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SCHWARZ LEMMA, AND DISTORTION FOR HARMONIC
FUNCTIONS VIA LENGTH AND AREA

M. MATELJEVIC

This is very rough working version (Version 3, 4/27/2018).

1. INTRODUCTION AND BASIC DEFINITIONS

We give sharp estimates for distortion of harmonic by means of area and length
of the corresponding surface. In 2016 [I8](a), the author has posted the current
Research project Schwarz lemma, the Carathéodory and Kobayashi Metrics and
Applications in Complex Analysisﬂ Various discussions regarding the subject can
also be found in the Q&A section on Researchgate under the question 7 What are
the most recent versions of The Schwarz Lemma 77 [I§](b). During the fall semester
2017 at Belgrade seminar [16], we have communicated about Schwarz lemma and
we have posted the arXiv paper [15], in which we have considered various version
of Schwarz lemma and its relatives related to harmonic and holomorphic functions
including distortion of harmonic mappings, and several variables. For the results
of [15] see also [I7]. For example, in Section 2l we prove several optimal versions of
planar Schwarz lemma for real valued harmonic maps h from U into Iy = (—1,1) (
see Theorem [I] and [ related to the case h(0) = a, a € Ip; and Theorem B] and [E]
for the case f(a) = b, a € U). In particular if a = 0 a part of Theorem [lis reduced
to classical Schwarz lemma for harmonic maps.

Note that TheoremMyields solution of D. Khavinson extremal problem for harmonic
functions in planar case, cf. [12 [13].

From Theorem [ we also derive Theorem [G] which is a version of planar Schwarz
lemma for complex valued harmonic maps h from U into itself, and a version of the
boundary Schwarz lemma, see Theorem

During my work on the subject, D. Kalaj gave an interesting communication,
cf. [§](from which we have learned about his arXiv papers [0} [7]), and immediately
we have realized that we can adapt our previous consideration to connect with
his work. In particular, using different approach we can give new insight to these
results as well as further results.

We first need some definitions.

Definition 1. al) By C we denote the complex plane, by U the unit disk and by
T the unit circle.

a2) In planar case G C C with euclidean norm the notation A;(z), z € G, is used
instead of [|(df).||. For a function h, we use notation D1h = hi, and Dah = h;, for

partial derivatives; Oh = 5(h/, — ih})) and 8h = 5(h/, + ih]); we also use notations
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Dh and Dh instead of Oh and Oh respectively when it seems convenient. We use
the notation Af(z) = [|0f(2)] = 0 (2)l| and Ag(2) = |0f(2)| +|0f(2)], if Of ()
and Of(z) exist.

a3) If f is harmonic in U then we write f = g+h, where g and h are analytic in U. If
9'(2)] = [I'(2)], then Ay (z) = |g'(2)[+|h'(2)], Af(2) = |¢'(2)| —['(2)| and therefore
Ap(2) + Af(2) = 2|¢'(2)]. In general, Af(z) + Af(2) = 2max{|¢'(2)],|h'(2)|}.

Definition 2. bl) For a C! mapping v : U — R™, set S = u(U), D[u] =
Jo(IDrul? + |Dou?)dzdy, E = |Diul*, G = |Dyul?, F = Dyu- Dou, J, =
VEG — F?2, and A = A(S) = A(u) = [; Judzdy.
b2) We say that u is K-qc if E + F < 2KJ,; in planar case this definition is a
small modification of the standard definition of coefficient of quasi-conformality, see
Remark 23

b3) Suppose that v : U — R™ is harmonic on U. Then u = ReF, where F is
analytic. Set D[F] = [,/ |F'(z)]*dzdy.

b4) If f is a function on T, we associate to f a curve v = 7, defined by
y(t) = f(e), t € [0,27], and we denote by L = L(f) = |y¢| the length of ;.

It is easy to check that
Diu = ReF’ and Dyu = —ImF’ and
(A) |Dyul? + |Dau|? = |F’|?, and therefore
Dlu] = D[F].
If in addition w is conformal at some point, |Dyu| = [Dgu| and therefore
|[ReF’| = |[ImF’| and (ii) |F’|> = 2|Dyul*.
We will use the following hypothesis in the sequel
(Hp): u:U — R™ is harmonic on U, and S = u(U),
(H,,): In addition to (H,,) we suppose that
(h1): u is continuous on U and 7 = 7, is rectifiable.
In Section Bl we prove:
(10) If u satisfies (H,,), then (il): 47 A < L?, where A = A(u) and L = L(u).
(I1) If in addition to (H,,) we suppose that u satisfies
(h2): A(S) is finite and
(h3): w is K-quasiconformal,
then

D[u] = D[F] = = (D _(K|F(k)[*)) < 2KA(S).
k=1
12) If in addition to (H,,) and (h2) we suppose that (h4): u is conformal, then
A= [ |DyuPdady = (S (K|F(8))).
| 1prutazay = 5 (ke )
d2) In particular, 7A2(0) < D[u] with equality iff (ii) v = 7, is a circle given by
up = arx — bry, k =1,2,3,...,m, where |a| = |b| and a - b = 0.
Hence using the isoperimetric inequality,
d3) 27A,(0) < L with equality iff (ii).
In [6] a version of (d3) is proved.
In Section Bl we first consider the cases when m = 2, 3.
For f : U — R? we use notation G = f(U). For convenience of the reader we
also first suppose that u is harmonic on U. In this case L is length of 0G. In
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Section [3 using Proposition Bl we consider distortion of harmonic functions on U
related to diameter dia(G) of image domain G = f(U), see Theorem [§l Then use
an inequality between dia(G) and the length L(G) of boundary of G we estimate
distortion via L(G) and prove 2wA;(0) < L, see Theorem[I0 In [§] a version of the
part (b) of Theorem [[0lis proved for diffeomorphisms.

Under the hypothesis (H,,), m > 2, it is convenient to introduce for given zy € U
the tangent plane Z = Zyo, y = u(20). Then we use the projection p onto Z and
apply planar result on p o u to prove 27(1 — |z0|?)\u(20) < L, see Theorem [I1] and
Theorem [T If in addition f is conformal at zp, then A,(z0) = Ay(z0) and the
previous inequality holds with A, (zo) instead of A, (zp), see Theorem

In Section ] we outline a proof of Theorem [I4l Using this result one can show
that some of the above described results hold under more general hypothesis then
(H,,)(see for example Theorem [IG)).

These results are communicated in November 2017, [16].

2. SCHWARZ LEMMA

For a hyperbolic plane domain D, we denote by pp(or Ap) the hyperbolic density
and by abusing notation the hyperbolic metric occasionally.

Lemma 1. If G and D are simply connected domains different from C and
w € Hol(G, D), then pp(wz)|w'(z)| < pa(2), z € G and

pp(wz,w?’) < pa(z,2), 2,2 €G.
We denote the right half plane by II.

Proposition 2.1. If w is holomorphic from IT into itself, then

, Rew(2)
|W (Z)| < "Res

If in addition w maps RY into itself, then |w’(1)] < Rew(1) = w(1) and therefore
w'(1) < wl(1).

Definition 3. By C we denote the complex plane by U the unit disk and by T the
unit circle. For z; € U, define

z— z1

T, (2)

T 1 -7z
Pz = _Tzl'

d1) Throughout this paper by S(a, b) we denote the set (a,b) xR, —co < a < b <
00, and in particular we write Sg for S(—1, 1). Note that S(a,b) is a strip if —co <
a < b < oo and S(a, +00) is a half-plane if a is a real number, and S(—oo, +00) = C.
By Ao and pg we denote hyperbolic metrics on U and Sy respectively.

d2) Set Iy = (—1,1), andfor a€lp define

™

s=s(a) = tan(%(a—k 1)), e=e(a)=cot (4 (a+1)), and

4 1 4 1
X(r)=X"(r,a) = - arctan(sl +T)—1, X~ (r,a) = 1——arctan (el +T> ,ze€U.
7r - 7r
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Further it is convenient to introduce the functions A, B, A, and Bs by A(r) =
1+ —=r)"L,Br) = (1 —r)(1 + 7)Y, As(r) = sA(r), Bs(r) = sB(r), and
Y(r) = X*(|z], [al)-

d3) Set c=(a+1)/2,¢=2m¢, a = a(c) =ala) =¢/2 = (a+ 1)7/2.

It is convenient to write f,(x) = f(x,y).

(A0) It is straightforward to check

a a

X, (r)= %arctan(Bs(r)) -1, X, (r)<a<X[(r),

X T (r,a) (respectively X ~(r,a)) is increasing (respectively decreasing) in both vari-
ables 7 and a, X;7 =1 and X7, = —1.

Note that s = s(|a|) = tan(§(|a| + 1)) for acU.
Since X (r) = 2 (arctanoA) — 1 and AL(r) = 2s(1 — r)~2, we find

C42s(1—r)"2 4 2s

2.1 X'(r) =— = — 0< 1.
@1) ) = i@ A rearp ST
In a similar way since X_(r) = 2 (arctanoB) — 1 and Bj(r) = —2s(1 + )72, we
find
4 2s

2.2 X’ = —— 0< 1.
( ) 7(7‘) 77(1+T)2+S2(1—T)2, <r<

Next

4 4 4
X(0) = ~ arctan (tan@) 1= ;@—1: ;(a—i—l)%—l:a,

and by &I),

4 2 4 2tan 2l 4
(28)(0) = =2 = B2 Zotan(a/2) cos?(a/2) = — sina,
i ™

. 2 P 2
ml+s 7T1+(tano‘Tc))

and in a similar way using (2.2))

(2.4) X' (0) = —X'(0) = _% sina.

Suppose that f is harmonic map from U into Iy = (—1,1) with h(0) = a. Using
a version of Schwarz lemma [I7], we will show

s(f2) 147
s(a) 1—7’

This inequality is equivalent to X ~(|z],a) < f(z) < X(|z]) = Xt (|z|,a),z € U.

z e U.

(2.5) po(fz,a) =]In | <In

Theorem 1. If uj,us € (—1,1), then
s(uz)
s(up) "

Let h be a real valued harmonic map from U into Iy = (—1,1) with h(0) = a,
a € Iy. Then

(2.7) X~ (Iz],a) < h(z) < X(|2]) = X T (|z],a),2 € U,

(2.6) po(ui, ug) = [In

(2.8) and  [(dh)o] < X'(0) = 2 sina.
™
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If a =0, then a; = tanZ = 1 and X (|2],0) = £ arctan|z|. Hence we get classical
Schwarz lemma for harmonic maps which states |h(z)] < X(|z]) = X(]z],0) =
4 arctan|z|.

Proof. We use

1 1.1 *
secf = oyt tanh™' 2z = gln 1_|__z, I(x) = /0 sectdt = 2tanh_1(tan;)
and
1
(2.9) po(w) = Hypg, (w) = gm,for w €Sy, where u=Rew.

Since A(tan %) = tan(¥ + %), we find I(z) = In (tan(§ + £)).
If up, uz € (—1,1), w1 < ug, then using the change of variables t = Ju, t), = Jug,

k =1,2, we have

T ("2 du 2y
210) o) = [ = [ 1) - 1(0),
u t1

. cos(Fu) cos(t)
and therefore since I(t;) = In (tan(Z + £)) = Ins(ug), k = 1,2, we find

2
tan 7 (ug + 1)

2.11 =In——~.
( ) pour, uz) = In tan §(u1 +1)

Hence (26)) follows.
If 7(0) = a and recall we set s = s(a) = tan(%(a + 1)), by a version of Schwarz
lemma [I7], for z € U we find

1+ |z]
Tl
XX If a = 0, then s(0) = tanZ = 1 and X(|z[,0) = 2 arctan|z|. If we set
g = —h, then ¢g(0) = —a, and by (ZI2)), we find —h(z) < X(|z]) = X(|z], —a), ie.
h(z) > =X (]z|, —a). Hence one can derive ([Z7]).
But, we prefer the following approach. If z € K., then

(2.12) tan(%(h(z)+1)) < ie. h(z) < X(z]) = X(|2], a).

z 1+7r
(2.13) |1n88((fa))|§1nli—r.
We can rewrite this inequality as
(2.14)
s(fz) 14+r s(a) 1+7r
5(a) < T if s(a) <s(fz), and 577 < T if s(a) > s(fz2)

Hence if f(z) > a, we find s(fz) < As(r) and therefore f(z) <
is convenient to introduce B(r) = s(1—7)(1+7)"!, and X_(r) =
Hence if fz < a, we find s(a) < s(fz)As(r) and therefore f(z) >

Hence, by (A0), we find X_(r) < f(2) < X(r).

Next by (ZI) and 22), we have
4 2s , 4 2s
7 (1—r)2+s2(1+r)?’ X-(r) = T(1+7r)2+s2(1—-r)

and in particular by @3) and 24), X'(0) = 2sina, X’ (0) = —2 sina, and there-

I G

fore ([2.8)) follows. O

ENEN
L
gz
= T
o E
=
o =
\/U‘
@
| =
=

X'(r) = 3 0sr<l
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XX After writing the previous version we have realized that the inequality (27
in Theorem [ is covered by [3], but our proof is completely different.

Definition 4. d1) For a € (—1,1), let Har" denote the family of all real valued
harmonics maps f from U into (—1,1) with f(0) = a.

d2) For ¢ € U and b € (—1,1), set L(a,b) = L(a,b) = sup|(du)s|, where the
supremum is taken over all real valued harmonics maps w from U into (—1,1) with
u(a) = b.

d3) For a € U and ¢ € T,C a unit vector, set L(a) = sup|(du),| and L(a,l) =
sup |(du)q(¢)], where the supremum is taken over all real valued harmonics maps
from U into (—1,1).

Now, we can restate and strength the part of Theorem [}

Theorem 2. If a € (—1,1) and h € Har”, then
(2.15)
4 4
(1) h(z) < X(|z]), (@i1) |(dh)o] < X'(0) = —sina and (i) L(0,a) = —sina(a).
T T
Proof. We need only to prove (iii). There is a conformal mapping f of U onto Sy
with f(0) = a and f/(0) > 0; then for harmonic function ug = Ref the equality
holds in (iii). O

Theorem 3. Let h be a real valued harmonics map from U into (—1,1) with
f(a) =b, a € U. Then

(2.16) h(z) < %arctan (1 i— Iiigi;: tan O‘(|2b|)) -1,
(2.17) [(dh)a] < %%

Proof. Set w = ¢q(z). Apply Theorem Rlon h* = h o ¢,, we find h%(z) < X(|z]).
Hence h(w) = h%(z) < X(|ga(w)|). Since we can identify (dp,)o with 1 — |a|?,

using (dh®)g = (dh)q o (dpgs)o and Theorem 2l we prove [217). O
Further set . 5
Ap(z) = i, and let ¢ =i—InAy;
1—=2 s

2 N N
that is ¢ = ¢ o Ag, where ¢g = i—In. Let ¢ be defined by ¢(z) = —¢(iz). Note
T

that ¢ maps Iy = (—1,1) onto y-axis and é maps Iy onto itself.
If & = Reg, then

2 1+
(2.18) = —arg ( i ZZ)

s 1 -1z
and u maps Iy = (—1, 1) onto itself.

Let a € (0,1) and ¢ € T,C. There is a conformal mapping f = f; of U onto
So with f(a) = 0 and f'(a)¢ > 0. We will show that u = uy = Ref, is extremal.
In particular, there is a conformal mapping f of U onto Sy with f(a) = 0 and
f'(a) > 0; set ugp = Ref.

Theorem 4. If a € (—1,1) and ¢ € T,C, then
(1) L(a) = (uo);(a) = 7(1 —al*)~" and

T
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(2) L(a,€) = L(a) = (due)a(€) = 7 (1 lal*)~".

™

This yields solution of D. Khavinson extremal problem for harmonic functions
in planar case, cf. [12] [13].

Proof. (1) By hypothesis po(f(a))|f"(a)| = 2(1 = [a*)™", po(f(a)) = po(0) =
(u0);(a) = f(a) and |(duo)a| = [Vuo(0)| = 7 (1 — |al*)~".

(2) Recall there is a conformal mapping f = f; of U onto Sy with f(a) = 0 and
f'(a)l > 0. If uw = ug = Refy, then (du)q(¢) = Re(f’(a)f). We leave the interested

reader to fill details. O

vl

)

Theorem 5. Let h be a real valued harmonics map from U into (—1,1) with
f(a) =b, a € U. Then

4 sin a(|b])

71— a2’

4 sin a(|b])

T 1—la]2”

(2.19) (1) [(dh)a] < (i) L(a,b) =

Proof. There is a conformal mapping of U onto Sy with f(a) = b. We leave the
interested reader to show that ug = Ref is extremal for (i) and therefore (ii)
holds. (]

2.1. Schwarz lemma at the boundary.

Theorem 6. Let h be a complex valued harmonic map from U into itself with
h(0) = a, a € U. Then

|h(2)] < X(|2]) = X*(|z],|al), 2 € U.
Proof. Using rotation around 0 and Theorem [Il one can prove this result. O

Theorem 5. Let f : U — U be harmonic and s = s(f(0). Further assume that
there is a point b € T so that f extends continuously to b, |f(b)| = 1 (say that
f(b)=10"), and f is R- differentiable at b. Then

2
As (D) > —.
[Ar(0)] = —
Proof. By 1)), we find
2
lim X'(r) = —.
r—1_ ST
The rest of proof is based on Theorem [0l and the following proposition. O

We leave the interested reader to prove the following propositions:

Proposition 2.2. (a) Let f : U — U. Assume that there is a point b € T so
that f extends continuously to b, |f(b)| = 1 (say that f(b) = ¢), and and f is R-
differentiable at b.

(b) Further assume that there is a function A such that A : [0,1] — [0, 1], A’(1)
exists and M(r) < A(r).

Then [A4(b)] > [/1(5)] > A4/(1).

Proof. Without loss of generality we can suppose that ¢ = b = 1. By (b),

L0 =10 1) 5 gy 1240

Hence if r — 1_, we have |f/.(b)| > A’(1). Since by definition of As(b), Af(b) >
[£1(b)] it completes proof. O

| >
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Proposition 2.3. Under the above hypothesis, if there exists f/(b), then
(i) [f/(b)] = A'(1).

3. DISTORTION OF HARMONIC FUNCTIONS RELATED TO DIAMETAR AND LENGTH

We advise the reader to recall Definition [l In [I0] and [I5] in particular, it is
proved (see also [ABR], Theorem 6.16, Proposition 6.19, cf. [12 Bl 13]):

Proposition 3.1. If u is a harmonic map from U into Iy = (—1,1), then
4
(3.1) Vu(0)] < =.
T
For convenience of the reader we outline a proof. Throughout this paper by
S(a,b) we denote the set (a,b) x R, —o00 < a < b < o0, and in particular by
Sp = §(~1,1). The mapping fo defined by fo(w) = tan(fw) maps Sy onto U.
If we denote by pg hyperbolic density on Sy, then using fy we can check that for
w=u+1 €Sy,

(3.2) po(w) = Hypg, (w) = & —

T2 cos(u)
It is known from the standard course of Complex Analysis that there is an analytic

function w on U such that © = Rew on U. Since w is holomorphic map from U into
So, then by a very special case of Schwarz-Ahlfors-Pick lemma(see also the property

M),

(3-3) po(w(2)lw'(2)] <201 = [)7", 2 €T,

where pg is given by (B2).

Since § < po(w) and |w'| = [Vu| = |Vu|, we have (B.I).

In particular, if w is a holomorphic function from the unit disk U into Sy with
w(0) = 0, we have |w’(0)] < 2 with the equality iff w is a conformal mapping of U
onto Sy.

Remark 6. Note that one can derive Theorem 2] from ([B.3]). Namely, by the above
notation po(u(2))|Vu(z)| < 2.

Definition 7. cl) If g is a holomorphic function on U by g, we denote its Taylor
coefficient and write g(2) = > oo, gx2". Note that kg, = ¢g®)(0). c2) For a set
M C R™ by d = dia(M) we denote the diameter of M.

Theorem 8. Let f = g+ h be complex valued harmonic in U which satisfies (H1).
Then
(i) mAf(0) < 2d.
(ii) 2d < L.
d 142

For function uq(z) = £ arg 7=

the equality holds in (i).
It is interesting that p(z) = d - /2 is not extremal for the inequality (i).

Proof. We can suppose that f(0) = 0 and using rotations that A(0) = |é1] and
é1 = dfo(e1) = key, where k = A;(0). Set p(w) = v and F = po f. Then p(G) is
an interval of length equal or less then d, and by Proposition Bl 7|V F(0)| < 2d.
Since [VF(0)| = Af(0), we get the first inequality of (i). We leave to the reader to
show that 2d < L.

O
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Definition 9. dl) For a € R, define S, = {w : Rew < a} and let P, denote
the family of all functions f holomorphic in U for which f(U) C S,.
d2) If H is a holomorphic function on U which has zero at 0 at least of order 2
and a € C, it is straightforward to check that there are unique holomorphic
functions ¢ = gy and h = hy on U such that

(h0): XX g(0)=h(0)=0and ¢’ = —H +a, h' = 272H.

Note that in this setting a = ¢’(0) and set fz., = gg +ihg. If it is not confusing
we write fg instead of fy o and in this way we associate a unique harmonic function
fu to H. We say that H satisfies

(h): if it satisfies (h0) with 2H € Py,

and that f = g + h satisfies
(h0) with respect to H: if H satisfies (h}).
d3) It is convenient to say that f = g + h satisfies
(h1) with respect to v if: g(0) = h(0) = 0 and

)

1 v
3.4 I = d K =
(3.4) g 1+ 22%2v an 1+ 22%2v

where

(i3): ¥ = w22 and w € Hol(U, U) has zero at 0 at least of order 2.

o If v satisfies (i3) there a unique f, which we denote by f“ = f§, such that
g’ and b/ are given by (B4).

Note if ¢’ is given by [B4), then ¢’(0) = 1, and if v satisfies (i3), then by an
application of classical Schwarz lemma, |v(z)| < 1, 2z € U, and the function (14w)~*
(defined by z + (1 + z%v)~1) is holomorphic on U.

We leave to the interested reader to show that f = g + h satisfies (h1) with

respect to v iff it satisfies (h0) with respect to H with H = 1_’;?};.

Theorem 10. Let f = g+ h be complex valued continuous on U and harmonic on
U which satisfies (H,). [ Then
a) 2mk|gx| < L, k > 0. In particular
al) 2m|g’(0)| < L, with equality in the case a = g’'(0) > 0 iff
(ha): ¢ = —H +a, h = 272H, and 2H € P,, where H has zero at 0 at least of
order 2.
a2) 2mmax{|g'(0)[,[n'(0)} < L
a3) 2m|g’(0)| < L with equality iff
(i4): f = cf¥ + c1, where where v satisfy (i3).
b) 2m(1—|2%)|¢' ()| < L, 2 € U with equality iff (i5): f = cfYop,+c1, where
¢,c1 € C and v satisfy (i3).
bl) 27(1 — |2|?)|A\f(2)| < L, z € U.
As a corollary we get, w(|¢’(0)| + [A/(0)]) < L and since As(z) + Af(z) =
2max{ g/ (0)], W' (0)]}, 7(A(0) + Ay (0)]) < L and 27As(0) < L.
Set iX(t) = fle7®. If ¢’(0) > 0 and the equality holds in al) X(¢) > 0 on
[0,27] and therefore, since f; = iX(t)e®, § = arg(f/) = t + m/2. Hence if f is
homeomorphism, ¢ is convex.

Proof. We suppose first that f is harmonic on U (in general case we can apply the
obtained results on f,, 0 < r < 1, and then pass by limit when r tends 1). Set

2y(t) = f(e't), t € [0,27] is a rectifiable curve and L = |5| is length of .
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z = re’. By calculation f](z) = ig're’ +ih/reit = ig'(2)z +ih/(z)z. Hence f](z) =
0> ey kgpz® — i) p khizF and fl(z) =i > e kgrrFeltt — iY77 | khgrkeikt and
2mikgy, = 0% fle=™tdt.

a) Since f; = ig'e +ih/ei, 2mig'(0) = 027T fle~idt. Hence

2mlg'(0)] < fy" | fie~i|dt = L.

Set iX(t) = fle=, X(t) = g’ — W'eZ®. Then (i) 2rg’(0) = [°™ X (t)dt.

If the equality holds in (i) and a = ¢’(0) > 0, then X = X is a nonnegative
function. Set u = P[X] and H = h’'22. Then u = ¢’ — H and u is a nonnegative

function. Hence Im(g’) = Im(H) and therefore ¢ = —H + a, that is (i6) ¢’ =
—h'2?+a. Since X = —H +a— H = a — ReH, we conclude that 2H € P,,.

Set Mo(w) = 1% and w = 2*v. Then 2My(w) € Py iff w € U.

It is convenient to suppose for a moment that a = 1. Substitute A’ = vg’ in (i6),

we find ¢’ = 1 — 2z%v¢’ and therefore

1 v
= d n'= .
I =1 ™ 1+ 220
Therefore H(z) = My(z?v) and w € Hol(U, U).
Using it one can check first that the equality holds in (a3) in the case a = 1 and
f(0) =0iff f = f£ and in general iff f is given by (i4).
b) For z € U apply a) on f o .. O

For the convenience of the reader we first consider harmonic maps of U into
R3. Recall we will use the following hypothesis in the sequel (Hj): Suppose that
=573 U— R? harmonic, S = f(U) and the generalized length of 95
with respect to f, L = L*(f) = L*(f,d9) is finite.
In this setting, let Fj are holomorphic function in U such that fr = 2ReFy, k =
1,2,3.
Then (A2:) fi +ify =g+ h, where g = Fy + il and h = F| — iF}.
(I) By y = (y1,y2,y3) we denote coordinates in R? and for y° € R? we denote the
translation Tyo defined by Tyo(y) =y — y". We use the following procedure:
(I-1) Set ps(y) = ps(y1,y2,¥3) = (y1,42), where by y = (y1,¥2,y3) we denote
coordinates in R3. Under the hypothesis (Hj), it is convenient to introduce for
given zp € U the tangent plane Z = Zyo, yY = f(z0). After rotation we can
suppose that
(ha): Z is y1yo-plane which we can identify with C-plane. More precisely there
is a rotation Ryo around y? such that R = Ry = Tyo o Ryo maps Z onto II =
{(y1,y2,0) : y1,92 € R}, with Rz(z9) = 0. Set f* = Ro f, and v* = Ro~. Then
f=fz:=p3oRo fisaharmonic function from U into C.

Using similar approach as in the proof Theorem [ (ii), one can prove:

Proposition 3.2. Under the hypothesis (H;), 2d = dia(G) < L.

Theorem 11. Suppose that f = (f1, f2, f3) satisfies (H,). Then
a) (i) 7As(0) < 2d, where d = dia(S).
b) 7(1— |2|))As(2) < 2d, z € U.

Proof. Apply Theorem [ on fz. O

For a fixed z, set ff = fu o, — fu(z).
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Theorem 12. Under the hypothesis (H3),

b) If f is conformal at z, then (ii) 2w (1 — |2|?)|f4(2)| < L, z € U.

bl) The equality holds in b) for some z € U iff (iii): f(U) is in the tangent plane
Z = Zgz) and fz = cff or fz = cff, c € C, and H satisfy (h0) with 2H € Py
and H(z) =0, where |c| = |fL(2)|(1 — |z|?) .

For a fixed z set Z = Zy(,). If f is conformal at z, it is easy to check that
L = L(f) = L(fz) and (b2): 27|(fz),(0)] < L. The equality holds in (b2) iff f
satisfies (iii).

To get filling about Theorem [I2] we give some comments in the following remark.

Remark 13. (i) Using a similar procedure one can show that the corresponding
version of Theorem [T and Theorem [[2hold under hypothesis (H5), that is m > 2.
(ii) The equality case in b).

Note that the equality holds in b) for some z € U, if, for example, f(U) is in a
plane say Z and f = f(z)+ R, where R: U — Z is a composition of a rotation in Z
around f(z) and homotety wrt f(z). It is interspersed that the family of extremal
maps is much larger then the family described in the previous sentence. Suppose
that the equality holds in b) for some z € U. After rotation we can suppose that
Z = Z§(z) is y1y2-plane which we can identify with C-plane. Then Fy(z) = iFj(z)
or F{(z) = —iF{(z). In the case Fy(z) = iF](z), the equality holds in b) iff f(U) is
in the tangent plane Z = Zy(.y and (i5): f = cf” o ¢, + c1, where ¢,c; € C, and v
satisfy (i3) with v(z) = 0. In the case F](z) = —iF{(z) we leave the reader to state
the corresponding statement.

Proof. In particular if (H,)(for dimension m = 3) holds f, then the theorem holds.
We will prove the theorem under this assumption. By application this case to f,,
0 < r <1, and letting r tends to 1, one can get general result.

a) Let S = f(U), and My = f(0). Since f is conformal at 0, then
(c1): f7(0) = 0 or (c2): f7(0) x f,(0) # 0.
In the case (c1), (i) is clear. In the case (c2) there is the tangent plane Z of S at
Mol Set f=pso f, J= (', f*) and 5(t) = f(e"). Then [ =g+ h.

Recall by notation in (II), II is tangent plane of S* = f*(U) at 0, so that

(f*)*(z) = o(f(2)) = e(x) f(0)
and therefore ((f*)3),(0) = 0. Hence f.(0) = f.(0). Since f is conformal at 0,
then f is conformal at 0, we can suppose wlg that h/,(0) = 0. Thus, since Ry is an
euclidean isometry in this case we have
(i) [(9)(0)] = [/2(0)] = [ /2 (0)].
If L = |3 and L* = |y*| are lengths of 4 and v* respectively, then by Theorem [[Th)
(ii2) 27](3)(0)| < L.
Since 4 is the projection of v*, we first conclude that (ii3) L < L* = L, and now
by (ii1),(ii2) and (ii3), we get
(ii4) 27| £7(0)| = 27((3)'(0)| < L < L* = L,
which yields the part a).
b) Apply a) on f o ¢.. Note that L < L with equality iff f(U) is in a plane.

3(ﬂ3): f is continuous on U, harmonic on U and vy is a rectifiable curve.

4Note that after rotation we can suppose that Z is yjy2-plane which we can identify with
C-plane and f(0) = 0.
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If for some z € U the equality holds in b), then L = L and the equality holds
in b) for the function f o, at 0, that is the equality holds in (b2). In particular
L = L*. Therefore tr(+*) is in a plane IT* parallel to II. By an application of the
mean value theorem to f* o ¢,,, we conclude that 0 = f* o ¢, (0) belongs IT* and
therefore IT* = II. Then f* is a planar mapping and we can apply Theorem [0 [

4. HARMONIC AND ANALYTIC DISKS

4.1. Harmonic disks. If f : U — R™ is a vector harmonic on U, we call S = f(U)
a harmonic disk with center at f(0) (defined by f).

Theorem 14. If f: U — R™ is a vector harmonic on U, then
(a) |f] and |f!| are subharmonic.
(b) L(r) and d(r) are increasing in r € [0,1).

Proof. For zp € U and r > 0 small enough, by the mean value theorem, f(z9) =
7 02 " f(z0 4 re')dt, and therefore
1 27

|f(z0)| = 5=

) 1 27 )
5 f(zo+ re”)dt‘ < Py /0 |f (20 + re')|dt.

0
O

The following example shows how the boundary behavior of harmonic mappings
may differ from that of conformal mappings.

Example 1 (H]). Let I(z) = 1%, s(z) = 3In 122 and f(z) = Rel(z) + ilms(z).

11—z
Observe that f(e!) = wg on 0 < t < 7 and f(e!) = Wy on m < t < 27, where
wy = —% +1%. In particular, f collapses the upper and lower semicircles to single

points. In fact, it can be proved that [, s, and f map the disk onto S; = {Rew >
=2}, 82 = {[Imw| < Z} and S5 = {51 N Sz} respectively.

If the map has no continuous extension to U (in particular the boundary map
collapses) at first sight the following definitions seems convenient.

Definition 15. Let S C R™ be a harmonic disk defined by f.

Let hl denote the family of vector harmonic function f : U — R™ for which
LT(f) = sup{L(f,r) : 7 € [0,1)} < oco. If LT(f) < oo, then there is a boundary
function f*, but in general LT(f) > L(f*).

It seems that the above described result hold under each of the following hy-
pothesis:

(H!.): Suppose that u = (u',u?,...,u™) : U — R™ is harmonic, S = u(U) and
the generalized length of 9S with respect to u, L = Lt (u) = L (u,dS) is finite. If
(H,,) holds then the generalized length L is reduced to the length of 95S.

We plan in a forthcoming paper to consider the above discussed results in con-
nections with hypothesis (H',).

Here we only show that that the corresponding version of Theorem [§ holds under
hypothesis (HO).

5According to the Caratheodory extension theorem, a conformal mapping between two Jordan
domains always extends to a homeomorphism of the closures.
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Theorem 16. Let f = g + h be compler valued harmonic in U which satisfies
(H,,)-

Then

(i) mAf(0) < 2d.

(i) 2d < L*(f).

For function

the equality holds in (i).
It is interesting that p(z) = d - £/2 is not extremal for the inequality (i).

Proof. Set é1 = dfp(e1). We can suppose that f(0) = 0 and using rotations that
Ar(0) = |é1| and é1 = dfp(e1) = kes, where k = A;(0). Set p(w) = wand F = po f.
Then p(G) is an interval of length equal or less then d, and by Proposition B1]
©|VF(0)| < 2d. Since [VF(0)| = Af(0), we get the first inequality of (i). We leave
to the reader to show that 2d < L.

For 0 < r < 1set Gy = f(U), |vs,]| = Ly(r) and denote with d, the diameter of
G.

By Theorem [§ (iii) nrA;(0) < 2d(r) < L(r), 0 < r < 1. Since |f/| and |f| are
subharmonic L, and d, are increasing functions in r € [0, 1). Hence by letting r to
1 in (iii), one can prove the result. O

4.2. Harmonic and analytic disks. For z = (21,29, ...,2,,) € C™, set Rez =
(Rez1,Reza, ...,Rezy,) and Imz = (Imzq,Imz,, ..., Imz,,). Recall we will use the
following hypothesis in the sequel (H,,): Suppose that v = (u',u?, ....,u™) : U —
R™ is harmonic, S = «(U) and the generalized length of 9S wrt u, L = L(u) =
L_(u,09) is finite.

(BO)In this setting, there are are holomorphic functions Fj in U such that u, =
ReFy, k=1,2,3,...,m. Set F = (F',F? ..., ™). We say shortly that holomorphic
function F is associated to u. Then u}, = £(F, + F/) = ReF’(z) and therefore

(B) u}, —duy, = F".

If f:G — R2 recall then

(Bl:)) f1+ifs =g+ h, where g = (Fy +iFy)/2 and h = (Fy —iFy)/2.

(B2:) Ifp=f.and g = fs, thenp=f. =g. = ¢, q=f: = W', J; = Re(iF|Fj)
and

Alp|* = [F'|* + 2y, 4]q* = [F']* = 2Jf, 2(|g'|* + |W'|?) = |F'|* and

if |g'| > |h'|, then 2|g'| > |F| > 2|A/].

(B3:) If in addition u is conformal at 0, then A/(0) = 0, and |F"(0)| = v/2|¢’|.

Theorem 17. Suppose the hypothesis (H,,). §

dl) Then there is a holomorphic function F: U — C™ such that u = ReF'; and in
this setting 7| F'(0)| < L, where L = || is length of .

d2) Then (i): 27|D,u(0)| < L.

d3) If in addition u is conformal at 0, then 2wA,(0) < L.

Proof. Since 2u, = F'(z)ie" + izF'(z), 2rF(0) = [77 F'(z)dt, F'(0) = F(1)
TiF'(0) = foh ure~dt, we find 7|F'(0)] < fOQW |ute="|dt = L. Then «|F'(0)| < L,
and since 2D,u(0) = F'(0), we get (i).

6 (H,,): u:U— R™ is continuous on U and harmonic on U, and v = v, is rectifiable.
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Using similar approach as in the proof of Theorem [[Ithe procedure described in

(I-1)) and apply Theorem [I0(planar case), one can prove d3). O
Remark 18. By (B), since u),, u;, € R™, |[F'|* = [u}, — iu)|* = |[u}|* + |u)|*. Since

2u) = izF'(z) +izF'(2), L < |F'|;.

Question 1. What is relation between L and |F’|;?

Note that 2D,u(0) = F'(0) in C™. If m = 2 then D,u = ¢’ in C. Here we
need to be careful because we identify (uy,us) € C? with u; + iug € C(but the
corresponding norms in C? and C are not equal in general). Therefore 2|g’| # | F'|
in general. (B3) shows that the estimat (i) in d2) is not optimal in general.

Question 2. Can we modify our procedure to get an optimal estimate?

5. AREA ESTIMATE
We advise the reader to recall Definition

Theorem 19. Suppose that u satisfies the hypothesis (H,,). Then

(i1): 4w A(S) < L2, where A = A(u) and L = L(u).

(11) If in addition to (H,,) we suppose that

(h2): A(S) is finite and

(h3): u is K-quasiconformal and F = F is a corresponding holomorphic function
associated to u, then

Dlu] = 7(D (kIE(K)|?) < 2KA(S).

(12) In particular under (Hy,) and (h2),
(i2): |D1u(0)|? + |D2u(0)|> < 2K A(S) with equality iff
= ax + by, where a = Dyu(0), b = Dou(0) with K = Jaf*+ o) where
( ) u(z) = Y, , K S
al?|b]? — (a - b)2. In the case (i2), u(U) is a planar domain bounded by an
Y
ellipse.

Proof. Since the Gaussian curvature of S is negative, by a version of isoperimetric
inequality (see for example Theorem 3.4 [9]), we get (i1). Set J, = VEG — F2.
Then, by (h3): |F'|> < KJ, on U. By (A) we have D[u] = D[F] and hence by
Parseval’s formula we get (I1). If equality holds in i2) then F'(k) = 0 for k > 1 and
therefore F'(z) = cz, where ¢ = a + ib, a,b € R™. Hence we get (i3).

]

Theorem 20. d1) If in addition to (H,,) we suppose that (h2): A(S) is finite and
(h4): u is conformal, then

_ _DIF] _ 7 N7
A= /U|D1u|2d:vdy == = 5(;(k|F(k)|2))-

d2) In particular, 7A2(0) < Dlu] with equality iff (ii): v = . is a circle given by
ug = agxr — by, k =1,2,3,...,m, where |a| = |b| and a-b=0.
d3) 27A,(0) < L with equality iff (ii).

Examples u(z) = z+7Z and u,(z) = nz +Z/n show that i3) is not true in general
without hypothesis that the mapping is qc.
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Proof. By (A) we have 2A = D[u] = D[F] and hence by Parseval’s formula we get
d1). If equality holds in d2) then F(k) = 0 for k > 1 and therefore F(z) = cz,
where ¢ = a 4 ib, a,b € R™, and since u is conformal at 0 (ii) holds.

By the isoperimetric inequality 27D[u] = 47A < L? and therefore d2) implies
ds3). O

6. APPENDIX

Let f: Q — f(Q2) be a Cl-diffeomorphism. We write df = pdz + qdz, where
p=f.and g = fz.
Jr =P =[£I
Let f be a diffeomorphism in a neighborhood U of a point zy. Then f is orientation
preserving mapping in U if and only if J¢(zo) > 0.
If f is orientation preserving mapping in U at zg, then df maps the tangent space
T, into Ty, where wg = f(z0), and circles K, with center at zo of radius r onto
ellipses E, with center at wy and with major axis of length Ayr and minor axis of
length Ayr. The dilatation (or distortion) at zg is defined to be

|f=| = |.f=]
The complex dilatation at zq is
Iz
(6.2) = =.
f 1.
It is often more convenient to consider
Iz
df ==
f 1.
The dilatation and distortion are related by
_ 14 fuyl
1— gyl

Let f € C! be orientation preserving mapping. Then f is conformal iff ¢ = f= =0
(Cauchy-Riemann equations). If f is conformal, Dy = 1 and ¢ = 0, so df = pdz
maps circles to circles.

Definition 21 (Grotzsch analytic definition for regular mappings). Let f: Q — C
be a diffeomorphism. We say that f is a quasiconformal map if D(z) is bounded
in Q. We say f is a K-quasiconformal map if Ds(z) < K for all z € Q.

K(f) = esssup,eq Dy(z) is called the coefficient of quasi-conformality (or linear
dilatation) of f in the domain €.

Definition 22. b4) For a planar domain D and C! mapping u : D — R™, set
S =wu(D),

E+G

and K, (f) = esssup,¢p K. (f, z) which is called the coefficient of quasi-conformality
(or linear dilatation) of f in the domain D.
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Remark 23. If S is in a plane and K the standard coefficient of quasi-conformality,
then K, = £ that is K = K, + /K2 — 1, where K, = K.(f) and K = K(f).
Motivated by this we give an alternative definition: wis K-qcif E4+F < K.J,, where

K=K+ %; in planar case this definition is reduced to the standard definition of

coefficient of quasi-conformality.

If D, G are domains in R", by Har(D, ) denote the family of all vector valued
harmonics maps f from D into G.

Definition 24 (Har(p),Har.(p)). For p € B, let Har(p) = Har(B, B; p) (respectively
Har.(p)) denote the family of all vector valued harmonics maps f from B into itself
with f(0) = p (respectively which are conformal at 0 respectively).

Set Ly (p) = sup{|f'(0)| : f € Har(p)} and K} (p) = %‘;‘27 Le(p) = sup{|£"(0)| :
f € Har.(p)} and K.(p) = Le(p)

T 1=l
For planar domains D and G and given z € D and ¢ € G denote by Ly (z,p; D, G) =
sup{|f’(z)|}, where the supremum is taken over all f € Har(D,G) with f(z) = p.
If D = U we write Har(G) instead of Har(U, G) and if in addition z = 0, we write

simply Ly (p, G) (or Lyar(p, G) ) and if in addition G = U, Ly(p).

Problem 1 (Extremal). For given p € B find K, (p) and K.(p).

For given p € B, find sup{|f’'(p)| : f € Har(B,B)}. For given p,q € B, find

sup{[f'(p)| : f € Har(B,B), f(p) = ¢}.
The editors of JMAA paid my attention to [I2] and the book [I3].
Acknowledgement. We are indebted to Shi Qingtian, who has been reading
very carefully several versions, for useful discussions and useful comments which
improved the exposition.
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