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FURTHER STEPS TOWARDS CLASSIFYING

HOMOGENEOUS KOBAYASHI-HYPERBOLIC MANIFOLDS

WITH HIGH-DIMENSIONAL AUTOMORPHISM GROUP

ALEXANDER ISAEV

Abstract. We determine all connected homogeneous Kobayashi-hyperbolic
manifolds of dimension n ≥ 4 whose group of holomorphic automorphisms has
dimension either n

2 − 4, or n
2 − 5, or n

2 − 6. This paper continues a series of
articles that achieve classifications for automorphism group dimension n

2 − 3
and greater.

1. Introduction

Kobayashi-hyperbolic manifolds (hereafter called just hyperbolic) are of general
interest in complex analysis and geometry as they possess many nice properties
(see [Ko1], [Ko3] for details). For instance, if M is hyperbolic, the group Aut(M)
of holomorphic automorphisms of M is a Lie group in the compact-open topology.
This is a consequence of the fact that the action of Aut(M) on M is proper, which
yields that Aut(M) is locally compact, and therefore a Lie transformation group
(see, e.g., the survey paper [Isa5] for details).

For a hyperbolic manifold M , we denote by n its complex dimension and set
d(M) := dimAut(M). It is a classical fact that d(M) does not exceed n2+2n, with
d(M) = n2 + 2n if and only if M is biholomorphic to the unit ball Bn in complex
space Cn (see [Ko1, Chapter V, Theorem 2.6]). In papers [Isa1], [Isa2], [Isa4], [IK]
we found all hyperbolic manifolds with n2 − 1 ≤ d(M) < n2 +2n when n ≥ 2. Our
classification has proved to be useful in applications (see, e.g., [V]), so it would be
desirable to extend it to lower automorphism group dimensions. Notice, however,
that a generic Reinhardt domain in C2 has a 2-dimensional automorphism group,
thus no reasonable explicit classification can exist already for d(M) = n2−2, at least
when n = 2. One can try excluding the problematic case d(M) = 2, n = 2 from
consideration and focus on manifolds of dimension n ≥ 3, but disregarding difficult
situations like this one randomly seems to be somewhat artificial. The more natural
direction in which we hope some further progress can be made is to introduce
the assumption of homogeneity, i.e., to suppose that the action of Aut(M) on M
is transitive. Homogeneous manifolds are widely considered in geometry, so this
assumption, while being restrictive, is a standard one. Clearly, in the homogeneous
case one must have d(M) ≥ 2n.

In [Isa6, Theorem 1.1] and [Isa7, Theorem 1.1] we took two steps down from
the lowest previously explored automorphism group dimension n2 − 1 and found
all homogeneous hyperbolic manifolds with d(M) = n2 − 2 and d(M) = n2 − 3,
respectively (where one has to have n ≥ 3). As one would expect, the lower the
value of d(M), the harder it is to produce an explicit classification but we feel that
one should be able to progress even further. In this paper we look at dimensions
n2 − 4, n2 − 5, n2 − 6 and prove the following three theorems:
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THEOREM 1.1. Let M be a homogeneous hyperbolic manifold satisfying the

condition d(M) = n2 − 4. Then one of the following holds:

(i) n = 4 and M is biholomorphic to B1 ×B1 ×B1 ×B1,

(ii) n = 5 and M is biholomorphic either to B1 ×B1 ×B3 or to

(1.1)
T5 :=

{
(z1, z2, z3, z4, z5) ∈ C5 : (Im z1)

2 − (Im z2)
2 − (Im z3)

2−
(Im z4)

2 − (Im z5)
2 > 0, Im z1 > 0

}
,

where the latter is the symmetric bounded domain of type (IV5) (written in tube

form),
(iii) n = 6 and M is biholomorphic to B2 ×B4.

THEOREM 1.2. There does not exist a homogeneous hyperbolic manifold M with

d(M) = n2 − 5.

THEOREM 1.3. Let M be a homogeneous hyperbolic manifold satisfying the

condition d(M) = n2 − 6. Then one of the following holds:

(i) n = 4 and M is biholomorphic to the domain

(1.2)
D :=

{
(z, w) ∈ ×C3 × C : (Im z1 − |w|2)2 − (Im z2 − |w|2)2−

(Im z3)
2 > 0, Im z1 − |w|2 > 0

}
,

(ii) n = 5 and M is biholomorphic to B1 ×B2 ×B2,

(iii) n = 6 and M is biholomorphic to either B3 ×B3, or B1 ×B1 ×B4,

(iv) n = 7 and M is biholomorphic to B2 ×B5.

Combining these theorems with the classifications found earlier, namely the clas-
sical result for d(M) = n2 +2n mentioned above, [Isa3, Theorem 2.2], [Isa6, Theo-
rem 1.1] and [Isa7, Theorem 1.1], we obtain:

THEOREM 1.4. Let M be a homogeneous hyperbolic manifold satisfying

n2 − 6 ≤ d(M) ≤ n2 + 2n. Then M is biholomorphic either to the domain D
introduced in (1.2) (here n = 4, d(M) = 10 = n2 − 6), or to a suitable product of

unit balls, or to a suitable symmetric bounded domain of type (IV), or to a suitable

product of a unit ball and a symmetric bounded domain of type (IV). Specifically,
the following products of unit balls are possible:

(i) Bn (here d(M) = n2 + 2n),

(ii) B1 × Bn−1 (here d(M) = n2 + 2),

(iii) B1 × B1 ×B1 (here n = 3, d(M) = 9 = n2),

(iv) B2 × B2 (here n = 4, d(M) = 16 = n2),

(v) B1 × B1 ×B2 (here n = 4, d(M) = 14 = n2 − 2),

(vi) B2 × B3 (here n = 5, d(M) = 23 = n2 − 2),
(vii) B1 × B1 ×B1 ×B1 (here n = 4, d(M) = 12 = n2 − 4),
(viii) B1 × B1 ×B3 (here n = 5, d(M) = 21 = n2 − 4),
(ix) B2 × B4 (here n = 6, d(M) = 32 = n2 − 4),
(x) B1 × B2 ×B2 (here n = 5, d(M) = 19 = n2 − 6),
(xi) B3 × B3 (here n = 6, d(M) = 30 = n2 − 6),
(xii) B1 × B1 ×B4 (here n = 6, d(M) = 30 = n2 − 6),
(xiii) B2 × B5 (here n = 7, d(M) = 43 = n2 − 6),

the following symmetric bounded domains of type (IV) (written in tube form) are

possible:

(xiv) the domain of type (IV3)

(1.3) T3 :=
{
(z1, z2, z3) ∈ C

3 : (Im z1)
2 − (Im z2)

2 − (Im z3)
2 > 0, Im z1 > 0

}

(here n = 3, d(M) = 10 = n2 + 1),
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(xv) the domain of type (IV4)

(1.4)
T4 :=

{
(z1, z2, z3, z4) ∈ C4 : (Im z1)

2 − (Im z2)
2−

(Im z3)
2 − (Im z4)

2 > 0, Im z1 > 0
}

(here n = 4, d(M) = 15 = n2 − 1),

(xvi) the domain of type (IV5), i.e., the domain T5 defined in (1.1) (here n = 5,
d(M) = 21 = n2 − 4),

and the following product of a unit ball and a symmetric bounded domain of type

(IV) is possible:

(xvii) B1 × T3 (here n = 4, d(M) = 13 = n2 − 3).

The proofs of Theorems 1.1, 1.2, 1.3 are contained Sections 3, 4, 5 respectively,
and, just as the proofs of the main theorems of [Isa6], [Isa7], rely on reduction to the
case of the so-called Siegel domains of the second kind introduced by I. Pyatetskii-
Shapiro at the end of the 1950s (see Section 2 for details). Indeed, the seminal paper
[VGP-S] shows that every homogeneous bounded domain in Cn is biholomorphic to
an affinely homogeneous Siegel domain of the second kind. Moreover, in [N2] this
result was extended to arbitrary homogeneous hyperbolic manifolds, which settled
a well-known question asked by S. Kobayashi (see [Ko1, p. 127]). Theorems 1.1–1.3
are then derived, by a somewhat technical argument, from the description of the
Lie algebra of the automorphism group of a Siegel domain of the second kind given
in [KMO] and [S, Chapter V, §1–2].

As shown in Sections 3, 4, 5, the proofs of Theorems 1.1–1.3 reduce to analyzing
certain domains in Cn with n ≤ 7. All homogeneous Siegel domains of the second
kind of dimension up to 7 were classified in [KT], so one might hope that our
results could be deduced from that classification. However, since [KT] does not
contain full details as to how the classification was produced, we chose to give
an independent exposition. Also, to the best of our knowledge, the automorphism
group dimensions for most of the domains found in [KT] have not been determined.
In fact, an essential part of our proofs is to either compute or estimate some of these
dimensions.

It is clear from Theorem 1.4 that for d(M) ≥ n2 − 5 only symmetric domains
occur. In contrast, the list for d(M) = n2 − 6 contains a non-symmetric entry. In-
deed, the domain D defined in (1.2) is linearly equivalent to the famous example of a
bounded non-symmetric homogeneous domain in C4 given by I. Pyatetskii-Shapiro.
As the automorphism group dimension drops even further, the resulting classifica-
tions will become more interesting as more non-symmetric domains will appear on
the list. It is not clear, however, for how many more steps the classification process
will remain tractable.

Acknowledgements. Most of the work on this paper was done during the
author’s visit to the Steklov Mathematical Institute in Moscow, which we thank for
its hospitality. We are also grateful to M. Jarnicki and P. Pflug for offering their
help with the editorial procedures required to process this paper for publication.

2. Siegel Domains of the Second Kind

Here we define Siegel domains of the second kind and collect their properties
as required for our proofs of Theorems 1.1–1.3 in the next three sections. What
follows is similar to the exposition given in [Isa6, Section 2].

To start with, an open subset Ω ⊂ Rk is called an open convex cone if it is closed
with respect to taking linear combinations of its elements with positive coefficients.
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Such a cone Ω is called (linearly) homogeneous if the group

G(Ω) := {A ∈ GLk(R) : AΩ = Ω}

of linear automorphisms of Ω acts transitively on it. Clearly, G(Ω) is a closed
subgroup of GLk(R), and we denote by g(Ω) ⊂ glk(R) its Lie algebra.

We will be interested in open convex cones not containing entire lines. For such
cones the dimension of g(Ω) admits a useful estimate.

Lemma 2.1. Let Ω ⊂ Rk be an open convex cone not containing a line. Then

(2.1) dim g(Ω) ≤ k2

2
− k

2
+ 1.

Furthermore, for k ≥ 2 the equality in (2.1) is attained if and only if Ω linearly

equivalent to the circular cone

Ck := {x ∈ R
k : x2

1 − x2
2 − · · · − x2

k > 0, x1 > 0}.

Moreover, if for k ≥ 3 we set

K :=
(k − 2)(k − 3)

2
+ k + 1,

then the inequality dim g(Ω) ≥ K implies that Ω is linearly equivalent to Ck.

Proof. Fix a point x ∈ Ω and consider its isotropy subgroup Gx(Ω) ⊂ G(Ω). This
subgroup is compact since it leaves invariant the bounded open set Ω ∩ (x − Ω).
Therefore, changing variables in Rk if necessary, we can assume that x lies in the
x1-axis and Gx(Ω) lies in the orthogonal group Ok(R). The group Ok(R) acts
transitively on the unit sphere in Rk, and the isotropy subgroup of x under the

Ok(R)-action is Ok−1(R) embedded in Ok(R) with respect to the last k−1 variables.
Since Gx(Ω) ⊂ Ok−1(R), we have

dimGx(Ω) ≤ dimOk−1(R) =
k2

2
− 3k

2
+ 1,

which implies inequality (2.1).
Next, note that for k = 2 every open convex cone not containing a line is linearly

equivalent to C2, so we assume that k ≥ 3 and

dim g(Ω) =
k2

2
− k

2
+ 1.

Then

dimGx(Ω) = dimOk−1(R) =
k2

2
− 3k

2
+ 1,

hence Gx contains SOk−1(R). Notice that the SOk−1(R)-orbit of every point of Ω
not lying in the x1-axis is a (k − 2)-sphere contained in a level set {x1 = a} for
some a > 0. As Ω is a union of such spheres, it follows that Ω is linearly equivalent
to Ck.

Assume finally that k ≥ 3 and dim g(Ω) ≥ K. Since the orbit of x is at most
k-dimensional, we have dimGx ≥ K − k. If k 6= 5, by [Ko2, Lemma on p. 48] the
group Gx contains SOk−1(R), thus, as above, we see that Ω is linearly equivalent
to Ck. If k = 5 then K − k = 4. In this case, by [Ish], the group Gx contains either
SO4(R) (which has dimension 6) or a subgroup of SO4(R) conjugate to U(2) (which
has dimension 4). The orbit of every point of Ω not lying in the x1-axis, under the
action of either subgroup, is a 3-sphere contained in a level set {x1 = a} for some
a > 0, so the proof follows as above. ✷
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Next, let

H : C
m × C

m → C
k

be a Hermitian form on Cm with values in Ck, where we assume that H(w,w′) is
linear in w′ and anti-linear in w. For an open convex cone Ω ⊂ Rk, the form H is
called Ω-Hermitian if H(w,w) ∈ Ω \ {0} for all non-zero w ∈ Cm. Observe that
if Ω contains no lines and H is Ω-Hermitian, then there exists a positive-definite
linear combination of the components of H .

Now, a Siegel domain of the second kind in Cn is an unbounded domain of the
form

S(Ω, H) :=
{
(z, w) ∈ C

k × C
n−k : Im z −H(w,w) ∈ Ω

}

for some 1 ≤ k ≤ n, some open convex cone Ω ⊂ R
k not containing a line, and some

Ω-Hermitian form H on Cn−k. For k = n we have H = 0, so in this case S(Ω, H)
is the tube domain

{z ∈ C
n : Im z ∈ Ω} .

Such tube domains are often called Siegel domains of the first kind. At the other
extreme, when k = 1, the domain S(Ω, H) is linearly equivalent to

{
(z, w) ∈ C × C

n−1 : Im z − ||w||2 > 0
}
,

which is an unbounded realization of the unit ball Bn (see [R, p. 31]). More gener-
ally, if Ω = {x ∈ Rk : x1 > 0, . . . , xk > 0} and, in addition, S(Ω, H) is homogeneous,
then S(Ω, H) is linearly equivalent to a product of k unbounded realizations of unit
balls as above, hence biholomorphic to a product of unit balls. This result follows
from [KT, Theorems A, B, C] (see [Ka] and and [KMO, Theorem 11] for details),
as well as from [N1]. Note that every Siegel domain of the second kind is linearly
equivalent to a domain contained in a product of unbounded realizations of unit
balls (see [P-S, pp. 23–24]), hence is biholomorphic to a bounded domain, and
therefore is hyperbolic.

Next, the holomorphic affine automorphisms of Siegel domains of the second
kind are described as follows (see [P-S, pp. 25-26]):

THEOREM 2.2. Any holomorphic affine automorphism of S(Ω, H) has the form

z 7→ Az + a+ 2iH(b, Bw) + iH(b, b),

w 7→ Bw + b,

with a ∈ Rk, b ∈ Cn−k, A ∈ G(Ω), B ∈ GLn−k(C), where

(2.2) AH(w,w′) = H(Bw,Bw′)

for all w,w′ ∈ Cn−k.

A domain S(Ω, H) is called affinely homogeneous if the group Aff(S(Ω, H)) of its
holomorphic affine automorphisms acts on S(Ω, H) transitively. Denote by G(Ω, H)
the subgroup of G(Ω) that consists of all transformations A ∈ G(Ω) as in Theorem
2.2, namely, of all elements A ∈ G(Ω) for which there exists B ∈ GLn−k(C) such
that (2.2) holds. By [D, Lemma 1.1], the subgroup G(Ω, H) is closed in G(Ω). It
is easy to deduce from Theorem 2.2 that if S(Ω, H) is affinely homogeneous, the
G(Ω, H)-action is transitive on Ω, so the cone Ω is homogeneous (see, e.g., [KMO,
proof of Theorem 8]). Conversely, if G(Ω, H) acts on Ω transitively, the domain
S(Ω, H) is affinely homogeneous. Clearly, the transitivity of the action of the group
G(Ω, H) on Ω is equivalent to that of the action of its identity component G(Ω, H)◦.

As shown in [VGP-S], [N2], every homogeneous hyperbolic manifold is biholo-
morphic to an affinely homogeneous Siegel domain of the second kind. Such a
realization is unique up to affine transformations; in general, if two Siegel domains
of the second kind are biholomorphic to each other, they are also equivalent by
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means of a linear transformation of special form (see [KMO, Theorem 11]). The
result of [VGP-S], [N2] is the basis of our proofs of Theorems 1.1–1.3 in the next
three sections.

In addition, our proofs rely on a description of the Lie algebra of the group
Aut(S(Ω, H)) of an arbitrary Siegel domain of the second kind S(Ω, H). This
algebra is isomorphic to the (real) Lie algebra of complete holomorphic vector fields
on S(Ω, H), which we denote by g(S(Ω, H)) or, when there is no fear of confusion,
simply by g. The latter algebra has been extensively studied. In particular, we
have (see [KMO, Theorems 4 and 5]):

THEOREM 2.3. The algebra g = g(S(Ω, H)) admits a grading

g = g−1 ⊕ g−1/2 ⊕ g0 ⊕ g1/2 ⊕ g1,

with gν being the eigenspace with eigenvalue ν of ad∂, where ∂ := z · ∂

∂z
+

1

2
w · ∂

∂w
.

Here

g−1 =

{
a · ∂

∂z
: a ∈ R

k

}
, dim g−1 = k,

g−1/2 =

{
2iH(b, w) · ∂

∂z
+ b · ∂

∂w
: b ∈ C

n−k

}
, dim g−1/2 = 2(n− k),

and g0 consists of all vector fields of the form

(2.3) (Az) · ∂

∂z
+ (Bw) · ∂

∂w
,

with A ∈ g(Ω), B ∈ gln−k(C) and

(2.4) AH(w,w′) = H(Bw,w′) +H(w,Bw′)

for all w,w′ ∈ C
n−k. Furthermore, one has

(2.5) dim g1/2 ≤ 2(n− k), dim g1 ≤ k.

It is clear that the matricesA that appear in (2.3) form the Lie algebra ofG(Ω, H)
(compare conditions (2.2) and (2.4)) and that g−1⊕g−1/2⊕g0 is isomorphic to the
Lie algebra of the group Aff(S(Ω, H)).

Following [S], for a pair of matrices A,B satisfying (2.4) we say that B is asso-
ciated to A (with respect to H). Let L be the (real) subspace of gln−k(C) of all
matrices associated to the zero matrix in g(Ω), i.e., matrices skew-Hermitian with
respect to each component of H . Set s := dimL. Then we have

(2.6) dim g0 = s+ dimG(Ω, H) ≤ s+ dim g(Ω).

By Theorem 2.3 and the inequality in (2.6) one obtains

(2.7) d(S(Ω, H)) ≤ 2n− k + s+ dim g(Ω) + dim g1/2 + dim g1,

which, combined with (2.5), leads to

(2.8) d(S(Ω, H)) ≤ 4n− 2k + s+ dim g(Ω).

Further, since there exists a positive-definite linear combination, say H, of the
components of the Hermitian form H , the subspace L lies in the Lie algebra of
matrices skew-Hermitian with respect to H, thus

(2.9) s ≤ (n− k)2.

By (2.9), inequality (2.8) yields

(2.10) d(S(Ω, H)) ≤ k2 − 2(n+ 1)k + n2 + 4n+ dim g(Ω).
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Combining (2.10) with (2.1), we deduce the following useful upper bound:

(2.11) d(S(Ω, H)) ≤ 3k2

2
−
(
2n+

5

2

)
k + n2 + 4n+ 1.

Next, by [S, Chapter V, Proposition 2.1] the component g1/2 of the Lie algebra
g = g(S(Ω, H)) is described as follows:

THEOREM 2.4. The subspace g1/2 consists of all vector fields of the form

2iH(Φ(z), w) · ∂

∂z
+ (Φ(z) + c(w,w)) · ∂

∂w
,

where Φ : Ck → Cn−k is a C-linear map such that for every w ∈ Cn−k one has

(2.12) Φw :=
[
x 7→ ImH(w,Φ(x)), x ∈ R

k
]
∈ g(Ω),

and c : Cn−k × Cn−k → Cn−k is a symmetric C-bilinear form on Cn−k with values

in Cn−k satisfying the condition

(2.13) H(w, c(w′, w′)) = 2iH(Φ(H(w′, w)), w′)

for all w,w′ ∈ Cn−k.

Further, by [S, Chapter V, Proposition 2.2], the component g1 of g = g(S(Ω, H))
admits the following description:

THEOREM 2.5. The subspace g1 consists of all vector fields of the form

a(z, z) · ∂

∂z
+ b(z, w) · ∂

∂w
,

where a : Rk × Rk → Rk is a symmetric R-bilinear form on Rk with values in Rk

(which we extend to a symmetric C-bilinear form on C
k with values in C

k) such

that for every x ∈ Rk one has

(2.14) Ax :=
[
x 7→ a(x, x), x ∈ R

k
]
∈ g(Ω),

and b : Ck × Cn−k → Cn−k is a C-bilinear map such that, if for x ∈ Rk one sets

Bx :=

[
w 7→ 1

2
b(x, w), w ∈ C

n−k

]
,

the following conditions are satisfied:

(i) Bx is associated to Ax and Im trBx = 0 for all x ∈ Rk,

(ii) for every pair w,w′ ∈ Cn−k one has

Bw,w′ :=
[
x 7→ ImH(w′, b(x,w)), x ∈ R

k
]
∈ g(Ω),

(iii) H(w, b(H(w′, w′′), w′′)) = H(b(H(w′′, w), w′), w′′) for all w,w′, w′′ ∈ C
n−k.

Finally, let us recall the well-known classification, up to linear equivalence, of
homogeneous convex cones in dimensions k = 2, 3, 4 not containing lines (see, e.g.,
[KT, pp. 38–41]), which will be also required for our proofs of Theorems 1.1–1.3:

k = 2: Ω1 :=
{
(x1, x2) ∈ R2 : x1 > 0, x2 > 0

}
, where the algebra g(Ω1) con-

sists of all diagonal matrices, hence dim g(Ω1) = 2,

k = 3: (i) Ω2 :=
{
(x1, x2, x3) ∈ R3 : x1 > 0, x2 > 0, x3 > 0

}
, where the algebra

g(Ω2) consists of all diagonal matrices, hence dim g(Ω2) = 3,

(ii) Ω3 := C3 =
{
(x1, x2, x3) ∈ R3 : x2

1 − x2
2 − x2

3 > 0, x1 > 0
}
, where one

has g(Ω3) = c(gl3(R)) ⊕ o1,2, hence dim g(Ω3) = 4; here for any Lie
algebra h we denote by c(h) its center,
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k = 4: (i) Ω4 :=
{
(x1, x2, x3, x4) ∈ R4 : x1 > 0, x2 > 0, x3 > 0, x4 > 0

}
, where

the algebra g(Ω4) consists of all diagonal matrices, hence we have
dim g(Ω4) = 4,

(ii) Ω5 :=
{
(x1, x2, x3, x4) ∈ R4 : x2

1 − x2
2 − x2

3 > 0, x1 > 0, x4 > 0
}
, where

the algebra g(Ω5) = (c(gl3(R))⊕ o1,2) ⊕ R consists of block-diagonal
matrices with blocks of sizes 3× 3 and 1× 1 corresponding to the two
summands, hence dim g(Ω5) = 5,

(iii) Ω6 := C4 =
{
(x1, x2, x3, x4) ∈ R4 : x2

1 − x2
2 − x2

3 − x2
4 > 0, x1 > 0

}
,

where g(Ω6) = c(gl4(R)) ⊕ o1,3 and dim g(Ω6) = 7.

We are now ready to prove Theorems 1.1–1.3.

3. Proof of Theorem 1.1

By [VGP-S], [N2], the manifold M is biholomorphic to an affinely homogeneous
Siegel domain of the second kind S(Ω, H). Since n2− 4 ≥ 2n, it follows that n ≥ 4.
Also, as M is not biholomorphic to Bn, we have k ≥ 2.

The following simple lemma rules out a majority of other possibilities.

Lemma 3.1. For n ≥ 6 one cannot have k ≥ 3 and for n = 5 one cannot have

k = 4.

Proof. To establish the lemma, it suffices to see that for k ≥ 3, n ≥ 6, as well as
for k = 4, n = 5, the right-hand side of inequality (2.11) is strictly less than n2 − 4,
i.e., that for such k, n the following holds:

(3.1)
3k2

2
−
(
2n+

5

2

)
k + 4n+ 5 < 0.

Let us study the quadratic function

ϕ(t) :=
3t2

2
−
(
2n+

5

2

)
t+ 4n+ 5.

Its discriminant is

D := 4n2 − 14n− 95

4
,

which is easily seen to be positive for n ≥ 5. Then the zeroes of ϕ are

t1 :=
2n+ 5

2
−
√
D

3
,

t2 :=
2n+ 5

2
+
√
D

3
.

To establish the lemma for n ≥ 6, k ≥ 3, it suffices to show that: (i) t2 > n for
n ≥ 6 and (ii) t1 < 3 for n ≥ 6. The inequality t2 > n means that

n− 5

2
<

√
D,

or, equivalently, that
n2 − 3n− 10 > 0,

which is straightforward to verify for n ≥ 6. Next, the inequality t1 < 3 means that

2n− 13

2
<

√
D,

or, equivalently, that

n >
11

2
,

which clearly holds for n ≥ 6.
Finally, the pair k = 4, n = 5 obviously satisfies inequality (3.1). ✷



MANIFOLDS WITH HIGH-DIMENSIONAL AUTOMORPHISM GROUP 9

By Lemma 3.1, in order to establish the theorem, we need to consider the fol-
lowing five cases: (1) k = 2, n ≥ 4, (2) k = 3, n = 4, (3) k = 3, n = 5, (4) k = 4,
n = 4, (5) k = 5, n = 5.

Case (1). Suppose that k = 2, n ≥ 4. Recall from Section 2 that in this case
S(Ω, H) is biholomorphic to a product of two unit balls Bℓ ×Bn−ℓ, 1 ≤ ℓ ≤ n− 1.
We have

(3.2) d(Bℓ ×Bn−ℓ) = 2ℓ2 − 2nℓ+ n2 + 2n.

Rather than trying to directly find all values of ℓ for which the above expression is
equal to n2 − 4, we will argue as follows.

We have that H = (H1, H2) is a pair of Hermitian forms on Cn−2. After a
linear change of z-variables, we may assume that H1 is positive-definite. In this
situation, by applying a linear change of w-variables, H1, H2 can be simultaneously
diagonalized as

H1(w,w) = ||w||2, H2(w,w) =

n−2∑

j=1

λj |wj |2.

If all the eigenvalues of H2 are equal, S(Ω, H) is linearly equivalent either to

(3.3) D1 :=
{
(z, w) ∈ C

2 × C
n−2 : Im z1 − ||w||2 > 0, Im z2 > 0

}
,

or to

(3.4) D2 :=
{
(z, w) ∈ C

2 × C
n−2 : Im z1 − ||w||2 > 0, Im z2 − ||w||2 > 0

}
.

The domain D1 is biholomorphic to the product B1 × Bn−1, hence we have
d(D1) = n2 + 2 > n2 − 4, which shows that S(Ω, H) cannot be equivalent to
D1.

Next, we will observe thatD2 is not homogeneous (cf. [N1, Example 1]). One way
to show this is to compute the connected identity component G(Ω1, (||w||2, ||w||2))◦
of the group G(Ω1, (||w||2, ||w||2)). It is straightforward to see that

G(Ω1, (||w||2, ||w||2))◦ =

{(
a 0
0 a

)
, a > 0

}
,

and it is then clear that the action of G(Ω1, (||w||2, ||w||2))◦ is not transitive on Ω1.
This proves that S(Ω, H) cannot be equivalent to D2 either. Therefore, H2 has at
least one pair of distinct eigenvalues.

Next, as dim g(Ω) = 2, inequality (2.8) yields

(3.5) s ≥ n2 − 4n− 2.

On the other hand, by (2.9), we have

s ≤ n2 − 4n+ 4.

More precisely, s is calculated as

(3.6) s = n2 − 4n+ 4− 2m,

where m ≥ 1 is the number of pairs of distinct eigenvalues of H2. This fact is a
consequence of the following lemma, to which we will repeatedly refer throughout
the paper (cf. [Isa7, Lemma 3.9]):

Lemma 3.2. Let H be a Hermitian matrix of size r × r and K the vector space

of skew-Hermitian matrices of size r× r that are at the same time skew-Hermitian

with respect to H:

K :=
{
B ∈ glr(C) : B

T +B = 0, BTH+HB = 0
}
.
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Then dimK = r2 − 2p, where p is the number of pairs of distinct eigenvalues of H.

Hence, if dimK = r2, then H is a scalar matrix.

Proof. Let µ1, . . . , µr be the eigenvalues of H. By applying a suitable unitary
transformation, we may assume that H is diagonal. Then if

B = (Bij) , Bij = −Bji, i, j = 1, . . . , r,

is a skew-symmetric matrix, the condition of the skew-symmetricity of B with
respect to H is written as

Bijµi = −Bjiµj , i, j = 1, . . . , r,

which leads to Bij = 0 if µi 6= µj . ✷

By (3.5), (3.6) it follows that 1 ≤ m ≤ 3, thus we have either (a) n = 4 and
λ1 6= λ2 (here m = 1, s = 2), or (b) n = 5 and, upon permutation of w-variables,
λ1 6= λ2 = λ3 (here m = 2, s = 5), or (c) n = 5 and λ1, λ2, λ3 are pairwise
distinct (here m = 3, s = 3), or (d) n = 6 and, upon permutation of w-variables,
λ1 6= λ2 = λ3 = λ4 (here m = 3, s = 10).

Now that we have limited n to the range 4, 5, 6, it is easy to find all values of ℓ for
which the right-hand side of (3.2) is equal to n2− 4. It turns out that this can only
happen for n = 6, ℓ = 2, which arises from (d). Thus, we see that Case (1) only
contributes B2 ×B4 to the classification of homogeneous hyperbolic n-dimensional
manifolds with automorphism group dimension n2 − 4 (here d(B2 × B4) = 32 =
n2 − 4).

Case (2). Suppose that k = 3, n = 4. Here S(Ω, H) is linearly equivalent either
to

D3 :=
{
(z, w) ∈ ×C

3 × C : Im z − v|w|2 ∈ Ω2

}
,

where v = (v1, v2, v3) is a non-zero vector in R3 with non-negative entries, or to

(3.7) D4 :=
{
(z, w) ∈ ×C

3 × C : Im z − v|w|2 ∈ Ω3

}
,

where v = (v1, v2, v3) is a vector in R3 satisfying v21 ≥ v22 + v23 , v1 > 0. Notice,
however, that if S(Ω, H) is equivalent to D3, it must be biholomorphic to the
product B1×B1×B2, which is impossible since d(B1×B1×B2) = 14 > 12 = n2−4.
Thus, S(Ω, H) is in fact equivalent to the domain D4.

Suppose first that v21 > v22+v23 , i.e., that v ∈ Ω3. As the vector v is an eigenvector
of every element of G(Ω3, v|w|2), it then follows that G(Ω3, v|w|2) does not act

transitively on Ω3. Therefore, we have v1 =
√
v22 + v23 6= 0, i.e., v ∈ ∂Ω3 \ {0}. In

this case, by [Isa6, Lemma 3.8 and Remark 3.9], as well as by [Isa7, Lemma 3.6],
we see d(D4) = 10 < 12 = n2 − 4. Hence, S(Ω, H) cannot in fact be equivalent to
D4, so Case (2) contributes nothing to our classification.

Remark 3.3. We note that for v ∈ ∂Ω3 \{0} the domain D4 is linearly equivalent to
the domain D defined in (1.2), which is linearly equivalent to the famous example
of a bounded non-symmetric homogeneous domain in C

4 given by I. Pyatetskii-
Shapiro in 1959 (see [P-S, pp. 26–28]).

Case (3). Suppose that k = 3, n = 5. Here S(Ω, H) is linearly equivalent either
to

(3.8) D5 :=
{
(z, w) ∈ ×C

3 × C
2 : Im z −H(w,w) ∈ Ω2

}
,

where H is an Ω2-Hermitian form, or to

(3.9) D6 :=
{
(z, w) ∈ ×C

3 × C
2 : Im z −H(w,w) ∈ Ω3

}
,
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where H is an Ω3-Hermitian form. If S(Ω, H) is equivalent to D5, it must be
biholomorphic to a product of three unit balls, and it is immediate to see that the
only possibility is B1 ×B1 ×B3 with d(B1 ×B1 ×B3) = 21 = n2 − 4.

Assume that S(Ω, H) is equivalent to the domain D6. By Lemma 3.2, we have
either s ≤ 2 or s = 4. If s ≤ 2, then, recalling that dim g(Ω3) = 4, by inequality
(2.8) we see d(D6) ≤ 20 < 21 = n2 − 4. Therefore, one in fact has s = 4. Let
H = (H1,H2,H3) and H be a positive-definite linear combination of H1, H2,
H3. By applying a linear change of the w-variables, we can diagonalize H as
H(w,w) = ||w||2. By Lemma 3.2, each of the C-valued Hermitian forms H1, H2,
H3 is proportional to H. This shows that H(w,w) = v||w||2, where v = (v1, v2, v3)
is a vector in R3 satisfying v21 ≥ v22 + v23 , v1 > 0.

As in Case (2), we now observe that v is an eigenvector of every element of
G(Ω3, v||w||2). Then, if v21 > v22 + v23 , it follows that G(Ω3, v||w||2) does not act

transitively on Ω3. Therefore v1 =
√
v22 + v23 6= 0, i.e., v ∈ ∂Ω3 \ {0}. As the

group G(Ω3)
◦ = R+ × SO◦

1,2 acts transitively on ∂Ω3 \ {0}, we can suppose that

v = (1, 1, 0), so H(w,w) = (||w||2, ||w||2, 0).
We will now prove a lemma that works for domains slightly more general than

D6. Namely, let N ≥ 1, and H̃ be an Ω3-Hermitian form on CN defined as

(3.10) H̃(w,w′) :=




N∑

j=1

wjw
′

j ,

N∑

j=1

wjw
′

j , 0


 .

Clearly, if N = 2 and v = (1, 1, 0) we have H̃ = H. Set

(3.11) D̃6 :=
{
(z, w) ∈ ×C

3 × C
N : Im z − H̃(w,w) ∈ Ω3

}
.

We will now obtain (cf. [Isa6, Lemma 3.8]):

Lemma 3.4. For g = g(D̃6) one has g1/2 = 0.

Proof. We will apply Theorem 2.4 to the cone Ω3 and the Ω3-Hermitian form H̃.
Let Φ : C3 → CN be a C-linear map given by a matrix (ϕj

i ), with j = 1, . . . , N ,
i = 1, 2, 3. Fixing w ∈ CN , for x ∈ R3 we compute

H(w,Φ(x)) =




N∑

j=1

wj(ϕ
j
1x1 + ϕj

2x2 + ϕj
3x3),

N∑

j=1

wj(ϕ
j
1x1 + ϕj

2x2 + ϕj
3x3), 0


 =


x1 ·

N∑

j=1

wjϕ
j
1 + x2 ·

N∑

j=1

wjϕ
j
2 + x3 ·

N∑

j=1

wjϕ
j
3,

x1 ·
N∑

j=1

wjϕ
j
1 + x2 ·

N∑

j=1

wjϕ
j
2 + x3 ·

N∑

j=1

wjϕ
j
3, 0


 .

Then from formula (2.12) we see

Φw(x) =


x1 ·

N∑

j=1

Im(wjϕ
j
1) + x2 ·

N∑

j=1

Im(wjϕ
j
2) + x3 ·

N∑

j=1

Im(wjϕ
j
3),

x1 ·
N∑

j=1

Im(wjϕ
j
1) + x2 ·

N∑

j=1

Im(wjϕ
j
2) + x3 ·

N∑

j=1

Im(wjϕ
j
3), 0


 .
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Recall now that

(3.12) g(Ω3) = c(gl3(R))⊕ o1,2 =








λ p q
p λ r
q −r λ


 , λ, p, q, r ∈ R



 .

It is then clear that the condition that Φw lies in g(Ω3) for every w ∈ C2 leads to
the relations

N∑

j=1

Im(wjϕ
j
i ) ≡ 0, i = 1, 2, 3,

which yield Φ = 0. By formula (2.13) we then see that g1/2 = 0 as required. ✷

It follows from estimate (2.7), the second inequality in (2.5), and Lemma 3.4 for
N = 2 that for H(w,w) = (||w||2, ||w||2, 0) we have

(3.13) d(D6) ≤ 18 < 21 = n2 − 4

(here s = 4 and dim g(Ω3) = 4). This shows that S(Ω, H) cannot in fact be
equivalent to D6, so Case (3) only contributes B1 × B1 × B3 to the classification
of homogeneous hyperbolic n-dimensional manifolds with automorphism group di-
mension n2 − 4.

Although this is not required for our proof of Theorem 1.1, we will now find

the dimension of the component g1 of g = g(D̃6) (cf. [Isa6, Proposition A3]). This
will allow us not only to improve bound (3.13) but to compute the value d(D6)
precisely, which will be useful when considering lower automorphism group dimen-
sions. Furthermore, the proof below is independently interesting as it contains ex-
plicit computations with the fairly bulky formulas supplied by Theorem 2.5, which
is rarely seen in the literature.

Lemma 3.5. For g = g(D̃6) one has dim g1 = 1.

Proof. We will utilize Theorem 2.5 for the cone Ω3 and the Ω3-Hermitian form H̃
given by (3.10). Consider a symmetric R-bilinear form on R3 with values in R3:

a(x, x) =
(
a111x

2
1 + a122x

2
2 + a133x

2
3 + 2a112x1x2 + 2a113x1x3 + 2a123x2x3,

a211x
2
1 + a222x

2
2 + a233x

2
3 + 2a212x1x2 + 2a213x1x3 + 2a223x2x3,

a311x
2
1 + a322x

2
2 + a333x

2
3 + 2a312x1x2 + 2a313x1x3 + 2a323x2x3

)
,

where aℓij ∈ R. Then for a fixed x ∈ R3, from (2.14) we compute

Ax(x) =
(
a111x1x1 + a122x2x2 + a133x3x3 + a112x1x2 + a112x2x1 + a113x1x3+

a113x3x1 + a123x2x3 + a123x3x2, a
2
11x1x1 + a222x2x2 + a233x3x3 + a212x1x2+

a212x2x1 + a213x1x3 + a213x3x1 + a223x2x3 + a223x3x2, a
3
11x1x1 + a322x2x2+

a333x3x3 + a312x1x2 + a312x2x1 + a313x1x3 + a313x3x1 + a323x2x3 + a323x3x2

)
=

(
(a111x1 + a112x2 + a113x3)x1 + (a112x1 + a122x2 + a123x3)x2 + (a113x1 + a123x2+

a133x3)x3, (a
2
11x1 + a212x2 + a213x3)x1 + (a212x1 + a222x2 + a223x3)x2 + (a213x1+

a223x2 + a233x3)x3, (a
3
11x1 + a312x2 + a313x3)x1 + (a312x1 + a322x2 + a323x3)x2+

(a313x1 + a323x2 + a333x3)x3

)
,

where x ∈ R3. By (3.12), the condition that this map lies in g(Ω3) for every x ∈ R3

is equivalent to the relations

(3.14)

a111 = a212 = a313, a112 = a222 = a323, a113 = a223 = a333,

a213 = −a312, a223 = −a322, a233 = −a323, a113 = a311,

a123 = a312, a133 = a313, a112 = a211, a122 = a212, a123 = a213.
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Next, let b : C3×CN → CN be a C-bilinear map with the jth component given by
a matrix (bjiℓ), j, ℓ = 1, . . . , N , i = 1, 2, 3. For every fixed pair of vectorsw,w′ ∈ C

N

we then compute

H̃(w′, b(x,w)) =


x1 ·

N∑

j,ℓ=1

bj
1ℓw

′

jwℓ + x2 ·
N∑

j,ℓ=1

bj
2ℓw

′

jwℓ + x3 ·
N∑

j,ℓ=1

bj
3ℓw

′

jwℓ,

x1 ·
N∑

j,ℓ=1

bj
1ℓw

′

jwℓ + x2 ·
N∑

j,ℓ=1

bj
2ℓw

′

jwℓ + x3 ·
N∑

j,ℓ=1

bj
3ℓw

′

jwℓ, 0


 .

Then from (ii) of Theorem 2.5 we obtain

Bw,w′(x)=


x1 ·

N∑

j,ℓ=1

Im(bj
1ℓw

′

jwℓ) + x2 ·
N∑

j,ℓ=1

Im(bj
2ℓw

′

jwℓ) + x3 ·
N∑

j,ℓ=1

Im(bj
3ℓw

′

jwℓ),

x1 ·
N∑

j,ℓ=1

Im(bj
1ℓw

′

jwℓ) + x2 ·
N∑

j,ℓ=1

Im(bj
2ℓw

′

jwℓ) + x3 ·
N∑

j,ℓ=1

Im(bj
3ℓw

′

jwℓ), 0


 .

Now, the condition that this map lies in g(Ω3) for all w,w′ ∈ CN is easily seen to
be equivalent to b = 0. Hence Bx = 0 for every x ∈ R3.

We will now utilize the requirement that Bx = 0 is associated to Ax with respect
to H for every x ∈ R3 (see condition (i) in Theorem 2.5). This requirement is
immediately seen to be equivalent to the relations

a112 = −a111, a122 = −a112, a123 = −a113,

a212 = −a211, a222 = −a212, a223 = −a213,

a312 = −a311, a322 = −a312, a323 = −a313.

Together with (3.14), these relations imply that each aℓij is either zero or equal to

±a111 as follows:

a122 = a111, a133 = a111, a112 = −a111, a113 = 0,

a123 = 0, a211 = −a111, a222 = −a111, a233 = a111,

a212 = a111, a213 = 0, a223 = 0, a311 = 0, a322 = 0,

a333 = 0, a312 = 0, a313 = a111, a323 = −a111.

Therefore,

a(x, x) = a111((x1 − x2)
2 + x2

3,−(x1 − x2)
2 + x2

3, 2(x1 − x2)x3).

This shows that dim g1 = 1 as required. ✷

Next, for w ∈ CN the proof of [Isa7, Lemma 3.6] yields

(3.15) dimG(Ω3, (||w||2, ||w||2, 0)) = 3.

Returning to the case N = 2, we thus see that if H(w,w) = (||w||2, ||w||2, 0), then
for g = g(D6) one has dim g0 = 7 (recall that s = 4). Combining this fact with
Lemmas 3.4 and 3.5 for N = 2, we calculate

d(D6) = dim g−1 + dim g−1/2 + dim g0 + dim g1/2 + dim g1 = 15,

which significantly improves bound (3.13) and even gives a precise value for d(D6).
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Case (4). Suppose that k = 4, n = 4. In this case, after a linear change of
variables S(Ω, H) turns into one of the domains

(3.16)

{
z ∈ C4 : Im z ∈ Ω4

}
,

{
z ∈ C4 : Im z ∈ Ω5

}
,

{
z ∈ C

4 : Im z ∈ Ω6

}

and therefore is biholomorphic either to (B1)4 = B1×B1×B1×B1, or to B1×T3, or
to T4, where T3 and T4 are the tube domains defined in (1.3), (1.4). The dimensions
of the automorphism groups of these domains are 12, 13, 15, respectively. Noting
that 12 = n2−4, we see that S(Ω, H) is in fact biholomorphic to the product (B1)4,
so Case (4) only contributes (B1)4 to the classification of homogeneous hyperbolic
n-dimensional manifolds with automorphism group dimension n2 − 4.

Case (5). Suppose that k = 5, n = 5. In this situation inequality (2.8) implies
dim g(Ω) ≥ 11 = k2/2 − k/2 + 1, which by Lemma 2.1 yields that Ω is linearly
equivalent to the circular cone C5. Hence, after a linear change of variables S(Ω, H)
turns into the domain {

z ∈ C
5 : Im z ∈ C5

}
,

which is the tube domain T5 defined in (1.1). Notice that d(T5) = 21 = n2 − 4, so
Case (5) contributes T5 to our classification.

The proof of Theorem 1.1 is now complete. ✷

4. Proof of Theorem 1.2

As before, we use the fact that, by [VGP-S], [N2], the manifold M is biholomor-
phic to an affinely homogeneous Siegel domain of the second kind S(Ω, H). Since
one has n2 − 5 ≥ 2n, it follows that n ≥ 4. Also, as M is not biholomorphic to Bn,
we have k ≥ 2. The following elementary lemma is analogous to Lemma 3.1, and
we state it without proof.

Lemma 4.1. For n ≥ 7 one cannot have k ≥ 3 and for n = 6 one cannot have

k = 4, 5, 6.

By Lemma 4.1, in order to establish the theorem, we need to consider the fol-
lowing seven cases: (1) k = 2, n ≥ 4, (2) k = 3, n = 4, (3) k = 3, n = 5, (4) k = 3,
n = 6, (5) k = 4, n = 4, (6) k = 4, n = 5, (7) k = 5, n = 5.

Case (1). Suppose that k = 2, n ≥ 4. This situation is treated analogously
to Case (1) considered in Section 3. Indeed, S(Ω, H) cannot be equivalent to the
domain D1 defined in (3.3) because d(D1) = n2 + 2 > n2 − 5 and cannot be
equivalent to the domain D2 introduced in (3.4) since D2 is not homogeneous.

Next, inequality (2.8) yields s ≥ n2 − 4n− 3, hence by (3.6) it follows, as before,
that 1 ≤ m ≤ 3, which leads us to considering the same four subcases (a)–(d)
as in Section 3. Each of them is easily seen to make no contributions to our
classification.

Case (2). Suppose that k = 3, n = 4. We deal with this situation analogously to
Case (2) considered in Section 3 and, as d(D4) = 10 < 11 = n2−5 for v ∈ ∂Ω3\{0},
immediately see that this case contributes nothing to the classification either.

Case (3). Suppose that k = 3, n = 5. We will approach this situation anal-
ogously to Case (3) considered in Section 3. As no product of three unit balls in
C5 has automorphism group dimension 20 = n2 − 5, the domain S(Ω, H) must be
equivalent to the domain D6 defined in (3.9). By Lemma 3.2, we have either s = 1,
or s = 2, or s = 4. If s = 1, then, recalling that dim g(Ω3) = 4, by inequality
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(2.8) we see d(D6) ≤ 19 < 20 = n2 − 5, so in fact we have s > 1. The case
s = 4 is excluded by arguing as in Section 3 and observing that in this situation
d(D6) = 15 < 20 = n2 − 5 for v ∈ ∂Ω3 \ {0}. Hence we have s = 2.

Let H = (H1,H2,H3) and prove

Lemma 4.2. The forms H1,H2,H3 can be simultaneously diagonalized by a linear

change of w-variables.

Proof. Replacing Ω3 by a linearly equivalent cone, we may assume that H1 is
positive-definite. Further, by applying a linear change of the w-variables, we can
simultaneously diagonalize H1, H2 as

H1(w,w) = ||w||2, H2(w,w) = λ1|w1|2 + λ2|w2|2.

If λ1 = λ2, we can also diagonalize H3 by a unitary transformation, which estab-
lishes the lemma in this case.

Assume now that λ1 6= λ2. In this situation, every Hermitian matrix B that is
also Hermitian with respect to H2 is diagonal, i.e.,

B =

(
ia 0
0 ib

)
, a, b,∈ R.

Since s = 2, every such matrix is also Hermitian with respect to H3. This immedi-
ately implies that H3 is diagonal. ✷

By Lemma 4.2 we have

H(w,w) = u|w1|2 + v|w2|2,

where u = (u1, u2, u3), v = (v1, v2, v3) are vectors in R3 satisfying u2
1 ≥ u2

2 + u2
3,

v21 ≥ v22 + v23 , u1 > 0, v1 > 0. We will now prove that dimG(Ω3,H) ≤ 2 by
studying the Lie algebra of G(Ω3,H), which we momentarily denote by h. Recall
that h consists of all matrices A ∈ g(Ω3) satisfying (2.4) for some B ∈ gl2(C).

Suppose first that u2
1 > u2

2 + u2
3, i.e., u ∈ Ω3. Since Ω3 is homogeneous, we may

assume that u = (1, 0, 0), i.e.,

H(w,w) = (|w1|2 + v1|w2|2, v2|w2|2, v3|w2|2).

Recalling that g(Ω3) is given by formula (3.12), we immediately see that for A ∈ h

one must have p = 0, q = 0. Therefore, dimG(Ω3,H) ≤ 2. The same conclusion
holds if v21 > v22 + v23 , i.e., if v ∈ Ω3

Next, let u1 =
√
u2
2 + u2

3 6= 0 and v1 =
√
v22 + v23 6= 0, i.e., u, v ∈ ∂Ω3 \ {0}.

Since the group G(Ω3)
◦ = R+×SO◦

1,2 acts transitively on ∂Ω3 \{0}, we can assume
that u = (1, 1, 0), i.e.,

H(w,w) = (|w1|2 + v1|w2|2, |w1|2 + v2|w2|2, v3|w2|2).

Suppose now that a matrix

A =




λ p q
p λ r
q −r λ


 ∈ g(Ω3)
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lies in h, i.e., that for some bij ∈ C, i, j = 1, 2 the following holds:

λ(|w1|2 + v1|w2|2) + p(|w1|2 + v2|w2|2) + qv3|w2|2 =

2Re
(
(b11w1 + b12w2)w1 + v1(b21w1 + b22w2)w2

)
,

p(|w1|2 + v1|w2|2) + λ(|w1|2 + v2|w2|2) + rv3|w2|2 =

2Re
(
(b11w1 + b12w2)w1 + v2(b21w1 + b22w2)w2

)
,

q(|w1|2 + v1|w2|2)− r(|w1|2 + v2|w2|2) + λv3|w2|2 =

2Re
(
v3(b21w1 + b22w2)w2

)
.

These conditions, in particular, imply

(4.1)
λv1 + pv2 + qv3 = 2v1 Re b22, pv1 + λv2 + rv3 = 2v2 Re b22,

q = r, qv1 − rv2 + λv3 = 2v3 Re b22.

If v3 6= 0, the first three identities in (4.1) yield

q = r, p =
v2 − v1

v3
r,

hence dimG(Ω3,H) ≤ 2. If v3 = 0, then v2 = ±v1 and, since s = 2, we in fact
have v2 = −v1. The last two identities in (4.1) then immediately imply q = r = 0.
Hence, again, dimG(Ω3,H) ≤ 2 as required.

We now conclude that the action of dimG(Ω3,H) on Ω3 is not transitive, so
Case (3) contributes nothing to the sought-after classification.

Case (4). Suppose that k = 3, n = 6. By (2.8) we have s + dim g(Ω) ≥ 13.
On the other hand, s ≤ 9 by (2.9). Since dim g(Ω2) = 3, dim g(Ω3) = 4, it follows
that Ω is linearly equivalent to Ω3 and s = 9. In particular, S(Ω, H) is linearly
equivalent to the domain

(4.2) D7 :=
{
(z, w) ∈ C

3 × C
3 : Im z −H(w,w) ∈ Ω3

}
,

where H is an Ω3-Hermitian form.
We will now proceed as in Case (3) considered in Section 3. LetH = (H1,H2,H3)

and H be a positive-definite linear combination ofH1, H2, H3. By applying a linear
change of the w-variables, we can diagonalize H as H(w,w) = ||w||2. Since s = 9,
by Lemma 3.2 each of the C-valued Hermitian forms H1, H2, H3 is proportional
to H. This shows that H(w,w) = v||w||2, where v = (v1, v2, v3) is a vector in R3

satisfying v21 ≥ v22 + v23 , v1 > 0.
Observe that v is an eigenvector of every element of G(Ω3, v||w||2). Then, if

v21 > v22 + v23 , it follows that the action of G(Ω3, v||w||2) on Ω3 is not transitive.

Therefore, v1 =
√
v22 + v23 6= 0, i.e., v ∈ ∂Ω3 \ {0}. As the connected group

G(Ω3)
◦ = R+×SO◦

1,2 acts transitively on ∂Ω3\{0}, we can suppose that v = (1, 1, 0),

i.e., H(w,w) = (||w||2, ||w||2, 0). In this case the domain D7 coincides with the

domain D̃6 for N = 3 (see (3.11)). Thus, by Lemmas 3.4 and 3.5 we see that
for g = g(D7) one has g1/2 = 0 and dim g1 = 1. Furthermore, by (3.15) we have
dim g0 = 12 (recall that s = 9). Combining these facts together, we calculate

d(D7) = dim g−1 + dim g−1/2 + dim g0 + dim g1/2 + dim g1 = 22 < 31 = n2 − 5.

This shows that S(Ω, H) cannot in fact be equivalent to D7, so Case (4) contributes
nothing to the classification of homogeneous hyperbolic n-dimensional manifolds
with automorphism group dimension n2 − 5.
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Case (5). Suppose that k = 4, n = 4. We deal with this situation analogously
to Case (4) considered in Section 3 and observe that it contributes nothing to our
classification. Indeed, for the three tube domains in (3.16) the automorphism group
dimensions are 12, 13, 15, respectively, and each of these numbers is greater than
11 = n2 − 5.

Case (6). Suppose that k = 4, n = 5. In this situation inequality (2.8) implies
dim g(Ω) ≥ 7 = k2/2− k/2+ 1, hence it follows, e.g., by Lemma 2.1, that the cone
Ω is linearly equivalent to the circular cone C4 = Ω6. Therefore, S(Ω, H) is linearly
equivalent to

(4.3) D8 :=
{
(z, w) ∈ ×C

4 × C : Im z − v|w|2 ∈ Ω6

}
,

where v = (v1, v2, v3, v4) is a vector in R4 satisfying v21 ≥ v22 + v23 + v24 , v1 > 0.
Assume first that v21 > v22 + v23 + v24 , i.e., that v ∈ Ω6. As the vector v is an
eigenvector of every element of G(Ω6, v|w|2), it then follows that G(Ω6, v|w|2) does
not act transitively on Ω6. Therefore, we have v1 =

√
v22 + v23 + v24 6= 0, i.e.,

v ∈ ∂Ω6 \ {0}. Since group G(Ω6)
◦ = R+×SO◦

1,3 acts transitively on ∂Ω6 \ {0}, we
can suppose that v = (1, 1, 0, 0), i.e., v|w|2 = (|w|2, |w|2, 0, 0). We will now prove
an analogue of Lemma 3.4.

Set

D̂8 :=
{
(z, w) ∈ ×C

4 × C
N : Im z − Ĥ(w,w) ∈ Ω6

}
,

where N ≥ 1 and Ĥ is the Ω6-Hermitian form analogous to the one introduced in
(3.10):

Ĥ(w,w′) :=




N∑

j=1

wjw
′

j ,
N∑

j=1

wjw
′

j , 0, 0


 .

Lemma 4.3. For g = g(D̂8) one has g1/2 = 0.

Proof. We will apply Theorem 2.4 to the cone Ω6 and the Ω6-Hermitian form Ĥ.
Let Φ : C4 → CN be a C-linear map given by a matrix (ϕj

i ), with j = 1, . . . , N ,
i = 1, 2, 3, 4. Fixing w ∈ CN , for x ∈ R4 we compute

H(w,Φ(x)) =




N∑

j=1

wj(ϕ
j
1x1 + ϕj

2x2 + ϕj
3x3 + ϕj

4x4),

N∑

j=1

wj(ϕ
j
1x1 + ϕj

2x2 + ϕj
3x3 + ϕj

4x4), 0, 0


 =


x1 ·

N∑

j=1

wjϕ
j
1 + x2 ·

N∑

j=1

wjϕ
j
2 + x3 ·

N∑

j=1

wjϕ
j
3 + x4 ·

N∑

j=1

wjϕ
j
4,

x1 ·
N∑

j=1

wjϕ
j
1 + x2 ·

N∑

j=1

wjϕ
j
2 + x3 ·

N∑

j=1

wjϕ
j
3 + x4 ·

N∑

j=1

wjϕ
j
4, 0, 0


 .
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Then from formula (2.12) we see

Φw(x) =


x1 ·

N∑

j=1

Im(wjϕ
j
1) + x2 ·

N∑

j=1

Im(wjϕ
j
2) + x3 ·

N∑

j=1

Im(wjϕ
j
3)+

x4 ·
N∑

j=1

Im(wjϕ
j
4), x1 ·

N∑

j=1

Im(wjϕ
j
1) + x2 ·

N∑

j=1

Im(wjϕ
j
2)+

x3 ·
N∑

j=1

Im(wjϕ
j
3) + x4 ·

N∑

j=1

Im(wjϕ
j
4), 0, 0


 .

Recall now that

(4.4) g(Ω6) = c(gl4(R))⊕ o1,3 =








λ p q r
p λ s t
q −s λ y
r −t −y λ


 , λ, p, q, r, s, t, y ∈ R





.

It is then clear that the condition that Φw lies in g(Ω4) for every w ∈ C leads to
the relations

N∑

j=1

Im(wjϕ
j
i ) ≡ 0, i = 1, 2, 3, 4,

which yield Φ = 0. By formula (2.13) we then see that g1/2 = 0 as required. ✷

It follows from estimate (2.7), the second inequality in (2.5), and Lemma 4.3 for
N = 1 that for v = (1, 1, 0, 0) we have

(4.5) d(D8) ≤ 18 < 20 = n2 − 5

(here s = 1 and dim g(Ω6) = 7). This shows that Case (6) contributes nothing to
our classification.

Remark 4.4. Estimate (4.5) can be also obtained by proving that for v = (1, 1, 0, 0)
one has dimG(Ω6, v|w|2) = 5. The proof is analogous to that of [Isa7, Lemma
3.6] but uses (4.4) instead of (3.12). Therefore, if v = (1, 1, 0, 0), for the algebra
g = g(D8) we have dim g0 = 6, which, combined with the second inequality in (2.5)
and Lemma 4.3 for N = 1, improves bound (4.5) to

d(D8) = dim g−1 + dim g−1/2 + dim g0 + dim g1/2 + dim g1 ≤ 16.

Case (7). Suppose that k = 5, n = 5. In this situation inequality (2.8)
implies dim g(Ω) ≥ 10, which by Lemma 2.1 yields that Ω is linearly equivalent
to the circular cone C5. Hence, after a linear change of variables, S(Ω, H) turns
into the domain T5 defined in (1.1). However, d(T5) = 21 > 20 = n2 − 5, so
this case makes no contributions to the classification of homogeneous hyperbolic
n-dimensional manifolds with automorphism group dimension n2 − 5.

The proof of Theorem 1.2 is complete.

5. Proof of Theorem 1.3

As before, we utilize the fact that, by [VGP-S], [N2], the manifold M is biholo-
morphic to an affinely homogeneous Siegel domain of the second kind S(Ω, H).
Since one has n2 − 6 ≥ 2n, it follows that n ≥ 4. Also, as M is not biholomorphic
to Bn, we have k ≥ 2. Now, it is not hard to see that Lemma 4.1 holds in this
situation as well, which again leads to the seven cases stated in Section 4.

Case (1). The values m = 0, 1, 2, 3 are treated as before and yield no domains.
However, this time estimate (2.8) implies s ≥ n2 − 4n − 4, which also allows for
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m = 4. This possibility leads to two additional subcases: (e) where n = 6 with
λ1 = λ2 6= λ3 = λ4, and (f) where n = 7 with λ1 6= λ2 = λ3 = λ4 = λ5. Case (1) is
then easily seen to contribute the products B3×B3 and B2×B5 to the classification,
which arise from subcases (e) and (f), respectively, with d(B3×B3) = 30 = n2− 6,
d(B2 ×B5) = 43 = n2 − 6.

Case (2). It is not hard to observe that this case only contributes to our
classification the domain D4 with v = (1, 1, 0) (see (3.7)), which is exactly the
domain D defined in (1.2). As we have already mentioned, D is linearly equivalent
to the well-known example of a bounded non-symmetric homogeneous domain in
C4 given by I. Pyatetskii-Shapiro (see [P-S, pp. 26–28]). Here d(D) = 10 = n2− 6.

Case (3). Here the domain D5 defined in (3.8) leads to the product of unit
balls B1 ×B2 ×B2 with d(B1 ×B2 ×B2) = 19 = n2 − 6.

Further, it is clear from the analysis given in Section 4 that for the domain D6

defined in (3.9) we only need to study the situation when s = 1. We will show:

Lemma 5.1. For the domain D6 with s = 1 and g = g(D6) one has dim g1/2 ≤ 2.

Proof. Let us write the Ω3-Hermitian form H as

H = u|w1|2 + v|w2|2 + aw1w2 + aw2w1,

where u, v ∈ R
3 and a ∈ C

3. It is then clear that u, v ∈ Ω3 \ {0}. We will consider
two cases.

Case (i). Suppose first that u ∈ Ω3. Then, as the cone Ω3 is homogeneous,
we may assume that u = (1, 0, 0). Further, replacing w1 by w1 + a1w2, we may
suppose that a1 = 0. In addition, rotating the variables z2, z3 by a transformation
from O2, we can always reduce to the case when H3 has no |w2|2-term, i.e., when
v3 = 0. As s = 1, we must have a3 6= 0, hence, by scaling w2, one can also assume
that a3 = 1.

To utilize Theorem 2.4, let Φ : C3 → C2 be a C-linear map

(5.1) Φ(z1, z2, z3) =
(
ϕ1
1z1 + ϕ1

2z2 + ϕ1
3z3, ϕ

2
1z1 + ϕ2

2z2 + ϕ2
3z3

)
,

where ϕj
i ∈ C. Fixing w ∈ C2, for x ∈ R3 we compute

H(w,Φ(x)) =
(
w1(ϕ

1
1x1 + ϕ1

2x2 + ϕ1
3x3) + v1w2(ϕ

2
1x1 + ϕ2

2x2 + ϕ2
3x3),

v2w2(ϕ
2
1x1 + ϕ2

2x2 + ϕ2
3x3) + a2w1(ϕ

2
1x1 + ϕ2

2x2 + ϕ2
3x3)+

a2w2(ϕ
1
1x1 + ϕ1

2x2 + ϕ1
3x3),w1(ϕ

2
1x1 + ϕ2

2x2 + ϕ2
3x3)+

w2(ϕ
1
1x1 + ϕ1

2x2 + ϕ1
3x3)

)
=

(
(ϕ1

1w1 + v1ϕ
2
1w2)x1+

(ϕ1
2w1 + v1ϕ

2
2w2)x2 + (ϕ1

3w1 + v1ϕ
2
3w2)x3, (a2ϕ

2
1w1+

(a2ϕ
1
1 + v2ϕ

2
1)w2)x1 + (a2ϕ

2
2w1 + (a2ϕ

1
2 + v2ϕ

2
2)w2)x2+

(a2ϕ
2
3w1 + (a2ϕ

1
3 + v2ϕ

2
3)w2)x3, (ϕ

2
1w1 + ϕ1

1w2)x1+

(ϕ2
2w1 + ϕ1

2w2)x2 + (ϕ2
3w1 + ϕ1

3w2)x3

)
.
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Then from formula (2.12) we see

Φw(x) =
(
(Im(ϕ1

1w1) + v1 Im(ϕ2
1w2))x1 + (Im(ϕ1

2w1) + v1 Im(ϕ2
2w2))x2+

(Im(ϕ1
3w1) + v1 Im(ϕ2

3w2))x3, (Im(a2ϕ
2
1w1) + Im((a2ϕ

1
1 + v2ϕ

2
1)w2))x1+

(Im(a2ϕ
2
2w1) + Im((a2ϕ

1
2 + v2ϕ

2
2)w2))x2 + (Im(a2ϕ

2
3w1) + Im((a2ϕ

1
3+

v2ϕ
2
3)w2))x3, (Im(ϕ2

1w1) + Im(ϕ1
1w2))x1 + (Im(ϕ2

2w1) + Im(ϕ1
2w2))x2+

(Im(ϕ2
3w1) + Im(ϕ1

3w2))x3

)
.

Using (3.12), we then see that the condition that Φw lies in g(Ω3) for every
w ∈ C2 leads to the relations

(5.2)

ϕ1
1 = a2ϕ

2
2 = ϕ2

3, v1ϕ
2
1 = a2ϕ

1
2 + v2ϕ

2
2 = ϕ1

3,

ϕ1
2 = a2ϕ

2
1, v1ϕ

2
2 = a2ϕ

1
1 + v2ϕ

2
1, ϕ1

3 = ϕ2
1,

ϕ1
1 = v1ϕ

2
3, ϕ2

2 = −a2ϕ
2
3, ϕ1

2 = −a2ϕ
1
3 − v2ϕ

2
3.

If a2 = 0, it immediately follows that Φ = 0, thus by formula (2.13) we have
g1/2 = 0. Suppose now that a2 6= 0. It is then straightforward to see that, unless
v1 = 1, v2 = 0, a2 = ±i, the space of all maps Φ satisfying relations (5.2) has
complex dimension at most 1, which by (2.13) implies dim g1/2 ≤ 2.

We thus assume that

H = (|w1|2 + |w2|2,±i(w1w2 − w2w1), w1w2 + w2w1).

Changing the w-variables as

w1 7→ − i√
2
(w1 + iw2), w2 7→ 1√

2
(w1 − iw2),

we can suppose that

H = (|w1|2 + |w2|2,∓(|w1|2 − |w2|2), w1w2 + w2w1).

Further, swapping w1 and w2 if necessary, we reduce our considerations to the case
where

(5.3) H = (|w1|2 + |w2|2, |w1|2 − |w2|2, w1w2 + w2w1).

We will now show that for the above Ω3-Hermitian form H one has g1/2 = 0.

Consider a map Φ : C3 → C2 as in (5.1), fix w ∈ C2, and for x ∈ R3 compute

H(w,Φ(x)) =
(
w1(ϕ

1
1x1 + ϕ1

2x2 + ϕ1
3x3) +w2(ϕ

2
1x1 + ϕ2

2x2 + ϕ2
3x3),

w1(ϕ
1
1x1 + ϕ1

2x2 + ϕ1
3x3)−w2(ϕ

2
1x1 + ϕ2

2x2 + ϕ2
3x3),

w1(ϕ
2
1x1 + ϕ2

2x2 + ϕ2
3x3) +w2(ϕ

1
1x1 + ϕ1

2x2 + ϕ1
3x3)

)
=

(
(ϕ1

1w1 + ϕ2
1w2)x1 + (ϕ1

2w1 + ϕ2
2w2)x2 + (ϕ1

3w1 + ϕ2
3w2)x3,

(ϕ1
1w1 − ϕ2

1w2)x1 + (ϕ1
2w1 − ϕ2

2w2)x2 + (ϕ1
3w1 − ϕ2

3w2)x3,

(ϕ2
1w1 + ϕ1

1w2)x1 + (ϕ2
2w1 + ϕ1

2w2)x2 + (ϕ2
3w1 + ϕ1

3w2)x3

)
.



MANIFOLDS WITH HIGH-DIMENSIONAL AUTOMORPHISM GROUP 21

Then from formula (2.12) we see

Φw(x) =
(
(Im(ϕ1

1w1) + Im(ϕ2
1w2))x1 + (Im(ϕ1

2w1) + Im(ϕ2
2w2))x2+

(Im(ϕ1
3w1) + Im(ϕ2

3w2))x3, (Im(ϕ1
1w1)− Im(ϕ2

1w2))x1+

(Im(ϕ1
2w1)− Im(ϕ2

2w2))x2 + (Im(ϕ1
3w1)− Im(ϕ2

3w2))x3,

(Im(ϕ2
1w1) + Im(ϕ1

1w2))x1 + (Im(ϕ2
2w1) + Im(ϕ1

2w2))x2+

(Im(ϕ2
3w1) + Im(ϕ1

3w2))x3

)
.

From (3.12) we then see that the condition that Φw lies in g(Ω3) for every w ∈ C2

leads to the relations

(5.4) ϕ1
1 = ϕ1

2 = ϕ2
3, ϕ2

1 = −ϕ2
2 = ϕ1

3,

Further, let c be a symmetric C-bilinear form on C2 with values in C2:

c(w,w) =
(
c111w

2
1 + 2c112w1w2 + c122w

2
2 , c

2
11w

2
1 + 2c212w1w2 + c222w

2
2

)
,

where cℓij ∈ C. Then for w,w′ ∈ C
2 using (5.3) we calculate

(5.5)

H(w, c(w′, w′)) =
(
w1(c

1
11(w

′

1)
2 + 2c112w

′

1w
′

2 + c122(w
′

2)
2) + w2(c

2
11(w

′

1)
2+

2c212w
′

1w
′

2 + c222(w
′

2)
2), w1(c

1
11(w

′

1)
2 + 2c112w

′

1w
′

2 + c122(w
′

2)
2)−

w2(c
2
11(w

′

1)
2 + 2c212w

′

1w
′

2 + c222(w
′

2)
2), w1(c

2
11(w

′

1)
2 + 2c212w

′

1w
′

2+

c222(w
′

2)
2) + w2(c

1
11(w

′

1)
2 + 2c112w

′

1w
′

2 + c122(w
′

2)
2)
)
.

On the other hand, we have

Φ(H(w′, w)) =
(
ϕ1
1(w

′

1w1 + w′

2w2) + ϕ1
2(w

′

1w1 − w′

2w2) + ϕ1
3(w

′

1w2 + w′

2w1),

ϕ2
1(w

′

1w1 + w′

2w2) + ϕ2
2(w

′

1w1 − w′

2w2) + ϕ2
3(w

′

1w2 + w′

2w1)
)
=

(
(ϕ1

1 + ϕ1
2)w

′

1w1 + (ϕ1
1 − ϕ1

2)w
′

2w2 + ϕ1
3(w

′

1w2 + w′

2w1),

(ϕ2
1 + ϕ2

2)w
′

1w1 + (ϕ2
1 − ϕ2

2)w
′

2w2 + ϕ2
3(w

′

1w2 + w′

2w1)
)
.

Therefore

(5.6)

2iH(Φ(H(w′, w)), w′) =

2i
(
w′

1

(
(ϕ1

1 + ϕ1
2)w

′

1w1 + (ϕ1
1 − ϕ1

2)w
′

2w2 + ϕ1
3(w

′

1w2 + w′

2w1)
)
+

w′

2

(
(ϕ2

1 + ϕ2
2)w

′

1w1 + (ϕ2
1 − ϕ2

2)w
′

2w2 + ϕ2
3(w

′

1w2 + w′

2w1)
)
,

w′

1

(
(ϕ1

1 + ϕ1
2)w

′

1w1 + (ϕ1
1 − ϕ1

2)w
′

2w2 + ϕ1
3(w

′

1w2 + w′

2w1)
)
−

w′

2

(
(ϕ2

1 + ϕ2
2)w

′

1w1 + (ϕ2
1 − ϕ2

2)w
′

2w2 + ϕ2
3(w

′

1w2 + w′

2w1)
)
,

w′

1

(
(ϕ2

1 + ϕ2
2)w

′

1w1 + (ϕ2
1 − ϕ2

2)w
′

2w2 + ϕ2
3(w

′

1w2 + w′

2w1)
)
+

w′

2

(
(ϕ1

1 + ϕ1
2)w

′

1w1 + (ϕ1
1 − ϕ1

2)w
′

2w2 + ϕ1
3(w

′

1w2 + w′

2w1)
))

.

Let us now compare expressions (5.5) and (5.6) as required by condition (2.13).
Specifically, looking at the coefficients at (w′

2)
2w1 and (w′

1)
2w2 in the first and

second components of these expressions, we obtain the identities:

c122 = 2iϕ2
3, c122 = −2iϕ2

3, c211 = 2iϕ1
3, −c211 = 2iϕ1

3,

which imply ϕ1
3 = 0, ϕ2

3 = 0. Taken together with (5.4), these conditions yield
Φ = 0, hence g1/2 = 0 as required.
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Case (ii). Suppose now that u ∈ ∂Ω3 \ {0}. In this situation, as the group
G(Ω3)

◦ = R+ × SO◦

1,2 acts transitively on ∂Ω3 \ {0}, we may assume that
u = (1, 1, 0). Further, replacing w1 by w1 + a1w2, we may suppose that a1 = 0.

Let Φ : C3 → C2 be a C-linear map as in (5.1). Fixing w ∈ C2, for x ∈ R3 we
compute

H(w,Φ(x)) =
(
w1(ϕ

1
1x1 + ϕ1

2x2 + ϕ1
3x3) + v1w2(ϕ

2
1x1 + ϕ2

2x2 + ϕ2
3x3),

w1(ϕ
1
1x1 + ϕ1

2x2 + ϕ1
3x3) + v2w2(ϕ

2
1x1 + ϕ2

2x2 + ϕ2
3x3)+

a2w1(ϕ
2
1x1 + ϕ2

2x2 + ϕ2
3x3) + a2w2(ϕ

1
1x1 + ϕ1

2x2 + ϕ1
3x3),

v3w2(ϕ
2
1x1 + ϕ2

2x2 + ϕ2
3x3) + a3w1(ϕ

2
1x1 + ϕ2

2x2 + ϕ2
3x3)+

a3w2(ϕ
1
1x1 + ϕ1

2x2 + ϕ1
3x3)

)
=

(
(ϕ1

1w1 + v1ϕ
2
1w2)x1+

(ϕ1
2w1 + v1ϕ

2
2w2)x2 + (ϕ1

3w1 + v1ϕ
2
3w2)x3, ((ϕ

1
1 + a2ϕ

2
1)w1+

(a2ϕ
1
1 + v2ϕ

2
1)w2)x1 + ((ϕ1

2 + a2ϕ
2
2)w1 + (a2ϕ

1
2 + v2ϕ

2
2)w2)x2+

((ϕ1
3 + a2ϕ

2
3)w1 + (a2ϕ

1
3 + v2ϕ

2
3)w2)x3, (a3ϕ

2
1w1 + (a3ϕ

1
1 + v3ϕ

2
1)w2)x1+

(a3ϕ
2
2w1 + (a3ϕ

1
2 + v3ϕ

2
2)w2)x2 + (a3ϕ

2
3w1 + (a3ϕ

1
3 + v3ϕ

2
3)w2)x3

)
.

Then from formula (2.12) we see

Φw(x) =
(
(Im(ϕ1

1w1) + v1 Im(ϕ2
1w2))x1 + (Im(ϕ1

2w1) + v1 Im(ϕ2
2w2))x2+

(Im(ϕ1
3w1) + v1 Im(ϕ2

3w2))x3, (Im((ϕ1
1 + a2ϕ

2
1)w1) + Im((a2ϕ

1
1 + v2ϕ

2
1)w2))x1+

(Im((ϕ1
2 + a2ϕ

2
2)w1) + Im((a2ϕ

1
2 + v2ϕ

2
2)w2))x2 + (Im((ϕ1

3 + a2ϕ
2
3)w1)+

Im((a2ϕ
1
3 + v2ϕ

2
3)w2))x3, (Im(a3ϕ

2
1w1) + Im((a3ϕ

1
1 + v3ϕ

2
1)w2))x1+

(Im(a3ϕ
2
2w1) + Im((a3ϕ

1
2 + v3ϕ

2
2)w2))x2 + (Im(a3ϕ

2
3w1) + Im((a3ϕ

1
3 + v3ϕ

2
3)w2))x3

)
.

Using (3.12), we then see that the condition that Φw lies in g(Ω3) for every
w ∈ C2 leads to the relations

(5.7)

ϕ1
1 = ϕ1

2 + a2ϕ
2
2 = a3ϕ

2
3, v1ϕ

2
1 = a2ϕ

1
2 + v2ϕ

2
2 = a3ϕ

1
3 + v3ϕ

2
3,

ϕ1
2 = ϕ1

1 + a2ϕ
2
1, v1ϕ

2
2 = a2ϕ

1
1 + v2ϕ

2
1, ϕ1

3 = a3ϕ
2
1,

a3ϕ
1
1 + v3ϕ

2
1 = v1ϕ

2
3, a3ϕ

2
2 = −ϕ1

3 − a2ϕ
2
3, a3ϕ

1
2 + v3ϕ

2
2 = −a2ϕ

1
3 − v2ϕ

2
3.

It easily follows from (5.7) that if a3 = 0, then Φ = 0, so by formula (2.13) we
have g1/2 = 0. If a3 6= 0, then, by scaling w2, we can assume that a3 = 1. In this
situation it is straightforward to see that, unless v1 = 1, v2 = −1, v3 = 0, a2 = 0,
the space of all maps Φ satisfying relations (5.7) has complex dimension at most 1;
by formula (2.13) this implies dim g1/2 ≤ 2. Notice now that for the above values
of v1, v2, v3, a2 the form H coincides with the right-hand side of (5.3), for which
we have already shown that g1/2 = 0.

The proof of the lemma is now complete. ✷

Now, Lemma 5.1 together with (2.7) and the second inequality in (2.5) yields
d(D6) ≤ 17 < 19 = n2 − 6. Thus, we have shown that Case (3) only contributes
the product B1 ×B2 ×B2 to our classification.

Case (4). Here inequality (2.8) implies s+ dim g(Ω) ≥ 12, so we need to look
at the possibility when s = 9 and Ω is linearly equivalent to Ω2. This possibility
yields the product B1 × B1 × B4 with d(B1 × B1 × B4) = 30 = n2 − 6. Also, it
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follows from the analysis given in Section 4 that if Ω is linearly equivalent to Ω3,
Case (4) makes no contributions to the classification. Indeed, either the domain
D7 defined in (4.2) is not homogeneous or we have d(D7) = 22 < 30 = n2 − 6.

Case (5). Clearly, this case makes no contributions to our classification.

Case (6). Here inequality (2.8) yields dim g(Ω) ≥ 6, hence it follows, for ex-
ample, by Lemma 2.1, that the cone Ω is linearly equivalent to the circular cone
C4 = Ω6. Then, arguing as in Section 4, we see that Case (6) does not contribute
any domains to the classification. Indeed, either the domain D8 defined in (4.3) is
not homogeneous or we have d(D8) ≤ 16 < 19 = n2 − 6.

Case (7). In this case, inequality (2.8) implies dim g(Ω) ≥ 9, so, as in Section
4, Lemma 2.1 yields that Ω is linearly equivalent to the circular cone C5. Since
d(T5) = 21 > 19 = n2−6, this again leads to the conclusion that this case makes no
contributions to the classification of homogeneous hyperbolic n-dimensional mani-
folds with automorphism group dimension n2 − 6.

The proof of Theorem 1.3 is now complete.
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