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Abstract

We prove characterizations of positive dependence for a general class of time-
inhomogeneous Markov processes called Feller evolution processes (FEPs) and for
jump-FEPs. General FEPs can be analyzed through their time and state-space
dependent (extended) generators. We will use the time and state-space dependent
(extended) generators and time and state-space dependent Lévy measures to char-
acterize the positive dependence of general FEPs and jump-FEPs, respectively.
We conclude with applications of these results to additive processes, which are
time-inhomogeneous Lévy processes, often arising as useful examples in financial
modeling.
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time-inhomogeneous Markov process, comparison of Markov processes
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1 Introduction

Feller processes are Markov processes which are useful models of dynamical systems
that arise in finance and physics [3]. Such processes are time-homogeneous and can
be spatially inhomogeneous. A more general class of Markov processes are Feller evo-
lution processes (FEP). General FEPs can be spatially inhomogeneous and are time-
inhomogeneous. Analogous to Feller processes, the Markov evolution of the FEP, called
the Feller evolution system (FES), is strongly continuous. FEPs provide the structure
for general temporally inhomogeneous models, such as additive processes and certain
stochastic volatility models.

Of a particular interest is the study of the dependence between the marginal pro-
cesses and the dependence over time, which we call spatial dependence and temporal
dependence, respectively. Some different notions of positive dependence include associ-
ation (A), positive supermodular association (PSA), positive supermodular dependence
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(PSD), and positive orthant dependence (POD). One can better study the evolution of
the process if the process satisfies a particular notion of spatial or temporal positive
dependence.

It is known that (rich) Feller processes X = (Xt)t≥0 on Rd can be characterized by
their state-space dependent characteristic triplet (b(x),Σ(x), ν(x, dy)), where b : Rd → Rd

describes the non-random behavior, Σ : Rd → Rd×d describes the continuous diffusion-like
behavior, and ν(·, dy) is a measurable kernel describing the jump behavior of the process.
Feller processes are often called Lévy-type processes, given that they behave locally like
a Lévy process (for more on Feller processes, see [5]).

Feller evolution processes are Markov processes that are time-inhomogeneous and
spatially inhomogeneous. Analogous to Feller processes, they also have a characteristic
triplet (bt(x),Σt(x), νt(x, dy)), describing non-random, diffusion, and jump behavior, re-
spectively, except that the characteristics are also time-dependent. In this paper, when a
process with a characteristic triplet does not have a diffusion component Σ, we will refer
to that process as a jump-process.

For Lévy processes X, the characterization of the positive dependence structures
has been done by Herbst and Pitt (1991) [10] in the case of Brownian motion with drift, i.e.
X ∼ (b,Σ, 0) and by Samorodnitsky (1995) [19] in the case of jump-Lévy processes, i.e.
X ∼ (b, 0, ν). Samorodnitsky proved that jump-Lévy processes are spatially associated
if and only if ν is concentrated on the positive and negative orthants Rd

+ and Rd
−, i.e.

ν((Rd
+ ∪ Rd

−)c) = 0. (1)

This equivalence was also proven by Houdré et. al. (1998) using covariance identities
[11]. This result has since been extended to temporal association of jump-Lévy processes,
and also to weaker forms of dependence in PSD and POD, by Bäuerle (2008) [2]. For
general time-homogeneous Markov processes, characterizations for spatial and temporal
association based on the generator have been given by Liggett (1985) [14, p.80-83] and
extended by Szekli (1995) [21, p.155] and Rüschendorf (2008)[17]. Specifically, for Feller
processes, Mu-fa Chen (1995) characterized spatial association for stochastically mono-
tone diffusion-like processes, (b(x),Σ(x), 0), and Jie Ming Wang (2009) characterized
spatial association for stochastically monotone jump-Feller processes, (b(x), 0, ν(x, dy)),
under the condition

ν(x, (Rd
+ ∪ Rd

−)c) = 0, ∀x ∈ Rd (2)

Tu (2019a) extended Wang’s results for association of jump-Feller processes with relaxed
continuity and integrability conditions and also extended Liggett’s characterization of as-
sociation in [14, p.80] from the generator to the extended generator, an integro-differential
operator. Tu also extended the characterization to weaker positive dependence structures:
WA, PSA, PSD, POD, PUOD, and PLOD [23].

As far as the author is concerned, little has been done on characterizing depen-
dence structures for time-inhomogeneous Markov processes. The goal of this paper is
provide such characterizations for FEPs, a general class of time-inhomogeneous Markov
processes. This characterization will be based on the extended generators of the process.
Moreover, we have interest in jump-FEPs, i.e. having characteristics (bt(x), 0, νt(x, dy)).
We will provide a characterization of positive dependence based on the time-dependent
Lévy measure:

νt(x, (Rd
+ ∪ Rd

−)c) = 0, ∀t ≥ 0, ∀x ∈ Rd. (3)
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We will prove condition (3) is equivalent to spatial association, WA, PSA, PSD,
POD, PUOD, and PLOD of the Feller evolution process. Our technique will be based
on Böttcher’s transformation of FEP into a Feller process by adding another dimension
to the process and space. From there, we can apply the results by Tu in [23] on Feller
processes to study the spatial dependence of the FEP. Then we will provide examples to
which we can apply the results, namely additive processes. Additionally, the techniques
of our proofs can be used to prove comparison theorems of Feller evolution processes.

It is important to clarify the distinction between this paper and a concurrent
paper of ours, titled “On the association and other forms of positive dependence for
Feller processes” [23]. In the present paper, we characterize positive dependence for
FEPs, which are more general than the time-homogeneous Feller processes studied in
[23]. However, we need the results in [23] to prove the results in this present paper.
More specifically, we utilize Böttcher’s transformation of time-inhomogeneous FEPs into
time-homogeneous Feller processes (see [4]) and, in a non-trivial way, apply our results
in [23] to prove the positive dependence results of FEPs in this paper. Additionally, the
results here apply to a larger class of Markov processes, like additive processes. Hence,
we felt that the difference in temporal behavior between FEPs and Feller processes, the
necessity of [23] to prove results in this paper, and the difference in technique of proof
are enough reason to have two distinct papers in this area.

Additionally, we want to distinguish between the results here and the paper by
Rüschendorf et. al. [18] due to some similarities. The authors of [18] prove compar-
ison theorems of time-inhomogeneous Markov processes, including FEPs and processes
with independent increments (PIIs). These theorems give conditions for comparing such
Markov processes based on certain function classes induced by stochastic orderings. Some
of the dependence structures we study in this paper are induced by the same stochastic
orderings. However, we focus on characterizing dependence structures in FEPs. Also, our
style of proof differs, in that we make use of Böttcher’s homogeneous transformation of
FEPs. Finally, we recognize that the comparison theorem we include in Section 4.2 is not
as general as [18, Thm.3.3], but it is interesting to show that Böttcher’s transformation
is another nice technique to prove comparison theorems for time-inhomogeneous Markov
processes.

Our paper is organized in the following way. In Section 2, we give some background
on the positive dependence structures, association, WA, PSA, PSD, POD, PUOD, and
PLOD. We also provide background on time-inhomogeneous Markov processes and Feller
evolution processes. We will also summarize Böttcher’s transformation of FEP to a
Feller process. In Section 3, we state and prove our main results about the positive
dependence structures of stochastically monotone jump-FEPs. Finally, in Section 4, we
provide applications to additive processes and comparison theorems.

2 Background

2.1 Positive dependence structures

We first give a brief background on various positive dependence structures. For a more
detailed description of these structures, see [23, 22, 16]. Let X = (X1, ..., Xd) be a
random vector in Rd. We say X is positively correlated (PC) if Cov(Xi, Xj) ≥ 0 for
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all i, j ∈ {1, ..., d}. This is one of the weakest forms of positive dependence, and we are
interested in stronger forms of positive dependence which will be of greater use in our
study of stochastic processes. We list them here.

Let X = (X1, ..., Xd) be a random vector in Rd.

Definition 2.1. X is associated (A) if we have

Cov(f(X), g(X)) ≥ 0,

for all f, g : Rd → R non-decreasing in each component, such that Cov(f(X), g(X))
exists.

Definition 2.2. X is weakly associated (WA) if, for any pair of disjoint subsets
I, J ⊆ {1, .., d}, with |I| = k, |J | = n,

Cov(f(XI), g(XJ)) ≥ 0,

where XI := (Xi : i ∈ I), XJ := (Xj : j ∈ J), for any f : Rk → R, g : Rn → R
non-decreasing, such that Cov(f(XI), g(XJ)) exists.

Definition 2.3. X is positive supermodular associated (PSA) if Cov(f(X), g(X)) ≥
0 for all f, g ∈ Fism := {h : Rd → R, non-decreasing, supermodular}. f Supermod-
ular means, for all x, y ∈ Rd, f(x ∧ y) + f(x ∨ y) ≥ f(x) + f(y), where x ∧ y is the
component-wise minimum, and x ∨ y is the component-wise maximum.

Now let X̂ = (X̂1, ..., X̂d) be a random vector such that for all i, X̂i
d
= Xi and X̂i’s

are mutually independent.

Definition 2.4. X is positive supermodular dependent (PSD) if, for all f : Rd → R
supermodular, Ef(X̂) ≤ Ef(X).

Definition 2.5. X is positive upper orthant dependent (PUOD) if for all t1, ..., td ∈
R,

P(X1 > t1, ..., Xd > td) ≥ P(X1 > t1)...P(Xd > td).

Definition 2.6. X is positive lower orthant dependent (PLOD) if for all t1, ..., td ∈
R,

P(X1 ≤ t1, ..., Xd ≤ td) ≥ P(X1 ≤ t1)...P(Xd ≤ td).

Definition 2.7. X is positive orthant dependent (POD) if X is PUOD and PLOD.
One can also state another equivalent definition to PUOD (PLOD). For i = 1, ..., d,

let fi : R → R+ be non-decreasing (non-increasing) functions. Then X = (X1, ..., Xd)
PUOD (PLOD) if and only if

E

(∏d
i=1 fi(Xi)

)
≥
∏d

i=1Efi(Xi).

Definitions 2.4-2.7 can also be stated in terms of stochastic orderings. For more
on this, we refer the reader to Müller and Stoyan’s book [16, Ch.3]. It is useful to
see the relationship between these different forms of positive dependence. We state the
relationships in Proposition 2.1.
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Figure 1: Implication map of various positive dependence structures

Proposition 2.1. The implications in Figure 1 hold.

Proof. Proofs for these implications can be found in [16, Ch.3] and [22]. Implications
involving PSD can be found in [7].

These notions of dependence can be extended from random vectors to stochastic
processes. We will define, in the following subsection, dependence in a time-inhomogeneous
Markov process.

2.2 Time-inhomogeneous Markov processes

Let X = (Xt)t≥0 be a Markov process in Rd on the space (Ω,G, (Gt)t≥0,P), where Ω is
the sample space, G is the σ-algebra, (Gt)t≥0 is the filtration, and P is the probability
measure. This means process X satisfies the Markov property:

P(Xt ∈ A|Gs) = P(Xt ∈ A|Xs), ∀ s ≤ t, A ∈ B(Rd).

We define the Markov evolution to be the family of linear operators (Ts,t)0≤s≤t<∞ on
Bb(Rd), the space of bounded functions from Rd to R, by

Ts,tf(x) = Ef(Xt|Xs = x).

We will simply write (Ts,t)s≤t to mean (Ts,t)0≤s≤t<∞ throughout this document. We say
Markov process X is normal if Ts,t : Bb(Rd)→ Bb(Rd) for all 0 ≤ s ≤ t <∞.

Proposition 2.2. A normal Markov process X with Markov evolution (Ts,t)s≤t satisfies
the following properties:

1. Ts,s = I for all s ≥ 0.
2. Tr,sTs,t = Tr,t, for all 0 ≤ r ≤ s ≤ t <∞ (Chapman-Kolmogorov).
3. f ≥ 0 implies Ts,tf ≥ 0 for all 0 ≤ s ≤ t <∞ (positivity-preserving).
4. ||Ts,t|| ≤ 1 for all 0 ≤ s ≤ t <∞ (contraction).
5. Ts,t1 = 1.

Proof. See Applebaum [1, p.144].

The time-inhomogeneous Markov processes that we will consider in this paper have
Markov evolutions which satisfy a property called strong continuity. Consider the Banach
space (C0(Rd), || · ||∞), where C0(Rd) are functions from Rd to R that are continuous,
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bounded, and vanish at infinity, and || · ||∞ is the sup-norm. We say the Markov evolution
is strongly continuous on C0(Rd) if for every pair 0 ≤ s ≤ t <∞

lim
(u,v)→(s,t)

||Tu,vf − Ts,tf ||∞ = 0, ∀f ∈ C0(Rd).

If a Markov evolution (Ts,t)s≤t on C0(Rd) is a strongly continuous, positivity-
preserving, contraction satisfying Chapman-Kolmogorov equations, then we call (Ts,t)s≤t
a Feller evolution system (FES) and its corresponding process X = (Xt)t≥0 a Feller
evolution process (FEP). The FES and FEP can be thought of as the time-inhomogeneous
analogue to Feller semigroups and Feller processes (see Böttcher et. al. [5] for background
on Feller processes).

For a FES, we can define a family of left and right generators. The right-generators
(A+

s )s≥0 of FES (Ts,t)s≤t is defined by

A+
s f = lim

h↘0

Ts,s+hf − f
h

for all f ∈ D(A+
s ), the subspace of functions in C0(Rd) for which the above limit exists

in || · ||∞. Similarly, the left-generators (A−s ,D(A−s ))s≥0 by

A−s f = lim
h↘0

Ts−h,sf − f
h

.

We can also express the left and right derivatives of the FES in terms of the left and right
generators:

1.
d

dt

+

Ts,t = Ts,tA+
t (forward eqn.)

2.
d

dt

−
Ts,t = Ts,tA−t

3.
d

ds

+

Ts,t = −A+
s Ts,t

4.
d

ds

−
Ts,t = −A−s Ts,t (backward eqn.).

Assume now that D(A+
s ),D(A−s ) ⊃ C∞c (Rd), the space of smooth functions with

compact supprt, for all s ≥ 0. By the theorem of Courrège [9], we have that for every
s ≥ 0, −A±s |C∞c (Rd) is a pseudo-differential operator:

A±s |C∞c (Rd)f(x) = (2π)−d/2
∫
Rd

eix·ξp±s (x, ξ)f̂(ξ)dξ (4)

where −p±s (x, ξ) is a continuous negative definite function (cndf) for each s ≥ 0 (see [12,
Ch.4.5]). We call p±s (x, ξ) the symbol of the generator A±s , and the (p±s (x, ξ))s≥0 the
family of symbols of the process. When C∞c (Rd) ⊂ D(A+

s ),D(A−s ) for all s ≥ 0, we
say that the generators have rich domain or that the associated Markov process is
rich. In the FESs we study, the left and right generators will coincide. Böttcher gives
conditions for this situation [4], which we write in the following theorem.

Theorem 2.1 (Böttcher (2013) [4]). Let (Ts,t)s≤t be a FES with left and right genera-
tors (A+

s ,D(A+
s ))s≥0 and (A−s ,D(A−s ))s≥0 with corresponding symbols (p+s (x, ξ))s≥0 and

(p−s (x, ξ))s≥0. If
p±s (x, ξ) is continuous in s for all x, ξ ∈ Rd (5)
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and is bounded, i.e. there exists C± > 0 such that

p±s (x, ξ) ≤ C±(1 + |ξ|2), ∀s ≥ 0, ∀x, ξ ∈ Rd, (6)

then A+
s = A−s for all s ≥ 0.

As a corollary to this theorem, conditions (5) and (6) give us just one family of
generators and symbols to consider: (As)s≥0 and (ps(x, ξ))s≥0. Throughout this chapter,
we often assume that ps(x, ξ) is s-continuous and bounded, i.e. satisfying (5) and (6),
respectively.

Assume now a rich domain, i.e. C∞c (Rd) ⊂ D(As) for all s ≥ 0, and ps(x, ξ) is s-
continuous and bounded. By 1-1 correspondence between cndfs and the Lévy-Khintchine
formula, we have the following representation:

ps(x, ξ) = ibs(x) · ξ − 1

2
ξ · Σs(x)ξ +

∫
y 6=0

(eiξ·y − 1− iξ · yχ(y))νs(x, dy), (7)

where, for each s ≥ 0, bs : Rd → Rd represents the non-random behavior, Σs : Rd →
Rd×d is a symmetric positive definite matrix which represents the continuous behavior,
and νs(x, ·) is Lévy measure on Rd for all x ∈ Rd which represents the jump behavior.
Function χ : Rd → R is called the cut-off function. Unless, we specify otherwise,
in this paper, we set χ(y) := 1(0,1)(|y|). We call (bs(x),Σs(x), νs(x, dy)) the (Lévy)
characteristic triplet of process X. We have for each s ≥ 0, an integro-differential
operator I(ps) defined on C2

b (Rd) by substituting the Lévy-Khintchine form in equation
(7) into (4), and, by elementary Fourier analysis,

I(ps)f(x) = bs(x)·∇f(x)+
1

2
∇·Σs(x)∇f(x)+

∫
y 6=0

(f(x+y)−f(x)−∇f(x)·yχ(y))νs(x, dy).

(8)
I(ps) clearly extends As onto C2

b (Rd), i.e. I(ps)|D(As) = As.
Now, we wish to define what dependence means in these processes.

2.2.1 Dependence, monotonicity in time-inhomogeneous Markov processes

Let Cb(Rd) be the space of continuous, bounded functions, and let Fi be the space of
functions from Rd to R that are non-decreasing componentwise. (Note: we often don’t
specify the dimension of the domain of the functions in Fi. This is because we often
intersect this space Fi with other spaces in which we do specify the domain. For example,
Cb(Rd)∩Fi would mean that Fi are non-decreasing functions on Rd, whereas Cb(Rn)∩Fi
would mean that Fi are non-decreasing functions on Rn.)

Definition 2.8. Let X = (Xt)t≥0 be a time-inhomogeneous Markov process with Markov
evolution (Ts,t)s≤t. We say X is spatially associated if for all s ≤ t, f, g ∈ Cb(Rd)∩Fi,
we have Ts,tfg ≥ Ts,tf Ts,tg.

Definition 2.9. Let X = (Xt)t≥0 be a time-inhomogeneous Markov process. We say X
is temporally associated if for all 0 ≤ t1 < ... < tn, (Xt1 , ..., Xtn) is associated in Rdn.

7



Remark 2.1. (i) The meaning of Definition 2.8 can be interpreted as the following.
For each x ∈ Rd and s ≤ t, Xt is an associated random vector conditioned on the
event {Xs = x}, i.e. E[f(Xt)g(Xt)|Xs = x] ≥ E[f(Xt)|Xs = x] · E[g(Xt)|Xs =
x]. Such a definition is more useful in applications. For example, see [15] for an
application in reliability theory.

(ii) We can define other forms of positive dependence in time-inhomogeneous Markov
processes if we replace “associated” in Remark 2.1(i) with “WA,” “PSA,” “PSD,”
“POD,” “PUOD,” or “PLOD.”

(iii) Our focus in this paper will be on spatial dependence. Lindqvist (1987) in [15]
refers to light conditions which make Definition 2.8 imply Definition 2.9. We refer
the reader to that paper.

Our interest will lie in Feller evolution processes which are stochastically mono-
tone. For a general time-inhomogeneous Markov process, this is defined in the following
way:

Definition 2.10. Let X = (Xt)t≥0 be a time-inhomogeneous Markov process with
Markov evolution (Ts,t)s≤t. We say X is stochastically monotone if for all s ≤ t,
f ∈ Cb(Rd) ∩ Fi, we have Ts,tf ∈ Fi.

There are few results in the literature, as far as the author can tell, regarding de-
pendence structures in time-inhomogeneous Markov processes. There are, however, sev-
eral useful results in the characterization of dependence structures in time-homogeneous
Feller processes, most notably Mu-fa Chen (1993) [6], Jie Ming Wang (2009) [24], and Tu
(2019a) [23]. Thus, to characterize positive dependence structures in Feller evolution pro-
cesses, we can transform the time-inhomogeneous FEP into a time-homogeneous Feller
process and apply results on Feller processes to answer questions about the FEP! We do
this transformation following the prescription given by Böttcher [4], and then use results
from Tu [23] to characterize the dependence structures in FEPs. We give an overview
of Böttcher’s transformation in the following subsection and highlight some important
results from his paper [4].

2.3 Time-homogeneous transformation of a time-inhomogeneous
Markov process

For the sake of brevity, we will omit background on Feller processes and general time-
homogeneous Markov processes. If the reader would like more background information
on those topics, please see [23] or [5].

Time-homogeneous Markov processes have very nice properties and analytical
tools. To take advantage of those tools in the time-inhomogeneous case, we can trans-
form our time-inhomogeneous process X into a time-homogeneous process X̃ by adding
another (deterministic) component to the process. We will outline the transformation of
X to X̃ in this subsection. We follow the prescription used in Böttcher [4].

Let X = (Xt)t≥0 be a time-inhomogeneous Markov process with sample space
(Ω,G, (Gt)t≥0,P), state space (Rd,B(Rd)), and Markov evolution (Ts,t)s≤t, and corre-
sponding Markov kernels (Ps,t)s≤t defined by

Ps,t(x,A) := Ts,t1A(x).
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We define a transformed process in the following manner.

Prescription 2.1. To define the new sample space, let Ω̃ := R+ × Ω, where elements

ω̃ = (s, ω), with s ≥ 0, ω ∈ Ω. The σ-algebra will be G̃, defined by

G̃ = {A ⊂ Ω̃ : As ∈ G, ∀s ≥ 0},

where As := {ω ∈ Ω : (s, ω) ∈ A}. The new state space will be defined to be R+ × Rd

with σ-algebra B̃ defined by

B̃ = {B ⊂ R+ × Rd : Bs ∈ B(Rd), ∀s ≥ 0},

where Bs := {x ∈ Rd : (s, x) ∈ B}. From this, we can define a new process X̃ = (X̃t)t≥0
on R+ × Rd by the prescription

X̃t(ω̃) = (s+ t,Xs+t(ω)),

where ω̃ = (s, ω). The family of probability measures (P̃x̃)x̃∈R+×Rd is given by

P̃
x̃(A|X̃0 = x̃) = P̃

x̃(A|X̃0 = (s, x)) = P(As|Xs = x), A ∈ G̃.

From this we can define the transition kernel (P̃t)t≥0 by

P̃t(x̃, B) := P̃
x̃(X̃t ∈ B|X̃0 = x̃) = P(Xs+t ∈ Bs+t|Xs = x), B ∈ B̃. (9)

Thus, this prescription has given us a process X̃ = (X̃t)t≥0 with sample space
(Ω̃, G̃, P̃x̃)x̃∈R+×Rd , where x̃ represents the starting point of process X̃, i.e. P̃x̃(X̃0 = x̃) =

1, and state space (R+ × Rd, B̃).

The process X̃ is a time-homogeneous Markov process, with transition semigroup
(T̃t)t≥0 on (Bb(R+ × Rd), || · ||∞), given by

T̃tf(x̃) = Ẽ
x̃f(X̃t) = E(fs+t(Xs+t)|Xs = x) = Ts,s+tfs+t(x), (10)

where fs+t : Rd → R is defined by fs+t(x) := f(s+ t, x) (See Böttcher [4]).
When given a time-inhomogeneous Markov processX on sample space (Ω,G, (Gt)t≥0,P)

and state space (Rd,B(Rd)), we call the process X̃ = (X̃t)t≥0 on sample space
(Ω̃, G̃, (G̃t)t≥0, P̃x̃)x̃∈R+×Rd , state space (R+×Rd, B̃), and semigroup (T̃t)t≥0 given by Pre-
scription 2.1 the transformed process of X.

This transformed process X̃ has many nice properties and representations. If
X is a rich FEP on Rd with FES (Ts,t)s≤t, generators (As,D(As))s≥0, bounded and s-
continuous symbols ps(x, ξ), characteristic triplets (bs(x),Σs(x), νs(x, dy), extended gen-
erators (I(ps), C

2
b (Rd))s≥0, we have that X̃ is a Feller process with Feller semigroup

(T̃t)t≥0, generator (Ã,D(Ã)), symbol p̃(x̃, ξ̃), characteristic triplet (b̃(x̃), Σ̃(x̃), ν̃(x̃, dỹ)),
and extended generator (integro-differential operator) (I(p̃), C2

b (R+×Rd)). These objects
have the following representations:

b̃ : Rd+1 → Rd+1 defined by

b̃(x̃) = b̃(s, x) = (1, bs(x)), (11)

9



Σ̃ : Rd+1 → Rd+1×d+1 defined by

Σ̃i0(x̃) = 0, ∀j = 0, ..., d

Σ̃0j(x̃) = 0, ∀i = 0, ..., d

Σ̃ij(x̃) = Σij
s (x) ∀i, j = 1, ..., d

(12)

and ν̃(x̃, dỹ) is a Lévy measure on B(Rd+1 \ {0}) given by

ν̃(x̃, dỹ) = νs(x, dy)δ0(dr), (13)

where ỹ = (r, y), and δ0 is Dirac measure at 0.
Symbol p̃(x̃, ξ̃) : Rd+1 × Rd+1 → C is given by

p̃(x̃, ξ̃) = ib̃(x̃) · ξ̃ − 1

2
ξ̃ · Σ̃(x̃)ξ̃ +

∫
ỹ 6=0

(eiξ̃·ỹ − 1− iξ̃ · ỹχ(ỹ))ν̃(x̃, dỹ) (14)

or
p̃(x̃, ξ̃) = ir + ps(x, ξ), x̃ = (s, x), ξ̃ = (r, ξ). (15)

Let f ∈ C2
b (R+×Rd), where f = f(x̃) = f(s, x). Define fs(x) := f(s, x) ∈ C2

b (Rd)
(where s is fixed). Extended generator I(p̃) is an extension of A, i.e. I(p̃)|D(Ã) = Ã, and
is given by

I(p̃)f(x̃) = b̃(x̃) · ∇f(x̃) +
1

2
∇ · Σ̃(x̃)∇f(x̃) +

∫
ỹ 6=0

(f(x̃+ ỹ)− f(x̃)−∇f(x̃) · ỹχ(ỹ))ν̃(x̃, dỹ)

(16)

or

I(p̃)f(x̃) =
∂

∂s
f(s, x) + I(ps)fs(x). (17)

An additional nice property of the symbol p̃(x̃, ξ̃) is that if C∞c (Rd) is a core of
As, then p̃(x̃, ξ̃) is a bounded symbol, i.e. there exists C > 0 such that

sup
x̃∈R+×Rd

|p̃(x̃, ξ̃)| ≤ C(1 + |ξ̃|2), for all ξ̃ ∈ R+ × Rd. (18)

For proofs and more details of this property and these formulas, see Böttcher [4, Thm.
3.2, 3.3, Cor. 3.5, Lem. 3.7] and Tu [22, Ch. 4]

3 Main results

3.1 Association of FEPs

We give a characterization of spatial association for Feller evolution processes based
on the extended generators I(ps). We apply this to characterize spatial association of
such processes of the jump variety, i.e. (bs(x), 0, νs(x, dy)). These results are given in
Theorems 3.1 and 3.2. We first need the following useful lemmas from [23] about (time-
homogeneous) Feller processes.
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Lemma 3.1 (Theorem 3.2 of Tu (2019a) [23]). Let Y = (Yt)t≥0 be a Feller processes
in Rn (with rich domain) with a stochastically monotone transition semigroup (Tt)t≥0, a
generator (A,D(A)), bounded symbol p(x, ξ), and an integro-differential operator I(p).
Assume x 7→ p(x, 0) is continuous. Then

I(p)fg ≥ fI(p)g + gI(p)f, ∀f, g ∈ C2
b (Rn) ∩ Fi

if and only if
∀t ≥ 0, Ttfg ≥ Ttf · Ttg, ∀f, g ∈ Cb(Rn) ∩ Fi.

Lemma 3.2 (Lemma 3.3 of Tu (2019a) [23]). Let (A,D(A)) be a (rich) Feller generator of
a Feller semigroup (Tt)t≥0 with bounded symbol p(x, ξ) satisfying x 7→ p(x, 0) continuous
Let I(p) be the extended generator on C2

b (Rn). Suppose F,G : [0,∞)→ Cb(Rn) such that

(a) F (t) ∈ D(I(p)) for all t ≥ 0
(b) G(t) is continuous on [0,∞) (locally uniformly)
(c) F ′(t) = I(p)F (t) +G(t) for all t ≥ 0.

Then F (t) = TtF (0) +

∫ t

0

Tt−sG(s)ds.

Lemma 3.3 (Theorem 3.3 of Tu (2019a) [23]). Let X = (Xt)t≥0 be a rich Feller process
in Rd with symbol p(x, ξ) and triplet (b(x), 0, ν(x, dy)). Then Xt is PUOD for each t ≥ 0
implies condition (2):

ν(x, (Rd
+ ∪ Rd

−)c) = 0, ∀x ∈ Rd.

Remark 3.1. Observe that in Lemma 3.3, we did not assume stochastic monotonicity,
since we do not need that assumption for the proof (see [23, Thm. 3.3]). But in order for
condition (2) to be equivalent to spatial PUOD, then we need the assumption of stochastic
monotonicity. To understand why, see our paper [23, Thm. 3.1], which shows that under
stochastic monotonicity, a jump-Feller process is associated if and only if condition (2)
is satisfied. Hence, by Proposition 2.1, which says association implies PUOD (and all
other dependence structures mentioned in this paper), and Lemma 3.3, we have that
a stochastically monotone jump-Feller process is PUOD if and only if condition (2) is
satisfied (see [23, Cor. 3.1]).

Now we state and prove the main theorems of this paper, which can found in
Theorems 3.1, 3.2, 3.3.

Theorem 3.1. Let X = (Xt)t≥0 be a Feller evolution process with Feller evolution system
(Ts,t)s≤t, generators (As)s≥0 with rich domains, and that C∞c (Rd) is the core for As, for
all s ≥ 0. Let the corresponding symbols ps(x, ξ) be s-continuous and bounded, and
I(ps) be the integro-differential operator (extended generator) of X. If X is stochastically
monotone, then X is spatially associated if and only if

I(ps)fg ≥ fI(ps)g + gI(ps)f, ∀f, g ∈ C2
b (Rd) ∩ Fi, s ≥ 0.

Proof. Let X̃ = (X̃t)t≥0 on R+ × Rd be transformation of X, given by Prescription 2.1,
which has Feller semigroup (T̃t)t≥0, generator (Ã,D(Ã)) with rich domain, bounded sym-
bol p̃(x̃, ξ̃), characteristics (b̃(x̃), Σ̃(x̃), ν̃(x̃, dỹ)) and extended generator I(p̃) on C2

b (R+×
Rd), as given to us by equations (10) to (18).
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(⇒). Assume Ts,s+tfg ≥ Ts,s+tfTs,s+tg for all s, t ≥ 0 and all f, g ∈ Cb(Rd) ∩ Fi. Choose
h, k ∈ Cb(R+ × Rd) ∩ Fi, x̃ = (s, x). Then hs+t, ks+t ∈ Cb(Rd) ∩ Fi, and

T̃thk(x̃) = Ts,s+ths+tks+t(x) ≥ Ts,s+ths+t(x) · Ts,s+tks+t(x) = T̃th(x̃) · T̃tk(x̃).

Observe that the bounded symbol p̃(x̃, ξ̃) also satisfies x̃ 7→ p̃(x̃, 0) is continuous, since

p̃(x̃, 0) = i · (0) + ps(x, 0) = 0.

So by Lemma 3.1, we have that the extended generator I(p̃) satisfies

I(p̃)hk ≥ hI(p̃)k + kI(p̃)h, h, k ∈ C2
b (R+ × Rd) ∩ Fi. (19)

Choose f, g ∈ Cb(Rd) ∩ Fi. Then there exists h, k ∈ Cb(R+ × Rd) ∩ Fi, where h, k are
constant with respect to the first argument, and f(x) = h(x̃) and g(x) = k(x̃). Choose
x̃ = (s, x). Then

I(p̃)hk(x̃) =
∂

∂s
h(s, x)k(s, x) + I(ps)hsks(x) = 0 + I(ps)fg(x) = I(ps)fg(x)

and

h(x̃)I(p̃)k(x̃) + k(x̃)I(p̃)h(x̃)

= h(s, x)

(
∂

∂s
k(s, x) + I(ps)ks(x)

)
+ k(s, x)

(
∂

∂s
h(s, x) + I(ps)hs(x)

)
= h(x̃)I(ps)ks(x) + k(x̃)I(ps)hs(x)

= f(x)I(ps)g(x) + g(x)I(ps)f(x).

Thus, by (19), we have I(ps)fg ≥ fI(ps)g + gI(ps)f.

(⇐). Assume, for all s ≥ 0, I(ps)fg ≥ fI(ps)g + gI(ps)f , ∀f, g ∈ C2
b (Rd) ∩ Fi. Choose

f, g ∈ C2
b (R+ × Rd) ∩ Fi, x̃ = (s, x), then

I(p̃)fg(x̃) =
∂

∂s
f(s, x)g(s, x) + I(ps)fsgs(x)

= f(s, x)
∂

∂s
g(s, x) + g(s, x)

∂

∂s
f(s, x) + I(ps)fsgs(x)

≥ f(s, x)
∂

∂s
g(s, x) + g(s, x)

∂

∂s
f(s, x) + fs(x)I(ps)gs(x) + gs(x)I(ps)fs(x)

= f(s, x)

(
∂

∂s
g(s, x) + I(ps)gs(x)

)
+ g(s, x)

(
∂

∂s
f(s, x) + I(ps)fs(x)

)
= f(x̃)I(p̃)g(x̃) + g(x̃)I(p̃)f(x̃).

(20)

Note that we assumed (Ts,t)s≤t is stochastically monotone. However, this does not imply
that (T̃t)t≥0 is stochastcally monotone. To see this, choose x̃ = (s, x) and ỹ = (r, y),
where x̃ ≤ ỹ with s < r. Then let f ∈ Fi ∩ Cb(R+ × Rd). Observe that

T̃tf(x̃) = Ẽ
x̃f(X̃t) = E(fs+t(Xs+t)|Xs = x) 6≤ E(fr+t(Xr+t)|Xr = y) = T̃tf(ỹ)
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since the sample paths of X may not be monotone non-decreasing. But we can still
get our desired result from the stochastic monotonicity of (Ts,t)s≤t. Fix s ≥ 0. Choose
h, k ∈ C2

b (R+ × Rd) ∩ Fi. Then T̃th|{s}×Rd , T̃tk|{s}×Rd , T̃thk|{s}×Rd ∈ C2
b ({s} × Rd) ∩ Fi

for a fixed s ≥ 0. It is easy to see that these functions will be in C2
b ({s} × Rd). To see

that they are non-decreasing on {s} × Rd, choose x̃ := (s, x) ≤ (s, y) =: ỹ. Then

T̃th|{s}×Rd(x̃) = T̃th|{s}×Rd(s, x) = Ts,s+ths+t(x) ≤ Ts,s+ths+t(y) = T̃th|{s}×Rd(ỹ)

by stochastic monotonicity of (Tr,t)r≤t. Observe that there exists v ∈ C2
b (R+ × Rd) ∩

Fi such that v is constant with respect to the first argument in R+ and v(s, x) =
T̃th|{s}×Rd(s, x). Similarly, there is w ∈ C2

b (R+ × Rd) ∩ Fi such that w is constant with

respect to first argument, and w(s, x) = T̃tk|{s}×Rd(s, x). By inequality (20), we have

I(p̃)vw ≥ vI(p̃)w + wI(p̃)v,

which implies for any x ∈ Rd, with x̃ = (s, x),

I(p̃)
(
T̃th|{s}×RdT̃tk|{s}×Rd

)
(x̃) ≥ T̃th|{s}×Rd(x̃) · I(p̃)T̃tk|{s}×Rd(x̃)

+ T̃tk|{s}×Rd(x̃) · I(p̃)T̃th|{s}×Rd(x̃)
(21)

Now define F,G : [0,∞)→ Cb(R+ × Rd), by

F (t) := T̃thk − T̃th · T̃tk and G(t) := F ′(t)− I(p̃)F (t).

It is not hard to verify that F,G are continuous on [0,∞) with respect to local uniform
convergence. By Lemma 3.2, we have the solution

F (t) = T̃tF (0) +

∫ t

0

T̃t−rG(r)dr =

∫ t

0

T̃t−rG(r)dr.

Now, choose x̃ = (s, x). Then by (21)

F ′(t)(x̃) = I(p̃)T̃thk(x̃)− (T̃th(x̃) · I(p̃)T̃tk(x̃) + T̃tk(x̃) · I(p̃)T̃th(x̃))

= I(p̃)T̃thk|{s}×Rd(x̃)−
(
T̃th|{s}×Rd(x̃) · I(p̃)T̃tk|{s}×Rd(x̃)

+T̃tk|{s}×Rd(x̃) · I(p̃)T̃th|{s}×Rd(x̃)
)

≥ I(p̃)T̃thk|{s}×Rd(x̃)− I(p̃)
(
T̃th|{s}×RdT̃tk|{s}×Rd

)
(x̃)

= I(p̃)F (t)|{s}×Rd(x̃)

= I(p̃)F (t)(x̃).

Thus, G(t)(x̃) = F ′(t)(x̃)− I(p̃)F (t)(x̃) ≥ 0. In other words, G(t)|{s}×Rd ≥ 0. Hence,

F (t)|{s}×Rd =

∫ t

0

T̃t−rG(r)|{s}×Rddr ≥ 0.

This finally yields T̃thk(x̃) ≥ T̃th(x̃) · T̃tk(x̃), for all x̃ ∈ {s} × Rd, which then yields

Ts,s+ths+tks+t(x) ≥ Ts,s+ths+t(x) · Ts,s+tks+t(x) (22)
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for all x ∈ Rd. Now let f, g ∈ C2
b (Rd) ∩ Fi. Then there are functions h, k ∈ C2

b (R+ ×
Rd)∩Fi that are constant with respect to the first argument, such that f(x) = h(x̃) and
g(x) = k(x̃). Then by (22), we have

Ts,s+tfg(x) ≥ Ts,s+tf(x) · Ts,s+tg(x). (23)

Note that we chose a fixed arbitrary s ≥ 0. We could follow the above procedure using
any s ≥ 0, and thus we would obtain (23) for all s, t ≥ 0, giving us our desired result.

We can now apply this to characterize association for jump-FEPs based on the
time-dependent Lévy measures.

Theorem 3.2. Let X = (Xt)t≥0 be a FEP with FES (Ts,t)s≤t, generators (As)s≥0 with rich
domains, and that C∞c (Rd) is the core for As, for all s ≥ 0. Let the corresponding symbols
ps(x, ξ) be s-continuous and bounded with characteristic triplet (bs(x), 0, νs(x, dy)). If X
is stochastically monotone, then X is spatially associated if and only if

νs(x, (Rd
+ ∪ Rd

−)c) = 0, ∀s ≥ 0, x ∈ Rd. (24)

Proof. (⇐) Assume (24). Let I(ps) be the extended generator onto C2
b (Rd), which is an

integro-differential operator. Choose s ≥ 0, f, g ∈ C2
b (Rd) ∩ Fi. Then

I(ps)fg(x)− f(x)I(ps)g(x)− g(x)I(ps)f(x)

=

∫
Rd\{0}

(f(x+ y)− f(x))(g(x+ y)− g(x))νs(x, dy)

=

∫
Rd
+\{0}

(f(x+ y)− f(x))(g(x+ y)− g(x))νs(x, dy)

+

∫
Rd
−\{0}

(f(x+ y)− f(x))(g(x+ y)− g(x))νs(x, dy)

≥ 0.

Then by Theorem 3.1, X is spatially associated.

(⇒) We just show the proof for dimension d = 2. Let X be spatially associated. Then by
Theorem 3.1, I(ps)fg ≥ fI(ps)g+ gI(ps)f for all s ≥ 0, f, g ∈ C2

b (R2)∩Fi. This implies∫
R2\{0}

(f(x+ y)− f(x))(g(x+ y)− g(x))νs(x, dy) ≥ 0, ∀s ≥ 0.

Assume for contradiction that there exists t0 ≥ 0 and x = (x1, x2) ∈ R2 such that
νt0(x, (R2

+ ∪ R2
−)c) > 0. WLOG, say νt0(x, (0,∞) × (−∞, 0)) > 0. Then by continuity

of measure, there exists a > 0 such that νt0(x, (a,∞) × (−∞,−a)) > 0. Fix ε > 0 and
choose f, g ∈ C∞b (R2) ∩ Fi such that

f(y1, y2) =

{
0 if y1 ≤ x1 + εa

1 if y1 ≥ x1 + a,
g(y1, y2) =

{
0 if y2 ≥ x2 − εa
−1 if y2 ≤ x2 − a.
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This implies f(x) = g(x) = 0. Hence,

0 ≤
∫
y 6=0

(f(x+ y)− f(x))(g(x+ y)− g(x))νt0(x, dy)

=

∫
y 6=0

f(x+ y)g(x+ y)νt0(x, dy)

=

∫
(a,∞)×(−∞,−a)

f(x+ y)g(x+ y)νt0(x, dy) +

∫
(a,∞)×[−a,−εa]

f(x+ y)g(x+ y)νt0(x, dy)

+

∫
[εa,a]×(−∞,−a)

f(x+ y)g(x+ y)νt0(x, dy) +

∫
[εa,a]×[−a,−εa]

f(x+ y)g(x+ y)νt0(x, dy)

= −νt0(x, (a,∞)× (−∞,−a))−
∫
(a,∞)×[−a,−εa]

g(x+ y)νt0(x, dy)

+

∫
[εa,a]×(−∞,−a)

f(x+ y)νt0(x, dy) +

∫
[εa,a]×[−a,−εa]

f(x+ y)g(x+ y)νt0(x, dy)

≤ −νt0(x, (a,∞)× (−∞,−a)),

which implies νt0(x, (a,∞)× (−∞,−a)) = 0, a contradiction.

3.2 Other forms of dependence in FEPs

In [23], we showed that the Lévy measure condition (2) was not only equivalent to spatial
association for stochastically monotone jump-Feller processes, but also to spatial PUOD,
PLOD, POD, PSD, PSA, and WA. These other forms of dependence can analogously
be characterized in the time-inhomogeneous setting for the jump processes considered in
Theorem 3.2, as was mentioned in Remark 2.1(ii). To do this, we show that (24) is a
necessary condition for spatial PUOD. Firstly,

Definition 3.1. Let X = (Xt)t≥0 be a time-inhomogeneous Markov process on Rd. We
say X is spatially PUOD if for every s ≤ t, x ∈ Rd,

E

(∏d
i=1 fi(X

(i)
t ) |Xs = x

)
≥
∏d

i=1E(fi(X
(i)
t )|Xs = x),

where fi : R→ R+ are non-decreasing.

Theorem 3.3. Let X = (Xt)t≥0 be a FEP with FES (Ts,t)s≤t, generators (As)s≥0 with rich
domains, and that C∞c (Rd) is the core for As, for all s ≥ 0. Let the corresponding symbols
ps(x, ξ) be s-continuous and bounded with characteristic triplet (bs(x), 0, νs(x, dy)). If X
is spatially PUOD, then νs(x, (Rd

+ ∪ Rd
−)c) = 0, ∀s ≥ 0, x ∈ Rd.

Proof. Let X̃ = (X̃t)t≥0 on R+ × Rd be the transformation of X, given by Prescription
2.1, which has Feller semigroup (T̃t)t≥0, generator (Ã,D(Ã)) with rich domain, bounded
symbol p̃(x̃, ξ̃), characteristics (b̃(x̃), 0, ν̃(x̃, dỹ)) and extended generator I(p̃) on C2

b (R+×
Rd), as given to us by equations (10) to (18).

Choose x̃ = (s, x). Let f : R+ × Rd → R+ defined by f(x0, ..., xd) =
∏d

i=0 fi(xi),
where fi : R→ R+ are non-decreasing, for all i. Then

Ẽ
x̃f(X̃

(0)
t , ..., X̃

(d)
t ) = Ẽ

x̃f(X̃t) = E(fs+t(Xs+t)|Xs = x)
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= E

(
f(s+ t,X

(1)
s+t, ..., X

(d)
s+t)|Xs = x

)
= E

(
f0(s+ t)f1(X

(1)
s+t)...fd(X

(d)
s+t)|Xs = x

)
≥ f0(s+ t) ·

d∏
i=1

E(fi(X
(i)
s+t)|Xs = x)

=
d∏
i=0

Ẽ
x̃fi(X̃

(i)
t )

where we obtain the inequality by spatial PUOD of process X. Thus, the above calcula-
tion shows X̃t is PUOD for all t ≥ 0 in R+ × Rd with respect P̃x̃, for all x̃. By Lemma
3.3, we have that ν̃(x̃, (Rd+1

+ ∪ Rd+1
− )c) = 0 for all x̃ ∈ R+ × Rd. Observe that the set

{0} × (Rd
+ ∪ Rd

−)c ⊆ (Rd+1
+ ∪ Rd+1

− )c.

Hence, if x̃ = (s, x),

0 = ν̃(x̃, (Rd+1
+ ∪ Rd+1

− )c) ≥ ν̃(x̃, {0} × (Rd
+ ∪ Rd

−)c) = νs(x, (Rd
+ ∪ Rd

−)c) · δ0({0})
= νs(x, (Rd

+ ∪ Rd
−)c)

which implies νs(x, (Rd
+ ∪ Rd

−)c) = 0, completing our result.

Remark 3.2. Theorem 3.3 also holds true if we replace “PUOD” by “PLOD”. This
can be easily verified by choosing fi : R → R+ in the proof of Theorem 3.3 to be non-
increasing.

Corollary 3.1. Let X = (Xt)t≥0 be a stochastically monotone FEP with the same as-
sumptions as Theorem 3.3. Then condition (24) is equivalent to X being spatially asso-
ciated, WA, PSA, PSD, POD, PUOD, PLOD.

The equivalences in Corollary 3.1 are presented in Figure 2. The dashed lines are
the implications proven in this paper in Theorems 3.2 and 3.3.

Figure 2: Equivalence of dependencies under condition (24) for FEPs
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4 Applications and examples

We first present in Section 4.1 an important example of time-inhomogeneous Markov pro-
cesses, called additive processes. These are also called time-inhomogeneous Lévy processes,
and a nice sub-class of processes with independent increments (PII). Such processes
are useful in financial models, such as stochastic volatility models with jumps (see [8,
Ch.15]). In Section 4.2, we show an application of the technique of transformation of
time-inhomogeneous to time-homogeneous Markov processes in comparison theorems.

4.1 Additive processes

A process with independent increments (PII) is a stochastic process X = (Xt)t≥0
on sample space (Ω,G, (Gt)t≥0,P) such that X is càdlàg, adapted, with X0 = 0 a.s. and
for all s ≤ t, Xt − Xs is independent of Fs. These processes and their semimartingale
nature are be described in Jacod and Shiryaev [13, Ch.II].

Definition 4.1. If process X = (Xt)t≥0 on Rd is an additive process if it is a PII and
satisfies stochastic continuity, i.e. lim

h↘0
P(|Xt+h −Xt| ≥ a) = 0, for all a > 0, t ≥ 0.

Thus, observe that one can obtain additive processes by relaxing “stationary in-
crements” in the definition of a Lévy process. The following is a theorem found in Sato’s
book [20] that tells us that additive processes still have “infinitely divisible-like” behavior.

Theorem 4.1 (Sato, [20], p.47). Let X = (Xt)t≥0 be an additive process on Rd. Then
Xt is infinitely divisible for all t ≥ 0, and φXt(u) = exp(pt(u)), where

pt(u) = iu · bt −
1

2
u · Σtu+

∫
Rd\{0}

(eiu·y − 1− iu · yχ(y))νt(dy)

is the symbol, where for all t ≥ 0, Σt is a symmetric positive definite d× d matrix, νt is
a Lévy measure, and bt ∈ Rd.

Stochastic continuity of X yields continuity in t of characteristics (bt,Σt, νt) and
of the characteristic exponent pt.

Theorem 4.2 (Sato, [20], p.52). An additive process X with characteristics (bt,Σt, νt)
satisfies

• Positiveness: b0 = 0, Σ0 = 0, ν0 = 0, and for all s ≤ t, Σt−Σs is a positive definite
matrix, and νt(B) ≥ νs(B) for all B ∈ B(Rd).

• Continuity: if s→ t, then Σs → Σt, bs → bt, and νs(B)→ νt(B) for all B ∈ B(Rd)
such that B ⊆ {x : |x| ≥ ε} for some ε > 0.

Corollary 4.1. Let X be an additive process with characteristic exponents pt. Then pt(u)
is continuous in t for all u ∈ Rd.

Additive processes can also be viewed from the perspective of Markov processes.
These processes are time-inhomogeneous, spatially-homogeneous Markov processes, with
Markov evolution (Ts,t)s≤t given by

Ts,tf(x) = E(f(Xt)|Xs = x) = Ef(Xt −Xs + x). (25)

Such Markov evolutions are also strongly continuous on C0(Rd).
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Theorem 4.3. Let X be an additive process with Markov evolution (Ts,t)s≤t defined by
(25). Then (Ts,t)s≤t is strongly continuous, thus making (Ts,t)s≤t a Feller evolution system.

Proof. For a proof, see [22, Thm. 4.13].

Thus, additive processes are a subclass of Feller evolution processes. It is shown
in Cont and Tankov [8, Ch.14] that the generators As of an additive process has the form

Asf(x) = bs ·∇f(x) +
1

2
∇·Σs∇f(x) +

∫
Rd\{0}

(f(x+ y)− f(x)− y ·f(x)χ(y))νs(dy) (26)

for f ∈ C2
0(Rd). Thus the symbol of the operator As coincides with the characteristic

exponent ps(ξ), which is analogous to the relationship between symbols and characteristic
exponents of Lévy processes. Hence, the additive process has an extended generator,
which is an integro-differential operator I(ps) on C2

b (Rd) defined by the RHS of (26).
Therefore, additive processes are FEPs with symbols ps(ξ) and characteristics (bs,Σs, νs)
that do not depend on x, i.e. the state space. They can be classified as FEPs that are
spatially homogeneous.

Moreover, their FESs (Ts,t)s≤t are always stochastically monotone: if x ≤ y and
f ∈ Bb(Rd) ∩ Fi, then

Ts,tf(x) = Ef(Xt −Xs + x) ≤ Ef(Xt −Xs + y) = Ts,tf(y).

Hence, we can apply Theorems 3.1-3.3 to additive processes!

Theorem 4.4. Let X = (Xt)t≥0 be an additive process with symbols ps(ξ) and charac-
teristic triplets (bs, 0, νs). Then X is spatially associated if and only if

νs((Rd
+ ∪ Rd

−)c) = 0, ∀s ∈ Q+. (27)

Proof. Notice that this is a slightly weaker assumption than the statement of Theorem
3.2. This is because in the case of additive processes, νs((Rd

+ ∪ Rd
−)c) = 0, ∀s ∈ Q+

implies νs((Rd
+ ∪ Rd

−)c) = 0, ∀s ∈ R+. We show this in d = 2.
Assume for contradiction that there is t0 ∈ R+\Q+, such that νt0((R2

+∪R2
−)c) > 0.

WLOG, say νt0((0,∞)× (−∞, 0)) > 0. By continuity of measure, there exists a > 0 such
that νt0((a,∞) × (−∞,−a)) > 0. By Theorem 4.2, since A = (a,∞) × (−∞,−a) is
bounded away from 0, there exists (tn)n∈N ⊂ Q+ such that tn → t0 and

νtn((a,∞)× (−∞,−a))→ νt0((a,∞)× (−∞,−a)) > 0, as n→∞.

Therefore, there exists N large such that for all n ≥ N , νtn((a,∞) × (−∞,−a)) > 0,
which is a contradiction. Hence, νt((R2

+ ∪ R2
−)c) = 0 for all t ≥ 0, which is equivalent to

X being spatially associated by Theorem 3.2.

Corollary 4.2. Let X = (Xt)t≥0 be an additive process with symbols ps(ξ) and charac-
teristic triplets (bs, 0, νs). Then X is spatially PUOD (and also PLOD, POD, PSD, PSA,
WA) if and only if νs satisfies (27).

Proof. The corollary is a direct result of Theorems 3.3 and 4.4
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An example of an interesting additive process to which these dependence results
apply is the following Lévy-driven volatility model:

Example 4.1. Let L = (Lt)t≥0 be a Lévy process in Rd with triplet (b, 0, ν). Let σ :
R+ → Rd×d

+ . The process X = (Xt)t≥0 defined by

Xt =
∫ t
0
σ(s)dLs

is called a Lévy process with deterministic volatility and is an additive process.

4.2 Comparison of Markov processes

Some of the techniques we employed in Section 3 to prove results on dependence structures
can also be used to prove comparison theorems of certain Markov processes. Let F be
a cone of functions, such as Fi = {f : Rd → R, f non-decreasing} (for more on cones
F , see [18]). For time-homogeneous Markov processes X and Y with semigroups (St)t≥0
and (Tt)t≥0 and generators A and B, respectively, we say that Y dominates X with
respect to F if Stf ≤ Ttf , for all t ≥ 0 and f ∈ F .

For time-inhomogeneous Markov processes X and Y , with Markov evolutions
(Ss,t)s≤t and (Ts,t)s≤t, we say Y dominates X with respect to F if Ss,tf ≤ Ts,tf for all
s ≤ t and all f ∈ F . Rüschendorf has proven comparison theorems for general Markov
processes which are time-homogeneous (2008) [17] and time-inhomogeneous (2016) [18].
These sufficient conditions were based on the generators of the Markov process. We show
that in the case of two rich Feller processes, sufficient conditions for domination can be
given using the extended generator I(p) (Theorem 4.5). Then we use that result and the
technique Prescription 2.1 to obtain a nice comparison theorem for time-inhomogeneous
Feller evolutions systems (Theorem 4.6). We consider the cone of Fi in these theorems.

Theorem 4.5. If X and Y are rich Feller processes and have symbols pX and pY , respec-
tively, then if Stf ∈ Fi for f ∈ Cb(Rd)∩Fi and I(pX)f ≤ I(pY )f for all f ∈ C2

b (Rd)∩Fi,
then Stf ≤ Ttf for all f ∈ Cb(Rd) ∩ Fi.

Proof. Pick f ∈ C2
b (Rd) ∩ Fi. Define F : [0,∞)→ Cb(Rd) and G : [0,∞)→ Cb(Rd) by

F (t) := Ttf − Stf and G(t) := F ′(t)− I(pY )F (t) = (I(pY )− I(pX))Stf.

G(t) ≥ 0, since Stf ∈ C2
b (Rd)∩Fi and by our assumption. Thus since F,G are continuous

(wrt locally uniform convergence), then by Theorem 3.2,

F (t) = TtF (0) +

∫ t

0

Tt−rG(r)dr =

∫ t

0

Tt−rG(r)dr ≥ 0,

giving us our desired result.

Theorem 4.6. Let X and Y be Feller evolution processes with FESs (Ss,t)s≤t and (Ts,t)s≤t,
generators (As)s≥0 and (Bs)s≥0 with rich domains, symbols ps(x, ξ) and qs(x, ξ) that are
s-continuous and bounded as in (5) and (6), respectively. Let C∞c (Rd) be a core for the
domains of the generators. Then if X is stochastically monotone (wrt Fi), and

I(ps)f ≤ I(qs)f , for all f ∈ C2
b (Rd) ∩ Fi, for all s ≥ 0,
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then Ss,tf ≤ Ts,tf for all f ∈ Cb(Rd) ∩ Fi, for all s ≤ t.

Proof. Let X̃ = (X̃t)t≥0 and Ỹ = (Ỹt)t≥0 on R+ × Rd be transformations of X and Y ,
given by Prescription 2.1, which have Feller semigroups (S̃t)t≥0 and (T̃t)t≥0, generators
(Ã,D(Ã)) and (B̃,D(B̃)) with rich domains, bounded symbols p̃(x̃, ξ̃) and q̃(x̃, ξ̃), and
extended generators I(p̃) and I(q̃) respectively, as given to us by equations (10) to (18).

Observe that for all f ∈ C2
b (R+ × Rd) ∩ Fi, we have

I(p̃)f(x̃) =
∂

∂s
f(s, x) + I(ps)fs(x) ≤ ∂

∂s
f(s, x) + I(qs)fs(x) = I(q̃)f(x̃). (28)

Now let h ∈ C2
b (R+ × Rd) ∩ Fi. Fix s ≥ 0. Then S̃th|{s}×Rd ∈ C2

b ({s} × Rd) ∩ Fi since
X is stochastically monotone. Then there exists v ∈ C2

b (R+ × Rd) ∩ Fi that is constant
wrt first argument in R+ and v(s, x) = S̃th|{s}×Rd(s, x), for all x ∈ Rd. Then by (28),
I(p̃)v ≤ I(q̃)v. This implies that on x̃ = (s, x),

I(p̃)(S̃th|{s}×Rd)(s, x) ≤ I(q̃)(S̃th|{s}×Rd)(s, x). (29)

Define F,G : [0,∞)→ Cb(R+ × Rd) be defined by

F (t) := T̃th− S̃th and G(t) := F ′(t)− I(q̃)F (t) = (I(q̃)− I(p̃))S̃th

which are both continuous with respect to locally uniform convergence. Then
by Theorem 3.2, F (t) =

∫ t
0
T̃t−rG(r)dr. Hence, on x̃ = (s, x), G(r)(x̃) = (I(q̃) −

I(p̃))S̃th|{s}×Rd(s, x) ≥ 0 by (29). Thus, F (t)(x̃) ≥ 0. This implies Ss,s+ths+t(x) ≤
Ts,s+ths+t(x) for all x ∈ Rd. Let f ∈ C2

b (Rd) ∩ Fi. Then choose h ∈ C2
b (R+ × Rd) ∩ Fi

that is constant in the first argument, and h(x̃) = f(x). Then we have Ss,s+tf(x) =
Ss,s+ths+t(x) ≤ Ts,s+ths+t(x) = Ts,s+tf(x), giving us our desired result.

For more on comparison theorems of Markov processes, see Rüschendorf [17, 18].
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satisfaisant au principe du maximum. Sém. Théorie du potentiel 2 (1965).
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