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Abstract

We consider initial value problems where we are interested in a quantity of interest
(QoI) that is the integral in time of a functional of the solution of the IVP. For these, we
look into local error based time adaptivity. We derive a goal oriented error estimate and
timestep controller, based on error contribution to the error in the QoI, for which we
prove convergence of the error in the QoI for tolerance to zero under weak assumptions.
We analyze global error propagation of this method and derive guidelines to predict
performance of the method. In numerical tests we verify convergence results and guide-
lines on method performance. Additionally, we compare with the dual-weighted residual
method (DWR) and classical local error based time-adaptivity. The local error based
methods show better performance than DWR and the goal oriented method shows good
results in most examples, with significant speedups in some cases.
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1 Introduction

A typical situation in numerical simulations based on differential equations is that one is
not interested in the solution of the differential equation per se, but a Quantity of Interest
(QoI) that is given as a functional of the solution. For example, when designing an airplane,
the QoI would be the lift coefficient divided by the drag coefficient. In simulations of the
Greenland ice sheet, one would like to know the net amount of ice loss over a year. When
simulating wind turbines, the amount of energy produced during a certain time period is
more important than the actual flow solution.

Further examples are found in optimization problems with ODEs or PDEs as con-
straints. In the turbine example, one may want to optimize blade shape or determine
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optimal placement of e.g. tidal turbines [8] for maximal energy output. Inverse problems in
e.g. oceanography [5] can also be considered. Here the aim is to determine model param-
eters or initial conditions to fit measurement data to goal functions of simulation results.
An example for such an inverse problem is to determine vertical mixing parameters with
the QoI being the total inflow of salt water from the North Sea into the Baltic Sea.

In this article, we restrict ourselves to problems where the QoI is given as an integral
over time of a functional of the solution. From the examples above, only the steady state
problem in air plane design does not qualify. The basic problem we consider is thus: Given
the initial value problem

u̇(t) = f(t,u(t)), t ∈ [t0, te], u(t0) = u0, (1)

for a sufficiently smooth function f : [t0, te]×Rd → Rd with solution u(t), we are interested
in the QoI

J(u) :=

∫ te

t0

j(t,u(t))dt, (2)

with j : [t0, te]× Rd → R, which we will refer to as density function, following the notation
in [1].

When solving PDEs, the system of ODEs originates from a semi-discretization, thus u
consists of unknowns of the space discretization. Consequently j can be used to provide
spatial weighting and to select only specific points or regions of the spatial discretization.

The goal here is to determine an adaptive discrete approximation uh ≈ u(t). Our
degrees of freedom are the timesteps and we want to use as few as possible. This strategy
will not yield an optimal solution, but works well in practice. We adapt the timesteps ∆t
using a timestep controller, which is based on local error estimates. The solution process
as a whole involves a variety of schemes.

An adaptive method consists of a time-integration scheme for (1), an error estimator,
a timestep controller and an initial timestep ∆t0. If we consider problem (1) - (2), the
adaptive method also includes a discrete approximation Jh ≈ J given by a quadrature
scheme.

The input for an adaptive method is a tolerance τ , which is used in the timestep con-
troller and possibly to determine ∆t0. The output is an approximation to the solution, this
can be a discrete solution uh, or Jh(uh), depending on which problem is considered. Since
we have an adaptive method, we cannot use the usual notion of convergence for ∆t → 0 for
a time-integration scheme. Instead, we consider the limit of the tolerance going to zero.

Definition 1. An adaptive method for an IVP (1) is called convergent (in the solution), if

‖u(te)− uN‖ = 0, for τ → 0,

where uN is an approximation to u(te) and ‖ · ‖ is an appropriate norm.
An adaptive method for an IVP (1) with QoI (2) is convergent in the QoI, if

|J(u)− Jh(uh)| = 0, for τ → 0.
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For a convergent adaptive method we are naturally interested in the convergence rate
and will express it in terms of O(τ q). This definition of adaptive methods and convergence
is targeted to local error based methods, but can also be considered for methods based on
global error estimates.

For goal oriented adaptivity, the standard approach is the dual weighted residual (DWR)
method [2, 18]. Originally, it was developed for spatial problems, but has been extended
to time dependent problems. The basic idea is to use the adjoint (dual) problem to get
an estimate of the error in the QoI. In the time dependent case, the adjoint problem is a
terminal value problem (IVP backwards in time). For linear problems, this gives rise to
global error bounds, in the nonlinear case, global error estimates are obtained.

The DWR method is based on global a-posteriori error estimates. To obtain these error
estimates one needs to subsequently integrate forward and backward in time. Here the
primal and adjoint solution need to be stored. The error estimate is obtained from the
primal and dual solution and is used to refine the meshes. This iterative process is repeated
until a discretization is found, where the error estimate η(uh) fulfills

|J(u)− Jh(uh)| ≈ η(uh) ≤ τ.

The major drawback of this method is its cost, both in implementation and computation.
To reduce computational effort, Carey et. al. suggested to apply the approach in a blockwise
manner, thus making it more local [4]. The storage of the primal and dual solution can
be problematic for high resolutions. This, for example, can be solved by check-pointing
[14, 15], but will further increase computational costs. The method requires a full variational
formulation, restricting it to Galerkin type schemes in space and time.

An alternative is to use a classical time adaptive method for IVPs based on estimating
the local error. Results on convergence are well established and described in standard
textbooks [21, 11]. This adaptive method is not goal oriented, but can be used to solve
problems with QoIs. We do not have global error bounds, since the accumulation of local
errors is hard to analyse. This approach works particularly well for stiff problems, since
there, local errors typically dissipate with time.

We choose a different approach, aiming to get the best of both methods. To this end
we derive a new error estimator for the classic adaptive method to make it goal oriented.
We estimate the time-stepwise error contribution to the error in the QoI, which consists of
both quadrature and time-integration errors. Neglecting the quadrature contribution, we
derive a local error estimate and use it in the deadbeat controller.

We show that convergence in the QoI follows from convergence in the solution, with
additional requirements on the timesteps. The derived goal oriented adaptive method fulfills
these requirements and is convergent in the QoI under weak assumptions. To obtain high
convergence rates in the QoI when using higher order (> 2) time-integration schemes, one
needs solutions of sufficiently high order in all quadrature evaluation points. We explain
how to obtain these from the stage value of a given RK scheme.

We do our analysis for one-step methods for time-integration, embedded Runge-Kutta
schemes [11] for error estimation, the deadbeat controller (13) and simple choices for ∆t0.
These restrictions are done for easier analysis, but it is straightforward to extend the results
to other error estimation techniques, such as Richardson-extrapolation [11]. For different
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controllers, such as PID controllers [22], our results allow for simple convergence proofs
based on similarity to the deadbeat controller. The results hold for a wide range of initial
timesteps and thus for any reasonable scheme used to compute ∆t0.

Implementation of this method only requires a standard deadbeat controller, an embed-
ded Runge-Kutta scheme and the density function j(t,u(t)). Due to being based on local
error estimates, the method is computationally very cheap. For problems where the density
function only regards a small part of the state vector u, the error estimate will be even
cheaper than the classical one.

A similar method has been proposed by [12, 24, 25], using various other techniques
for error estimation. John, Rang propose it for drag and lift coefficients in incompressible
flows, but do not show numerical results [12]. Turek describes a case where using the
method for an alternating lift coefficient leads to ”catastrophical results” [24]. Wick uses
a point-wise evaluation of the displacement field in fluid-structure interaction [25, 6]. The
author describes inconsistent convergence patterns but concludes satisfying results.

To be able to make statements on the performance of the goal oriented adaptive method,
we analyse the impact of global error dynamics on the error in the QoI. This analysis
revolves around the nullspace of the density function j(t,u) and thus our error estimator.
A method performs well, if all relevant processes are sufficiently resolved in time. To be able
to sufficiently resolve a process, its local error or the local error of a faster process, must
appear in the error estimate. The question if a process is relevant for the QoI is a matter
of global error dynamics. Thus, with sufficient knowledge on the global error dynamics, we
are able to make predictions on the performance of the goal oriented adaptive method.

We use numerical tests with widely different global error behaviors with respect to the
QoI. For these we confirm the convergence results and are able to explain the performance
results. It turns out to be relatively easy to predict bad performance, but hard to predict
good performance. Our results show that the local error based methods are more efficient
than the DWR method. The goal oriented adaptive method shows good performance in
most cases and significant speedups in some.

The structure of the article is as follows: We first review current adaptive methods in
section 2, then we explain and analyse our approach in section 3. Numerical results are
presented in section 4.

2 Current adaptive methods

2.1 A posteriori error estimation via the dual weighted residual method

The starting point of the DWR method is an initial value problem in variational formulation:
Find u ∈ U , such that

A(u; v) = F (v), u(t0) = u0, ∀v ∈ V.

Here, U and V are appropriate spaces, A is linear in v and possibly nonlinear in u. Here we
have A(u; v) = (ut, v) − (f(t, u), v) and F (v) = 0, see (1). Furthermore, there is a discrete
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approximation to this problem, also in weak form: Find uh ∈ Uh, such that

A(uh; vh) = F (vh), uh(t0) = u0, ∀vh ∈ Vh. (3)

Here, Uh ⊂ U and Vh ⊂ V are finite element spaces in time.

2.1.1 The error estimate

To obtain an estimate of the error eJ = J(u)−J(uh) in the QoI (2), one uses the linearised
adjoint problem for J(u): Find z ∈ V , such that

A′(u; v, z) = J ′(u; v), z(te) = 0, ∀v ∈ U

and its discrete version

A′(uh; vh, zh) = J ′(uh; vh), zh(te) = 0, ∀vh ∈ Uh, (4)

where A′ and J ′ are the Gateaux derivatives of A and J with respect to u in direction v.
Note that the adjoint problem is an initial value problem backwards in time.

An approximation of the error in the QoI is given by

eJ . A(uh, z − zh)− F (z − zh),

with equality for linear functionals and approximate upper bounds for the general nonlinear
case. Using an approximation z+h ≈ z, which is of higher accuracy than zh, using e.g. higher
order interpolation or a discrete solution on a finer grid [1], one gets an estimate

eJ . η(uh) := A(uh, z
+
h − zh)− F (z+h − zh). (5)

This can be further bounded by decomposing it into timestep wise contributions and thus
giving a guide on where and how to adapt. For this to work, it is imperative that the
solutions of the primal and adjoint problems are obtained at all points. This can cause
storage problems for long time simulations and can be dealt with using check-pointing [10].

2.1.2 Adaptation scheme

A large number of different adaptation strategies exist. Here we use a fixed-rate strategy
[1], where the r ∈ [0, 1] elements with largest error are refined. Summarizing, the following
scheme is obtained.

1. Start with initial grid.

2. Solve forward problem (3) to obtain uh.

3. Construct and solve adjoint problem (4) to obtain zh.

4. Calculate z+h ≈ z.
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5. Calculate error estimate η(uh).

6. Check η(uh) ≤ τ , if not met, refine grids and restart.

The scheme is very expensive due to the need of solving adjoint problems to obtain an error
estimate. While one can use generic schemes for grid adaptation, the adjoint problem and
the error estimate are specific to a given equation and goal functional. Construction and
solution of the adjoint problem can be automated using software such as dolfin-adjoint
[7]. An advantage of the method is that the error estimate is global and one can expect the
resulting discretizations to be of high quality.

We use a finer grid to approximate z by z+h , making this the most expensive step in the
computation of η(uh).

2.2 Time Adaptivity based on local error estimates

The second adaptive method we discuss is the standard in ODE solvers. It uses local error
estimates of the solution and does not take into account QoIs. The results from this section
for One-step methods and the deadbeat controller (13) are in principal classic [20].

Here, we present a new convergence proof that separates requirements on the error
estimate, timesteps and ∆t0, for generic One-step methods. This makes it easier to show
convergence for general controllers and estimates, and we use it to show convergence in the
QoI for the goal oriented adaptive method in section 3. We first introduce the relevant
terminology used in this paper. For readers familiar with time adaptivity for ODEs, we use
local extrapolation and Error Per Step (EPS) based control, see [20].

Definition 2. The flow [23] of an IVP (1) is the map

Mt,∆t : u(t) → u(t+∆t),

where t ∈ [t0, te] and t+∆t ≤ te for ∆t > 0.

The flow acts as the solution operator for u(t). To numerically solve an IVP means to
approximate the flow by a numerical flow map N t,∆t : Rd → Rd defined by some numerical
scheme. A timestep can be written in the form

un+1 = N tn,∆tnun.

We generally assume problem (1) to have the unique solution u(t) guaranteeing existence
of the flow map Mt,∆t.

We define the global error by

en+1 := un+1 − u(tn+1) = N tn,∆tnun −Mtn,∆tnu(tn). (6)

By adding zero we obtain the global error propagation form

en+1 = (N tn,∆tn −Mtn,∆tn)un
︸ ︷︷ ︸

global error increment

+Mtn,∆tnun −Mtn,∆tnu(tn)
︸ ︷︷ ︸

global error propagation

. (7)

The dynamics of global error propagation are usually not known. The global error incre-
ments, however, have a known structure.
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Definition 3. Assume a sufficiently smooth right-hand side f for (1). The principal error
function [11] φ of a scheme N t,∆t of order p is

φ(t,u) := lim
∆t→0

(N t,∆t −Mt,∆t)u

∆tp+1
. (8)

The local error of a scheme N t,∆t of order p is

(
N tn,∆tn −Mtn,∆tn

)
un = ∆tp+1

n φ(tn,un) +O(∆tp+2
n ).

Here, the local error is equivalent to the global error increment (7). We will estimate
the local error and derive a timestep controller to keep the norm of the local error in check.
Then we show that the resulting adaptive method is convergent, that is, the global error
can be controlled by the global error increments and goes to zero for τ → 0.

2.2.1 Error estimation and timestep controller

We now derive an estimate for the local error using the two solutions of order p and p̂. We
approximate the local error behaviour by a simplified model, focusing on the leading terms.
Aiming to keep the norm of the local error equal to a desired tolerance, this determines the
new timestep. This timestep controller gives us ∆tn+1 based on the previous timestep ∆tn,
the local error estimate and a tolerance τ .

Assume two time-integration schemes (N t,∆t, N t,∆t
− ) with orders (p, p̂) and principal

error functions (φ, φ−). Embedded Runge-Kutta schemes [11] are a possible choice, as they
have the advantage that the embedded solution uses the same stage derivatives, requiring
essentially no extra computation.

We use a local extrapolation approach to estimate the local error

ℓn :=
(

N tn,∆tn
− −Mtn,∆tn

)

un (9)

by

ℓ̂n :=
(

N tn,∆tn
− −N tn,∆tn

)

un. (10)

The leading term of this error estimate, characterized by the principal error function φ−,
matches the leading term of the local error (9). Higher order terms with regards to ∆tn
will differ. Note that this local error is not the global error increment from (7), but the one

corresponding to N t,∆t
− . We model the local error using

mn := ∆tp̂+1
n φ−(tn,un), (11)

assuming φ−(tn,un) to be slowly changing. The next step of this model yields

mn+1 ≈ ∆tp̂+1
n+1φ(tn,un) =

(
∆tn+1

∆tn

)p̂+1

mn ≈

(
∆tn+1

∆tn

)p̂+1

ℓ̂n. (12)
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Aiming for ‖mn+1‖ = τ gives the well-known deadbeat controller

∆tn+1 = ∆tn

(

τ

‖ℓ̂n‖

)1/(p̂+1)

. (13)

2.2.2 Convergence in the solution

We now show convergence with en = O(τp/(p̂+1)) for the adaptive method consisting of a
time-integration scheme of order p, the error estimate (10), controller (13) and a suitable
initial step-size.

First we build a relation between global error and maximal timestep with Lemma 1.
Corollary 2 relaxes this relation to general timesteps in dependence on the tolerance τ . We
cannot use the timesteps from controller (13) directly, since their dependence on τ is more
involved. Instead, we construct a reference timestep series which fulfills the requirements in
both Lemma and Corollary and gives the targeted convergence rate. With Theorem 3 we
show the timesteps from the controller (13) converge to the reference timesteps for τ → 0,

which gives convergence with the rate O(τp/(p̂+1)).

Lemma 1. Let problem (1) have a sufficiently smooth right-hand side f , such that a scheme
N t,∆t of order p has the global error increment

(N tn,∆tn −Mtn,∆tn)un = ∆tp+1
n φ(tn,un) +O(∆tp+2

n ).

Assume a mesh t0 < · · · < tN = te with timesteps ∆tn = tn+1−tn and the step-size function

θ : [t0, te] → (θmin, 1], θmin > 0,

fulfilling
∆tn = θ(tn)∆T +O(∆T 1+ǫ), ǫ > 0, (14)

for some ∆T > 0. Then the global error (6) fulfills

en = un − u(tn) = O(∆T p), ∀ tn, n = 0, . . . , N,

for ∆T → 0.

Proof. We first neglect the O(∆T 1+ǫ) term in (14). Under these assumptions a proof of
‖en‖ = O(∆T p) can be found in [9, pp. 68].

To extend this result to ∆tn = θ(tn)∆T +O(∆T 1+ǫ), we define

θ∗(tn) :=
θ(tn)

c
+O(∆T ǫ) and ∆T ∗ := c∆T,

for some c > 1. This gives ∆tn = θ∗(tn)∆T ∗, where

θ∗(tn) ≤
1

c
+O(∆T ǫ),

which fulfills 0 < θ∗(tn) ≤ 1 for ∆T sufficiently small. This means the general case (14)
is also covered by the proof in [9, pp. 68] and for ∆T → 0 we get en = O(∆T ∗p) =
O(∆T p).
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Using this Lemma, we can now link the global error to the tolerance.

Corollary 2. Assume the smoothness requirements of Lemma 1 to be met and assume a
scheme of order p to get un. Assume a mesh t0 < · · · < tN = te with timesteps ∆tn =
tn+1 − tn, n = 0, . . . , N − 1 that fulfill

∆tn = O(τ1/q), ∆tn > 0.

Then, the global error fulfills

en = un − u(tn) = O(τp/q), ∀ tn, n = 0, . . . , N,

for τ → 0.

Proof. The maximal step-size is ∆T = max{∆tn | 0 ≤ n ≤ N − 1}. The corresponding
step-size function is

θ(tn) =
∆tn
∆T

,

which fulfills 0 < θ(tn) ≤ 1. We thus meet all assumptions of Lemma 1 and get en =

un − u(tn) = O(∆T p) = O(τp/q).

We cannot apply Corollary 2 to the timesteps (13) directly, since they have a more

complex dependence on τ . Therefore we use reference timesteps ∆trefn = O(τ1/q). We show
∆tn → ∆trefn for τ → 0 with a difference of at most O(∆T 2

ref) and can apply Lemma 1.
We define the reference timesteps

∆trefn :=

(
τ

cn‖φ−(tn,u(tn))‖

)1/(p̂+1)

, (15)

where φ− is the principal error function (8) corresponding to N t,∆t
− and cn is given by

cn =

{

O(1), n = 0,

1, n > 0,

where O(1) is with respect to τ → 0 and c0 > 0. This adds a degree of freedom to choose the
initial timestep. For (15) to be well-defined we require f in problem (1) to be sufficiently
smooth and define

φ−,min := min
t∈[t0,te]

‖φ−(t,u(t))‖,

where we assume φ−,min > 0. This gives the maximal timestep

∆Tref =

(
τ

max{1, c0}φ−,min

)1/(p̂+1)

. (16)

We have ∆trefn ≤ ∆Tref = O(τ1/(p̂+1)). Applying Lemma 1 gives us en = O(τp/(p̂+1)), for a
time-integration scheme of order p. We now show convergence of the adaptive method with
timesteps from (13).
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Theorem 3. Let problem (1) have a sufficiently smooth f . Assume an adaptive method
consisting of:

1. A pair of schemes (N t,∆t, N t,∆t
− ) with orders (p, p̂) with p > p̂,

2. the error estimator (10),

3. the deadbeat controller (13),

4. an initial timestep ∆t0 = O(τ1/(p̂+1)).

If the principal error function φ− to N t,∆t
− fulfills

min
t0≤t≤te

||φ−(t,u(t))|| > 0, (17)

then the adaptive method is convergent with

en = un − u(tn) = O(τp/(p̂+1)), ∀tn, n = 0, . . . , N, and τ → 0.

Proof. By induction we show the timesteps fulfill

∆tn = ∆trefn +O(∆T 2
ref) = O(τ1/(p̂+1)).

We choose c0 in ∆tref0 such that ∆t0 = ∆tref0 , meaning the induction base is met. The
timestep given by the controller is

∆tn+1 = ∆tn

(

τ

‖ℓ̂n‖

)1/(p̂+1)

=

(
τ

‖φ−(tn,un) +O(∆tn)‖

)1/(p̂+1)

.

We expand the denominator in φ−(tn+1,u(tn+1)) and get

∆tn+1 =

(
τ

‖φ−(tn+1,u(tn+1)) +O(∆tn)‖

)1/(p̂+1)

.

We perform another expansion to separate the O(∆tn) term and get

∆tn+1 =

(
τ

‖φ−(tn+1,u(tn+1))‖

)1/(p̂+1)

︸ ︷︷ ︸

=∆trefn

+O(τ1/(p̂+1)∆tn).

We now consider the O term. From the definition of the maximal timestep (16) we know

∆Tref = O(τ1/(p̂+1)). The induction hypothesis gives us ∆tn = ∆trefn +O(∆T 2
ref) ≤ ∆Tref +

O(∆T 2). Thus we showed the induction step. By Corollary 2 we then get the result
en = O(τp/(p̂+1)).
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Thus we established convergence for the derived adaptive method for a suitable initial
timestep ∆t0. The assumption (17) is a requirement of controllability in the asymptotic
regime. The global error would not be controllable by means of local errors, if the local error
vanishes at some point. Further we built a structure with which one can prove similar results
for different controllers, e.g. PID controllers [22]. To prove convergence one can either show
(14) using suitable reference timesteps or show a maximal deviation of O(∆T 1+ǫ

ref ), ǫ > 0 of
a given controller from the deadbeat controller (13).

3 Goal oriented adaptivity using local error estimates

We now consider the goal oriented setting (2) for problem (1) and are only interested in the
QoI J(u). We approximate the integral in J using quadrature and u(t) by the numerical
solution uh to get

Jh(uh) :=

N−1∑

n=0

∆tn

s∑

k=0

σkj(t
(k)
n ,u(k)

n ) ≈

∫ te

t0

j(t,u(t))dt = J(u). (18)

Here u
(k)
n ≈ u(t

(k)
n ) and σk are the evaluation points resp. weights for the quadrature

scheme. We assume an embedded Runge-Kutta scheme for time-integration.
As we are now only interested in the QoI, we derive an adaptive method that is con-

vergent in the QoI and goal oriented. The method aims to be more efficient by taking
into account the QoI for the error estimate. Convergence in the QoI will be shown based
on convergence in the solution. With the following Theorem we establish the connection
between convergence rates.

Theorem 4. Assume f in problem (1) and j in the QoI (2) to be sufficiently smooth, a

mesh t0 < · · · < tN = te with timesteps ∆tn = tn+1 − tn = O(τ1/q) and an approximation
Jh ≈ J (18) by a quadrature scheme of order r. Further assume an approximation uh ≈ u(t)
with order

u(k)
n − u(t(k)n ) = O(τp/q) (19)

for all n, k. Then the error in the QoI fulfills

eJ := |J(u) − Jh(uh)| = O(τmin(r,p)/q).

Proof. By splitting the error, we obtain

eJ ≤ |J(u)− Jh(u)|
︸ ︷︷ ︸

quadrature error

+ |Jh(u)− Jh(uh)|
︸ ︷︷ ︸

time-integration error

(20)

and can deal with the two errors separately.
An estimate for general numerical quadrature schemes of order r gives

|J(u)− Jh(u)| ≤

∣
∣
∣
∣
∣

N−1∑

n=0

cq∆tn
r+1 max

tn≤t≤tn+1

|(j(t,u(t)))(r) |

∣
∣
∣
∣
∣
,
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with a constant cq. Using the bound jmax := maxt0≤t≤te |(j(t,u(t)))
(r) |, we get

|J(u)− Jh(u)| ≤ cq jmax

N−1∑

n=0

∆tn
r+1 ≤ cq jmax

N−1∑

n=0

∆tnO(τ r/q) = O(τ r/q).

For the time-integration error we have

|Jh(u)− Jh(uh)| ≤
N−1∑

n=0

∆tn

s∑

k=0

∣
∣
∣σk

(

j(t(k)n ,u(k)
n )− j(t(k)n ,u(t(k)n ))

)∣
∣
∣ ,

where we linearise j(t
(k)
n ,u(t

(k)
n )) and use assumption (19) to get

j(t(k)n ,u(t(k)n )) = j(t(k)n ,u(k)
n ) +

∂j(t
(k)
n ,u

(k)
n )

∂u
(u(t(k)n )− u(k)

n
︸ ︷︷ ︸

=O(τp/q)

) +O((τp/q)2).

This yields

|Jh(u)− Jh(uh)| ≤
N−1∑

n=0

∆tn

s∑

k=0

O(τp/q) = O(τp/q).

Summing up quadrature and time-integration error yields

eJ ≤ |J(u)− Jh(u)|+ |Jh(u)− Jh(uh)| = O(τ r/q) +O(τp/q) = O(τmin(r,p)/q). (21)

Here, we combined statements on convergence in the QoI and the respective rates. The
assumption ∆tn = O(τ1/q) gives un−u(tn) = O(τp/q), for all n = 0, . . . , N−1 by Corollary

2. Using linear interpolation for an intermediate point t
(k)
n ∈ (tn, tn+1), one gets at most

u
(k)
n −u(t

(k)
n ) = O(τ2/q). The requirement (19) becomes relevant for schemes of order p > 2

and is discussed in the end of section 3.2.
Our idea is now to use a goal oriented error estimate to obtain step-sizes more suitable

to address the error in the QoI. In practical computations this should lead to a gain in
efficiency.

We first derive our error estimate and controller, for the resulting goal oriented adaptive
method we show convergence in the QoI with Theorem 5. We make an analysis to predict
the performance in section 3.3.

3.1 Error estimate and timestep controller

In the proof of Theorem 4 we see two different error sources - time-integration and quadra-
ture, see (20). While one can estimate the quadrature error, doing so is not necessary.

12



Using an error estimate based on the time-integration error only, we will get an adaptive
method that is convergent in the QoI.

Neglecting the quadrature error we have

eJ ≈
N−1∑

n=0

∣
∣
∣∆tn

s∑

k=0

σk

(

j(t(k)n ,u(k)
n )− j(t(k)n ,u(t(k)n ))

) ∣
∣
∣.

As we generally do not have error estimates for the intermediate points of the quadrature
scheme, we approximate the above term-wise by the rectangular rule

eJn := ∆tn

∣
∣
∣j(tn+1,un+1)− j(tn+1,u(tn+1))

∣
∣
∣. (22)

Note that this is an approximation of the time-integration error Jh(u)−Jh(uh) and does not
place general restrictions on choices for quadrature schemes. The global error propagation
form of (22) is

eJn+1 =∆tn
(
j
(
tn+1,N

tn,∆tnun

)
− j

(
tn+1,M

tn,∆tnu(tn)
))

(23)

= ∆tn
(
j
(
tn+1,N

tn,∆tnun

)
− j

(
tn+1,M

tn,∆tnun

))

︸ ︷︷ ︸

global error increment

+ (24)

∆tn
(
j
(
tn+1,M

tn,∆tnun

)
− j

(
tn+1,M

tn,∆tnu(tn)
))

︸ ︷︷ ︸

global error propagation

. (25)

Again, we do not know the global error propagation dynamics, but we can estimate the
global error increment and control it using timesteps. We use local extrapolation with a

scheme N t,∆t
− of order p̂ < p and control

∆tnℓ
j
n := ∆tn

(

j
(

tn+1,N
tn,∆tn
− un

)

− j
(
tn+1,M

tn,∆tnun

))

. (26)

This is the global error increment (24), but corresponding to N tn,∆tn
− . We estimate (26) by

∆tnℓ̂
j
n := ∆tn

(

j
(

tn+1,N
tn,∆tn
− un

)

− j
(
tn+1,N

tn,∆tnun

))

. (27)

To construct a controller we need a model for (26). As j may be non-linear, we linearise in
u and get

ℓjn = j
(

tn+1,N
tn,∆tn
− un

)

− j
(
tn+1,M

tn,∆tnun

)

=
∂j
(
tn+1,M

tn,∆tnun

)

∂u

(

N tn,∆tn
− −Mtn,∆tn

)

un
︸ ︷︷ ︸

(9)
= ℓn

+O(∆t2p̂+2
n ). (28)

13



As model we choose the leading term of (28)

mj
n := ∆tn

∂j(tn+1,un+1)

∂u
mn

and assume the derivative term to be slowly changing. Here, mn is the classical error
estimate (11). For this model the next step yields

mj
n+1 ≈ ∆tn+1

∂j(tn+1,un+1)

∂u
mn+1 =

∆tp̂+2
n+1

∆tp̂+1
n

∂j(tn+1,un+1)

∂u
mn

(12)
≈

∆tp̂+2
n+1

∆tp̂+1
n

∂j(tn+1,un+1)

∂u
ℓ̂n

(27)− (28)
≈ ∆tn+1

(
∆tn+1

∆tn

)p̂+1

ℓ̂jn.

We aim to control the error per unit interval, per step, which means aiming for |mj
n+1| =

∆tn+1 τ . This is not to be confused with the common Error Per Unit Step (EPUS) approach
in classical timestep control. We get the deadbeat controller

∆tn+1 = ∆tn

(

τ

|ℓ̂jn|

)1/(p̂+1)

. (29)

We thus constructed a timestep controller to control the error in the QoI (2) using only
local error estimates in j(t,u). In the next section we show that the resulting adaptive
method is convergent in the solution and QoI.

Comparing the implementation of this adaptive method to the classical one from section
2.2, we only require the density function j. This we need regardless of the used method, as
it is necessary for the evaluation of J(u).

3.2 Convergence in the quantity of interest

We now show convergence of the derived goal oriented adaptive scheme in the QoI, using
Theorem 4. While we use the same controller, we have a different error estimator and
cannot use Corollary 2 directly. This is due to the timesteps (29) converging to a different
series of reference timesteps. We define these and repeat the steps of Theorem 3, showing
convergence of the steps from the controller (29) to our reference. We use

∆trefn :=




τ

cn

∣
∣
∣
∂j(tn,u(tn))

∂u φ−(tn,u(tn))
∣
∣
∣





1/(p̂+1)

, (30)

with

cn =

{

O(1), n = 0,

1, n > 0,

14



where O(1) is for τ → 0 and c0 > 0. This gives a degree of freedom in choosing ∆t0. For
the timesteps to be well-defined we require

φj
−,min := min

t∈[t0,te]

∣
∣
∣
∣

∂j(t,u(t))

∂u
φ−(t,u(t))

∣
∣
∣
∣
> 0,

yielding the maximal timestep

∆Tref :=

(

τ

max{1, c0}φ
j
−,min

)1/(p̂+1)

. (31)

We have ∆trefn ≤ ∆Tref = O(τ1/(p̂+1)). With the following Theorem we show convergence of
the timesteps from controller (29) with error estimate (27) to the reference timesteps (30).

Theorem 5. Let f in (1) and j in (2) be sufficiently smooth. Assume an adaptive method
consisting of:

1. A pair of schemes N t,∆t,N t,∆t
− with orders p, p̂ and p > p̂,

2. a quadrature scheme of order r to approximate J(u) as in (18),

3. schemes N t,∆t
(k) to obtain solutions of order p− 1 for all quadrature evaluation points,

that are not part of the resulting grid,

4. the error estimator (27),

5. the deadbeat controller (29),

6. an initial timestep ∆t0 = O(τ1/(p̂+1)).

If the principal error function φ− to N t,∆t
− fulfills

min
t∈[t0,te]

∣
∣
∣
∣

∂j(t,u(t))

∂u
φ−(t,u(t))

∣
∣
∣
∣
> 0, (32)

then
eJ := |J(u)− Jh(uh)| = O(τp/(p̂+1)), for τ → 0.

Proof. We first show convergence in the solution by inductively showing that every step
given by the controller (29) fulfills

∆tn = ∆trefn +O(∆T 2
ref). (33)
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We choose c0 for ∆tref0 such that ∆t0 = ∆tref0 . Thus the induction base ∆t0 = ∆tref0 +
O(∆T 2

ref) is met. In the controller (29) we have the denominator

ℓ̂jn = j
(

tn+1,N
tn,∆tn
− un

)

− j
(
tn+1,N

tn,∆tnun

)

=
∂j(tn+1,un+1)

∂u
ℓ̂n +O(∆t2p̂+2

n ). (34)

Repeating the same expansions as in the proof for Theorem 3 we have

ℓ̂n = ∆tp̂+1
n (φ−(tn+1,u(tn+1)) +O(∆tn))

and similarly
∂j(tn+1,un+1)

∂u
=

∂j(tn+1,u(tn+1))

∂u
+O(en+1).

Here we have O(en+1) = O(∆T p
ref) by Corollary 2, as we assume all timesteps leading up

to en+1 to fulfill (33). Using these approximations in (34) we get

ℓ̂jn = ∆tp̂+1
n

(
∂j(tn+1,u(tn+1))

∂u
φ−(tn+1,u(tn+1)) +O(∆tn) +O(∆T p

ref)

)

,

which we insert into the controller (29) to get

∆tn+1 =

(

τ
∂j(tn+1,u(tn+1))

∂u φ−(tn+1,u(tn+1)) +O(∆tn) +O(∆T p
ref)

)1/(p̂+1)

.

Here we can pull out O(∆t) terms and use the induction hypothesis to get

∆tn+1
(30)
= ∆trefn+1 + τ1/(p̂+1)

(
O(∆tn) +O(∆T p

ref)
)

(31), (33)
= ∆trefn+1 +O(∆T 2

ref),

which shows the induction step holds, yielding ∆tn+1 = O(τ1/(p̂+1)). We thus proved the

induction and get ∆tn = O(τ1/(p̂+1)) for all n. This gives us the assumption on step-sizes
as needed by Theorem 3.1 and convergence in the solution in the grid-points by Corollary
2, with a rate of O(τp/(p̂+1)).

Now, we want to show that we fulfill assumption (19) in Theorem 4. Taking a single

step of size ∆t
(k)
n from tn, to the quadrature evaluation point t

(k)
n ∈ (tn, tn+1), with the

scheme N tn,∆t
(k)
n

(k) , gives the error

e(k)n = u(t(k)n )− u(k)
n = N tn,∆t

(k)
n

(k) un −M tn,∆t
(k)
n u(tn)

= M tn,∆t
(k)
n

︸ ︷︷ ︸

= O(1)

en
︸︷︷︸

= O(τp/(p̂+1))

+

(

N
tn,∆t

(k)
N

(k) −M tn,∆t
(k)
n

)

un

︸ ︷︷ ︸

= O
((

∆t
(k)
n

)p)

.
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Here we have ∆t
(k)
n ≤ ∆tn = ∆trefn + O(∆T 2

ref) = O(τp/(p̂+1)). Hence we have e
(k)
n =

O(τp/(p̂+1)) and fulfill assumption (19) of Theorem 4 for q = p̂+1, which gives us convergence

in the QoI with eJ = O(τmin(r, p)/(p̂+1)).

Thus our adaptive method is convergent in the QoI. The requirement of φj
−,min > 0 is

a requirement on controllability of the global error by means of the local error (26). For
a j which is linear in u this is equivalent to the local error not being in the nullspace of
j(t, ·). Possible consequences of it being in the nullspace of j(t, u) are shown in the following
example. A more general analysis of this is subject of the next section.

Example 6. In [24] the author describes using the lift-coefficient of the flow around a
cylinder as density function j(t,u), which changes sign over time, implying it has zeros. It
is observed that large timesteps are chosen when the lift-coefficient is close to zero, leading
to ”catastrophical results”. By the description of this example we can see criterion (32) not
being fulfilled and thus not guaranteeing convergence in the QoI.

We now discuss the time-integration schemes for the quadrature evaluation points, as
needed in the assumptions of Theorem 5. Here, we only need a solution for the points, that
are not part of the grid. This is relevant only for quadrature schemes of order r > 2, for
r = 2 there is the trapezoidal rule. One can also use linear interpolation of the solution at
grid points, which can be formally expressed using a combination of the identity operator
and N tn,∆tn , using suitable weights. Linear interpolation will, however, yield at most

e
(k)
n = O(τ2/(p̂+1)).

We instead want to use RK schemes and use the already calculated stage derivatives. To

determine weights of RK schemes for intermediate points t
(k)
n = tn + γk ∆tn for γk ∈ (0, 1]

one has to modify the RK order conditions the following way:
Taking the order conditions for order p, e.g.

∑

s bscs =
1
2 for p = 2, one has to multiply

the right-hand side by γpk. This becomes clear when looking into the details of a proof on
order conditions [11, pp. 142].

Example 7. Assume the classic 4th order Runge-Kutta scheme for time-integration. Since
the convergence rate in the QoI (21) is determined by the minimum order of quadrature
and time-integration scheme, we pick the Simpson rule (r = 4) for quadrature. To get a
4th order (3rd order local) solution for the point tn + ∆tn/2 one can use the RK weights
b∗ = 1

24(5, 4, 4,−1) for the same stage derivatives.

3.3 The nullspace of j(t,u) and global error propagation

Convergence of a method is a statement for the limit τ → 0 and does not regard global error
dynamics. Here, we analyse them to make a qualitative statement about the grid obtained
from the goal oriented adaptive method for τ > 0 not in the limit. We establish guidelines
to predict grid quality and thus performance of the goal-oriented adaptive method.

We assume a QoI with a density function that is linear in u,

j(t,u(t)) = wTu(t), wi ≥ 0.
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Considering the split (20) of eJ , the quadrature error does not involve the numerical solution.
Global error propagation only appears in the time-integration part of the error, which in
this case is given by

|Jh(u)− Jh(uh)| ≤
N−1∑

n=0

∣
∣
∣
∣
∣
∆tn

s∑

k=0

σkw
Te(k)n

∣
∣
∣
∣
∣
.

We define a weighted seminorm ‖ · ‖w : Rd 7→ R by

‖x‖w :=

d∑

i=1

wi|xi|, wi ≥ 0. (35)

This is a seminorm, since it may have a non-trivial nullspace if wi = 0 for some indices i.
Throughout this section, we assume ‖ · ‖w to have a non-trivial nullspace.

Using (35) we get the bound

|Jh(u)− Jh(uh)| ≤
N−1∑

n=0

∆tn

s∑

k=0

σk‖e
(k)
n ‖w

and we need to further investigate how ‖e
(k)
n ‖w is affected by global error propagation.

Starting from (23) - (25), we extract the error corresponding to a single quadrature evalu-
ation point and get

j(tn+1,e
(k)
n+1) = j

(

tn+1,M
tn,∆tn
(k) un

)

− j
(

tn+1,M
tn,∆tn
(k) u(tn)

)

+ j
(

tn+1,N
tn,∆tn
(k) un

)

− j
(

tn+1,M
tn,∆tn
(k) un

)

.

Replacing j by ‖ · ‖w yields

‖e
(k)
n+1‖w ≤

∥
∥
∥M

tn,∆tn
(k) un −Mtn,∆tn

(k) u(tn)
∥
∥
∥
w

︸ ︷︷ ︸

global error propagation

(36)

+
∥
∥
∥

(

N tn,∆tn
(k) −Mtn,∆tn

(k)

)

un

∥
∥
∥
w

︸ ︷︷ ︸

global error increment

. (37)

We now want to find a bound for the global error propagation term (36) depending on en.
For this we use Lipschitz-conditions.

Assume a map f : U → W fulfills the Lipschitz condition

‖f(u)− f(v)‖W ≤ L‖u− v‖U

with some constant L and suitable norms for the spaces U and W . The Lipschitz-norm of
f is the minimal L fulfilling the Lipschitz condition, cf. [23]. We can define an according
Lipschitz-seminorm in the following way.
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Definition 4. Assume a map f : U → W with ‖ · ‖w being a seminorm on W and ‖ · ‖U
being a norm on U . We define the Lipschitz-seminorm (with respect to a given norm on U)
by

Lw[f ] := sup
u 6=v

‖f(u)− f(v)‖w
‖u− v‖U

,

where u,v ∈ U .

Due to the possible non-trivial nullspace, we yet require a norm in the denominator. We
can use this definition to bound the global error propagation in (36) - (37) by

‖e
(k)
n+1‖w ≤ Lw[M

tn,∆tn
(k) ] ‖en‖U +

∥
∥
∥

(

N tn,∆tn
(k) −Mtn,∆tn

(k)

)

un

∥
∥
∥
w
,

where ‖ · ‖U is a norm. It will be non-zero in the nullspace of ‖ · ‖w. For a non-trivial
nullspace this can be problematic, which we first illustrate by a simple test case and later
using numerical test problems in section 4.

To get a better idea of the dynamics, we look at the linear case f(u) = Au and take
‖ · ‖U to be the 1-norm.

Lemma 8. The Lipschitz-seminorm of a linear operator A ∈ Rn×m, with respect to the
1-norm, is given by

‖A‖w = sup
‖x‖1=1

‖Ax‖w = max
j=1,..., n

(
n∑

i=1

wi|aij |

)

. (38)

Proof. The first form using the supremum is obtained by defining x := u − v and scaling
‖x‖1 6= 0 to ‖x‖1 = 1 using the homogeneity of the seminorm. For the second part we have

‖Ax‖w =

n∑

i=1

wi

m∑

j=1

|aijxj| =
n∑

i=1

wi

m∑

j=1

|aij ||xj |

=
m∑

j=1

|xj |
n∑

i=1

wi|aij | ≤
m∑

j=1

|xj |

(

max
j=1,...,m

n∑

i=1

wi|aij |

)

.

Using the supremum over all ‖x‖1 = 1 yields the result.

Thus the Lipschitz-seminorm of a linear operator is a (weighted) column max-seminorm
of the given matrix.

Example 9. Consider

A =

(
2 1
0 4

)

, x =

(
1
2

)

, w =

(
1
0

)

⇒ Ax =

(
4
8

)

.
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We have ‖A‖w = 2, ‖x‖w = 1, ‖x‖1 = 3 and ‖Ax‖w = 4. From (38) we get the inequality

‖Ax‖w ≤ ‖A‖w‖x‖1.

Here we fulfill ‖Ax‖w ≤ ‖A‖w‖x‖1, but have ‖Ax‖w � ‖A‖w‖x‖w. This shows the in-
equality ‖Ax‖ ≤ ‖A‖‖x‖ for norms does not hold for seminorms.

Consider the flow map and weights

M =

(
m11 m12

m21 m22

)

, w =

(
1
0

)

.

The diagonal entries of M describe dampening or amplification in the nullspace or image
and the off-diagonal entries describe (scaled) transport from the nullspace into the image
or vice versa. This can also be formulated in an analogous blockwise formulation, then the
diagonal blocks m11 and m22 may include transport inside the nullspace resp. image.

Dampening is generally favorable and amplification may be unavoidable if it is part of
the ODE/PDE. Transport from the image into the nullspace is unproblematic, but trans-
port from the nullspace to the image can be highly problematic. In this example the
corresponding component is m21.

We choose timesteps to control the global error increments (37) in the image. Controlling
the timesteps we try to keep the seminorm of these increments below a given tolerance. We
do not control the error increments in the nullspace, which can be problematic if errors from
the nullspace are transported into the image.

As simulating a process results in errors regardless of the step-size, this is a question of
sufficiently resolving relevant processes. Assume a process in the nullspace is faster than a
process in the image at a given time. The timesteps are chosen to sufficiently resolve the
slow process in the image. The process in the nullspace remains under-resolved, its error
exceeding the tolerance. If this error is then transported into the image, the performance
of the goal oriented adaptive method suffers.

Likewise the goal oriented controller performs well, if all processes whose errors end up
in the image, are sufficiently resolved. This can be due to the image containing the processes
which require smaller timesteps. The other case is that processes in the nullspace remain
under-resolved but have neglectable impact on J(u). This may be due to strong damping
in m22 or lack of transport with m12 being small.

Due to potentially complicated dynamics of the system, it is hard to clearly identify
which processes are neglectable.

Example 10. In [25] the author simulates flow-driven fracturing of an obstacle. The QoI
j(t,u) is the displacement of the obstacle in flow direction, measured at the tip of the outflow
edge. Using this density function to control timesteps, there may be a small delay from the
flow building up around the obstacle and the displacement occurring. This delay would result
in choosing too large timesteps when the displacement is just starting to grow, but the flow
pattern around the obstacle is already beginning to form. The author observes significant
error reductions after a certain tolerance, which may be the point at which the inflow is
sufficiently resolved.
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4 Numerical Results

We now test the results of Theorem 4 on convergence rates numerically. Further we compare
performance of the DWR method and the local error based adaptive methods. Verification
of the results of section 2.2 are not presented as they are well established.

The experiments were run on a Intel i7-3930K 3.20 GHz CPU and implemented in
Python 2.7 using FEniCS [13].

The code is available at http://www.maths.lu.se/fileadmin/maths/personal_sta
ff/PeterMeisrimel/goal_oriented_time.zip.

The following specifications are shared for all test-cases. For local error based methods
using timestep-controllers, we bound the rate by which timesteps change [11] by

∆tn+1 = ∆t min(fmax,max(fmin, ind)), ind =

(
τ

ℓ̃n

)1/(p̂+1)

. (39)

Here ℓ̃ = ‖ℓ̂n‖ for (13) resp. ℓ̃n = |ℓ̂jn| for (29). The purpose of this is to provide more
computational stability by preventing too large or too small timestep changes. In practice
this will not take effect for τ → 0. We use fmax = 3 and fmin = 0.01 and do not reject
timesteps. For the initial timestep we use ∆t0 = τ1/(p̂+1).

For the DWR method we use an initial grid with 10 equidistant cells. As refinement
strategy we use fixed-rate refinement [1] withX = 0.8 and Y = 0. This means we refine 80%
of cells corresponding to the largest errors, where refinement means to split the cell into two
equally sized cells. To approximate z ≈ z+h we use a finer grid, dividing all time-intervals
in half.

We refer to the adaptive method from section 2.2 as the ”Classic” method and to the
one from section 3 as the ”Goal oriented” method.

4.1 Test problem

As a simple test problem with known global error dynamics we consider

u̇(t) =

(
−1 1
0 k

)

u(t), u(t0) = u0 =

(
1
1

)

, t ∈ [t0, te]. (40)

We use [t0, te] = [0, 2] and vary the stiffness by k < 0.

DWR estimate

The unique solution to (40) is in C∞([t0, te]) × C∞([t0, te]). We define the finite element
space Vh := {u ∈ C([t0, te]) : u

∣
∣
In

∈ Pq(In)} denoting the space of continuous piece-wise

q-th order polynomials, where In = [tn, tn+1]. Using test-functions φh := (φ1, φ2) ∈ Vh×Vh

and uh := (u1, u2) ∈ Vh × Vh we have a weak formulation

∫ te

t0

(u̇1 + u1 − u2)φ1 + (u̇2 − k u2)φ2 dt = 0.
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Using (·, ·)In as the standard L2 scalar product over In, we have

N−1∑

n=0

(u̇1 + u1 − u2, φ1)In + (u̇2 − k u2, φ2)In = 0,

where the entire left-hand side defines the bilinear form A(uh,φh). Let z be the exact
adjoint solution and zh = (z1, z2) its finite element approximation, we get eJ = A(uh,z −
zh). We approximate z by z+

h = (z+1 , z
+
2 ) to get

eJ ≈ A(uh,z
+
h − zh)

.

N−1∑

n=0

∣
∣
∣
∣

∫ tn+1

tn

(u̇1 + u1 − u2)
(
z+1 − z1

)
+ (u̇2 + k u2)

(
z+2 − z2

)
dt

∣
∣
∣
∣

Defining

R1(t) := (u̇1 + u1 − u2)
(
z+1 − z1

)
,

R2(t) := (u̇2 + k u2)
(
z+2 − z2

)
,

we get the final error estimate ηh(uh) using the composite trapezoidal rule

η(uh) :=

N−1∑

n=0

∆tn
4

∣
∣
∣
∣
∣

2∑

i=1

Ri(tn) + 2Ri(tn +∆tn/2) +Ri(tn+1)

∣
∣
∣
∣
∣
.

4.1.1 Numerical verification of Theorem 4

We first verify Theorem 4 for the goal oriented method. Figure 1 shows results for the Crank-
Nicolson scheme with Implicit Euler for error estimation, trapezoidal rule for quadrature
and a range of different density functions. With p, p̂ = (2, 1) and r = 2, we expect at least
eJ = O(τ), which the plots clearly show.

Further we consider fourth order schemes p = r = 4 for the goal oriented adaptive
method with time-dependent density functions j. We use Simpson’s rule for quadrature and
the classical Runge-Kutta scheme for time-integration. As embedded scheme we use the
weights b̂ = 1

3(1, 1, 0, 1)
T , which give a second order (third order for autonomous systems)

solution. To get a fourth order solution in tn+∆tn/2 needed by the Simpson rule we use the
weights b∗ = 1

24 (5, 4, 4,−1)T . As the test problem (40) is autonomous we have p, p̂ = (4, 3).
With r = 4 and 4th order solutions for all evaluation points of the quadrature scheme, we
expect to get eJ = O(τ) = O(N−4) from Theorem 4. This can be observed in Figure 2.

4.1.2 Method comparison and performance tests

We now compare the DWR method with the local error based classic and goal oriented
method. For the DWR method we additionally have the estimate η(uh) of the error eJ ,
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Figure 1: Verification of Theorem 4 using the goal oriented adaptive method on problem
(40) for k = −1 (left) and k = −100 (right), the legend shows j(t,u).
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Figure 2: Verification of Theorem 4 using goal oriented adaptive method on problem (40)
for k = −1, using 4-th order schemes, the legend shows j(t,u).

which we denote by ”DWR Est” in Figures, the actual error is denoted by ”DWR Err”.
We only consider the final grid with DWR Est = η(uh) ≤ τ . We use second order time-
integration for both DWR and the local error methods. As DWR requires a variational
formulation, we use the Crank-Nicolson scheme for time-integration and for the local error
based methods Implicit Euler for error estimation. For quadrature we use the trapezoidal
rule.

We compare methods in terms of computational efficiency (error vs. computational time
spent) and grid quality (error vs. number of timesteps). We consider the density functions
j(t,u) = u1 for k ∈ {−1,−100} (Figures 3, 5) and j(t,u) = u2 for k = −1 (Figure 4).
Results for DWR are considered first and the local error based adaptive methods are then
discussed based on the results of section 3.3.

Looking at Figures 3 - 5 and considering the actual error (DWR Err), we see the method
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Figure 3: Performance comparison of the various methods for problem (40) for k = −1 and
j(t,u) = u1.
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Figure 4: Performance comparison of the various methods for problem (40) for k = −1 and
j(t,u) = u2.

produces the best grids. This is expected, since the method uses global grid adaptation.
But the DWR method is significantly slower in performance due to the need of solving
adjoint equations in computing the error estimate.

The differences in the local error methods have to be discussed for each case individually.
For k = −1 and j(t,u) = u1, see Figure 3, the derivative of u1 is slightly smaller, due to
the additional off-diagonal term. Thus only controlling the error in the first component
under-resolves the second component, which is relevant to J(u) due to coupling. While not
immediately evident, we do not fulfill the criterion (32) needed for convergence in the QoI,
we have

j(t,φ(t,u(t))) =
1

2
e−t(t− 1), (41)

meaning the error estimate vanishes at t = 1 for τ → 0. As a result we do not have
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Figure 5: Performance comparison of the various methods for problem (40) for k = −100
and j(t,u) = u1.

convergence in the QoI for τ → 0, since the timestep taken at t = 1 will tend to infinity.
This trend can be observed when looking at the timesteps over time in Figure 6, which form
an upward cusp. We are, however, using an extremely small tolerance of τ = 10−14 and
have the error eJ ≈ 4 · 10−13, which is already close to machine zero. This shows that the
requirement (32) may not be a strict requirement on convergence in the QoI in practice for
some problems.

Figure 6: Timesteps for numerical solution of (40) for j(t,u) = u1, k = −1 and τ = 10−14.
A cusp at t ≈ 1 can be observed, where the principal error function (41) has a zero. Here
we did not use the step-size limiter (39).

In the case of k = −1 and j(t,u) = u2, see Figure 4, we do control the error in the fastest
process with the goal oriented method. Thus the chosen timesteps sufficiently resolve all
processes. The results show that the two local error based methods have grids of identical
quality and require the same computational effort.
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For k = −100 and j(t,u) = u1, see Figure 5, we similarly to the case of k = −1 do not
control the fastest process, but the impact of u2 on J(u) is small. It turns out the efficiency
gain in not properly resolving the second component is worth the additional error, resulting
in a more efficient method by a factor of around two.

4.2 Convection-diffusion equation

Moving to a problem involving a spatial component, we look at a linear convection-diffusion
equation

∂tu(t,x) + av · ∇u(t,x)− γ∆u(t,x) = f(t,x), (t,x) ∈ [t0, te]× Ω,

u(t0,x) = u0(x), x ∈ Ω, (42)

∇u · n = −cu(t,x), (t,x) ∈ [t0, te]× ∂Ω.

We want to model the case of having error build-up in the nullspace of j(t, u), which is
transported into its image. We consider the domain Ω = [0, 3] × [0, 1] and restrict the
source term f to Ωf = [0.25, 0.75] × [0.25, 0.75]. As QoI we consider

J(u) =

∫ te

t0

j(t, u(t))dt, j(t, u(t)) =

∫

Ω∗

u(t,x)

te − t0
dx. (43)

with Ω∗ = [2.25, 2.75] × [0.25, 0.75]. For a visualization of the spatial domain, see Figure 7,
for the time-domain we use [t0, te] = [0, 6].

Ωf Ω∗

Ω

v

0

0.25

0.75

1

0 0.25 0.75 2.25 2.75 3

Figure 7: Geometry of Ω for the convection-diffusion equation problem (42).

We use the source term

f(t,x) =







5 t3, x ∈ Ωf and t < 1,

5 (2− t)3, x ∈ Ωf and 1 ≤ t < 2,

0, x /∈ Ωf or 2 ≤ t,

providing a spike-shaped build-up in the first 2 time units. The remaining parameters are
a = 0.5, γ = 0.01, c = 0.15 and v = (1, 0)T . We use the initial condition u0(x) = 1. Since
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we do not have an analytical solution, we use as reference solution from using the classic
adaptive method with τref = τmin/10, where τmin is the minimal tolerance for which tests
are done.

Discretization

For our convection-diffusion problem we have a weak solution in the space

V := H1(t0, te : L
2(Ω)) ∩ L2(t0, te : H

1(Ω)),

see [19]. We discretize time along the points tn with In := [tn, tn+1] and space by 2 (3 · 32) ·
32 = 6144 regular triangular cells K defining the finite element mesh. We define the global
finite element space by

Vh,k = {v ∈ L∞(t0, te;H
1(Ω)) : v(·, t)|Qn

K
∈ Q1(K),

v(x, ·)|Qn
K
∈ P q(In),∀ Qn

K},

where P q(In) is the space of polynomials on In of degree up to q and Q1(K) being the space
of polynomials on K with partial degrees up to 1. In this space the variational formulation
becomes

Ah(uh, φh) = F (φh)

for all φ ∈ Vh,k with the bilinear form

Ah(uh, φh) :=

∫ te

t0

(∂tuh, φh) + a(v · ∇uh, φh)− γ(∆uh, φh)dt

and right-hand side

F (φh) =

∫ te

t0

(f(t), φh)dt.

The weak formulation is
∫ te

t0

(∂tuh + av · ∇uh − f, φh) + γ(∇uh,∇φh) + γ c(uh, φh)∂Ωdt = 0,

from which one can directly write down the θ-method yielding both Crank-Nicolson and
Implicit Euler.

We have the adjoint equation

−zt(t,x)− av · ∇z(t,x)− γ∆z(t,x) = 1
te−t0

∣
∣
∣
Ω∗

, (t,x) ∈ [t0, te]× Ω,

z(te,x) = 0, x ∈ Ω,

∇z(t,x) · n = −
a

γ
z(t,x)v · n− c z(t,x), (t,x) ∈ [t0, te]× ∂Ω.
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The weak formulation is
∫ te

t0

(zh + av · ∇zh, φh)Ω + γ(∇zh,∇φh)Ω +

( 1
te−t0

, φh)Ω∗
− (c γ zh + a zh v · n, φh)∂Ωdt = 0.

DWR Estimate

We have

eJ =

∣
∣
∣
∣

∫ te

t0

∫

Ω
Ah(uh, z − zh)− F (zh)dx dt

∣
∣
∣
∣

=

∣
∣
∣
∣

∫ te

t0

∫

Ω
((uh)t + av · ∇uh − γ∆uh − f)(z − zh)dx dt

∣
∣
∣
∣
,

where we approximate z ≈ z+h using a finer grid in time. Splitting this by timesteps gives

eJ .

N−1∑

n=0

∣
∣
∣

∫ tn+1

tn

∫

Ω
((uh)t + av · ∇uh − γ∆uh − f)(z+h − zh)dx

︸ ︷︷ ︸

=:Rz(t)

dt
∣
∣
∣.

We use the composite trapezoidal rule to get the error estimate

eJ . ηh(uh) :=
N−1∑

n=0

∆tn
4

|Rz(tn) + 2Rz(tn +∆tn/2) +Rz(tn+1)| ,

using linear interpolation for uh and zh in computing Rz(tn +∆tn/2).

4.2.1 Method comparison and performance tests

We use the same schemes for time-integration as in section 4.1.2. We again compare DWR
with the two local error based adaptive methods. The way we set up the problem, we expect
the goal oriented method to perform poorly. Due to the source term being in the nullspace
of j(t, u), the resulting timesteps will not sufficiently resolve it. The convection transports
the build-up from the source term and its error into the image of j(t, u). This leads to an
increase in error, which can no longer be controlled by the step-size.

The results can be seen in Figure 8. One can observe the classic adaptive method
performs fine and the goal oriented adaptive method shows the expected poor performance.
In Figure 9 one can see the timesteps chosen by the goal oriented method are too large to
resolve the source term. Nevertheless we have convergence in the QoI with eJ = O(τ), as
predicted by Theorem 4, see Figure 9.

The DWR method is computationally expensive, but gives high quality grids. Here, we
used it to only adapt the grid in time to get a fair comparison with the other methods.
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Figure 8: Performance comparison of the various methods for problem (42) with QoI (43).
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Figure 9: Solving problem (42) with QoI (43). Left: Tolerance over error for the goal
oriented adaptive method; Right: Timesteps chosen by the different methods for τ = 10−6.

Changing the sign of the convection term we expect good results for the goal oriented
method, since it is no longer required to properly resolve the source term. Considering only
[t0, te] = [0, 3] we get the results seen in Figure 10.

The goal oriented method performs well in this example, but not better than the classic
one. While not properly resolving the source term does allow larger timesteps, it does not
seem to yield an advantage in terms of computational efficiency or grid quality. The DWR
method performs better than in the previous examples, but is still slower than the local
error based methods.

4.3 Coupled Heat equations

As a third test problem we consider the coupling of two heat equations with different
thermal conductivities and diffusivities. As QoI we choose the average heat transfer over
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Figure 10: Performance comparison of the various methods for problem (42) and QoI (43).
We changed the sign in v and use te = 3.

their interface Γ. The model equations for this problem are

αm
∂um(t,x)

∂t
−∇ · (λm∇um(t,x)) = 0, (t,x) ∈ [t0, te]× Ωm, m = 1, 2,

u(t, x) = 0, (t,x) ∈ [t0, te]× Ωm \ Γ,

u1(t,x) = u2(t,x), λ2
∂u2(t,x)

∂n2
= −λ1

∂u1(t,x)

∂n1
, (t,x) ∈ [t0, te]× Γ, (44)

um(t0,x) = u0m(x), x ∈ Ωm, m = 1, 2.

The QoI

J(u) =

∫ te

t0

∫

Γ

1

te − t0
λ1

∂u1(t,x)

∂n1
dx dt = −

∫ te

t0

∫

Γ

1

te − t0
λ2

∂u2(t,x)

∂n2
dx dt, ,

describes the time-averaged heat transfer over the interface. We consider the spatial domains
Ω1 = [0, 1] × [0, 1], Ω2 = [1, 2] × [0, 1], Γ = Ω1 ∩ Ω2 and [t0, te] = [0, 1]. For discretization
in space we use standard linear finite elements for both domains with identical triangular
meshes for ∆x = 1/21. In the discrete case the QoI becomes a summed finite difference,
which we calculate based on the solution in Ω1.

For time-integration we use the SDIRK2 scheme, which is implicit with (p, p̂) = (2, 1).
To solve the problem arising from the so called transmission conditions (44) on the interface
Γ, we use the Dirichlet-Neumann iteration for each stage derivate of SDIRK2 [3]. In the
heat equations we choose the parameters α1 = 0.6, λ1 = 0.3 and α2 = λ2 = 1. Based
on the results of [17], this gives us a convergence rate of approximately α1/α2 = 0.6 for
the Dirichlet-Neumann iteration for ∆t → 0. The cancellation criterion for the Dirichlet-
Neumann iteration is based on the update between two iterates for which we use a tolerance
of 10−10, such that the arising error does not exceed the local errors.
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Implementation of the discretization and methods are thanks to Azahar Monge, more
details on the discretization in space are found in [16]. We use the initial timestep ∆t0 = τ
for all computations. As our reference we use the solution from the classical adaptive
method with τ = 10−7.

4.3.1 Method comparison and performance tests

Based on the results from the previous problems, we no longer consider the DWR method.
While we specifically considered both grid quality and computational efficiency because of
the DWR method, we now look only at grid quality, as these two performance measures are
essentially identical here.

As our problem has zero Dirichlet boundary conditions and no source term, the solution
will vanish. The question is how much heat transfer over the interface will occur during
this process.

We consider the problem for two different sets of initial conditions given by

u01(x) =
∣
∣200 sin(π/2x21) sin(π x22)

∣
∣ , (45)

u02(x) =

{

200, x ∈ Ω2/∂Ω,

0, otherwise.
(46)

With (45), the initial conditions at the interface x1 = 1 are symmetric, but the steepest
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Figure 11: Performance comparison of the local error based adaptive methods for the
coupled heat problem with initial conditions (45) on the left and (46) on the right.

heat gradient is inside Ω2. The choice of timesteps of the classical method is governed by
the internal dynamics of Ω2, whereas the goal-oriented method will choose larger timesteps,
especially in the beginning. Not correctly resolving the internal dynamics of Ω2 does,
however, not have a big impact on the values at the interface, due to diffusion. The results
in Figure 11 (left) show that the grid quality of both methods are on the same parameterized

31



curve for sufficiently small tolerances. For the same tolerance, the classical method gives a
smaller error, since it resolves the internal dynamics of Ω2.

For the initial condition (46), the heat transfer over the interface is a good measure of
the speed of the diffusion process. While the heat gradient is likely to be steeper at the
non-interface boundaries of Ω2, these areas have little to no impact on our QoI. Hence the
classical method will choose smaller timesteps than necessary for the QoI. This is confirmed
by the results in Figure 11 (right), which show that the goal oriented method performs
better.

The timesteps over time in Figure 12 show that for the initial conditions (45), the
chosen timesteps have a similar shape, but are shifted. This explains that the performance
for both methods lie on the same curve for τ → 0. However, for the initial condition (46)
the timesteps have a different shape, one which gives better performance.

0.0 0.2 0.4 0.6 0.8 1.0
t

10-7

10-6

10-5

10-4

10-3

10-2

10-1

∆t

Timestepsizes, τ=10−5
Classic
Goal Or.

0.0 0.2 0.4 0.6 0.8 1.0
t

10-7

10-6

10-5

10-4

10-3

10-2

10-1

∆t

Timestepsizes, τ=10−4
Classic
Goal Or.

Figure 12: Timestep series from solving the coupled heat problem with initial conditions
(45) for τ = 10−5 on the left and (46) for τ = 10−4 on the right.

5 Conclusions

We derived a simple and easy to implement goal oriented local error estimator. For the
resulting goal oriented adaptive method we prove convergence in the QoI. The constructive
nature of our proof gives us necessary requirements for convergence and on ∆t0. Specifically,
we require the error estimate to be non-zero at all times. While this is a natural assumption
on controllability, one has to keep in mind that the error estimate is not based on a norm
and can have a non-trivial nullspace.

A broad range of initial timesteps are allowed, as long as they are of the right order
with respect to the tolerance. This means our results hold for any reasonable scheme used
to compute initial timesteps.

Furthermore we show convergence rates and sufficient requirements on the involved
schemes to get high convergence rates in the QoI. This involves the need for high order
solutions in the quadrature evaluation points, for which we describe how to get the right
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coefficients for RK schemes. The structure of our proof allows to immediately conclude the
same result for closely related controllers.

We further derived guidelines to predict performance of the goal oriented method in re-
lation to classical adaptive methods. These are based on analyzing global error propagation
with respect to the nullspace of the error estimator. The goal oriented adaptive method
does not regard errors in the nullspace of the error estimator when choosing timesteps.
If processes in the nullspace are not sufficiently resolved by the chosen timesteps and the
resulting error affects the QoI, due to global error propagation, performance of the goal
oriented method will suffer. The goal oriented method will perform well, if all relevant
processes are sufficiently resolved. To use these guidelines one requires sufficient knowledge
of the global error dynamics of a problem.

In numerical experiments designed to test these guidelines, we confirm the results on
convergence rates and that the guidelines hold true for our test-cases. We test a linear
system with two variables with varying stiffness for various QoIs. As more complex test
cases we have a 2D convection diffusion equation with source term that is outside the QoI.
Further we test two coupled heat equations with varying coefficients and have heat transfer
over the interface as the QoI.

The tests show that it is easy to correctly predict bad performance of the goal oriented
method. It is, however, hard to predict if the goal oriented method will perform better than
a classical norm-based adaptive method.

The results further show that the local error based adaptive methods perform better
than the DWR method. The goal oriented method is shown to perform well in many cases,
it is, however, not recommended to use it as a black-box solver for general goal oriented
problems.
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