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Abstract

The (partially) ordered set of the non-trivial zeros
of the zeta function with positive imaginary parts
is considered. The order is the coordinatewise or-
der inherited from C. Some interesting properties
regarding the minimal elements of this poset are
proven.

1 Introduction

To the best knowledge of the author the set of
zeros of the zeta function has not been considered
from an order-theoretic perspective. It seems such
a viewpoint could prove useful, however, and this
paper aims to draw the attention towards the goal
of understanding the structure of said set using or-
der theory.

2 Definitions

We will consider the poset (C,≤), where the or-
der relation ≤ is the coordinatewise order, defined
by: a + ib ≤ c+ id if and only if a ≤ c and b ≤ d.
Let Z denote the non-trivial roots of ζ(s) with non-
negative imaginary parts, i. e.

Z = {s ∈ C : 0 ≤ s, ζ(s) = 0} . (1)

Then we can consider (Z,≤) with the inherited or-
der relation from (C,≤). Since the zeros of a mero-
morphic function are isolated and there are upper
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bounds on the number of zeros in a region of the
critical strip (see e. g. [1, 2]) we can, for conve-
nience, index the distinct imaginary parts of the
elements of Z and they will form a strictly increas-
ing sequence {ti}i∈N

. If t1 is the first member of
this sequence (and thus the smallest one), the root
σ1 + it1 ∈ Z is known to lie on the critical line, i.
e. σ1 = 1

2 , and is trivially a minimal element of Z.

Definiton 2.1. Let

Zn := {s ∈ Z : ℑ(s) = tn} . (2)

Define the diameter of Zn by

d(Zn) = max
s1,s2∈Zn

(ℜ(s1)− ℜ(s2)). (3)

Every (Zn,≤) is a totally ordered set. It has a
least and a greatest element which we will denote
by σ̂n + it̂n and σ̃n + it̃n, respectively.

3 Results

First we will state the following lemma:

Lemma 3.1. The Riemann hypothesis is true if

and only if (Z,≤) is a totally ordered set.

Proof. 1.) Assume RH. (Z,≤) is a partially or-
dered set by definition. Take σn+itn, σm+itm ∈ Z.
Then σn = σm = 1

2 . Now we have tn ≤ tm or
tm ≤ tn since tn, tm ∈ R. Thus σn+ itn ≤ σm+ itm
or σm + itm ≤ σn + itn, i. e. (Z,≤) is a totally
ordered set.
2.) Assume that (Z,≤) is a totally ordered set.
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Let σ1 + it1, σk + itk ∈ Z be such that σ1 + it1 is
the same as in section 2 and σk 6= 1

2 .
If σk < 1

2 , then σk < σ1 and tk > t1. Thus
σk+ itk||σ1+ it1, but (Z,≤) is a totally ordered set
which is a contradiction.
If σk > 1

2 , then from the symmetry of the zeros
about the ℜ(s) = 1

2 line there must exist σl+itl ∈ Z

such that σl = 1 − σk and tl = tk. We now have
σl < σ1 and tl > t1. Thus σl + itl||σ1 + it1 and
again we reach a contradiction. This means that
σk = 1

2 and the proof is complete.

Next is a result concerning the number of min-
imal elements of (Z,≤). Denoting the set of said
elements by Min(Z,≤), we have:

Theorem 3.1. There is a bijection between

Mn := {Zn : n > 1, d(Zn) > d(Zi) ∀i 0 < i < n}
and Min(Z,≤) \ {σ1 + it1}.

Proof. Let f : Mn −→ Z be such that f(Zn) =
σ̂n + it̂n.
1.) Consider some Zk ∈ Mn. Then f(Zk) =

σ̂k + it̂k. From the symmetry of the zeros about
the ℜ(s) = 1

2 line follows that

σ̂k =
1

2
−

d(Zk)

2
. (4)

Take σl + itl ∈ Z, such that σl + itl ≤ σ̂k + it̂k.
Then

tl ≤ t̂k, σl ≤ σ̂k. (5)

Also there exists some set Zl of the form (2), such
that σl + itl ∈ Zl.
If tl = t̂k, then Zl = Zk. Since σ̂l+ it̂l is the least

element in Zl, σ̂k = σ̂l ≤ σl. Thus using (5) we get
σl = σ̂k and σl + itl = σ̂k + it̂k.
If tl < t̂k, then d(Zl) < d(Zk), since Zk ∈ Mn.

Similarly to (4), σ̂l =
1
2−

d(Zl)
2 . Then σ̂k < σ̂l ≤ σl,

which is a contradiction with (5).
Thus σ̂k + it̂k is a minimal element of Z, i. e.

f(Zk) ∈ Min(Z,≤) \ {σ1 + it1}.
2.) Take Zk, Zl ∈ Mn, such that Zk 6= Zl. Then

t̂k 6= t̂l and f(Zk) 6= f(Zl). Thus f is injective.
3.) Consider some σk + itk ∈ Min(Z,≤) \

{σ1 + it1}. There exists some Zk, such that σk +
itk ∈ Zk. Then σ̂k+it̂k ≤ σk+itk, but since σk+itk
is a minimal element, we have

σ̂k + it̂k = σk + itk. (6)

Now suppose that for some l < k there exists Zl,
such that d(Zl) ≥ d(Zk). Then t̂l < t̂k and from
(4) σ̂l ≤ σ̂k. Thus

σ̂l + it̂l < σ̂k + it̂k = σk + itk, (7)

but σk + itk is minimal and we reach a contradic-
tion. It follows that d(Zl) < d(Zk), i. e. Zk ∈ Mn.
From (6) f(Zk) = σk + itk, so f is surjective. This
completes the proof.

A dual result can be stated for the number of
maximal elements of (Z,≤):

Theorem 3.2. There is a bijection between Mx :=
{Zn : d(Zn) > d(Zi) ∀i i > n} and Max(Z,≤).

The bijection here is given by g : Mx −→ Z,
such that g(Zn) = σ̃n + it̃n. After that the proof is
analogous to the previous one, considering that

σ̃n =
1

2
+

d(Zn)

2
. (8)

Corollary 3.1. RH is not true if and only if (Z,≤)
has at least 2 minimal elements.

Proof. RH not true implies that there is a set Zn

with d(Zn) > 0, i. e. Zn ∈ Mn, and by theo-
rem 3.1 (Z,≤) has a minimal element distinct from
σ1 + it1.
Conversely, if (Z,≤) has at least 2 minimal el-

ements, then there exists a set Zn ∈ Mn with
d(Zn) > 0, again by theorem 3.1, and RH is
false.

Similarly:

Corollary 3.2. RH is not true if (Z,≤) has at

least 1 maximal element.

This follows from theorem 3.2 analogously to the
previous corollary.
We should note here that corollary 3.2 doesn’t

include an ”only if” statement. This is the case,
because for example the sequence {d(Zi)}i∈N can
be monotonically increasing and have a strictly in-
creasing subsequence, in which case Mx is empty
and so is Max(Z,≤). Then RH is not true, but
there are 0 maximal elements.
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