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A MULTIVARIABLE CASSON-LIN TYPE INVARIANT
LEO BENARD AND ANTHONY CONWAY

ABSTRACT. We introduce a multivariable Casson-Lin type invariant for links in S®. This
invariant is defined as a signed count of irreducible SU(2) representations of the link group
with fixed meridional traces. For 2-component links with linking number one, the invariant
is shown to be a sum of multivariable signatures. We also obtain some results concerning
deformations of SU(2) representations of link groups.

1. INTRODUCTION

The Casson-Lin invariant h(K) of a knot K was originally defined by Lin as a signed
count of conjugacy classes of trace-free irreducible SU(2) representations of m(S®\ K) [37].
Lin proved furthermore that h(K) equals half the (Murasugi) signature of K. Allowing for
more general trace conditions, this result was later generalized by Herald [27] and Heusener-
Kroll [29] who defined an invariant h () for those a € (0,7) which satisfy A (e*<) # 0.
They also related their invariant to the Levine-Tristram signature ox by showing that

hic(a) = %UK(eM).

Similar invariants have been constructed for links: Harper-Saveliev [24] defined a signed count
of a certain type of projective SU(2) representations for 2-component links L = K; U Ky and
showed that their invariant coincides with the linking number +¢k(K7;, K3). The sign was
later determined by Boden-Herald [6] and the construction was extended to n-component
links by Boden-Harper [5]. We also refer to [5] for a construction involving the group SU(n)
and to [25, 12] for further gauge theoretic developments.

The first aim of this article is to produce a multivariable generalization of the Casson-Lin
invariant. Namely, building on the approach of Lin [37] and Heusener-Kroll [29], we consider
conjugacy classes of SU(2) representations with fixed meridional traces. More precisely, given
an n-component ordered link L and an n-tuple (aq,...,a,) € (0,7)" such that the multivari-
able Alexander polynomial Ay (t1,...,t,) does not vanish on {(e“1%1 ... efn2ien) | g, = +1},
we define a multivariable Casson-Lin invariant

hL<a1, ce ,Ckn).

Generalizing the aforementioned authors’ approach, this invariant is defined using (colored)
braids. The invariance of hy, is then proved by showing independence under the two colored
Markov moves (Propositions 3.8 and 3.9). By construction, hj, recovers the invariant of
Heusener-Kroll [29] if L is a knot, while Proposition 6.6 shows that Ay, is locally constant. Note
that since we are counting SU(2) representations and not projective SU(2) representations,
our invariant hy, is distinct from the link invariant constructed by Harper-Saveliev [24] and
Boden-Harper [5]. The following paragraphs shall make this difference more concrete.

2000 Mathematics Subject Classification. 57TM25.



2 LEO BENARD AND ANTHONY CONWAY

In [37, 29], the invariants under consideration were related to signature invariants by study-
ing the effect of crossing changes and computing the invariant on a “base case”, namely the
unknot. In our setting, this task is complicated by the following fact: if L and L’ are related
by a crossing change and Ay is not identically zero, it might well be that Az, = 0, and in this
case, hys is not defined. Furthermore, since the Alexander polynomial of the n-component
unlink is trivial (for n > 2), there is no obvious “base case”.

While we have not managed to circumvent this issue in general, we nevertheless provide
a formula relating hz(aq,...,a,) to hp(ai,...,a,) whenever L and L’ differ by a crossing
change within a component of L. In particular, for 2-component links with linking number 1,
we are then able to relate hz, to the multivariable signature oy, of Cimasoni-Florens [10]: for
this class of links, the Hopf link can be used as the “base case”. Here, the multivariable
signature is a function on T? := (S!\ {1})" that generalizes the classical Levine-Tristram
signature.

Theorem 1.1. Let L = Ky U K» be a 2-component ordered link with (K, K2) = 1,
let (a1, 0) € (0,7)%, and set (w1, ws) = (e, e%@2) . [f the multivariable Alexander polyno-
mial satisfies Ar(wi',w5?) # 0 for all (e1,e2) € {£1}?, then the following equality holds:

1 B
(1) hr(ar, as) = T(JL(wl,w2)+aL(w1,w2 ).
First, we observe that despite appearances, the formula displayed in (1) is in fact symmetric.

Remark 1.2. Since the multivariable signature is known to satisfy o, (w; ', wy ') = o7, (w1, wa),
the conclusion of Theorem 1.1 can be rewritten as

1 B B o
(2) hi(aq,as) = T(UL(wl,ng) +op(wi,ws D) Fop(witwe) +orp(wrt,wst)).

In fact, throughout this article, we work with colored links: an n-component oriented link L
is p-colored if its components are partitioned into sublinks Ly U...U L. For instance, taking
@ = n, a p-colored link is an ordered link, while a 1-colored link is simply an oriented link.
In particular, in this latter case, our construction defines a one variable Casson-Lin invariant
which reduces to Heusener-Kroll’s invariant if L is a knot.

Remark 1.3. Theorem 1.1 (as stated in (2)) does not hold for 1-colored links with more
than one component. Reformulating, if a € (0,7) and L is an oriented link with at least
two components, then —3 (o7(€*®) + o (e7%®)) = —107(e**) need not equal hy(a), even
under the assumptions of the theorem (for knots hr () = —3o. (%) holds by Heusener and
Kroll’s work; the sign difference is discussed in Remark 6.5). Indeed, the equality is false
for the (one-colored) Hopf link: regardless of the number of colors, h; vanishes for the Hopf
link J (since 71 (S3\ J) is abelian), while the 1-variable signature of .J (i.e. the Levine-Tristram
signature) is equal to 1 or —1 depending on the orientation.

Even though we ignore whether the linking number hypothesis is necessary in Theorem 1.1,
some comments can be made nonetheless.

Remark 1.4. We claim that if Theorem 1.1 is true for an arbitrary 2-component ordered
link L = K; U K>, then the equality hp(5) = —orp(—1) — £k(K1, K2) holds for the un-
derlying oriented link (which we also denote by L) whenever Ay (—1) # 0. In particular,
if lk(K7, K2) = 1, then Theorem 1.1 implies the following equality (which sheds further light
on Remark 1.3):

hi (g) — —or(~1) — 1.
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This contrasts with the knot case, where Lin showed that hx(3) = 3ok (—1) [37]. The claim
is established by noting that for an n-component ordered link L = Ky U...U K, the multi-
variable Casson-Lin invariant satisfies hr(c,...,a) = hr(a) (Remark 3.12 below), while the
multivariable signature satisfies o7 (w, ..., w) = or(w)+3_,; tk(K;, K;) [10, Proposition 2.5],
and Ap(t,...,t)(t—1) = AL(t).

Summarizing, the multivariable Casson-Lin invariant is related to the multivariable signa-
ture for knots and 2-component ordered links with linking number 1, but is a priori a new
invariant in general. Note that the resemblance between (abelian invariants of) 2-component
links with linking number 1 and knots was already observed and exploited in [21].

Remark 1.5. It should now be clear that our multivariable Casson-Lin invariant hj, differs
from the invariant of Harper-Saveliev [24] and Boden-Harper [5]. As an additional remark
in this direction, it is interesting to note that this latter count of projective representations
might be a link homotopy invariant [5, discussion following Conjecture 4.7], while this seems
unlikely for our hy: the statement is already incorrect for 2-component links with linking
number 1 since the multivariable signature is not a link homotopy invariant.

The second aim of this paper is to provide some results on deformations of SU(2) repre-
sentations of link groups. In other words, we study whether an abelian SU(2) representation
of a link group is a limit point of irreducible representations. Before providing some history
and stating our results, we introduce some notation. Given an n-component ordered link
L =K;U...UK, (whose exterior in S3 is denoted by My) and w = (w1, ...,w,) € T, we
consider the abelian representation

. _ |i=t

pwt (ML) = SU2),  pu(V) 0 ln_[ wi_gk(%Ki)
i=1

In the knot case (i.e. n = 1), it is known since Burde [7] and de Rham [19] that if p,, is
a limit of irreducible SU(2) representations, then A (w?) = 0. Frohman and Klassen have
shown that the converse holds if w is a simple root of A (t) [22]. This result was generalized
by Herald [27] and Heusener-Kroll [29]: these authors used Casson-Lin type invariants to
show that if w is a root of Ag(t) and if the Levine-Tristram signature o changes value
at w, then p,, is a limit of irreducible representations. We refer to [3] for other results in this
direction and to [31, 30] (and references therein) for deformations of SL,,(C) representations.

In the case of links, these questions seemed to have received less attention. Our first result
in this context is a multivariable generalization of the theorem of Burde and de Rham. While
our results hold for colored links and also concern SLy(C) representations (Theorems 2.4
and 2.5), we only state the following result on SU(2) representations, see Corollary 2.6:

Proposition 1.6. Let L be an n-component link and let w = (w1, ...,wy,) € T?. If the abelian
representation p,, is a limit of irreducible SU(2) representations, then Ap(w?,...,w2) =0.

Just as in the knot case, one might now wonder about the converse of Proposition 1.6.
Our final result uses Theorem 1.1 to provide a partial converse for 2-component links with
linking number 1 (in the spirit of Herald’s and Heusener-Kroll’s result [27, 29] which involved
the Levine-Tristram signature). To state our result, we use V(Ar) C T? to denote the
variety described by the intersection of T} with the zero-locus of the multivariable Alexander
polynomial of an n-component link L.
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Theorem 1.7. Let L be a 2-component ordered link with linking number 1. Let (wy,ws) € T2
be such that Ap(wi,ws) =0 and AL(wl,wgl) £ 0. Assume that for any open subset U C T2
containing (w1,w2), the multivariable signature oy, is not constant on U \ (V(AL)NU). Then
the abelian representation p(., ..y is a limit of irreducible representations.

This paper is organized as follows. In Section 2, we review some facts about representa-
tion spaces and prove Proposition 1.6. In Section 3, we define the multivariable Casson-Lin
invariant hy. In Section 4, we review some facts about the colored Gassner representation
and the multivariable potential function. In Section 5, we study the effect of crossing changes
on hr, and, in Section 6, we prove Theorems 1.1 and 1.7..
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Casson-Lin invariant and making available some of his computations. We also thank him
and an anonymous referee for pointing out a mistake in a prior version of this work. We also
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conducted. LB is supported by the NCCR SwissMap, funded by the Swiss National Science
Fondation. AC thanks Durham University for its hospitality and was supported by an early
Postdoc.Mobility fellowship, also funded by the Swiss National Science Fondation.

2. SLy(C) REPRESENTATIONS AND THE MULTIVARIABLE ALEXANDER POLYNOMIAL

The aim of this section is to obtain a necessary condition for the existence of reducible non-
abelian SLy(C) representations of link groups and prove Proposition 1.6 from the introduction.
In Subsection 2.1, we review representation spaces, in Subsection 2.2, we recall some facts
about the multivariable Alexander polynomial and, in Subsection 2.3, we state and prove our
results on reducible representations of link groups. Note that while most of this paper deals
with SU(2) representations, we hope that the more general SLy(C) statements of Theorems 2.4
and 2.5 might be of independent interest.

2.1. Representation spaces. In this subsection, we review some basics facts and notations
about representation spaces. References include [35, 2, 44].

Let 7 be a finitely generated group and let G be either SU(2) or SLy(C). The represen-
tation space of m is the set Rg(m) := Hom(w, G) endowed with the compact open topology.
Choosing a set {z1,...,z,} of generators of 7, the map Rg(m) — G™, p — (p(x1),...,p(xn))
realizes Rg(m) as an algebraic subset of G™. A representation p € Rg(w) is abelian if its
image is an abelian subgroup of G. The closed subset of abelian representations will be de-
noted by S(m). A representation is reducible if it admits a non-trivial invariant subspace and
1rreducible otherwise.

Remark 2.1. For SU(2) representation spaces, a representation p is reducible if and only if
it is abelian. This is well known not to be the case for other Lie groups such as SLy(C).

When G = SU(2), we write R(r) instead of Rgy2)(m). The group SU(2) acts on R(7) by
conjugation and the SU(2)-character variety of w consists of the quotient X () = R(w)/SU(2).
After removing abelian representations, SO(3) = SU(2)/ 4+ Id acts freely and properly on
R(m) \ S(m). In practice, we shall frequently consider (subspaces of) the set of conjugacy
classes of non abelian representations:

R(r) = (R(m) \ S(r)) / SO(3).
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When G = SLy(C), the quotient Rgy,(7w)/SLs is not Hausdorff in general. In this case, the
SLa-character variety of 7 is the algebro-geometric quotient

Xsr, () = Rsr, (7)// SLa(C).

While references for the algebro-geometric quotient include [39, 18, 44], all we need in the
sequel is the following fact: two representations p and p’ are identified in Xgr,(7) if their
traces are equal, i.e. if for all v € 7 one has Trp(y) = Trp'(y). As a consequence, this
quotient is the usual one when restricted to the set of irreducible representations (see for
instance [18, Proposition 1.5.2]).

Finally, when 7 is the fundamental group of a manifold M, we write R(M) instead of R(m).
In fact, we are particularly interested in the case where M is a link exterior.

2.2. The multivariable Alexander polynomial and reducible SLy(C) representa-
tions. In this subsection, we first briefly review the multivariable Alexander polynomial
before stating a criterion for the existence of reducible non-abelian SLy(C)-representations.
We also prove Proposition 1.6 from the introduction.

A p-colored link is an oriented link L in S® whose components are partitioned into s
sublinks Ly U ---U L,. Given an n-component p-colored link L, we let M;, denote its ex-
terior, we consider the homomorphism ¢: 7 (M) — Z*,v — (bk(L1,7),...,¢k(Ly,~y)) and
use myq, ..., my to denote the meridians of L.

Remark 2.2. Any reducible representation p: w1 (M) — SL2(C) is conjugated to one which
satisfies p(m;) = (i‘; /\i1> for some \; € C and for i = 1,...,n. Using Ky, ..., K, to denote

the connected components of L, observe that for v € m (M), this representation satisfies

[] AKO-KD .
i=1

3 = n
(3) p(7) . B KD
=1

Next we bring the colors into play. Assume that A = (Aq,...,\,) lies in (C*)* and let

7

0
sublink L;. Note that if yu = n, this recovers the representation described in (3). Consider

px: m1 (M) — SLa(C) be the representation which maps m; to ( )\il ) if m; belongs to the

the composition @y : w1 (Mp) R/ N C, where the second map sends the canonical basis
element e; to A;. If 7 lies in 71 (M), then py(7) can be written explicitly as

*

{T AL

4 N G N e (e
(@ p0) = (70 ) b s
i=1

As observed in Remark 2.1, reducible SLy(C) representations need not to be abelian. In
order to describe this situation in more details, we recall the definition of the Alexander
polynomial of a colored link. The previously described epimorphism ¢: 71 (Mp) — Z* induces

a regular Z*-covering My, — Mj. The homology of M7, is a module over A, = ZitE, .. ,til],
and the A -module H 1(]\/4\ 1) is called the Alexander module of the colored link L.

Definition 2.3. The Alezander polynomial Ar(ty,...,t,) of a p-colored link L is the order
of its Alexander module.
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The Alexander polynomial is only well defined up to units of A, that is, up to multiplication
by powers of +t;. We refer to [33, 9] for further information on Ay. The main theorem of
this section is the following.

Theorem 2.4. Let L be a pi-colored link and let X = (A1,...,A,) lie in (C*\ {1})*. There
exists a reducible, non abelian SLy(C)-representation of the form py if and only if Ap(\2) = 0.

We delay the proof of Theorem 2.4 to Subsection 2.3 and give some applications instead.

Theorem 2.5. Let L be a p-colored link and let X\ = (Ai,...,\,) lie in (C*\ {1})*. If
AL(N?) # 0, then a sufficiently small neighborhood of the representation py in R, (c) (ML)
consists entirely of reducible representations.

Proof. The strategy of the proof follows [44, Lemma 3.9, (iii)]). A representation p: 7 —
SLy(C) is reducible if and only if for any ~,8 € 7, one has Tr p(vdy~16!) = 2 [18, Lemma
1.2.1]. Consequently, reducibility is well defined at the level of character varieties, and the
set of irreducible characters is open in both the representation variety Rgr,(My) and in the
character variety Xsr,,(Mr).

Since Ar(A?) # 0, Theorem 2.4 implies that py is abelian. In fact, we claim that every
representation p’ with the same character as p) is abelian and is conjugated to py. To see this,
first note that since p’ has the same character as py, the previous paragraph implies that p’
is reducible. Using Theorem 2.4, p’ must in fact be abelian. Since p) and p’ are abelian and
have the same character, they must be conjugated, concluding the proof of the claim.

By way of contradiction, assume that the representation p) has irreducible representations
in anyone of its neighborhoods. Since we argued that the set of irreducible characters is open
in the character variety, the character of the representation py lies in an irreducible component
X C Xgsr,(Mp) that contains the character of an irreducible representation.

Next, consider the quotient map ¢: Rsr, (M) — Xsi,(Mp). If x € X is the character of
an irreducible representation, then the fiber t=1({x}) is homeomorphic to PSL(2,C) and in
particular has dimension 3. Since irreducible characters form an open dense subset of X and
since the dimension of the fiber t=1({x}) is upper semi-continuous on X for any character x
in X, the dimension of t~!({x}) is at least 3.

Set xa = t(py). Since p, is abelian, the claim implies that t~!'({x,}) is isomorphic to
SL2(C)/G), , where G, < SLa(C) is the stabilizer of py and has positive dimension (since py
is abelian). Therefore the fiber t 1 ({),}) has dimension strictly less than 3 which contradicts
the previous paragraph. ]

In the next sections, our interest will lie in SU(2) representations. In this case, as recalled in
Remark 2.1, every reducible representation is abelian and the resulting eigenvalues lie on the
unit circle. Using T4 to denote (S \ {1})#, we obtain the following result which generalizes
a theorem of Burde [7] and de Rham [19]. This proves Proposition 1.6 from the introduction.

Corollary 2.6. Let L be a pi-colored link and let w lie in T% . If Ap(w?) # 0, then a sufficiently
small neighborhood of p,, in R(Mr) consists entirely of abelian representations.

Proof. This follows directly from Theorem 2.5 and the observation that R(My) embeds
in Rgr,,(Mp): any SU(2) representation is also an SLa(C) representation. O

2.3. Proof of Theorem 2.4. The map p): m (M) — C described in Remark 2.2 endows C
with a left Z[m(Mr)]-module structure; we write Cy for emphasis. Consider the twisted
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cochain complex C*(m1(My),Cy) and recall that a 1-cocycle u € Z! (w1 (M), Cy) is a map
u: w1 (M) — C that satisfies

(5) u(v6) = u(y) + pa(v)u(d)

for every v,0 in w1 (Mp). The following lemma provides a cohomological obstruction for a
reducible representation to be abelian.

Lemma 2.7. Given X € (C*\ {1})*, the following assertions hold:

(1) The representation py gives rise to a cocycle u € Z'(My,Cyz2).
(2) The representation py is abelian if and only if [u] =0 € H*(Mp,Cy2).

ex(7) ea() " tu(v)
0 o)t
in 71 (M) and this gives rise to a map w: m(Mr) — C. Given v and § in (M), the

equality p(vd) = p(7)p(d) then shows that u satisfies the following relation:

x(16) " u(v8) = ea(v6Hu(8) + pa(v8) tu().

Multiplying this equation by ¢ (vd), we deduce that u must satisfy u(vd) = u(y) -+ (y?)u(d)
which is the cocycle condition from (5). Thus u is a cocycle and the first assertion is proved.

To prove the second assertion, we must show that the reducible representation p) is abelian
if and only if the cocycle u is a coboundary, that is if there exists a z € C such that for
all v € m1 (ML), one has

(6) u(y) = (ea(y?) = 1)z

First, observe that py is abelian if and only if for each v € (M) there exists an in-
vertible matrix A = (%) such that DA = Ap,(7), where D denotes the diagonal matrix
(w(v) 0

Proof. Using the definition of p), we may write py(v) as ( ) for each ~y

0 A7)
abelian if and only if the three following equations hold:

borx(v) = apa(v)Mu(y) 4+ boa(v) 7L,
cor() 7 = cpa(y),
dox(7)™! = epa(y)tu(y) + dea(y)

If p5(y) = %1, the representation is abelian if and only if there exists a, ¢ such that au(vy) = 0
and cu(y) = 0. Since A must be invertible, either a or ¢ must be non-zero, and in this
case u(y) must vanish for each «. In particular [u] vanishes in cohomology.

If ¢ (7) # £1, the representation is abelian if and only if ¢ = 0 and au(y) = b(p(7?) — 1).
Since A is invertible, we deduce that a # 0 and therefore u(y) = (5 (7?)—1). Consequently,
looking back to (6), we have obtained the defining equation for a coboundary. This concludes
the proof of the second assertion and thus the proof of the lemma. O

1 ) Writing out this equation coordinate by coordinate, one deduces that p) is

As we shall see shortly, Theorem 2.4 will follow promptly from the following lemma.

Lemma 2.8. Let \ lie in (C*\ {1})*. The complex vector space H(Mp;Cy) does not vanish
if and only if X satisfies Ap(\) = 0.

Proof. First, since we are dealing with C-vector spaces, the universal coefficient theorem shows
that the vanishing of H'(M;C,) is equivalent to the vanishing of Hy(Mp;C,). To prove the
lemma, we must show that Hy(Mp;C,) does not vanish if and only if Ay (\) vanishes. It is
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enough to show that the order of this latter vector space is zero if and only if A () is zero.
This will immediately follow if we prove that

Hl(ML; (C)\) = Hl(ML;AM) ®Au C)\.

To prove this assertion, we will use (a particular case of) the universal coefficient spectral
sequence (UCSS) whose second page is given by Eiq = Tor;.} “(Hy(Mp;A,),Cy) and which
converges to H,(Mrp;Cy,), see [32, Chapter 2]. We start with the following claim.

Claim. Endow Z = Ho(Mr;A,) with the Ay,-module structure coming from the augmentation
homomorphism A, — Z,t; — 1. If X lies in (C*\ {1})*, then the complex vector space

Tor?“ (Z,Cy) vanishes for k =1,2.

Proof. Using the A ,-resolution of Z given by the chain complex for the universal cover of the

torus T, we have Tor;XM (Z,Cy) = Hp(T*;Cy). As the \; are not equal to 1, the claim now
follows from considerations involving cellular homology, see [43] and [14, Lemma 2.2]. O

Using the claim, we know that E22,0 = 0. The UCSS then gives ESj, = 0 and provides
a filtration 0 C FY C F! = Hy(Mp;C,). As the UCSS also implies that F) = EFy =
Hy(Mp; Ay) @4, Cx and EYG = F /FP, we obtain the following short exact sequence:

0 — Hi(Mp; Ay) ®4, Cy — Hi(Mg;Cy) = Tory* (Ho(Mp; A,,), Cy) — 0.
Since we showed in the claim that Torll\“ (Ho(Mp;AL),Cy) vanishes, the lemma follows. O
Combining these two lemmas, we are now in position to conclude the proof of Theorem 2.4.

Proof of Theorem 2.4. Let u,, be the 1-cocycle described in Lemma 2.7. Using the second
point of this same lemma, the existence of a reducible non abelian representation py is equiv-
alent to the cohomology class [u,,] being non zero in H'(Mp,Cy2). Thus, if there exists
a reducible non-abelian representation of the form py, then H'(My,C,2) is non-trivial and
Lemma 2.8 implies that the multivariable Alexander polynomial A vanishes at A\2.
Conversely, if the multivariable Alexander polynomial vanishes at A%, then Lemma 2.8 im-
plies that H!(Mp;C,2) does not vanish. Since H*(Mp;Cy2) = H' (71 (My); Cy2), we deduce
that there is a non-zero cocycle u in Z!(m1(Mp);Cy2). Defining a representation p from u
just as in the proof of Lemma 2.7 produces the desired non-abelian representation. ]

3. THE MULTIVARIABLE CASSON-LIN INVARIANT

The goal of this section is to define the multivariable Casson-Lin invariant. More precisely,
in Subsection 3.1, we review colored braids, in Subsection 3.2, we define our invariant on
braids and in Subsection 3.3 we verify its invariance under the colored Markov moves.

3.1. Colored braids. In this subsection, we briefly review colored braids and discuss the
action of the colored braid groups on SU(2)"™. References for colored braids include [41, 13],
while discussions of the action of the braid group B,, on SU(2)" include [37, 29, 28, 38].

The braid group B, admits a presentation with n — 1 generators o1, 09,...,0,_1 subject
to the relations 0;0;410; = 044100441 for each 4, and 0,0; = 005 if |i — j| > 2. Topologically,
the generator o; is the braid whose i-th component passes over the (i+ 1)-th component. The
closure of a braid 3 is the link 3 obtained from 3 by adding parallel strands in S3\ (D2 x [0, 1]).
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FIGURE 1. A (¢,d)-braid p1, a (¢, ”)-braid B3 and their composition, the
(¢, ¢")-braid (182. Here (3 is the generator oq of By, while (s is o3.

A braid f is p-colored if each of its components is assigned (via a surjective map) an integer
in {1,2,...,u} (which we call a color). A u-colored braid induces a coloring on its top and
bottom boundary components. A p-colored braid is then called a (¢, ¢’)-braid, where ¢ and ¢/
are the sequences of 1,2,..., u induced by the coloring of the braid (these sequence will be
referred to as p-colorings). We shall denote by id. the isotopy class of the trivial (¢, ¢)-braid.
The composition of a (¢, ’)-braid £, with a (¢, ¢’)-braid Bz is the (¢, ¢’)-braid (182 depicted
in Figure 1. Thus, for any ¢, we obtain a colored braid group B. which consists of isotopy
classes of (c,c)-braids. For instance, if 4 = 1 (so that ¢ = (1,...,1)), then B, is the braid
group B,,, while if 4 = n and ¢; = ¢ for each 4, then B, is the pure braid group F,. We shall
often use the map ic, ., : Be < B¢, cn,cniq) Which sends a to the disjoint union of o with a
trivial strand of color ¢, 41, see Figure 2. Here, ¢,41 can be equal to one of the n first ¢;’s.

€1 C2 C3 C1 C2 C3 C4

a i, (@)

{ {

c1 ¢y C3 €1 o C3 Cy

FIGURE 2. An example of the inclusion map i,.

Finally, the closure of a p-colored braid g € B, is the p-colored link B obtained from £
by adding colored parallel strands in S3 \ (D? x [0,1]). We refer to [41, Theorem 3.3] for the
colored version of Alexander’s theorem and instead focus on the colored version of Markov’s
theorem, referring to [41, Theorem 3.5] for the proof.

Proposition 3.1. Two (c,c)-braids have isotopic closures if and only if they are related by a
sequence of the following moves and their inverses:
(1) replace v3 by B, where v is a (¢, c)-braid and B is a (¢, ¢)-braid,
(2) replace v by o5ic, (), where v is a (c,c)-braid with n strands, o, is viewed as a
((c1y. . ynycn)y (€1, vy cnyep))-braid, and € is equal to +1.

We conclude this subsection by discussing the action of (colored) braids on SU(2)"™. Topo-
logically, this action can be understood as follows. Any braid § can be represented by a
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homeomorphism of the punctured disk D,, which fixes the boundary pointwise [4]. As a con-
sequence, the braid group induces a right action of By, on the free group F, = m(D,,). More
explicitly, this action can be described on the generators x1,...,x, of F, as follows:

xixiﬂx;l ifj = i,
(7) Tj0; = § Xy ifj =17+ 1,
xj otherwise.

In particular, every braid § induces a homeomorphism R(D,) — R(D,), which we still
denote by B. More concretely, identifying R(D,,) with SU(2)", this homeomorphism maps
(X1,...,Xp) to (X15,...,Xn0). So, for instance, the generator o1 € By acts as (X1, Xo2)o1 =
(X1X2X; !, X1). Note that we chose to follow Birman’s conventions [4] and to think of (7)
as a right action. In particular, we obtain a homomorphism B, — Aut(F,,). Working with
left actions would lead to an anti-homomorphism (see e.g. [11, 15]).

Remark 3.2. Our conventions match those of Lin [37, page 339]. On the other hand, given
a braid 8 € B, and w € F,, some authors, such as Long [38, page 539], choose to define
B -w as wB~'; however given an automorphism # of F,, Long then sets 6(X1,...,X,) :=
(0=1X1,...,071X,) and therefore obtains the same action of B,, on SU(2)" as we do [38,
page 537]. On the other hand, Heusener-Kroll also use the action 8-w = wB~! [29, Example
3.1] but define 5(X1,...,Xp) as (8- X1,...,08 - Xy) [29, bottom of page 484].

Remark 3.3. The fixed point set of the homeomorphism £: SU(2)" — SU(2)" induced
by £ can be identified with the representation space of X 5 see for instance [37, Lemma 1.2].

Reformulating, R(X3) is equal to the intersection of the diagonal A, C SU(2)" x SU(2)" with
the graph I'g € SU(2)™ x SU(2)" of the homeomorphism of SU(2)" induced by f.

Building on the work of Lin [37] and Heusener-Kroll [29], the invariant we shall define
in Subsection 3.2 makes crucial use of Remark 3.3. Indeed we wish to “count” (conjugacy
classes of ) irreducible representations in R(X 5) = A, NT'g with certain traces fixed. For this

reason, given a p-tuple o = (a1, ..., a,) of real numbers in (0, 7)* and a coloring ¢, we shall
frequently consider the following subspace of SU(2)™:

Ry ={(X1,...,X,) € SU(2)"| tr(X;) =2cos(ay,) for i =1,...,n}.

In particular, observe that if § is an n-stranded (¢, ¢’)-braid, then the aforementioned homeo-

morphism 3: SU(2)" — SU(2)" descends to a well defined homeomorphism 8: RS — RS
Of particular interest is the graph of this homeomorphism:

S ={(A1,..., A, A1B,..., AuB) | (A1,..., Ay) € RS} C RY x RY°.

For instance, the trivial (c,c)-braid f = id. induces the identity automorphism on the free
group and thus on R(F,) = SU(2)"™. Thus the graph I'jq, C SU(2)™ x SU(2)" coincides with
the diagonal A,,. We use the following notation for the corresponding space of fixed traces:

A ={(A1,..., An, A1, .. An) | (A1, Ay) € RO

As we alluded to above, our goal is to make sense of a signed count of conjugacy classes of
irreducible representations p: w1 (X 3) — SU(2) such that the trace of any meridian of the
sublink B\j of B is equal to 2 cos(acj). In other words, using Remark 3.3 and the notations of

Subsection 2.1, we are trying to make sense of a signed count of the elements of A2 N fg



A MULTIVARIABLE CASSON-LIN TYPE INVARIANT 11

3.2. Definition of the invariant. The goal of this subsection is to define the multivariable
Casson-Lin invariant of a (c,c)-braid. Our approach builds on the work of Lin [37] and of
Heusener-Kroll [29], see also [28] and [24].

Let § be a p-colored n-stranded (c,c)-braid and let o = (aq,...,a,) lie in (0,7)*. The
invariant that we shall consider requires us to make sense of the algebraic intersection of
(quotients of) Ap® with '3 inside (a quotient of) the following space:

n n
HS7C:{(Alv"'aAnyBla"'aB’ﬂ)GR%7CXRz7C ’ HAl:HBz}
i=1 =1

The inclusion I'§ C H;¢ holds because any braid £ € B,, fixes x1 -+ -z, € Fy,; see (7). In order
to count conjugacy classes of the aforementioned irreducible representations, we first need to
avoid the abelian locus of the various representation varieties. For this reason, we consider
the following set which should be understood (under the isomorphism R(F,) = SU(2)") as
the subspace of abelian representations of R(F},):

(8)
Sf;’c = {(Al, . ,An, Bl, ceey Bn) € Rg,c X Rz,c ‘ AZA] = Ain,AiBj = Bin, BiBj = B]BZ}

Slightly abusing notation, we shall write Sp°“ instead of Sp"“ N ©%¢, where ©*¢ is any of the
previously defined spaces I'%, Ay or Hy, . As described in Subsection 2.1, SO(3) acts freely
on the resulting sets of irreducible representations and we make the following definitions:

Ape = (Ap°\ S°)/S0(3),  T§=(Tg\Spe)/S0),  Hy = (H"\ Sy°)/SO(3).

Observe that both A9 and fg are smooth open (2n — 3)-dimensional manifolds: A7 and T'§
are 2n dimensional (the subspaces of matrices in SU(2) with fixed trace are 2-dimensional) and
the 3-dimensional Lie group SO(3) acts freely and properly on the open manifolds A\ Si*°
and I'3 \ Sn°. Recalling Remark 3.3, the representations we wish to consider lie in the

intersection fg NAYC, viewed as a subspace of HC. In order for a “count” to make sense, we
must now check that this intersection is compact and that fg and /AX%C are half dimensional
in H3°. We start by proving the latter, namely we prove that Ho*° is 4n — 6 dimensional.

Lemma 3.4. The space Hy°\ Sp°° is a smooth open (4n — 3)-dimensional manifold. In
particular Hy ™ is (4n — 6) dimensional.

Proof. Consider the map f,: Ry x Rp© — SU(2) defined by f,(A1,...,An, B1,...,By) =
Ay AyBt--- Byt Observe that Hy = f,71(Id). The same arguments as in [37, Lemma 1.5]
and [29, Lemma 3.3]) show that f, restricts to a submersion f, on Hp ™\ Sy As a

consequence, Hp“\ Sp*° = fn‘_l(Id) is a smooth manifold whose dimension is equal to
dim(Rp“ x Ry©) — dim(SU(2)) = 4n — 3. This concludes the proof of the lemma. O

Next, making use of Section 2, we show that the space fg NAZC is compact. For a fixed
a=(a1,...,ay) in (0,7)", we consider the finite set
S(a) = {(ef1# .. en?ion) | g =41 fori=1,...,u}.

The set S(«) contains 2 elements, indexed by the € = (e1,...,¢,) in {£1}#*. For this reason,
we will sometimes write elements of S(a) as w., where € € {£1}*. We will only do this when
no confusion occurs with the coordinates of w.
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Proposition 3.5. Let a = (aq,..., ) lie in (0,7)" and let B be an n-stranded ji-colored
(c,¢)-braid. If Ag(we) # 0 for all we € S(a), then I'§ N AR is compact.

Proof. Since SO(3) is compact, it is sufficient to prove that (A \ Sp™) N ( 3\ Snc) is
compact. As this set lies in the compact set SU(2)?", we are reduced to proving that it is
closed. Let (px)ren be a convergent sequence of representations in (A \ S7°) N (TG \ Si>°),
with limit po, € SU(2)*". Since Ay and I'§ are closed in SU(2)*", it follows that pe

lies in Ay N Fg. By way of contradiction, assume that p., is abelian. The n components

1/2
¢

of pso € SU(2)™ are therefore simultaneously conjugated to (wo _01 /2> for some w = w,

i

in S(a). Since Ag(w) # 0, Corollary 2.6 implies that pg is abelian for k big enough, a

contradiction. We therefore deduce that po lies in (A \ Sp™°) N (TG \ Sp™°), concluding the
proof of the proposition. O

Perturbing fg if necessary, we can assume that it intersects transversally the diagonal K%C

Consequently, thanks to Proposition 3.5, we know that fg NA2C is a 0-dimensional mani-
fold. We now orient these manifolds. Use Sy to denote the set of matrices in SU(2) with
trace 2 cos(f)). Orient this copy of S? in a fixed (but arbitrary) way. Since R;’“ consists of an
n-fold product of S,,,, we endow it with the product orientation. The diagonal Ay¢ and the
graph T'§ are naturally diffeomorphic to R, via the projection on the first factor and they
are given the induced orientations. Next, consider the map

Fat R x R¢ = SU(2)

which we encountered in the proof of Lemma 3.4. Using this map, we can pull back the
orientation of SU(2) to obtain an orientation on Hy*“\ Sp’°. The adjoint action of SO(3)
on Sy is orientation preserving, hence the SO(3)-quotients fa,Kﬁ’c and HSC are orientable
and we endow them with the quotient orientation.

Definition 3.6. Let 5 be a p-colored (c,c)-braid and let o € (0, m)*. If Ag(wa) # 0 for
all we € S(a), then the multivariable Casson-Lin invariant of 5 at « is defined as the algebraic
intersection number of I'§ and AS€ inside HYC:

h5(a) = (A2, T9) o

Given a p-colored link L, we wish to define hy as hj, where § is any (¢, ¢)-braid whose

closure is L. In order to obtain a well defined link invariant, we must check that h% is invariant
under the colored Markov moves which were described in Proposition 3.1.

3.3. Invariance under Markov moves. In this subsection, we prove that hj () is invariant
under the two colored Markov moves described in Proposition 3.1. Since the key ideas of the
proofs are present in [37, Theorem 1.8] and [24, Proposition 4.2 and Proposition 4.3], we place
emphasis on the role of the colors, while referring to the original references for details.

The invariance under the first Markov move will follow promptly from the following lemma.

Lemma 3.7. Let « lie in (0, 7)" and let ¢ and ¢’ be u-colorings. Let & be a (¢, c)-braid, let &5
be a (c,c)-braid and view &' as a (', c)-braid. The multivariable Casson-Lin invariants of
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the (¢, c)-braid & and the (¢, )-braid 5515152 are related by the following equation:
c N
hie (@) = T, (@)
Proof. Recalling Subsection 3.1, the (¢, c’)-braid & gives rise to an orientation preserving
homeomorphism &5: RY 5 R%°_ One can then argue that it induces a well defined orien-
tation preserving homeomorphism & x &: Hyp — Hp'©. A short computation (using right

actions) shows that (£ x &) (ATC) = A% and (&2 xfg)(fg) = fg‘,l&&. The result now follows
2

promptly, see [37, first part of the proof of Theorem 1.8] and [24, proof of Proposition 4.2]. [
Using Lemma 3.7, we can prove the invariance under the first colored Markov move.

Proposition 3.8. The multivariable Casson-Lin invariant is preserved under the first colored
Markov move.

Proof. Let « lies in (0,7)", let £ be a (c,c')-braid and let n be a (¢, c)-braid. Applying
Lemma 3.7 to the (c, ¢)-braid {n and to the (¢, ')-braid £, we obtain h¢, (o) = hgl,l(gn)s(a) =
hf]%(a). This concludes the proof of the proposition. O

Proposition 3.9. The multivariable Casson-Lin invariant is preserved under the second
colored Markov move.

Proof. Fix a € (0, 7)", a p-coloring ¢ and a (¢, c)-braid 8. For the sake of conciseness, we
write ¢’ instead of (¢, ..., ¢, ¢;) and we recall from Subsection 3.1 that i., : B, — By denotes
the natural inclusion which adds a trivial strand of color ¢, to a given (¢, ¢)-braid. Viewing
the generator o, € B4 as a (¢, d)-braid, our goal is to show that hgn% (5)((1) = hj(a).
Using Lemma 3.7, this is equivalent to showing that

(9) B 5y (@) = B (a).
Recall (arranging transversality if necessary) that the right hand side of (9) is defined as the
algebraic intersection of the diagonal Ay¢ with the graph I'3. Similarly, the left hand side

of (9) is the algebraic intersection of Kg_ﬁ; with fi (8)o,- I order to relate these various
spaces, consider the embedding g: Ry, x Ryy© — Rf{f/l X RZf; defined by
(X1, X, Y1, ) = (X, X, Y0, Y, Y0 Y.

One can check that g(Hy ™) C Hfb‘fi and that g commutes with the conjugation, thus giving
rise to an embedding §: H® — ﬁgﬁl It can also be checked that G(AY) is contained
in Kg_ﬁ;, that /g\(fg) is contained in ff‘m (8)0,, @nd that GAGe ﬂfg) is equal to Kzfl ﬁfgn (B)on-
Given X = (X1,...,X,) in AY°N '3, the same arguments as in [37, page 346] show that

/

the intersection number of Kgfl and floi 8) at g(X, X) is equal to the intersection number

On

of A€ and fgc at (X, X). This proves (9) and concludes the proof of the proposition. [
Using the invariance under Markov moves, we now define the main invariant of this paper.

Definition 3.10. Let L be a p-colored link and fix o = (avq,...,0a,) € (0,7)*. Assume
that Ar(w:) # 0 for all w, € S(a). The multivariable Casson-Lin invariant of L at « is
defined as
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where 3 is any (¢, ¢)-braid whose closure is L.

Remark 3.11. The multivariable Casson-Lin invariant hy, can be defined for a larger subset
of (0,m)". More precisely, one can define hy, on the subset Dy of those a € (0,m)" such
that none of the abelian representations p,_ (recall Section 2.2) is a limit of irreducible
representations, for any w. € S(«). Indeed, looking at the proof of Proposition 3.5, this
assumption is sufficient to guarantee that Kf{cﬂfg is compact in ﬁff . In particular, note that
Corollary 2.6 implies that Dy, contains the set {o € (0, m)* | Ar(we) # 0 for all w. € S(a)}.

We conclude this section with a last remark that was used in Remark 1.4 of the introduction.

Remark 3.12. Every ordered link L has an underlying oriented link which we also denote
by L. Observe that given « € (0, ), the following equality holds provided the multivariable
and single variable Casson-Lin invariants are defined:

hr(a,...,a) = hr(a).

Indeed, in both cases we are counting the irreducible SU(2)-representations of 71 (X,) for
which all meridional traces are fixed to be 2 cos(a). Notice furthermore since Ar(¢,...,t) =
(t —1)Ap(¢t) for a link L with n > 2 components, the multivariable Casson-Lin invariant is
defined at (a, ..., ) if and only if the single-variable Casson-Lin invariant is defined at a.

4. THE COLORED GASSNER MATRICES AND THE POTENTIAL FUNCTION

This section is organized as follows. In Subsection 4.1, we recall the definition of the colored
Gassner matrices, in Subsection 4.2, we review a result due to Long, in Subsection 4.3, we
recall the definition of the multivariable potential function. Finally, in Subsection 4.4, we
prove a technical result which shall frequently be used in Section 5.

4.1. The colored Gassner matrices. In this subsection, we recall the definition of the
colored Gassner matrices and of the reduced colored Gassner matrices which are multivariable
generalizations of the (reduced) Burau matrices. Although references include [34, 11, 15], our
conventions are closest to those of [13].

Let F, be the free group on z1, ..., z,. Recall from Subsection 3.1 that the braid group B,
acts on F, from the right and that each n-stranded braid S gives rise to an automorphism
of F,, which is also denoted by 8. Given a u-coloring ¢ = (c1,...,¢,), consider the map

Ve Fy = 7F = (t1,...,t,)
which sends each z; to t,, and extend it to a homomorphism ¢.: Z[F,] — A,. For later use,
observe that if 3 is a (¢, ¢)-braid, then ¥.(z;) is equal to ¥.(x;3) and in fact, both are equal
to t.,. Next, consider the element %xijﬁ) of the group ring Z[F,|, where %: Z|F,] — Z[F,]
denotes the Fox derivative associated to z; (see e.g. [36, Chapter 11]).
The main definition of this section is the following.

Definition 4.1. The (unreduced) colored Gassner matriz of an n-stranded (c, ¢)-braid g is
defined as the n x n matrix Bf(3) whose i, j-coefficient is 1. (%ﬁ)

The notation Bf(3) is meant to indicate that the coefficients of the colored Gassner matrix
lie in A, = Z[tlﬂ,...,tiﬂ] (i.e. t is used as a shorthand for (¢i,...,t,)). When p = 1,
the colored Gassner matrices recover the usual matrices for the Burau representation of B,.
We refer the interested reader to [34, 11] for more intrinsic approaches and to [13, Example
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3.5] for (¢, d)-braids. Instead, we note that the unreduced colored Gassner matrix of the
generator o; € By, viewed as a (¢, ¢)-braid, is given by

1—t. t,,
(10) Bi(oi) = li-1 @ < 1t ' td) ® In—i—1.

Here, note that viewing o; as a (¢, ¢)-braid necessitates that ¢; = ¢;11. Next, following [4]
and [13, Section 3 (c)], we deal with the reduced colored Gassner matrices. Instead of working
with the free generators x1,xzs...,x, of F,, we consider the elements g1, go, ..., gn, defined
by ¢g; == x1x9---x;. As g, is always fixed by the action of the braid group, the matrix

dg;
This motivates the following definition.

whose i, j-coefficient is 1. <M) is equal to Ef(ﬂ) = (Eféﬁ) 71’) for some column vector v.

Definition 4.2. The reduced colored Gassner matriz of an n-stranded (c, ¢)-braid £ is defined

as the size n — 1 matrix By (8) whose i, j-coefficient is 1), (%ﬁ).

When g = 1, the reduced colored Gassner matrices recover matrices for the reduced Burau
representation of the braid group B,. We once again avoid the more intrinsic definition of
the reduced colored Gassner representation which involves homology and covering spaces, but
instead refer the interested reader to [34, 11] and [15, Theorem 1.2].

We conclude this subsection with a technical lemma which will be needed in Section 5.

Lemma 4.3. For any (c,c)-braid 3, the submodule of fixed points of the unreduced colored
Gassner matriz BS,(B) is generated by Gn, = (1 wey weywey - weywe, 1 ) whenever w € TH satis-
fies both we, -+ we, # 1 and Ag(w) # 0.

Proof. We first translate the statement into the ¢y, ..., g, basis of F,,. Namely, computing the
change of basis matrix between B¢ () and BS(8) (see (17) below), the statement is equivalent
to the claim that the submodule of fixed points of B (8) is freely generated by « = (0 ..01).
Here, our convention is that the Burau matrices act on the right on row vectors.

Since z is fixed by BS(8), we suppose that w = (w1 - wa—1 wa) is fixed by BE(S) and
wish to show that w lies in the span of . Using Definition 4.2, the assumption on w im-
plies that the reduced colored Gassner matrix B, (8) must fix w’ := (w1 - wa-1) (recall that
we are using right actions). This implies that (B (3) — I,_1)w’ = 0, and we therefore de-
duce that det(B.,(3) — I,_1) = 0. Using the relation between the multivariable Alexander
polynomial and the colored Gassner representation (see e.g. Remark 4.7 below), we infer
that (we, -+~ we, — 1)Ag(w) = 0. This contradicts our assumptions on w and concludes the
proof of the lemma. O

4.2. A result due to Long. The goal of this subsection is to recall a theorem due to
Long [38, Theorem 2.4]. In order to state this result, we use Long’s conventions regarding
automorphisms of the free group. As we observed in Remark 3.2, these conventions match
ours when dealing with the action of the braid group B, on SU(2)".

For an automorphism 6: F,, — F,, of the free group, consider the diffeomorphism 0*: R(F,,) —
R(F,),p v po 6=l Picking free generators x1,...,z, of F, and identifying R(F,) with
SU(2)", the diffeomorphism 6* is described as 6*(X1,...,X,) = (071X1,...,071X,,). The
assignment 6 — 6* gives rise to a homomorphism Aut(F,) — Diff(SU(2)"). Fixing a sub-
group H of Aut(F,), the restriction of this assignment produces a homomorphism H —
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Diff (SU(2)™). To get a linear representation of H, pick a function f: (0,7)* — SU(2)" such
that h*f(a) = f(a) for every a = (o, ..., ) in (0,7)" and for every h in H, and set

Po: H — Aut(Tf(a) SU(Q)n)
h +— Tf(a)(h*).
The fact that p, is a representation follows from the chain rule [38, Theorem 2.3]. We now

restrict to the colored braid group H = B, and, for § € (0,7), we set e? := (666 692.9).
Recalling the notations and conventions discussed in Remark 3.2, we observe that for any p-
tuplee = (e1,...,&,) € {£1}*, the action of a (¢, ¢)-braid 3 on the n-tuple of matrices f(a) :=
(efer@er .. efen'@n) gatisfies f(a)B = f(a). As a consequence, we obtain representations pg
of B.. Long [38, Theorem 2.4] proves the following result:

Proposition 4.4. Let ¢ = (c1,...,¢n) be a p-coloring, let a = (ax,...,ay) lie in (0,m)* and
let e = (e1,...,,) € {L1}*. If one sets a. = (e1’®1, ... e%ni%n) then the representation
Pa: Be = Aut(Ta, SU(2)"™) is a direct sum of a permutation representation with the colored
Gassner matriz evaluated at w. = (51211 ... efn2iou),

Note that Long proved this result for g = 1 [38, Theorem 2.4] and p = n [38, Theorem 2.5]
but his proof goes through for arbitrary colored braid groups. In order to make some further
remarks on Proposition 4.4, we recall some known facts regarding the field H of quaternions.

Remark 4.5. We think of H using the isomorphisms H = C @ jC = (R @ iR) @ (R @ kR)
and recall that a quaternion is pure if its real part is zero. Matrices in SU(2) can be identified

with unit quaternions via the map which sends (fg 2) to a + jb, for any a,b € C which

satisfy |a|? + |b]* = 1. On the Lie algebra level, for 7 € R and z € C, matrices ( ; %) in sup
correspond to quaternions ir + jz, and in particular sus splits as iR @ jC.

Using Remark 4.5 and working with the notations of Proposition 4.4, Long’s result shows
that the restriction of the differential of §: SU(2)" — SU(2)™ at a. to the complex summand
of suy is Bf_(B) (i.e. the colored Gassner matrix evaluated at w.). In Section 5 however,
we shall study the restriction of 8 to Ry, Since this latter space is homeomorphic to a
product of 2-spheres S,; which consist of those matrices with trace 2 cos(aj), we adapt some
observations from [29, Section 2.3] to the multivariable case.

Remark 4.6. Matrices in SU(2) \ £ can be identified with pairs (0, Q), where 6 € (0, )
and Q = zi + yj + zk is a pure quaternion of norm 1. More explicitly, the quaternion
cos(#) + sin(0)(Q associated to a pair (6, Q) corresponds to the SU(2)-matrix

[ cos(0)+izsin(0) (y+iz)sin(9)
X = ( (—y+iz)sin(0) cos(f)—ix sin(9)) :

On the Lie algebra level, using j2 = —1 and the identification of sus with iR@jC, multiplication
by —j picks out the complex component z of the matrix ( 0 3) € suy. In particular, since Ry¢
is a product of Sy, Proposition 4.4 implies that the following diagram commutes:

TaR%7c (_.]7"'7_.]) (Cn

lTaﬁ lgi(ﬁ)

maRee ) o
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On the topological level, it is helpful to think of SU(2) as foliated by the spheres Sp: indeed
the quaternionic expression cos(6) + sin(#)Q, specifies a 2-sphere Sy and a position @) on this
sphere. On the Lie algebra level, the complex lines are tangent to the leaves Sy and the real
lines are tangent to the transverse directions.

4.3. The potential function. In this section, we review some facts about the multivariable
potential function. References include [16, 26, 9, 41].

As we recalled in Section 2, the multivariable Alexander polynomial A of a u-colored
link L is only well defined up to multiplication by units of A,. The multivariable potential
function of a p-colored link L is a rational function Vp,(¢1,...,t,) which satisfies

LA ifpu=1
—Ap i ,
(11) Vi(ty,. .. t,) =4 bt () ity
AL(t%,...,ti) if p> 1.
In this paper, we use a construction of the potential function which arises from the reduced
colored Gassner representation [15, Theorem 1.1]. The next remark briefly recalls this result.

Remark 4.7. Any (c,c)-braid § can be decomposed into a product H;nzl Ufjj, where oy

denotes the i;-th generator of the braid group (viewed as an appropriately colored braid) and

each €; is equal to +1. For each j, use b; to denote the color of the over-crossing strand in
Ej . .

the generator o, j and consider the Laurent monomial

B) =114~
Jj=1

Define g: A, — A, by extending Z-linearly the group endomorphism of Z* = (t1,...,t,)
which sends t; to t?. Given an n-stranded p-colored (c, c)-braid 3, [15, Theorem 1.1] shows
that the multivariable potential function of the closure 8 can be described as:

(12) iyt t) = ()" (3) - g(det(B(8) — L))

Note that in [15], the matrices B; are the transposes of the ones used here (and in particu-
lar [15] deals with anti-representations). Naturally, this does not affect (12).

In the one-variable case, some care is needed with the terminology.

Remark 4.8. The expression Dy (t) := V(t)(t — 1) is usually referred to as the Alezander-
Conway polynomial of L and satisfies D (t) = AL(t?). On the other hand, some authors
call Dr(v/t) the Conway-normalized Alezander polynomial. For instance Heusener-Kroll
use Ar(t) to denote the Conway-normalized Alexander polynomial [29, Section 2.1]. These
distinctions do matter: for a knot K and w € S, it is known that Dy (y/w) is real, while this
statement is incorrect for Vg and makes no sense for Ag (because of the indeterminacy).

We conclude with some remarks on evaluations of V, at elements of T+ = (S!)~.

Remark 4.9. The potential function Vi of an n-component u-colored link is known to
be (—1)"-symmetric [9, Proposition 1]. Thus, for w € T, the evaluation V,(w) need not be
real. In fact, for w € T#, the aforementioned symmetry property yields Vi (w) = V(W) =
(—1)"Vi(w), and therefore V(w) belongs to R (resp. iR) if n is even (resp. odd). In
particular, if two p-colored links differ by a crossing change within a sublink, then the quotient
of the two potential functions evaluated at w € T* is real (assuming the quotient is defined).
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4.4. A technical proposition. The aim of this section is to prove the following multivariable
generalization of [29, Lemma 4.4]. This result will be frequently used in Section 5. Due to
the technical nature of this result and its proof, we suggest the reader skip this subsection
upon his first reading.

Proposition 4.10. Let ¢ be a p-coloring such that ¢y = co and let w € TF. Given a (c,c)-

braid B, use (é%:% ggz;) to denote the unreduced colored Gassner matriz of B evaluated

atw € T, where D(w) is a size n—2 square matriz. If we assume that w?, # 1 and Vg(w) #0,
then det(D(w) — I,—2) # 0.

The proof of Proposition 4.10 follows the strategy of [29, Lemma 4.4]. However several of
the preliminary results require some additional work in the multivariable case.

4.4.1. Rows and columns of B{(). We temporarily adopt the following conventions: given a
matrix ¥, we write ‘I/; for the (i, j)-coefficient of ¥, instead of the more standard W;;; apart
if mentioned otherwise, I denotes any identity matrix, regardless of its size.

The following lemma (which generalizes well known results for the Burau representation)
describes the result of summing (linear combinations of) the rows and columns of the unre-
duced colored Gassner matrices.

Lemma 4.11. Given a (c,c)-braid 3, the rows and columns of the colored Gassner matriz
satisfy the following properties:

(1) For each i, one has 3°5_, (te; — 1)Bf(B)% = te, — 1.

(2) For each j, one has Y tey -+ -te, BE(B)s =tey -+t -

Proof. In order to prove both of these identities, we recall the so-called “fundamental lemma of
Fox calculus” [8, Proposition 9.8, part c)]. Given a word w in the free group F,, on z1,..., T,
the following identity holds in the group ring Z[F},]:

(13) Zg;‘;(xj—n:w—L

The first identity now follows by considering the word w = z;8, applying 1. to both sides
of (13) and recalling that for a (¢, ¢)-braid, both ¢.(z;) and ¥.(x;3) are equal to t.,. To obtain
the second formula, apply the Fox derivative a%j to both sides of the equality (x1---xzp)5 =
x1 -+ Ty and use the derivation property repeatedly. ]

Taking advantage of our unconventional notation, observe that the i-th column of BS(B)
can be written as Bf(3);, while the i-th line of Bf(/3) can be written as Bf(J)’. In particular,
Lemma 4.11 implies that

n n
Z(tci - 1Bi(B)i = (T - 1), Z(tq e )BI(B) = v,
i=1 i=1
where T'— 1 denotes the size n column vector whose i-th component is ¢, — 1 and v denotes
the size n row vector whose j-th component is ¢, ---t,_,.

Example 4.12. If ¢ = (1,...,1), the first point of Lemma 4.11 implies the following known
fact: the sum of the coefficients within any line of the Burau matrix is 1 (i.e. the Burau
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matrix is a “right stochastic matrix”). For o3 € B(1,2) = P, the Gassner matrix is given by

B(l,?)( 2) _ <1 — 11 + t1to tl(l — t1)> .

tr,t2 \91 1—1t9 t

Now Lemma 4.11 states in particular that (1 —¢1)(1 —t1 +t1te) + (1 —t2)(t1(1 —t1) =1 -t
and t1(1 — t1) + t1t1 = t1 which can indeed be verified.

4.4.2. Computations with minors. Given a square matrix ¥ of size n, we use ¥; ; to denote

the size (n — 1) matrix obtained from ¥ by deleting its i-th row and j-th column. We also
use Bf(8,1,m) to denote det((Bf () — I)im) (the notation clﬁm is used in [29, Section 2.4]).
The following lemma is a multivariable generalization of [29, Lemma 2.2, part 1)].

Lemma 4.13. Let ¢ be a p-coloring. Given an n-stranded (c,c)-braid B and positive integers
1 <LU,m,m' <n, the following equality holds in A, :

(14)  (te, = D(tey -~ te,_ IBE(B,Lm) = (=)™ (1, = 1)(tey -+t )BE(B U, m).

Proof. To prove the lemma, it suffices to prove (14) when [ = I’ and when m = m/. We
therefore start by assuming that [ =’ and claim that

(te,, — VBB, Lm) = (—1)™F™ (L, — 1)B§(B,1,m).

Recall that 7'—1 denotes the size n column vector whose i-th component is ¢., — 1 and assume
that ¢ differs from m. Using the first point of Lemma 4.11, a short computation shows that

(15)

(tCi_l)(Bg(ﬁ)_I)i = (T - 1) - Z(tck - 1)Btc(ﬁ)k _(tCi_l)Ii = - Z(tck_l)(Bf(ﬁ)_I)k
ki ki

We now use this identity to compute the determinant of the matrix (Bf(3) — I);,» obtained
by removing the I-th row and the m-th column from Bf(8) — I. Multipliying the i-th column
of B{(8) — I by t,, — 1, using (15), removing the m-th column of Bf(S) — I, invoking the
multilinearity of the determinant and switching back the i-th column to its original place
(this produces a sign (—1)*™~! since we now have one column less), we obtain

(tci - 1)Btc(/85lvm) = (tcm - 1)(_1)z+m85(ﬁ7l57’)

The claim now follows by taking i = m/. To prove (14) for m = m/, one uses the second point
of Lemma 4.11 and follows the exact same steps as above with rows instead of columns. This
concludes the proof of the lemma. O

Lemmas 4.11 and 4.13 involve the colored Gassner matrices in the basis arising from the
choice of generators 1, ..., x, of the free group F},. In order to work with the reduced colored
Gassner matrices, we need the corresponding statements for the basis g1, ..., g, of F,.

Remark 4.14. Use gf(ﬁ ) to denote the unreduced colored Gassner matrix in the basis arising
from the choice of generators gy, ..., g, of the free group. Just as for the matrix B{(3), we

set BE(B,1,m) := det((BE(8) — I);m). Using these notations, the following formula holds:

(16) —(tey - teuy = DB{(Byn,n = 1) = (te, -~ te, — DB{(Bn,n).
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The proof of (16) is entirely analogous to the proof of Lemma 4.13: it suffices to use the
equality 1c(g;) = tc, -+ te, instead of ¢.(z;) = t.,. Finally note that (16) can be rewrit-
ten using the reduced colored Gassner representation. Indeed, using Definition 4.2, we
have B¢(B,n,n) = det(B;(8) — I,,_1), where I,,_; denotes the size n — 1 identity matrix.

We now relate det(B;(8) — I,_1) and B§(f,1,1), generalizing [29, Lemma 2.2.2].

Proposition 4.15. Given an n-stranded (c, c)-braid (3, the following equation holds:

ot = Lgg(5,1,1) = det(B(8) — L),
Cc1

Proof. 1t suffices to show that BE(8,n,n)(te, - te, — 1) = tey -+ te, ,(te, — 1)BE(B,n,n):
the conclusion will then follow from Remark 4.14 and Lemma 4.13 which imply respectively
that BS(8,n,n) = det(B;(8) —I_1) and (te, —1)(te, - - - te, )BE(B,1,1) = (te, —1)BE(B, n, n).
A computation involving Fox calculus shows that the change of basis matrix from Bf(3)
to gf(ﬁ) is given by

1 0 0 e 0
1 t, O e 0
(17) Pn = 1 tC1 tcl tCQ :
S 0
1 tcl e tcl e tcni2 tcl e tcn,2t6n71

Given a matrix M, recall that we use M, , to denote the matrix obtained by deleting the
n-th row and n-th column of M. Until the end of this proof, we use I to denote the size n
identity matrix. With this notation, observe that BE(58,n,n) = det((P.BS(B) Pyt — Ipw)-
A tedious computation now shows that

det((PnBtc(ﬁ>Pn_l —Dnp) = det(Pn—l(Bf(B))n,nPn_—ll —In-1) — gf(57 n,n —1).
Using the definition of gf(ﬁ ) and the fact that the determinant is invariant under conjugation,

this can be rewritten as gf(ﬁ, n,n) = Bf(B,n,n) —gf(ﬁ, n,n—1). The conclusion then follows
by using (16). This concludes the proof of the proposition. O

4.4.3. Relation to the potential function. As in Remark 4.7, g: A, — A, is defined by ex-
tending Z-linearly the group endomorphism of Z* = (t1,...,t,) which sends t; to t?. The
following lemma expresses Vg using a minor of the unreduced colored Gassner matrix.

Lemma 4.16. Given a p-colored n-stranded (c, c)-braid 3, we have
(tg1 - 1)v3(t1’ s 7tu) = (_1)n+1<ﬁ> ! tcl o 'tcn : Q(Bf(ﬁ, 1a 1))’
where (B) is the Laurent monomial described in Remark 4.7.

Proof. Using successively Remark 4.7 and Proposition 4.15, we obtain
—_1)n+l1 B _
(1) Vsttn,oooot) = — et By (8) — 1))
tey ot —tey o to
(=1)"E) Rt —
tcl"'tcn—tc_ll"'tc_nl tgl—l

This concludes the proof of the lemma. ]

Lo(B3(8.1,1)).
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We need one last lemma in order to prove Proposition 5.8, namely we require a multivariable
generalization of [29, Lemma 2.2, part 3]. For that purpose, we write the (unreduced) colored
Gassner matrix of 5 as (é g), where D is a square matrix of size n — 2.

Lemma 4.17. Let ¢ be a p-coloring with ¢y = co and let 5 be an n-stranded (c, c)-braid. If
the generator o1 € By, is viewed as a (c,c)-braid, then the following equality holds in A, :

(19) Bi(01B8,1,1) =2 B{(B,1,1) + (te, — 1) det(D — I,_2).
Proof. First, a short computation shows that Bf(0?) = (1_tC1 +t2) tcl(l_tcl)) ® I,,—2, see also

1—te, te,
Example 4.12. Next, recalling that we decomposed the colored Gassner matrix of 5 as (é g ),

we write the matrix A as (gi! gi2), the matrix B as (2;) where each b; is a size n — 2 row

vector and the matrix C' as (¢, c2), where each ¢; is a size n — 2 column vector. As (19)
does not involve the first lines and columns of the aforementioned matrices, we are reduced

to proving
(20)

(1 —tey)arg +tepaze =1 (1 —te )by +te b)) _ o ag—1 by _ _
det ( 2 D—-1 - tcl det o D—1 +(t01 1) det(D I),

where we use I as a shorthand for the identity matrix I, ». Expanding the left hand side
of (20) along the first row, we obtain

n—1
(21) (1 =tey)ars +teyage — 1) det(D — I) + > (=1)" (1 = te, )b + te, 1) det(L;),
=2
where, for j greater than one, L; denotes the size n — 2 square matrix obtained from (e D-T)

by removing the j-th column. Keeping these notations in mind and expanding the determinant
in the right hand side of (20) along its first line, we obtain

n—1
(22) 2 [ (a2 — 1) det(D — 1)+ > (1) det(L;) | + (te, — 1) det(D — I).
=2
Substracting (22) from (21) and simplifying the extraneous t., — 1 factors, we see that (20) in

fact reduces to proving the equation —B§(3,2,1) —t., Bf(3,1,1) = 0. Since the latter equation
holds thanks to Lemma 4.13, the proof is concluded. O

4.4.4. Conclusion of the proof.

Proof of Propostion 4.10. Let w € T* be such that Vg(w) is non-zero. Our goal is to show
that det(D(w)—I,—2) is non-zero. Use BS (/) to denote the unreduced colored Gassner matrix
of § evaluated at w. Assume by way of contradiction that det(D(w) — I),—2) vanishes. Using
Lemma 4.17, this implies that B¢ (c33,1,1) = wZIBfJ(B, 1,1). Combining this equality with
Lemma 4.16 and the fact that (0}8) = t_2(3), we get

(we, = DV z5(w) = (=1)"HoTB) - wey -+ we,, - 9(BL (015, 1,1))
(23) = ng (wzl - 1)Vg(w).

Note that we slightly abused notations by thinking of g as being defined on C and noting that
9(B(018,1,1)) = wi g(BS(B,1,1)). Regardless of this fact, simplifying the extraneous terms,
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we obtain the equality V/Q\B(w) = w2 Vg(w). We let the reader verify that this conclusion
91
also holds if w? ---w? = 1. Since we assumed that Vg(w) # 0, we deduce that V/;B(w) # 0.
91

Cn

As Remark 4.9 implies that the quotient VU/Q\ﬂ(w) / Vg(w) is real, we obtain a contradiction
1

when wzl is different from 1. This concludes the proof of Proposition 4.10. O

Note that in their equivalent of (23), Heusener and Kroll work with the Conway-normalized
Alexander polynomial which they denote Ag (¢) (recall Remark 4.8). This explains why they
obtain the equality Ay (w) = wAg(w) [29, last equation of p.494], while we have a wfl factor.

5. THE MULTIVARIABLE CASSON-LIN INVARIANT AND CROSSING CHANGES

The goal of this section is to understand the behavior of the multivariable Casson-Lin
invariant under a crossing change within a sublink. In Subsection 5.1, we reduce this analysis
to a computation in a space H; 7. in Subsection 5.2, we perform calculations in H; 7 which
are then reformulated in Subsection 5.3 in terms of the multivariable potential function.

5.1. Reduction to a “pillowcase-like” space. Let c be a p-coloring such that ¢; = ¢ = j.
Let 8 be an n-stranded (c, ¢)-braid and view the generator o1 € B,, as a (¢, ¢)-braid. Let «
be an element of (0, ).

Sj(a) — {(65121'0417 . "eaHQiau) e S(a) ’ gj = 1}.

This set contains 2#~1 elements and once again its elements are written as w. with e in {4=1}#71.
Although this fact is not needed in the sequel, observe that S;(«) is in bijection with the set
of conjugacy classes of abelian representations of m(My) where the meridional traces of the
sublink Ly, are fixed to 2cos(ag) for k = 1,..., u. To see this, first simultaneously diagonalize

estiak 0

these meridional matrices, yielding 0 oexion

), and then use one extra conjugation to
fix Ej =1.
Assume that Ag(wa), AU/Q\B(wE) # 0 for all w. € Sj(a). In order to understand the effect
1

of a single crossing change within a sublink on the multivariable Casson-Lin invariant hy,, we
will study

(24) haq() = h5(0).

Indeed the links L := B and o?f differ by a single crossing change within the sublink L;
and any such (negative to positive) crossing change within a colored link can be realized
in this way, see the proof of Proposition 5.10 below for further details. The first step in
understanding (24) is to consider the following set:

Vna,c = {(Al,...,An,Bl,...,Bn) S HTO;’C ’ A; = B; for i = 3,...,71}.
Use ¢ to denote (cs,...,c,) so that ¢ = (c1,c9,¢’). Observe that V" is homeomorphic
to Hy? x AY%, and set Vo' = (V" \ S5°¢)/SO(3). Using Lemma 3.4, we deduce that this

latter space is a smooth submanifold of ﬁ,‘i‘ “ whose dimension is 2n — 2. We then consider
the projection p: V;;°° — Hy” given by the following map:

p(X17X27X37 R 7Xn7Y17Y27Y37 .+ 7Yn) = (X11X27}/17}/2)-

In order to obtain an induced map P on (a subset of) V¢, we introduce some further nota-
tions. Namely, we consider the subset Wy*° = p~1(957) of V;;"° that projects onto the abelian
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representations in H,’. We additionally set W = (Wr“\ Sp™©)/ SO(3): this way p induces
a well defined map R - R

p: VIO W — Hy.
Arguing as in [37], and perturbing fg if necessary, we can assume that V% and fg intersect
transversally in a pr/o\perl}i\ embedded one-dimensional submanifold of H. One can then
further assume that I'g N Wy"¢ = (). Now (24) can be computed by considering curves inside
the 2-dimensional space ﬁ; 7. More precisely, using (—, —) to denote the algebraic intersection
number, the same arguments as in [37, Lemma 2.3] and [29, Equation (4)]) show that
(25) hosg(e) = hi(a) = (T3 = Ay? PV NTG)) o

As we will see in Proposition 5.3 below, ﬁ(‘?ﬁ’cﬂfg) consists of several arcs, each approaching
the same pair of punctures of flg 7. Each of these arcs will contribute, or not, to the inter-
section number (25) in a way that we make precise in Proposition 5.8 below. This contrasts
with the situation described in [37, 29], where p(V,;"“ N I'3) consists of a single arc.

Note that we are adopting the following convention: we are writing I3, A5? and HY’
IR 2

instead of fi_? % ), /A\gaj @id(enes) 5nq fléaj ai)(enez) wpieh would be more coherent with the
previous notation. Summarizing, (25) shows that the difference of the multivariable Casson-
Lin invariants (which are de/f\ined via algebraic intersections in Hy°) can be undirstoo;d\ in
the more manageable space H2a 7 by studing intersections with the difference cycle Fj% — A;j .

5.2. Computations in I:TQO‘ 7. The goal of this subsection is to understand whether the pro-

jection p(V;"“ N T'§) intersects the difference cycle I — A57: using (25), this will provide a
1

formula for the difference hgf 8 (@) = h(a).

We first recall the parametrization of I;TQO[] = {(X1,X2,Y1,Y2) € SU(2)* | Tr(X;) =
Tr(Y;) = 2cos(ej), X1 X2 = Y1Y2} which was obtained by Lin for a; = 7/2 [37, Lemma
2.1} and by Heusener-Kroll for a; # 7/2 [29, Lemma 4.1]. Although the proofs may be found
in the aforementioned references, we provide an outline of the arguments in order to introduce
some notation which we shall use throughout the section.

Lemma 5.1. Given «; € (0,), the space E[zaj is homeomorphic to
(1) a 2-sphere with four points deleted if oj = /2,
(2) a 2-sphere with three points deleted if o # /2.

Proof. For X, Y € SU(2), consider the SU(2)-invariant distance on SU(2) given by d(X,Y) :=

-1
arccos (W) Notice that this distance realizes the distance induced by the standard

spherical metric on S%. Let (X1, Xo, Y7, Y3) lie in ﬁg; Up to conjugacy, one can assume that
X, — cos(a;) + isin(ay) cos(61) sin(a;) sin(6y) X, — e 0
1= —sin(oy;) sin(61) cos(aj) — isin(ay) cos(61) )’ 270 ety
for some 6; € [0,7]. As the distance d is invariant, the matrices X; and Y; lie on a (possibly
degenerate) circle given by the intersection of the sphere S, (1) = {X € SU(2) | d(1, X) = a;}
with the sphere S,;(X1X2) = {X € SU(2) | d(X, X1X2) = a;}, see Figure 3. We denote
by 02 € [0, 27| the oriented angle between X; and Y; on this circle. Two cases must be treated
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Sa, (1) NS, (X1X)

X1 X9

FIGURE 3. The points X7 and Y7 on the red circle S, (1) NSy, (X1X2). The
angle 6 is given by the euclidean angle between X7 and Y; on this circle.

according to whether o;j = m/2 or a; # 7/2. These cases are respectively discussed in [37]
and [29], but here is short outline.

(1)

First suppose that a; = 5. In this case, the space f[; 7 is parametrized by the two

coordinates ) € [0, 7] and 6y € [0, 27|, with the identifications (0, 62) ~ (0,27 — 62),
(m,02) ~ (m,2m — 62) and (61,0) ~ (61,27) [37, Lemma 2.1]. Let us briefly justify the
appearance of these identifications.

When 6; = 0, one has X; = X9 = ((’] _01) and therefore X1 Xy = —1. As a
consequence, using the definition of d and the fact that o; = 7/2, the spheres Sg(l)
and Sg(X 1X2) coincide. Since X; = X» is diagonal, after conjugating by a diagonal

matrix, one can write Y7 (02) = (icgi((%z)) 7312(55(29)2) ) We then notice that Y7 (27 —02) =

(6 9)Y1(62) (§ Pi)_l, whence the announced identification.

If 1 = w, then X1X5 = 1 and the same argument holds. Finally when 65 = 0
and 6y = 27, we see that Y7 = X7 which also leads to the claimed identifications. To
conclude the proof of the first assertion, note that removing the abelian representations
corresponds to removing the four points A = (0,0), A’ = (0,7), B = («,0), B' = (7, 7).
Next, assume that a; # T. In this case, the parametrization is given by 6; € [0, 7]
and 0y € [0,2n] with identifications (0,602) ~ (0,0), (61,0) ~ (61,27) and (7,63) ~
(m,2m — 02) [29, Lemma 4.1]. We once again briefly justify the appearance of these
identifications which are illustrated in Figure 4.

When 61 = 0, we have X7 = X3 and the spheres S, (1) and S,,; (X1 X2) are tangent,
with intersection point X; = Xo = Y] = Y, (i.e. the red circle is “degenerate”: it
is a unique point). This proves the identification (0,0) = (0,62). The remaining
identifications follow from the same argument as in the a; = 7/2 case. Finally,
removing the abelian representations corresponds to removing the three points A =
(07 0)7 B = (777 0)7 B' = (777 7T)'

This concludes our outline of the description of H g 7 and therefore the proof of the lemma. O
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02

2 B’

Al ) B B B
0 T 0

FIGURE 4. The space ﬁgj, for a; # 5. On the left hand side: the left
vertical edge (in red) is collapsed onto the point A, both the top horizontal
edge and the bottom horizontal edge (marked with a dot) are identified, as
are the right vertical edges above and below the point B, with orientations
described by arrows. On the right hand side: the result of the aforementioned
identifications; gluing the two boundary segments joining B’ to B produces
the desired sphere.

Remark 5.2. Since we aim to consider the algebraic intersection of fg with the difference

cycle fg,g — A%°, it is worth mentioning that we lose nothing by working in V,*, which is a
1

strict subset of (V;"“\ S5°°)/SO(3), see [24, Lemma 5.2].

Working in the space H g 7 we will now observe that near the puncture A = (e, e'®i, €%, ')
which was also described in Lemma o. e projection n 1S a rtamily o ~ - curves
(which Iso described in L 5.1), the projecti ﬁ(Vo‘cﬁFg)' family of 2#—1
indexed by the elements of the set S;(«).

Proposition 5.3. Let ¢ be a p-coloring such that ¢y = co = j and let « € (0,m)*. If
w = we € Sj(a) is such that w?- # 1 and B is a (¢, c)-braid such that Vg(w) %0, then, in a
neighborhood of A in ﬁaj, the projection ﬁ(fg N 17,{”) is a family of 21 curves.
Proof. Given 6 in (0,7), we use e to denote the matrix (666 e,%). For each ¢ € {+1}#71,
observe that a := a. = (&%, e esi%s . . eni®n) is an element in the subset Sy of
abelian representations. Next, we consider the following subspace of Ry x Ry

ALY = {( X1, X2, X3y, X, Y1, Yo, X3, ..., X)) € RO X RO},

Since A7, is (2n + 4)-dimensional, I'§ is 2n-dimensional and Ry, x Ry, is 4n-dimensional,
we deduce that the dimension of the vector space T(ava)A;la’c NTaa)l'F is at least 4.

Claim. The dimension of T(a,a)A;la’cﬂT(a@)Fg is equal to 4. In particular, the manifolds A!,
and I'§ intersect transversally at (a, a).

Proof. Using Remark 4.6, the tangent map of 3| gee at a can be canonically identified with the

unreduced colored Gassner matrix B (5) = (ég‘:}; ggi; ) Since the tangent space to a graph
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is the graph of the corresponding derivative, the space T| (a’a)A’na’c NT(aa)lG is isomorphic to
the space X of n-tuples v = (v1,...,v,) which satisfy

(%1}
Aw@) BN |wl |a
(26) (C(w) D(w)) :3 = :3

The claim is therefore equivalent to the assertion that the real dimension of X is 2. Since we as-
sumed that V5(w) # 0 and w? # 1, Proposition 4.10 ensures that det(I,,—2—D(w)) # 0. Thus

we deduce from (26) that the last n—3 components of v are equal to (I,,_2—D(w)) " *C(w) (3} ),
finishing the proof of the first assertion; the second assertion follows immediately by recalling
the respective dimensions of A}, and I'§. This concludes the proof of the claim. O

The claim implies that in a neighborhood of each of the 2#~! points (a., a. ), the space A/, *“N rg
is a manifold of dimension 4. Since V,;"¢ NI'Z is equal to Vs NI'3, the same conclusion holds
for this former space. Since each of the (a.,a.) projects to A, after quotienting by SO(3) (and
perturbing if necessary), we deduce that the projection ﬁ(vna’c N fg) consists of at least 2#~1
curves near A.

It remains to show that ﬁ(?na’cﬂfg) consists precisely of 2¢~1 curves (and not more). Refor-
mulating, we assert that the arcs of ﬁ(f/no"cﬂfg) that approach A are precisely parametrized by

the (a.,a;). To see this, we must understand how the fiber above A interacts with YA/na’c N fg
Observe that (ac,a:) € p~1(A) (i.e. the fiber contains all the (a.,a.)) and p~(A) C Wy""
the former is clear while for the latter we use that W3¢ = p~1(Sy’) = p~ ({4, B, B'}).
Since fgc N Wﬁ “ = (), the assertion follows readily. This concludes the proof of the proposi-

tion.
O

From now on, we use C. to denote the arc of ﬁ(fffc N fg) corresponding to w, € Sj(a),

as described Proposition 5.3. Perturbing if necessary, we can arrange that these 2#~1 arcs
intersect transversally. In particular, (25) turns into

(27)  hgag(a) = h(a) = (T4 — Ay’ BV 0 I8)) o = > (I — Agjvca>ﬁ§j-
ee{t1}ps-1
Observe that C. lifts to a curve in V2en fg approaching a.. Proposition 5.3 shows that
the question of whether C. intersects the difference cycle strongly depends on the position of
this curve near A.
Remark 5.4. AsI'j is the graph of a function, each component C; of the projection ﬁ(f/?f‘ “n fg)
is the graph of a function in HQO‘J'7 of the form 0 = g-(61); recall the left hand side of Figure 4.
Next, we let v: (—=9,0) — ﬁ;] be (a parameterization of) a curve such that (¢) ap-

proaches A as t goes to 0. Slightly abusing notations, we sometimes write v(0) = A. The
example to keep in mind is (a perturbation of) C.. Recalling the definition and parametriza-

. o .
tion of H,’, we write

(28) v(t) = (X1(t), Xa(t), Y1 (2), Ya(t))-
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and follow [29] by introducing the velocity 69 = %91\,5:0 and the angle 09 = %92\,5:0 of such
a curve ~. Still following [29], we define

0

0
cos(a; + ) 69
8(98) — ( J 2) 72

e 2
cos(a;)
and observe that 2arg s(69) = 69. The following remark is used implicitly in [29].

Remark 5.5. If the curve v is non constant, then we can choose #;(t) such that 69 # 0.
Assume by way of contradiction that 69 = 0. Since v(0) = A, this implies that ~ is tangent to
the vertical axis {#; = 0} (recall Figure 4). As this whole axis is collapsed to the point A, the
curve v must be constant, a contradiction. Note also that when v = C., this is a consequence of
Remark 5.4: since C; is the graph of a function (in the (61, 62) coordinates), the derivative ¢/ (¢)
cannot vanish.

From now on, we consider the 2#~! paths Y, given by (a perturbation of) C. where
lies in {+1}#~1; we then write 9(1),57 9[2),5 for the corresponding velocity and angle, although at
times, we will drop the € from the notation. Using Remark 5.5, we suppose that 9?75 = m
As in the proof of Proposition 5.3, we write the unreduced colored Gassner matrix evaluated

at w as BS(6) = (égzg ggz% ) The following lemma relates the angle 98,5 to this matrix.

Lemma 5.6. Let ¢ be a p-coloring, let a be an element of (0,m)" and let w := w, € Sj(a)
be such that wjz # 1. Let § be a (c,c)-braid which satisfies Vg(w) # 0 and additionally set

vi=v. = (1 - D(w))"tC(w) (§). Then sg:=sz. = 5(03’5) satisfies

1 53
BL(B) | 0] = [@;(1—sp)
v v
Proof. Write w € Sj(a) as w = (ef121 . %% =) For § € (0,7), we write
e = (680 691.9> and a := a;, = (eio‘f,emj,es%mcs,...,esanmcn) € SU(2)". Remark 4.6

shows that the derivative T,3 of the map 3 : Ry — Ry’C at a is given by the action of the
colored Gassner matrix B¢ (5) on C" (after multiplication by —j). Using the definition of v,
the proposition will follow once we show that

(29) B ()l (})) - (wj(fé Sﬁ)) -
Writing the curve y5(t) := v5.£(t) as (X1(t), Xa(t), Y1(t), Ya(t)), we first compute 75(0). Re-

calling the parametrization of flg 7 which was described in Lemma 5.1, we see that X}(0) = 0.
Additionally using that 61(0) = 0 and that our parametrization satisfies 69 := 9(1),5 =

. 0 sin(a;) cos(61(0))69
1/sin(a;), we also get X{(0) = (—sin(aj)cos(el(o))eg) ® (O‘J)Cog( 10) 1) = (%), Next, us-
ing [29, page 492, Equation (5)] a computation shows that Y7 (0) = (_00 g 0(@ Jos o Sinéaj)sﬁ ) =
1 Sl

(726 s > Finally, since Ya(t) = Y1(¢) "1 X1 (t) Xa(t), we also deduce that Yy (0) is given by the

0 e "% (1-s)

matrix o
—e7 % (1—sp) 0

>. Summarizing and recalling Remark 4.6, we obtain

Y5(0)(=3) = (1,0, 55,w;(1 — 5p)).
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Since 73 is a parametrization of the curve C. and since the tangent space of a graph can be
described using the graph of the derivative, we deduce that (29) holds, concluding the proof
of the proposition. O

Using Lemma 5.6, we make a first observation on the angles 9875 near A. We stress the fact
that each sg. depends on the corresponding w := w. € Sj(a).

Proposition 5.7. The angle 98,& of each C. is not equal to 0 or —4a;.

Proof. We argue by means of contradiction. First assume that 98,5 is equal to 0. The definition
of sg . implies that sg . = 1. Using Lemma 5.6 (and its notations), this implies that the vector
w:= (1 0wvg ... vy)tis fixed by the colored Gassner matrix. This is a contradiction since
Lemma 4.3 shows that fixed vectors of the colored Gassner matrix do not contain a zero in
their second coordinate.

Next, assume that 9(2]75 = —4a;. In this case, sg. isequal tow; = e recall that w = w,

721’(1]' (
lies in Sj()). Applying Lemma 5.6 to 073, we obtain BS (c78)w = (80%675 w;(1 —80%675) v)t,
where v := (vs, ... v,) is as in Lemma 5.6. Using the multiplicativity of the colored Gassner
matrix, applying Lemma 5.6 to 3 and recalling the Gassner matrix for 02 which was described

in Example 4.12, we get

(30) <1 —l—w]z - wj —w?- —l—wj> ( 4. ) _ < S528,c ) ‘
1 —wj wj wi(l—spe) @i (1= $p25.)

Since sg. = wj, the left hand side of (30) is equal to (}). As a consequence, we obtain
So28c = 1, contradicting the first paragraph of the proof. This concludes the proof of the
proposition. ]

We now build on [29, Lemma 4.6] in order to understand how the various sg. control the
behavior of the multivariable Casson-Lin invariant under a crossing change within a given
sublink. Since the argument is nearly the same as in [29], we only indicate the necessary
modifications (we exceptionally chose to use the notation we; to refer to the j-th component
of w,; even though w.; = €% for each ¢ € {£}'1).

Proposition 5.8. Let ¢ be a p-coloring for which ¢y = c3 = j, let a € (0,m)", and let B be
a (¢, ¢)-braid whose induced permutation B satisfies B(1) # 1 and B(2) # 2. If all w. € Sj(a)
satisfy ng #1, Vé(we) # 0 and V/ng(we) # 0, then the following equality holds:

o1

WeiSge — 1
hiag(@) — hila) = # {wg € Sj(a) | ‘”5751 < 0}.

5576 -
Proof. Recall from (27) that h¢, B(oz) — hj () can be understood by studying the intersection
1
of each C. with the difference cycle Fj% — Agj inside H; 7. We also know from Proposition 5.3
1
that each C. approaches A. Since each C. is the graph of a function (recall Remark 5.4),
the C. cannot be loops at A. the conclusion now depends on the behavior near B and B’.

Claim. There is a neighborhood of B’ in ]?Izaj which is disjoint from p(V,° N fg)

Proof. Suppose this not to be the case and recall that B’ € ﬁ;g is the point (e’ e~ ! e~)
and that p is induced by (A1, Az, ..., Ap, B1, Ba, ... By) = (A1, A2, By, By). Observe that
B'=p(A,A), where A = (€' ,e "% As,..., A,). Using this notation, we deduce that there
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is a point in VN fg which is represented by the pair (A, A). There are now two cases both
of which lead to contradictions. If (A, A) represents an irreducible point, then we obtain the
same contradiction as in [29, page 491]. On the other hand, if (A, A) represents a reducible
point, then the same argument as [29, page 496] shows that A is a fixed point of 3|go.c. Look-
ing back to the definition of A, this contradicts our assumption that 3(1) # 1 and B(2) # 2,
concluding the proof of the claim. O

FIGURE 5. The union of the curves K;J (in red) and s, (in green) form a
91

circle that disconnects the punctured sphere ﬁ; 7

Using the claim, we know that p(V,& N fg), and hence each curve C., must approach
the points A and B. The intersection properties of each of those curves now depend on the
angle 9(2)’5. If 9875 lies between 0 and —4a;, then the curve C. starts off in the connected

component of Hy’ \ (A5’ U fjﬂQ) which does not contain B. Since this curve eventually
1

reaches B, it must intersect algebraically once positively the circle JA\gJ UfZZQ, such a situation
1
is depicted in Figure 5.

Similarly, if 98’8 is not between 0 and —4c;, then the algebraic intersection of C. with the
difference cycle will be zero. Heusener-Kroll [29, Section 4] now prove that these two situations
correspond respectively to the cases %ﬁ;l < 0 and %ﬁ;l > (0. The proposition now
follows from (27). O
5.3. The behavior under crossing changes and the Alexander polynomial. In this
subsection, we express the behavior of the multivariable Casson-Lin invariant under crossing
changes in terms of the multivariable potential function.

Following closely the proof of [37, Lemma 2.7], the next result generalizes [29, Lemma 4.7].
In this latter reference, the authors use the Conway-normalized Alexander polynomial instead
of the potential function: this explains the slight difference in their formula, see Remark 4.8.

Proposition 5.9. Let ¢ be a u-coloring for which ¢; = ¢y = j, let a € (0,7)*, and let
w = w: € Sj(a) be such that wjz # 1 and we, ---we, # 1. If B is a (¢,c)-braid such that
Va(w) # 0 and VU/Q,\B(UJ) # 0, and if we write sz := sg. then we have

1

vfj(w) _ sp—1
V;%\B(w) wj2.55 -1
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Proof. Let £ be an n-stranded (¢, c)-braid such that Vg(w) # 0. As in Subsection 4.4,
we use BS(€) to denote the colored Gassner matrix of £ evaluated at w. Setting v =
(1,0,v3,...,v,)" and z¢ := (s¢,w;(1 — s¢),v3,...,vp,)", Lemma 5.6 implies that B (§)v = .
Writing B¢ (€) as (égﬁ gg; ), we know from Proposition 4.10 that I,,_o — D(w) is invertible.
Using this fact to isolate the last n — 3 vectors in the equation B (§)v = x¢, we deduce that

SE o . 1 1
(5,07 o)) = (46) + B (T2 = D)) (o).
We can therefore write A(w) + B(w)(I,—2 — D(w))"1C(w) as (wj(fé—%) Z) for some a and b.
Next, we set T = (} ), where t is some indeterminate. Since I,,— — D(w) is invertible, a short
computation using the formula det (¥ %) = det(W — XZ~'Y) det(Z) for the determinant of
a (2 x 2) block matrix (¥ %) where Z is invertible shows that

31)  det ((g Ino_z) - Bg(g)) — det <wj1(s; * t‘_“b> det(I,_s — D(w)).

We now compute the left hand side of (31). Let M, ..., M, be the columns of M := I,,—B¢(§)
and let F> be the column vector whose only non-zero entry is in the second position and
is equal to 1. Using these notations, the second column of (35 Iﬂ%) — B(€) is equal to
(t — 1)Ey + Mj. Using the linearity of the determinant in its second column, we get

(32)  det ((g InO_Q) - B;(g)) — det(M) + (t — 1) det(My, Ea, Ms, ..., My).

The first summand vanishes: the matrix M = BS({) — I,, has a nontrivial kernel since the
colored Gassner matrix has fixed vectors. Recall from Section 4 that we use B (&, 1, m) to
denote the determinant of the size (n — 1) matrix obtained by deleting the [-th row and m-th
column of M. Expanding the second summand in (32) along the second column, we obtain

det <<:g Ino_2> - Bg(g)) = (- DB 2,2).

On the other hand, Lemma 4.13 gives we, (we, — 1)BS(€,1,1) = (we, — 1)BS(€,2,2), while
Lemma 4.15 ensures that %Bﬁ({, 1,1) = det(B_,(€) — I,_1). Using (31), and recalling
that we assume c; = co, we obtain

(33) det (wjl(s; % ) t__“b> det(I,—2 — D(w)) =

We now set ¢ = 1 in (33) so that its right hand side vanishes. Since det(l,—2 — D(w)) is
non-zero, the leftmost determinant must vanish. But as s¢ cannot be equal to 1 (recall the
proof of Proposition 5.7), we deduce that a = w;(1 —b). A straightforward computation now
shows that the leftmost determinant of (33) is equal to (¢ —1)(1 — s¢). Simplifying the (t —1)
terms, we have therefore obtained

c1\Wep — 1 —c
W(t — 1) det(BS(€) — In-a).

n

Wey (WC1 — 1)

wcl...wcn_l

(34) (1 - s¢)det(Iy—» — D(w)) = det(BS(€) — Ln-).

In order to apply (34) to 3 and 0?3, notice that the “D blocks” of the colored Gassner
matrices of 8 and 023 are equal: multiplying by B¢ (c3) only affects the A and B submatrices.
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Consequently, substituting & with 3 and o743 in (34) and taking quotients, we obtain

1-s55 _ det(BL(8) — To)
T= 5525  det(Bo(028) — Lo1)

(35)

A short computation using (30) shows that s;25 — 1 = w;j(w;sg — 1). To conclude the proof

of the proposition, it thus only remains to express (35) using the potential function instead
of the reduced colored Gassner matrices. Since (o13) = t,%(8), Remark 4.7 and (35) yield

Ve _ , det(Ba(B) —In1) _ o 1-sg

= W= — .
V@ aet(Boa(078) — Ir) ey D)
Simplifying the wjz terms concludes the proof of the proposition. O

We can now express the effect of an intra-component crossing change on the multivariable
Casson-Lin invariant Ay, in terms of the multivariable potential function.

Proposition 5.10. Let L be a p-colored link and assume that Ly is obtained from L by
changing a negative crossing within a connected component of L; C L. Let o € (0, m)* be such
that all w € Sj(a) satisfy wJQ- #1 and we, -+ we, # 1. If Vi(w'/?) # 0 and Vi, (WY?) £ 0
for all w € Sj(a), then the multivariable Casson-Lin invariants of L and L, satisfy

VL+ (wl/Q) O}

(36) hL+<a>—hL<a>=#{weSj<a>| v W

Proof. Since Vi (w'/2) # 0 and Vi, (w'/?) # 0 for all w € Sj(a), we deduce from (11)
that Az(w) # 0 and Az, (w) # 0 for all w € Sj(a). Using the symmetry of the Alexander
polynomial, the same assertion holds for all w € S(a). Therefore the multivariable Casson-
Lin invariants hr (o) and hr, (o) are defined. Assume that the crossing change occurs within

a j-colored knot K C L. Arguing as in [15, Remark 2.1], we can then assume that L = B

and Ly = 0?3, where 3 and 0% are p-colored (c, c)-braids with ¢; = ¢y = j, see Figure 6.

FIGURE 6. On the left hand side, the braid §; on the right hand side, the braid a%ﬁ.

Since the crossing change takes place within K, the permutation B induced by $ cannot
satisfy 8(1) =1 and §(2) = 2. We can therefore apply Proposition 5.8 to deduce that

wisge — 1
hg%ﬂ(a) —h§(a) = #{w € Sj(a) | ;,36575—1 < 0}.

Applying Proposition 5.9, this equation can be rewritten as in (36). This concludes the proof
of the proposition. O
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In [29, 37], the condition in (36) is expressed as a product of polynomials instead of a
quotient. Since these authors work with knots, the Conway-normalized Alexander polynomial
evaluated at w € S! is real (recall Remark 4.8) and so the two formulations are in fact
equivalent. The next remark describes the situation in the multivariable case.

Remark 5.11. If L and L are n-component p-colored links as in Proposition 5.10 and w € T#,
v 1/2

% is equal to the sign of V1, (w'/?)V(w!'/?) up to (—1)". Indeed, the
quotient and the product agree up to multiplication by V L(wl/ 2)2 and recalling Remark 4.9,
this latter quantity equals (—1)"V(w"/?)V(w™/?) = (=1)"|V(w'/?)]2.

then the sign of

6. THE RELATION TO THE MULTIVARIABLE SIGNATURE

In this section, we prove the main results of this paper. In more details, Subsection 6.1
gathers some facts about the multivariable signature, Subsection 6.2 proves Theorem 1.1,
Subsection 6.3 shows that hy, is locally constant and Subsection 6.4 proves Theorem 1.7.

6.1. The multivariable signature. In this subsection, we briefly recall the definition of the
multivariable signature, the main references being [17] and [10].

A C-complex for a p-colored link L = Ly U---U L, is a union S = S1U---US, of surfaces
in S3 which is connected, and such that:

(1) for all 4, S; is a Seifert surface for the sublink L;,

(2) for all i # j, S; N S; is either empty or a union of clasps,

(3) for all 4, j, k pairwise distinct, S; N S; N S, is empty.
The existence of a C-complex for arbitrary colored links was established in [9, Lemma 1].
Given a sequence € = (e1,...,¢,) of signs &1, let i: H1(S) — H(S*\ S) be defined as
follows. Any homology class in H;(S) can be represented by an oriented cycle x which
behaves as illustrated in [10, Figure 2] whenever crossing a clasp. Define i*([z]) as the class
of the 1-cycle obtained by pushing x in the g;-normal direction off S; for ¢« = 1,..., u. Next,
consider the bilinear form

o Hi(S) x Hi(S) = Z, (z,y) — tk(i€(2),y),

where ¢k denotes the linking number. Fix a basis of H;(S) and denote by A® the matrix of a®.
Note that for all ¢, these generalized Seifert matrices satisfy A= = (A)T. Using this fact,

one easily checks that for any w = (wi,...,w,) in the p-dimensional torus T#, the matrix
o
Hw)=> []a -5 A
e =1

is Hermitian. Since this matrix vanishes when one of the coordinates of w is equal to 1, we
restrict ourselves to the subset T4 = (S \ {1})* of T*.

Definition 6.1. The multivariable signature and nullity of a p-colored link L are the maps
or,nr: Tk — Z, where o (w) is the signature of H(w) and 7 (w) its nullity.

The multivariable signature and nullity are independent of the choice of the C-complex [10].
Note furthermore that when p = 1, a C-complex is nothing but a Seifert surface and oy,
recovers the Levine-Tristram signature of the oriented link.
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6.2. The multivariable signature and the multivariable Casson-Lin invariant. The
goal of this subsection is to relate the multivariable Casson-Lin invariant hz, to oy, when L is a
2-component ordered link with linking number 1, proving Theorem 1.1 from the introduction.

The following lemma describes the parity of the multivariable signature and its behavior
under crossing changes within a sublink.

Lemma 6.2. The multivariable signature satisfies the following properties:
(1) If a p-colored link L has v components and w € T4 is not a root of Ar, then

op(w)=v+ Y lh(Ly, L;) — sign(i*V(w"/?))  modA.
k<j

In particular, if L is a 2-component ordered link with linking number 1 and w € T? is
not a root of Ar, then or(w) is even and

) = 0 mod4 if Vi(w'/?) >0,
g =
L 2 mod4 if Vi (w!/?) < 0.

(2) Assume that Ly is obtained from L by changing a unique negative crossing within a
given sublink. If w € T is neither a root of Ar, nor a root of Ar, then
o1, () — ou(w) € {0,2}.

Proof. The first statement is contained in [10, Lemma 5.7] and directly implies the claim about
2-component links with linking number 1 (here V (w) is real since L has 2 components, see
Remark 4.9). Here, note that we can apply [10, Lemma 5.7] since we assumed that Ay, (w) # 0:
this hypothesis is equivalent to the assumption 7 (w) = 0 made in [10, Lemma 5.7]. We now
prove the second statement. Pick C-complexes Sy and S for Ly and L which only differ at
the crossing under consideration. Since the crossing change occurs within a sublink, there
are bases for H;(Sy) and H;(S) such that the resulting generalized Seifert matrix A% only
differs from A® at one diagonal entry which is reduced by 1. As a consequence, the Hermitian
matrix H(w) is the same as H(w) except for one diagonal entry which is reduced by the
positive real number > % (2 — w; — @;). Since only one eigenvalue can change and since

we assumed both Alexander polynomials to be non-zero (i.e. there are no zero eigenvalues
in Hy(w) and H(w)), the result follows. O

Reformulating Lemma 6.2, we immediately obtain the following result.

Lemma 6.3. Let L be a 2-component ordered link with linking number 1 and assume that L4
is obtained from L by a unique crossing change within a component of L. If w € T? is such
that Vi (w'/?) # 0 and Vi, (w'/?) £ 0, then

0 if Vi, (WY)V(w!/?) >0,
o1 (W) —ouw) = {_2 if Vi, (@)@ <.

For 2-component links with linking number 1, we can now relate the multivariable Casson-
Lin invariant to the multivariable signature, proving Theorem 1.1 from the introduction.

Theorem 6.4. Let L = Ky U Ky be a 2-component ordered link with lk(Ki,K9) = 1,
let (a1, az) € (0,7)?%, and set (wy,ws) = (e*1, e%2) . [f the multivariable Alezander polyno-
mial satisfies Ar(wi', w5?) # 0 for all (e1,e2) € {£1}2, then the following equality holds:

-1

(37) hL(al,ag) = 7 (O'L(U.)l,OJQ) + O'L(wl,wgl)) .
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Proof. Recall that we write S(a) = {(wi',w5?) | (e1,62) € {£1}?}. We first prove the
theorem when « € (0, 7)* is such that all w € S(«) satisfy the following conditions: arg(w;)
is transcendental, wiws # 1 and wJQ- # 1 for j = 1,2. Since L has 2 components and linking

number 1, the Torres formula (which reads Ax, Uk, (t1,1) = (tf12 —1)/(t1 —1)Ak,(t1), where
l19 = lk(K1, K3)) shows that |[Af(1,1)| = 1. Thus Ay is not identically zero and therefore the
multivariable Casson-Lin invariant Az, («) is well defined whenever Az (w) # 0 for all w € S(a).
Since the fundamental group of the complement of the Hopf link J is abelian, h; vanishes
identically. The same conclusion holds for the multivariable signature oy, as J admits a
contractible C-complex.

Since arg(w;) is transcendental for j = 1,2, it follows that Vi(w'/?) # 0 for all L as in
the statement of the theorem. The equality (37) is obtained by induction: both sides of
this equation vanish on the (positive) Hopf link, and the next paragraph will show that they
behave identically under crossing changes within components. Notice that since the links
have linking number one, the Torres formula guarantees that such crossing changes do not
make the Alexander polynomial vanish (consequently if hy, is defined for L, then it remains
defined after performing such a crossing change).

To prove the induction step, we assume that L, differs from L = K;UK>s by a unique nega-
tive crossing within a component. Assume that this component is K (the reasoning is similar
for K3). Since we are working with 2-component links, Proposition 5.10 and Remark 5.11
imply that

(38) hi, (o) — hy(a) = # {w € Si(on, 09)| Vi, (W2 V L (w!/?) < o} .

By definition, Sy (a1, a2) contains two elements: (w1,ws) and (wi,w; ). Let O(wywp) be Lor 0

according to whether or not V, (w'/?)V(w!/?) < 0. Using (38) and Lemma 6.3, we deduce
that

hL+ (a) - hL(a) = 5(w1,w2) + 6(w1 wy )
-1 -1

=— (o1, (wi,w2) — op(wi,wa)) + 5 (o1, (wi,wy ') — (op(wi,wy )

—1

= (o1, (wi,w2) +or, (wi,wy ') — (o (wi,ws2) + op(wi,wy 1))

This concludes the proof of the theorem for the a € (0, 7)? which were described above, since
the linking number is a complete link homotopy invariant for 2-component links [40].

We conclude. View the right hand side of (37) as a function on (0, 7)2. The result will follow
if we prove that both sides of (37) are locally constant on {a € (0,7)%| Ar(wi!, wil) # 0}:
for the multivariable signature, this follows from [10, Corollary 4.2], while for hz, the result
is proved in Proposition 6.6 below. This concludes the proof of the theorem. O

The sign appearing in Theorem 6.4 depends on some conventions which we briefly discuss.

—

Remark 6.5. Given a knot K obtained as the closure of a braid 3, Lin writes K = 014,

p—

while Heusener and Kroll write K_ = a%ﬁ . As a consequence, while these authors agree on
the sign of h/%(a) —hz(a), comparing [37, Theorem 2.9] with [29, Proposition 4.8] shows that
91

the meaning of this sign differs: it depends on the conventions adopted for the generators
of the braid group. We follow Lin’s conventions (recall Figures 1 and 6). On the other
hand, assuming that K, is obtained from K_ by changing a single negative crossing, Lin
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states that 0 < op, (w) — ox_(w) < 2 [37, page 356], while Heusener-Kroll state that
0 <og_(w) —or,(w) < 2 (29, page 497]. With our notations, the proof of Lemma 6.2
(as well as [42, proof of Lemma 2.1] and [23, proof of Lemma 2.2]) yields the latter result.
Summarizing, the sign differences in [37] and [29] cancel out (explaining why these authors
obtain “hx = ok /2”) while our conventions account for the minus sign in Theorem 6.4.

6.3. The multivariable Casson-Lin invariant is locally constant. Recall from Re-
mark 3.11 that Ay, is defined on the set

Dy ={a € (0,7)? | p, is not a limit of irreducible representations for all w € S(a)}.

Since the inclusion {a € (0,7)%] Ap(wi',wit) # 0} C Dy, was also observed in Remark 3.11,

the following proposition concludes the proof of Theorem 6.4.

Proposition 6.6. Given a p-colored link L, the multivariable Casson-Lin invariant is locally
constant on Dy. Namely, if o° and o lie in the same connected component of Dy, then the
following equality holds:

hr(a®) = hy(ab).

We first describe the strategy of the proof which is inspired by [29, Proposition 3.8]. Let
a € (0,m)*. Given e > 0, we denote by B(a, €) the ball of radius € centered at a. We will show
that if € is small enough, then hr(«) coincides with hr (o) for any o/ in B(«,€). Writing L as
the closure of an n-stranded (¢, ¢)-braid £, this will be carried out by constructing a cobordism
which joins A% ﬂf‘g to AL ° ﬂfg,. This cobordism will take place in an ambient space whose
description requires us to introduce the following spaces:

%7271 = {(Al, e ,An, Bl, e ,Bn) S SU(2)2n| tI'(Ai) = tI‘(Bi) = tI‘(Aj) = tl“(Bj) if C; = Cj},
n n
HfL = {(Al,...,An,Bl,...,Bn) S R%,Qn | HAZ = HBZ}
i=1 i=1
Recalling the notations from Section 3, observe that we have the inclusions Rp“x Ry C RS, 5,
and Hy,° C HS. Just as in Section 3, we then define S¢S as the space of abelian representations
in Ry, 5, (i.e. we impose the same relations as in (8)) and define H}; by removing Sy N Hy; from
H{ and moding out by the action of SO(3). The next lemma is an analogue of Lemma 3.4;
we also refer to [28, Corollary 3.2] where a similar statement is made.

Lemma 6.7. The space ﬁ,‘i 18 a smooth open manifold which contains H2° as a codimension I
submanifold. Furthermore, the normal bundle of Hy*® inside HE is trivial.

Proof. The proof of the first statement is the same as in Lemma 3.4. Namely, the map
[t Ry 0 — SU(2) defined by f,(A1,...,4,,B1,...,By) = Ay---A,B; - Bl_1 restricts
to a submersion f, on Hy \ S; and therefore Hy \ S§ = fn|_1(1d) is a smooth manifold
whose dimension is equal to dim(Ry, 5,) — dim(SU(2)) = 4n + p — 3. Since SO(3) acts freely
on HS\ S¢S, the quotient .FAI,i is a smooth open manifold of dimension 4n — 6 4 p. It is clear
that ﬁ}f *“ has codimension p in fIfL because that many traces are fixed.

We now show that H7* has trivial normal bundle in H¢. Recall that for any 6 € (0,7), the
2-sphere Sy = {A € SU(2) | Tr(A) = 2cos()} has trivial normal bundle in SU(2): the Lie
algebra su(2) splits as CER, the complex line being mapped onto the tangent space of S,, at A
by the tangent map of multiplication by A and the real direction is spanned by the tangent
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map of the trace function Tr: SU(2) \ {£1d} — (-2,2) at A. Denoting by (Rj, 5,)* the
subspace of Ry, 5, with none of its coordinates equal to £1d, and by i1,...,7, some preimages
of 1,..., u by the coloring ¢, the following map is thus a submersion:

Try: (Ry2,)" — (—2,2)F

(Al, c. ,An, Bl, e ,Bn) — (TI‘(AZ‘I), .. ,TI“(A@)).
Fiberwise, the normal bundle of R x Ry in RS, is given by T, RS, /To(Ry° x Ry°),

n,2n n,2n

for any = in Ry x Rp°. As a consequence, using N'((Ry x Ry“)/RY, 5,) to denote the

normal bundle of Ry x Ry“ inside RS ,,, the map Tr, induces a fiberwise isomorphism

N((Ry“ x Ry°)/RE o,) — T(—2,2)". Since this latter bundle is trivial, so is the former. The

n,2n
statement now descends to the normal bundle of Hy* inside HS: indeed Hy™“\ Sp’“ (resp.

Ry x Ry°) is a submanifold of codimension p in Hy; \ Sy, (resp. R, ,,). This concludes the

proof of the lemma. O

Using Lemma 6.7, we can now prove Proposition 6.6 which asserts that hj, is locally con-
stant on Dy. The main idea is inspired by the proof of Ehresmann’s fibration theorem [20].

Proof of Proposition 6.6. Let a € (0,7)", fix ¢ > 0 and use B(w,¢) to denote the ball of
radius € centered in a. We want to show that if ¢ is small enough, then hp (o) coincides

with fp(a) for any o/ € B(a,¢). Pick an isotopy F': Hy* x [0,1] — HE which makes the
intersection Ap’® N I'§ transverse in Hy,“. Choose a path a: [0,1] — (0,7)" joining « to o
In order to build a cobordism joining A% N fg to AY° N fg/, we will prove that F' can be
“transported” along a(t) so that for each ¢, the intersection /A\z(t)’c ﬁfg(t) becomes transverse
n I:Tﬁ (t)’c.

Let N(Hp*°/Hy) denote the normal bundle of Hy," inside of Hy. Since Lemma 6.7 ensures
that this bundle is trivial, we can pick a nowhere vanishing normal vector field X : H;,"“ —
N (HYC/HE) whose flow we denote by P - H¢ — H¢. Since the intersection Aa®e fg(t)
is compactly supported for each ¢, there is a compact set Ko C HYC containing A% N fg

and such that for each ¢, the compact set K; = ¢k (Kp) is a subset of HY (e containing
Aa®e q fg(t). It can in fact safely be assumed that Ky is a manifold. Let {U; | i € I} be

an open cover of HY*°, with finite subcover {U;li =1,...,k} of Ky. Refining this sub-cover if
necessary, one can assume that each open set U; C H,, ¢ verifies the following property: for
some ¢ € [0, 1], the set ¢% (U;) contains only one component of the non-transverse intersection

~

A%(t) “N fg(t) in f[,? (B (there are finitely number such components because we are dealing
with (semi-)algebraic sets).

Since there are only finitely many non-transverse intersections, it is enough to show that
for one such U ¢ HY . one can transport the isotopy F so that, for the corresponding ¢, the
non-transverse intersection point of IA\Z‘(t)’C N fg(t) in HY (Be i perturbed to a transverse one.
To make this possible, consider the isotopy

(@%)"F: ¢ (U) x [0,1] = ¢k (U)

(p,s) = ¢’ o F(¢(p), s).

As vector fields X such that the isotopy (¢’ )*F makes this intersection transverse are generic
in the set of normal vector fields, this procedure can always be carried out.
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We now conclude the proof. Pick e small enough so that each ¢ : U; — fIfL is an embed-

ding. The set K = |J ¢’ (Kp) is therefore a compact submanifold of HS. The previous
te[0,1]

construction now ensures that tEL[(J) ; % (A°) and tEL[g , ¢’ (T'§) can be assumed to intersect

transversally in a one dimensional submanifold of K. This latter submanifold realizes the

desired cobordism between Ay“N TG and Ay N Fgﬁl. As a consequence, the corresponding

intersections numbers are equal and therefore the proposition is proved. O

6.4. Deformations of SU(2) representations of link groups. The goal of this subsection
is to prove Theorem 1.7 from the introduction.

Recall that for a p-colored link L, the multivariable Alexander polynomial A L(tlil, .. ,tffl)
restricts to a polynomial on the pu-dimensional torus T#. Our interest lies in the zero locus

V(AL) = {(w1,...,wu) € TY| Ap(wi, ... ,wu) =0},
We can now prove Theorem 1.7 from the introduction.

Theorem 6.8. Let L be a 2-component ordered link with linking number 1. Let (wy,ws) € T2
be such that Ar(wi,ws) = 0 and Ar(wi,wy ') # 0. Assume that for any open subset U C T2
containing (w1,ws2), the multivariable signature or, is not constant on U\ (V(AL)NU). Then
the abelian representation p(., ., is a limit of irreducible representations.

Proof. Set w := (w1,w2). By way of contradiction, assume that p,, is not a limit of irreducible
representations. Recall from Remark 3.11 that the invariant hj, is defined on the set

Dy ={a € (0,7)? | p, is not a limit of irreducible representations for all w € S(a)}.

Consider the continuous map II: T2 — (0, 7)? defined by

1 -1\ 1 —1
M(wy,w2) = (2 arccos <w1—i—2w1> | ArCeos <wg—i—2w2>> '

Since II is continuous and, by Proposition 6.6, hy: Dy — Z is locally constant, we see that
the composition hy, o IT defines a locally constant function on IT=*(Dy). Since Remark 3.11
implies that V(Ar) C II7Y(Dy), we can apply hz o II to (wi,ws).

Combining these facts, there is a small open neighborhood U C T~!(Dy) containing
(w1,ws) such that hy oIl is constant on U. In particular hy oIl is constant on U\ V(Ar)NU.
Writing w; + w;” 1 = 92¢cos(2) and applying Theorem 6.4, we deduce that

1
hr, o (w1, ws) = _E(UL(WI,U&) + o (wi,wyt)).

Since we established that hz, oIl is constant on U \ V(Ar) N U, the same holds for (w;,ws) —
—2(or(wr,wa) + or(wi,wyt)). Now observe that (wy,ws) — or(wi,wsy ') is locally constant
around (wi,ws) because AL(wl,wQ_I) # 0 [10, Corollary 4.2]. These facts imply that oy, is
constant in a neighborhood of (wi,ws) in U \ (V(AL) NU). This contradicts the hypothesis

of the theorem, concluding the proof. ]
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