.

Step I. Noting the periodic and even property and variable transform for φ, we also

have

Γ2 = −
∫ 2π

0

1

4π

ρ− r cosφ

[r2 + ρ2 − 2rρ cosφ+ (z − k)2]
3
2

dφ

= −
∫ π

2

0

1

π

ρ− r cos 2φ

[r2 + ρ2 − 2rρ cos 2φ+ (z − k)2]
3
2

dφ

and

Γ2 = −
∫ π

2

0

1

2π

ρ2 − 2rρ cos 2φ+ r2 + ρ2 − r2

ρ[(r − ρ)2 + 4rρ sin2 φ+ (z − k)2]
3
2

dφ

13



≤ C
1

ρ
√

(r − ρ)2 + (z − k)2

∫ π/2

0

dφ
√

1 +K sin2 φ

− 1

2π

1

ρ[(r − ρ)2 + (z − k)2]
3
2

∫ π/2

0

ρ2 − r2

(
√

1 +K sin2 φ)3
dφ

.
= I1 + I2

where

K =
4rρ

(r − ρ)2 + (z − k)2

When K ≤ 1, that is 4rρ ≤ (r − ρ)2 + (z − k)2, we have (r − ρ)2 + (z − k)2 ≥ 1
2
r2 for

ρ ≤ r
2
and (r − ρ)2 + (z − k)2 ≥ 2r2 for r

2
≤ ρ ≤ 4r. Moreover, for ρ ≥ 4r we have

(r − ρ)2 + (z − k)2 ≥ (
3

4
ρ)2 ≥ (

3

5
(ρ+ r))2 ≥ 9

25
(ρ+ r)2

Hence for K ≤ 1 we have

Γ2 ≤ C
1

ρ
√

(r − ρ)2 + (z − k)2
(16)

When K > 1, by (13) we have

Γ2 ≤ C(δ)
1

ρ
√

(r − ρ)2 + (z − k)2

·
[

(

(r − ρ)2 + (z − k)2

4rρ

)
δ
2

+
|ρ2 − r2|

(r − ρ)2 + (z − k)2

(

(r − ρ)2 + (z − k)2

4rρ

)
1
2

]

(17)

where 0 ≤ δ < 1.

Case a. For r > 1 and ρ ≤ r
4
or ρ > 4r, by (14) we know the estimate (11) holds.

Case b. For r > 1 and r
4
≤ ρ ≤ 4r with K ≤ 1, by (14) and (16) we know the

estimate (11) holds.

Case c. For r > 1 and r
4
≤ ρ ≤ 4r with K >> 1, by (14) and (17) we know the

estimate (11) holds by noting that (r − ρ)2 + (z − k)2 ≤ 16r2 and

|ρ2 − r2|
(r − ρ)2 + (z − k)2

(

(r − ρ)2 + (z − k)2

4rρ

)
1
2

≤ ρ+ r√
4rρ

≤ 5.

Hence the proof of Γ2 is complete.

Step II. The term Γ2 is similar and we omitted the details.

Step III. The term Γ1 is estimated as follows.

Γ1(r, ρ, z − k) =
1

2π

∫ π

0

z − k

[r2 + ρ2 − 2rρ cosφ+ (z − k)2]
3
2

cosφdφ

14



=
1

π

∫ π
2

0

z − k

[(r − ρ)2 + 4rρ sin2 φ+ (z − k)2]
3
2

cos 2φdφ

≤ C
|z − k|

[(r − ρ)2 + (z − k)2]
3
2

∫ π/2

0

1

(
√

1 +K sin2 φ)3
dφ

.
= I ′

where

K =
4rρ

(r − ρ)2 + (z − k)2

When K ≤ 1, i.e. 4rρ ≤ (r − ρ)2 + (z − k)2, we have (r − ρ)2 + (z − k)2 ≥ 1
2
r2 for

ρ ≤ r
2
and (r − ρ)2 + (z − k)2 ≥ 2r2 for r

2
≤ ρ ≤ 4r. Moreover, for ρ ≥ 4r we have

(r − ρ)2 + (z − k)2 ≥ (
3

4
ρ)2

Hence for K ≤ 1 we have

(r − ρ)2 + (z − k)2 ≥ 1

2
(max{r, ρ})2

Using (15), for K ≤ 1 we get

|Γ1(r, ρ, z − k)| ≤ C|z − k|
(max{ρ, r})α[(r − ρ)2 + (z − k)2]

3−α
2

, (18)

where 0 ≤ α ≤ 3.

When K > 1, i.e. 4rρ ≥ (r − ρ)2 + (z − k)2, which implies ρ > 1
8
r, by (13) we have

|Γ1(r, ρ, z − k)| ≤ C|z − k|
[(r − ρ)2 + (z − k)2]

3
2

(

(r − ρ)2 + (z − k)2

4rρ

)
1
2

≤ C|z − k|√
rρ[(r − ρ)2 + (z − k)2]

Thus for 1
8
r < ρ < 4r, we have

|Γ1(r, ρ, z − k)| ≤ C|z − k|
(max{ρ, r})α[(r − ρ)2 + (z − k)2]

3−α
2

(19)

where 0 ≤ α ≤ 1. For ρ ≥ 4r, by (15) we also derive that

|Γ1(r, ρ, z − k)| ≤ C|z − k|
(max{ρ, r})α[(r − ρ)2 + (z − k)2]

3−α
2

(20)

where 0 ≤ α ≤ 3.

Concluding the estimates (18), (19) and (20), we complete the proof of the inequality

(12).
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