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EQUIVALENT CONDITIONS FOR DIGITAL COVERING MAPS

ALI PAKDAMAN1,∗, MEHDI ZAKKI1

1Department of Mathematics, Faculty of Sciences, Golestan University,
P.O.Box 155, Gorgan, Iran.

Abstract. It is known that every digital covering map p : (E, κ) → (B, λ)
has unique path lifting property. In this paper, we show that its inverse is
true when the continuous surjection map p has no conciliator point. Also, we
prove that a digital (κ, λ)−continuous surjection p : (E,κ) → (B, λ) is a digital
covering map if and only if it is a local isomorphism. Moreover, we find out a
loop criterion for a digital covering map to be a radius n covering map.

1. Introduction and Motivation

In image processing, computer graphics and modeling topology in medical im-
age processing algorithms, an object in the plane or 3-space is often approximated
digitally by a set of pixels or voxels. Digital topology deals with topological prop-
erties of this set of pixels or voxels that correspond to topological properties of the
original object. It provides theoretical foundations for important operations such
as digitization, connected component labeling and counting, boundary extraction,
contour filling, and thinning. Digitization is replacing an object by a discrete set
of its points[15, 16].

In recent years, computing topological invariants has been of great importance
in understanding the shape of an arbitrary 2-dimensional (2D) or 3-dimensional
(3D) object [12]. The most powerful invariant of these objects is the fundamental
group [19], which is unfortunately difficult to work with, although for 3D objects,
this problem is decidable but no practical algorithm has been found yet.

The digital fundamental group of a discrete object was introduced in Digital
Topology by Kong and Stout [14, 20]. Boxer [3] has shown how classical methods
of Algebraic Topology may be used to construct the digital fundamental group
which is useful tool for Image Analysis. The digital covering space is an important
tool for computing fundamental groups of digital images. A digital covering space
has been introduced by Han [7]. Boxer [4] has developed further the topic of digital
covering space by deriving digital analogs of classical results of Algebraic Topology
concerning the existence and properties of digital universal covering spaces. Boxer
and Karaca [5, 6] have classified digital covering spaces by the conjugacy classes of
image subgroups corresponding to a digital covering space.
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Lots of the researches in digital covering theory are digitization of the concepts
in Topology and Algebraic Topology. In Algebraic Topology, covering maps are
local isomorphism (local homeomorphism) and also satisfy all the lifting problems.
But the converse is not true. In fact, every local isomorphism is not necessarily a
covering map and there are some maps in which enjoy various concepts of lifting,
but are not a covering map.

Despite the behavior of spaces in General Topology are locally complicated,
digital images are locally simple and this leads us to investigate the conditions such
that makes some concepts to be equivalent. For this, after some reminders and
preliminary results about digital topology and digital covering map, we introduce
notions “digital path lifting property”, “uniqueness of digital path lifts” and “unique
digital path lifting property” for a digitally continuous map and will compare them
by some examples.

Digital path lifting property means that every digital path has a lifting started at
a given point in the appropriate fiber. By uniqueness of digital path lifts we mean
that if a digital path has a lifting at a given point, it must be unique. Eventually,
a map has unique digital path lifting property if it has both of digital path lifting
property and uniqueness of digital path lifts. Every digital covering map has unique
digital path lifting property [7]. By proving some basic results about maps equipped
with such properties, we show that every continuous surjection with unique digital
path lifting property is a covering map when it has no conciliator point and by some
example will emphasis that these hypotheses are essential. This shows that digital
covering theory is not a special case of the well known concept of a graph covering
projection because in covering graph theory a graph map is a covering graph if and
only if it has unique path lifting property [1].

In General Topology, a covering map is a local isomorphism and local isomor-
phisms are not necessarily covering map. Inspired by this, in the all of the researches
it is claimed by a misplaced example that digital local isomorphisms are not nec-
essarily covering map (for example see[4, 9]). We show that every digital local
isomorphism is a covering map. Digital versions of some fundamental theorems in
Algebraic Topology are satisfied for radius 2 local isomorphisms and this motivates
us to find out a loop criterion for a digital covering map to be a local isomorphism
with radius n.

2. Notations and preliminaries

Let Z be the set of integers. Then Z
n is the set of lattice points in the n-

dimensional Euclidean space. Let X ⊆ Z
n and let κ be some adjacency relation for

the members of X . Then the pair (X,κ) is said to be a (binary) digital image. For
a positive integer u with 1 ≤ u ≤ n, an adjacency relation of a digital image in Z

n

is defined as follows:
Two distinct points p = (p1, p2, ..., pn) and q = (q1, q2, ..., qn) in Z

n are lu-adjacent
[17] if there are at most u distinct indices i such that |pi−qi| = 1 and for all indices
j, pj = qj if |pj − qj | 6= 1. An lu-adjacency relation on Z

n can be denoted by the
number of points that are lu-adjacent to a given point p ∈ Z

n. For example,

• The l1-adjacent points of Z are called 2-adjacent.
• The l1-adjacent points of Z

2 are called 4-adjacent and the l2-adjacent points
in Z2 are called 8-adjacent.
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• The l1-adjacent, l2-adjacent and l3-adjacent points of Z
3 are called 6-

adjacent, 18-adjacent, and 26-adjacent, respectively.

More general adjacency relations are studied in [11].
Let κ be an adjacency relation defined on Z

n. A digital image X ⊆ Z
n is κ-

connected [18] if and only if for every pair of different points x, y ∈ X , there
is a set {x0, x1, ..., xr} of points of X such that x = x0, y = xr and xi and xi+1

are κ-adjacent where i = 0, 1, ..., r − 1. A κ-component of a digital image X is a
maximal κ-connected subset of X .

Definition 2.1. Let X ⊆ Z
n and Y ⊆ Z

m be digital images with κ-adjacency and
λ-adjacency, respectively. A function f : X −→ Y is said to be (κ, λ)-continuous
([3, 18]) if for every κ-connected subset U of X , f(U) is a λ-connected subset of Y .
We say that such a function is digitally continuous.

The following proposition let us to interpret digital continuity by adjacency
relations.

Proposition 2.2. ([3, 17]) Let (X,κ) in Z
n and (Y, λ) in Z

m be digital images. A
function f : X −→ Y is (κ, λ)-continuous if and only if for every κ-adjacent points
x0, x1 ∈ X, either f(x0) = f(x1) or f(x0) and f(x1) are λ-adjacent in Y .

For a, b ∈ Z with a < b, a digital interval [2] is the set of the form

[a, b]Z = {z ∈ Z|a ≤ z ≤ b}.

Definition 2.3. By a digital κ-path from x to y in digital image (X,κ), we mean
a (2, κ)-continuous function f : [0,m]Z −→ X such that f(0) = x and f(m) = y. If
f(0) = f(m) then the κ-path is said to be closed, and f is called a κ-loop.

Let f : [0,m − 1]Z −→ X ⊆ Z
n be a (2, κ)-continuous function such that f(i)

and f(j) are κ-adjacent if and only if j = i± 1 mod m. Then the set f([0,m− 1]Z)
is a simple closed κ-curve containing m point which is denoted by SCn,m

κ . If f is a
constant function, it is called a trivial loop.

If f : [0,m1]Z −→ X and g : [0,m2]Z −→ X are digital κ-paths with f(m1) =
g(0), then define the product [13] (f ∗ g) : [0,m1 +m2]Z −→ X by

(f ∗ g)(t) =

{
f(t) if t ∈ [0,m1]Z;

g(t−m1) if t ∈ [m1,m1 +m2]Z.

Let (E, κ) be a digital image and let ε ∈ N . The κ-neighborhood [8] of e0 ∈ E
with radius ε is the set N(e0, ε) = {e ∈ E| lκ(e0, e) ≤ ε} ∪ {e0}, where lκ(e0, e) is
the length of the shortest κ-path in E from e0 to e.

By the above notations, a function f : X −→ Y is a (κ, λ)-isomorphism [4],

denoted byX
(κ,λ)
≈ Y , if f is a (κ, λ)-continuous bijection and further f−1 : Y −→ X

is (λ, κ)-continuous. If n = m and κ = λ, then f is called κ-isomorphism.

Definition 2.4. ([3]) Let (X,κ) and (Y, λ) be digital images and let f, g : X −→ Y
be (κ, λ)-continuous functions. Suppose that there is a positive integer m and a
function F : X × [0,m]Z −→ Y such that

• For all x ∈ X , F (x, 0) = f(x) and F (x,m) = g(x);
• For all x ∈ X , the induced function Fx : [0,m]Z −→ Y defined by Fx(t) =
F (x, t) for all t ∈ [0,m]Z is (2, λ)-continuous; and
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• For all t ∈ [0,m]Z, the induced function Ft : X −→ Y defined by Ft(x) =
F (x, t) for all x ∈ X is (κ, λ)-continuous.

Then F is called a digital (κ, λ)-homotopy between f and g, denoted by f
(κ,λ)
≃ g,

and f and g are said to be digital (κ, λ)-homotopic in Y by F .

Digital (κ, λ)-homotopy relation is an equivalence relation among digitally con-
tinuous functions f : (X,κ) −→ (Y, λ) [3].

Let f and f ′ be κ-loops in the pointed digital image (X, x0). We say f ′ is a
trivial extension of f if there are sets of κ-paths {f1, f2, ..., fr} and {F1, F2, ..., Fp}
in X such that
(1) r ≤ p;
(2) f = f1 ∗ f2 ∗ ... ∗ fr;
(3) f0 = F1 ∗ F2 ∗ ... ∗ Fp;
(4) There are indices 1 ≤ i1 < i2 < ... < ir ≤ p such that Fij = fj , 1 ≤ j ≤ r and
i /∈ {i1, i2, ..., ir} implies Fi is a trivial loop[3].

Two loops f , f ′ with the same base point x0 ∈ X belong to the same loop class
[f ]X if they have trivial extensions that can be joined by a homotopy that keeps the
endpoints fixed. Let πκ

1 (X, x0) be the set of all such classes, [f ]X . The operation ∗
enables us to define an operation on πκ

1 (X, x0) via

[f ]X .[g]X = [f ∗ g]X .

This operation is well defined, and makes πκ
1 (X, x0) into a group in which the

identity element is the class [x0] of the constant loop x0 and in which inverse
elements are given by [f ]−1 = [f−1], where f−1 : [0,m]Z −→ X is the loop defined
by f−1(t) = f(m− t)[3].

Definition 2.5. [8] For two digital spaces (X,κ) in Z
n and (Y, λ) in Z

m, a (κ, λ)-
continuous map h : X −→ Y is called local (κ, λ)-isomorphism if for every x ∈ X ,
h|Nκ(x;1) is a (κ, λ)-isomorphism onto Nλ(h(x); 1). If n = m and κ = λ, then the
map h is called local κ-isomorphism.

For n ∈ N, the map h is called a radius n local isomorphism if the restriction
map h|Nκ(x,n) : Nκ(x, n) −→ Nλ(h(x), n) is a (κ, λ)-isomorphism.

Definition 2.6. [4, 7, 8] Let (E, κ) and (B, λ) be digital images and p : E −→ B
be a (κ, λ)-continuous surjection map. The map p is called a (κ, λ)-covering map

if and only if for each b ∈ B there exists an index set M such that

(1) p−1(Nλ(b, 1)) =
⊔

i∈M

Nκ(ei, 1) with ei ∈ p−1(b);

(2) if i, j ∈ M , i 6= j, then Nκ(ei, 1) ∩Nκ(ej , 1) = ∅; and
(3) the restriction map p|Nκ(ei,1) : Nκ(ei, 1) −→ Nλ(b, 1) is a (κ, λ)-isomorphism
for all i ∈ M .

Moreover, (E; p;B) is said to be a (κ, λ)-covering and (E, κ) is called a dig-
ital (κ, λ)-covering space over (B, λ). Also, Nλ(b, 1) is called an elementary λ-
neighborhood of b.

It is notable that in the property (1) of the original definition of digital covering
map by Han [7], there was Nλ(b, ε), for an n ∈ N which is simplified by Boxer [4].
Also, we can replace (κ, λ)-continuous surjection with surjection because surjective
map p with the properties (1) and (3) of definition is (κ, λ)-continuous.

In this paper, all the digital spaces assumed to be connected.



EQUIVALENT CONDITIONS FOR DIGITAL COVERING MAPS 5

3. Coverings are derived from unique path lifting

Like in the Algebraic Topology, digital covering maps have also good behavior
with lifting problems. In this section, at first we list some results of the other papers
about digital coverings and lifting problems which are digitization of similar results
in Algebraic Topology. Then by modification of the notions digital path lifting and
unique path lifting, we show how digital covering maps can be derived from unique
path lifting property.

Definition 3.1. [7] Let (E, κ), (B, λ) and (X,µ) be digital images, let p : E −→ B
be a (κ, λ)-covering map, and let f : X −→ B be (µ, λ)-continuous. A lifting of f

with respect to p is a (µ, κ)-continuous map f̃ : X −→ E such that p ◦ f̃ = f .

Theorem 3.2. [7] Let (E, κ) be a digital image and e0 ∈ E. Let (B, λ) be a digital
image and b0 ∈ B. Let p : E −→ B be a (κ, λ)-covering map such that p(e0) = b0.
Then any λ-path α : [0,m]Z −→ B beginning at b0 has a unique lifting to a path α̃
in E beginning at e0.

Definition 3.3. Let p : (E, κ) → (B, λ) be a (κ, λ)-continuous surjection map. We
say that
(i) p has digital path lifting property if for any digital path α in B and any
e ∈ p−1(α(0)) there is a lifting α̃ of α in E such that α̃(0) = e.
(ii) p has the uniqueness of digital path lifts property if any two paths α, β :
[0,m]Z −→ E are equal if p ◦ α = p ◦ β and α(0) = β(0).
(iii) p has the unique path lifting property (u.p.l, for abbreviation) if it has
both the path lifting property and the uniqueness of path lifts property.

Example 3.4. By Theorem 3.2, every digital covering map has u.p.l. Consider Z2

by 8-adjacency and Z by 2-adjacency. Then the (8, 2)-continuous map pr1 : Z2 −→
Z defined by pr1((x, y)) = x has digital path lifting property, but not uniqueness of
digital path lifts property. For this, consider α : [0, 2]Z −→ Z defined by α(k) = k,
for k = 0, 1, 2. pr−1

1 (0) = {0} ×Z and for every (0, j) ∈ pr−1
1 (0), α̃j : [0, 2]Z −→ Z

2

defined by α̃j(k) = (k, j) is a 8-path. Then α̃j is a lifting of α beginning at (0, j)
and hence pr1 has digital path lifting property. Now let





β, γ : [0, 2]Z −→ Z
2

β(0) = (0, 0), β(1) = (1, 1), β(2) = (2, 0)

γ(0) = (0, 0), γ(1) = (1,−1), γ(2) = (2, 0).

Then pr1◦β = pr1◦γ and β(0) = γ(0), but β 6= γ. Therefore pr1 has not uniqueness
of digital path lifts property. Also, pr1 is not a digital (8, 2)-covering because for
every e ∈ Z

2, pr1|N8(e,1) is not injective.

The Example 3.4 shows that a digitally continuous surjection with path lifting
property is not necessarily a digital covering map. By the following example, we
show that a digitally continuous surjection with uniqueness of digital path lifts
property is not necessarily a digital covering map.

Example 3.5. Consider the map h : Z+ −→ SC2,4
8 =: (ci)i∈[0,3]Z given by h(i) =

ci mod 4, where Z
+ := {k ∈ Z|k ≥ 0}. let γ : [0, 1]Z −→ SC2,4

8 defined by γ(0) = c0
and γ(1) = c3. Since 0 ∈ h−1(c0) and there is no lifting of γ beginning at 0, h has
not digital path lifting property.
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Now, Let α, β : [0,m]Z −→ Z
+ be two 2-paths in which h ◦ α = h ◦ β and

α(0) = β(0) = d. We show that α = β. By contrary, suppose that there is
s ∈ [0,m]Z such that α(s) 6= β(s). We may assume that s is the smallest t ∈ [0,m]Z
such that α(t) 6= β(t). Thus we have the following:





α(s) 6= β(s),

α(t) = β(t), for all t ∈ [0, s− 1]Z,

h ◦ α(t) = h ◦ β(t), for all t ∈ [0,m]Z.

If k := α(s− 1) = β(s− 1), then we have
{
α(s) = k + 1,

β(s) = k − 1.
or

{
α(s) = k − 1,

β(s) = k + 1.

But h ◦ α(s) = h ◦ β(s) follows that h(k − 1) = h(k + 1) which is contradiction
because h(j) = h(k) if an only if j = k mod 4.

In the following proposition we give some basic properties of maps with u.p.l
which are essential in our results and make the proofs more shorter and simpler.

Proposition 3.6. Let p : (E, κ) → (B, λ) be a (κ, λ)-continuous surjection map
with u.p.l. Then

(i) If e
κ
↔ e′ then p(e) 6= p(e′).

(ii) If e
κ
↔ e′, e

κ
↔ e′′ and e′ 6= e′′ then p(e′) 6= p(e′′).

(iii) If p(e)
λ
↔ p(e′) then there is a unique element e′′ ∈ p−1(p(e′)) such that

e
κ
↔ e′′.

(iv) If p(e)
λ
↔ b then there is a unique e′ ∈ p−1(b) such that e

κ
↔ e′.

(v) If b
λ
↔ b′ then for every e ∈ p−1(b) there is a unique element e′ ∈ p−1(b′)

such that e
κ
↔ e′.

Proof. (i) Let α, β : [0, 1]Z −→ E be defined by α(0) = β(0) = e, α(1) = e and
β(1) = e′ which are κ-pathes by assumption. If p(e) = p(e′) then p◦α = p◦β while
α 6= β. This is contradiction and hence p(e) 6= p(e′).
(ii) Let α, β : [0, 1]Z −→ E be defined by α(0) = β(0) = e, α(1) = e′ and β(1) = e′′

which are κ-pathes by assumption. If p(e′) = p(e′′) then p ◦ α = p ◦ β while α 6= β.
Hence p(e′) 6= p(e′′).
(iii) Define α : [0, 1]Z −→ B by α(0) = p(e) and α(1) = p(e′) which is a λ-path.
By path lifting property, there is a lifting α̃ : [0, 1]Z −→ E beginning at e. Since
p ◦ α̃ = α, α̃(1) ∈ p−1(α(1)) = p−1(p(e′)). Now it is sufficient to let e′′ = α̃(1)

because α̃(0)
κ
↔ α̃(1). Uniqueness comes from part (ii).

(iv) The proof is similar to the proof of (iii).
(v) This is also similar to (iii) because maps with path lifting property are surjective.

�

Definition 3.7. Let p : (E, κ) → (B, λ) be a (κ, λ)-continuous map and e ∈ E.
We say that e is a conciliator point for p if there exist e′, e′′ ∈ Nκ(e, 1) for which

e′
κ
= e′′ and p(e′)

λ
↔ p(e′′).

In General Topology, every covering map has u.p.l but every map with u.p.l is
not generally a covering map [19]. In fact, the domain and codomain in the maps
with u.p.l that are not a covering map have locally complicated behaviors and this
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will ruin it to be a covering map. We show that u.p.l is enough for a map without
conciliator point to be a digital covering map.

Theorem 3.8. A (κ, λ)-continuous surjection map p : (E, κ) → (B, λ) is a digital
(κ, λ)-covering if it has u.p.l and has no conciliator point.

Proof. Let b ∈ B and e ∈ p−1(Nλ(b, 1)). We show that e ∈
⊔

j∈J

Nκ(ej , 1), where

p−1(b) = {ej}j∈J . If e ∈ p−1(b), then e is one of the ej ’s and assertion is obvious.

If e /∈ p−1(b), then p(e)
λ
↔ b and by Proposition 3.6, there is ej ∈ p−1(b) such

that e
κ
↔ ej which implies e ∈ Nκ(ej , 1), as desired. If e ∈

⊔

j∈J

Nκ(ej , 1), then

there is j0 ∈ J such that e ∈ Nκ(ej0 , 1) and hence either e = ej0 or e
κ
↔ ej0

which implies that p(e) = b or p(e)
λ
↔ b. This means p(e) ∈ Nλ(b, 1) and therefore

e ∈ p−1(Nλ(b, 1)).

Let x ∈ Nκ(ei, 1) ∩ Nκ(ej , 1), for i 6= j. Then x
κ
↔ ei and x

κ
↔ ej and by

Proposition 3.6, b = p(ei) 6= p(ej) = b which is contradiction.
For every j ∈ J , the restriction map p|Nκ(ej ,1) : Nκ(ej , 1) → Nλ(b, 1) is injective

by Proposition 3.6, part i and ii and also is surjective by part v. For continuity
of (p|Nκ(ej ,1))

−1, let b′, b′′ ∈ Nλ(b, 1) be two λ-adjacent points. Since p|Nκ(ej ,1) is

bijective, there are e′, e′′ ∈ Nκ(ej , 1) such thet p(e′) = b′ and p(e′′) = b′′. If e′
κ
= e′′

then ej is conciliator point of p which is contradiction. Hence e′
κ
↔ e′′ and so

(p|Nκ(ej ,1))
−1 is continuous.

�

In the following, we give an example of a continuous surjection map with u.p.l
in which is not a digital covering map. This shows that the absence of conciliator
points is essential.

Example 3.9. Let E = Z, B = {b0 = (0, 0), b1 = (1, 0), b2 = (0, 1)} and p : E −→
B be defined by p(i) = bi mod 3. Then p is a (2, 8)-continuous surjection that has
the unique path lifting property and Also p has some conciliator point, for example
0, 3, 6, .... But p is not a digital (2, 8)-covering because p does not satisfy condition
(3) of Definition 2.6: For example, N2(0, 1) = {−1, 0, 1} and so the inverse of the
restriction of p to N2(0, 1) is not (8, 2)-continuous, because it maps two 8-adjacent
points b1 and b2 in N8(b0, 1) = B to two distinct points of N2(0, 1) = {1, 0, 1} that
are not 2-adjacent.

4. Coverings are derived from local isomorphisms

Like what happened to covering maps and u.p.l in General Topology, every
covering map is a local isomorphism, but every local isomorphism is not necessarily
a covering map. Obviously and by definitions, every digital covering map is a local
isomorphism. Han [9] gave an example showing that a local isomorphism is not
a covering map. We will find a gap in his example and will show that in Digital
Topology, local isomorphisms are digital covering maps.

Example 4.1. [9] Assume

X = {q0 = (x1, y1), q1 = (x1 − 1, y1 + 1), q2 = (x1 − 2, y1 + 1), q3 = (x1 − 3, y1),

q4 = (x1 − 3, y1 − 1), q5 = (x1 − 2, y1 − 2), q6 = (x1 − 1, y1 − 1)} ⊆ (Z2, 8)
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and

Y = {v0 = (a, b), v1 = (a− 1, b+ 1), v2 = (a− 2, b), v3 = (a− 1, b− 1)} ⊆ (Z2, 8).

Han claimed that the map h : X −→ Y with h(qi) = vi(mod 4) is a local 8-
isomorphism and is not a (8, 8)-covering map because the third assumption in the
definition of covering map is not satisfied in point v0. Although his assertion about
the point v0 is true, but h is not 8-continuous and hence is not a local isomorphism.
In fact q0 and q6 are 8-adjacent, while h(q0) and h(q6) are not same or 8-adjacent.

Theorem 4.2. A (κ, λ)-continuous surjection map p : (E, κ) → (B, λ) is a digital
(κ, λ)-covering map if and only if it is a local isomorphism.

Proof. By Theorem 3.8 it suffices to show that every local isomorphism has u.p.l
and has no conciliator point. Let α : [0,m]Z −→ B be a digital λ-path with
b0 = α(0). Since p is surjective, there exists e0 ∈ p−1(b0) and by assumption,

p|Nκ(e0,1) : Nκ(e0, 1) → Nλ(b0, 1) is a (κ, λ)-isomorphism. Since α(0)
λ
↔ α(1), there

exists e1 ∈ p−1(α(1)) such that e1 ∈ Nκ(e0, 1). If α(0) = α(1), put e1 = e0.
Inductively, there is ei ∈ p−1(α(i)) such that ei ∈ Nκ(ei−1, 1), for any 0 < i ≤ m.

Now, define α̃ : [0,m]Z −→ E by α̃(i) = ei which is a κ-path because α̃(i) = ei
κ
↔

ei−1 = α̃(i− 1). Since ei ∈ p−1(α(i)), α̃ is a lifting of α.
For uniqueness of path lifts property, consider two paths α, β : [0,m]Z −→ E in

which p ◦ α = p ◦ β and α(0) = β(0). By contradiction, assume that α 6= β. Since
α(0) = β(0), the set {i ∈ [0,m];α(i) 6= β(i)} has minimum l. Hence α(l) 6= β(l),
while α(l − 1) = β(l − 1). But the map

p|Nκ(α(l−1),1) : Nκ(α(l − 1), 1) → Nλ(p ◦ α(l − 1), 1)

is an isomorphism which implies that p ◦ α(l) 6= p ◦ β(l), for α(l), β(l) ∈ Nκ(α(l −
1), 1). This contradicts p ◦ α = p ◦ β and therefore α = β.
Now, let e ∈ E be a conciliator point of p. Then, there are e′, e′′ ∈ Nκ(e, 1) such

that e′
κ
= e′′ and p(e′)

λ
↔ p(e′′) which implies that the restricted map p|Nκ(e,1) :

Nκ(e, 1) −→ Nλ(p(e), 1) is not an isomorphism. This is a contradition and hence p
has no conciliator point. �

If in the definition of digital covering map, we replace the Nλ(b, 1) by Nλ(b, n),
for n ∈ N, the map is called radius n covering map and hence it is radius n local
isomorphism. Radius n coverings, particulary radius 2 coverings are very important
in the digital covering theory because some essential theorems in Algebraic Topology
are satisfied in Digital Topology if covering maps will be radius 2 covering maps.

Theorem 4.3. [4, 5, 8, 10] Let p : (E, κ) −→ (B, λ) be a (κ, λ)-covering map such
that p(e0) = b0. Suppose that p is a radius 2 local isomorphism. Then
(1) For κ-paths α, β : [0,m]Z −→ E starting at e0, if there is a λ-homotopy in B
from p ◦ α to p ◦ β that holds the endpoints fixed, then α(m) = β(m), and there is
a κ-homotopy in E from α to β that holds the endpoints fixed.
(2) The induced homomorphism p∗ : πκ

1 (E, e0) −→ πλ
1 (B, b0) is a monomorphism.

(3) For a given κ′-connected space X with x0 ∈ X, any (κ′, λ)-continuous map
ϕ : (X,κ′) −→ (B, λ) with ϕ(x0) = b0 has a digital lifting ϕ̃ : (X,κ′) −→ (E, κ) for

which ϕ̃(x0) = e0 if and only if ϕ∗

(
πκ′

1 (X, x0)
)
⊆ p∗

(
πκ
1 (E, e0)

)
.



EQUIVALENT CONDITIONS FOR DIGITAL COVERING MAPS 9

For more results in digital covering maps based on 2-radius property, see [4, 5, 8].
In the following, we give a loop criterion for a digital covering to be a radius n
covering map. But we need this lemma.

Lemma 4.4. Let p : (E, κ) −→ (B, λ) be a (κ, λ)-covering map, e ∈ E, e′ ∈
Nκ(e, 1) and e′ 6= e′′ ∈ Nκ(e, 2). Then p(e′) 6= p(e′′).

Proof. Let b = p(e) and by contrary assume that b′ := p(e′) = p(e′′). Since p|Nκ(e,1)

is an isomorphism, e′′ ∈ Nκ(e, 2) − Nκ(e, 1) and hence there exists f ∈ Nκ(e, 1)

such that e′′
κ
↔ f . Since p(e′) = p(e′′)

κ
↔ p(f) and p|Nκ(e,1) is an isomorphism

and also p(e′), p(f) ∈ Nλ(b, 1), we have f
κ
↔ e′. Now, p|Nκ(f,1) is an isomorphism,

e′, e′′ ∈ Nκ(f, 1) and p(e′) = p(e′′) which is a contradiction. �

Theorem 4.5. Let p : (E, κ) −→ (B, λ) be a (κ, λ)-covering map. p is a radius n
covering map if and only if every lifting of any simple λ-loop with length at most
2n+ 1 is a simple κ-loop.

Proof. Let p be a radius n covering map and in the worst conditions, α : [0, 2n+
1]Z −→ B be a simple λ-loop with length 2n + 1. Let b := α(0) and assume that
e ∈ p−1(b). Consider two λ-paths α1, α2 : [0, n]Z −→ B defined by α1(k) = α(k)
and α2(k) = α(2n + 1 − k). In fact, α1 is α|[0,n] and α2 is (α|[n+1,2n])

−1. Since

p|Nκ(e,n) : Nκ(e, n) −→ Nλ(b, n) is a (κ, λ)-isomorphism, α̃1 := (p|Nκ(e,n))
−1 ◦ α1

and α̃2 := (p|Nκ(e,n))
−1 ◦ α2 are liftings of α1 and α2, respectively and α̃1(0) =

α̃2(0) = e. Also, α̃1(n)
κ
↔ α̃2(n) because α1(n)

κ
↔ α2(n) and p|Nκ(b,n) is an

isomorphism. Define µ : [0, 2n+ 1] −→ E by

µ(i) =

{
α̃1(i) 0 ≤ i ≤ n,

α̃2(i) n+ 1 ≤ 2n+ 1.

Obviously, µ is a simple κ-loop and p ◦ µ = α, as desired.
For the converse, we use induction to show that p|Nκ(e,n) is an isomorphism, for

every b ∈ B and any e ∈ p−1(b).
Assume that all liftings of every simple λ-loop with length 5 is a simple κ-loop.

We must prove that p|Nκ(e,2) is an isomorphism, for every b ∈ B and any e ∈ p−1(b).
Since p|Nκ(e,1) is an isomorphism, if x ∈ Nλ(b, 1), Then there is y ∈ Nκ(e, 1) such
that p(y) = x. Assume x ∈ Nλ(b, 2) − Nλ(b, 1). Let α : [0, 2]Z −→ Nλ(b, 2) be a
λ-path from b to x. Then there is a unique lifting α̃ : [0, 2]Z −→ Nκ(e, 2) beginning
at e such that y := α̃(2) ∈ Nκ(e, 2) and p(y) = x. Hence p|Nκ(e,2) is onto.

For injectivity, by contrary assume that there are y, y′ ∈ Nκ(e, 2) such that
x := p(y) = p(y′). Since p|Nκ(e,1) is an isomorphism, y, y′ /∈ Nκ(e, 1). If y ∈ Nκ(e, 1)
and y′ ∈ Nκ(e, 2), then by Lemma 4.4, p(y) 6= p(y′). Hence we can consider
y, y′ ∈ Nκ(e, 2) − Nκ(e, 1). By part i of Proposition 3.6, y, y′ are not κ-adjacent.

There are two points e1, e
′

1 ∈ Nκ(e, 1) such that e1
κ
↔ y and e′1

κ
↔ y′. If e1 = e′1, then

we have two liftings beginning at e1 for the path δ : [0, 1]Z −→ B, by δ(0) = p(e1)
and δ(1) = x which is contradiction. Hence e1 6= e′1.

If p(e1)
λ
↔ p(e′1), then e1

κ
↔ e′1 (because p|Nκ(e,1) is an isomorphism) and since

y ∈ Nκ(e1, 1) and y′ ∈ Nκ(e1, 2), by Lemma 4.4 we have p(y) 6= p(y′). Therefore
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p(e1)
λ
= p(e′1). Let b1 = p(e1) and b′1 = p(e′1). Define





α : [0, 4]Z −→ B,

α(0) = α(4) = x,

α(1) = b1, α(2) = b, α(3) = b′1,

which is a simple λ-loop based at b with length 4 and hence all of its liftings are
closed. But γ : [0, 4]Z −→ E defined by γ(0) = y, γ(1) = e1, γ(2) = e, γ(3) = e′1
and γ(4) = y′ is a lifting of α which is not closed. Hence y = y′ and therefore
p|Nκ(e,2) is injective.

Obviously p|Nκ(e,2) is continuous. For continuity of
(
p|Nκ(e,2)

)−1
, let b′, b′′ ∈

Nλ(b, 2) such that b′
λ
↔ b′′. Then

• If b′, b′′ ∈ Nλ(b, 1), then
(
p|Nκ(e,2)

)−1
(b′)

κ
↔

(
p|Nκ(e,2)

)−1
(b′′) because

p|Nκ(e,1) is an isomorphism.
• If b′, b′′ ∈ Nλ(b, 2)−Nλ(b, 1), then we can define λ-simple loop α : [0, 5]Z −→
Nλ(b, 2) by α(0) = b, α(1) = b1, α(2) = b′, α(3) = b′′, α(4) = b′1 and α(5) =
b, where b1, b

′

1 ∈ Nλ(b, 1). By assumption, all of its liftings are closed
and by u.p.l, there exists unique κ-simple loop α̃ started at e such that

p ◦ α̃ = α. Since p|Nκ(e,2) is bijective,
(
p|Nκ(e,2)

)−1
(b′) = α̃(2)

κ
↔ α̃(3) =(

p|Nκ(e,2)

)−1
(b′′), as desired.

• If b′ ∈ Nλ(b, 2) and b′′ ∈ Nλ(b, 1), by a similar way as in the previous item,
we can define a λ-simple loop with length 4 in Nλ(b, 2) and deduce that(
p|Nκ(e,2)

)−1
(b′)

κ
↔

(
p|Nκ(e,2)

)−1
(b′′).

Therefore p|Nκ(e,2) is an isomorphism.
If p|Nκ(e,n−1) is an isomorphism and all liftings of every simple λ-loop with length

2n+1 is a simple κ-loop, a similar method shows that p|Nκ(e,n) is an isomorphism.
�

In the following example we show that we can not replace 2n+1 by 2n in the
Theorem 4.5.

Example 4.6. Let α : [0, 5]Z −→ Z
3 be a 26-simple loop and denote α(i) by bi.

Define p : Z −→ B = {b0, b1, b2, b3, b4} by p(i) = bi mod 5. Readily, p is a (2,26)-
covering map. As B is a simple loop and |B| > 2n = 4, there is no non-trivial
simple 26-loop in B of length 4 or less and so the hypothesis that ”every lifting of
any simple 26-loop with length at most 2n is a simple 2-loop” is satisfied. Also,
there exist a 26-loop with length 5 such that has no closed lifting, namely α. But
p is not a radius 2 covering map as it is not a radius 2 local isomorphism. For

example, N2(0, 2) = [−2, 2]Z and so
(
p|N2(0,2)

)−1
maps the 26-adjacent points b2

and b3 in N26(b0, 2) = B to two distinct points of N2(0, 2) = [−2, 2]Z that are not
2-adjacent (namely the points 2 and −2).

Although in General Topology, the induced homomorphism on fundamental
groups by a covering map is a monomorphism, but this is not true in digital topology
[4]. We have the following corollary by using Theorem 4.3 and Theorem 4.5.

Corollary 4.7. Let p : (E, κ) −→ (B, λ) be a (κ, λ)-covering map. The induced
homomorphism p∗ : πκ

1 (E, e0) −→ πλ
1 (B, b0) is a monomorphism if every lifting of

any simple λ-loop with length 5 is closed.
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Proof. Since every lifting of any simple λ-loop with length 5 is closed, p is a radius 2
covering map by Theorem 4.5 and so by part 2 of Theorem 4.3, p is a monomorphism

�

Using Theorem 4.5, we can restate Theorem 4.3:

Corollary 4.8. (Digital Lifting Criteria)
Let p : (E, κ) −→ (B, λ) be a continuous surjection map, X be a κ′-connected

space with x0 ∈ X and ϕ : (X,κ′) −→ (B, λ) be a (κ′, λ)-continuous map with
ϕ(x0) = b0. Then the existence of a digital lifting ϕ̃ : (X,κ′) −→ (E, κ) for

which ϕ̃(x0) = e0 is equivalent to the algebraic assumption ϕ∗

(
πκ′

1 (X, x0)
)

⊆

p∗
(
πκ
1 (E, e0)

)
if at least one of the following conditions hold:

(a) p has u.p.l, has no conciliator point and every lifting of any simple λ-loop with
length 5 is closed.
(b) p is a radius 2 local isomorphism.

Proof. (a) If p has u.p.l and has no conciliator point, then it is a covering map, by
Theorem 3.8 and since every lifting of any simple λ-loop with length 5 is closed, p
is a radius 2 covering map. Part 3 of Theorem 4.3 implies the existence of desired
ϕ̃ : (X,κ′) −→ (E, κ).
(b) If p is a radius 2 local isomorphism, Theorem 4.2 implies that it is a radius 2
covering map and so the existence of desired ϕ̃ : (X,κ′) −→ (E, κ) comes from part
a. �

We know that every digital radius 2 covering map of a simply connected digital
space is an isomorphism ([5, Corollary 3.14]). Theorem 4.2 implies that continuous
surjection radius 2 local isomorphisms are radius 2 covering maps and so we have
the following corollary.

Corollary 4.9. Let continuous surjection map p : (E, κ) −→ (B, λ) be a radius 2
local isomorphism. Then it is a (κ, λ)-isomorphism if B is simply connected.
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