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Compactness of Kähler-Ricci solitons on Fano manifolds 1

Bin Guo∗, Duong H. Phong∗∗, Jian Song† and Jacob Sturm‡

Abstract

In this short paper, we improve the result of Phong-Song-Sturm on degeneration

of Fano Kähler-Ricci solitons by removing the assumption on the uniform bound of the

Futaki invariant. Let KR(n) be the space of Kähler-Ricci solitons on n-dimensional

Fano manifolds. We show that after passing to a subsequence, any sequence in

KR(n) converge in the Gromov-Hausdorff topology to a Kähler-Ricci soliton on an

n-dimensional Q-Fano variety with log terminal singularities.

1 Introduction

The Ricci solitons on compact and complete Riemannian manifolds naturally arise
as models of singularities for the Ricci flow [7]. The existence and uniqueness of
Ricci solitons has been extensively studied. A gradient Ricci soliton is a Riemannian
metric satisfying the following soliton equation

Ric(g) = λg +∇2u (1.1)

for some smooth function f with λ = −1, 0, 1. Such a soliton is called a gradient
shrinking Ricci soliton if λ > 0. If we let the vector field V be defined by V = ∇u,
the soliton equation becomes

Ric(g) = λg + LVg, (1.2)

where LV is the Lie derivative along V.
A Kähler metric g on a Kähler manifold X is called a Kähler-Ricci soliton if

it satisfies the soliton equation (1.1) or equation (1.2) for V = ∇u. Any shrinking
Kähler-Ricci soliton on a compact Kähler manifold X must be a gradient Ricci
soliton and such a Kähler manifold must be a Fano manifold, i.e. c1(X) > 0. The
vector field V must be holomorphic and it can be expressed in terms of the Ricci
potential u, with

Rij̄ = gij̄ − uij̄, uij = uīj̄ = 0, V i = −gij̄uj̄. (1.3)

1Work supported in part by National Science Foundation grants DMS-1711439, DMS-12-66033
and DMS-1710500.
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The well-known Futaki invariant associated to the Kähler-Ricci soliton (X, g,V)
on a Fano manifold X is given by

FX(V) =
∫

X

|∇u|2dVg =

∫

X

|V|2dVg ≥ 0.

Let KR(n, F ) be the set of compact Kähler-Ricci solitons (X, g) of complex
dimension n with

Ric(g) = g + LVg, FX(V) ≤ F.

It is proved by Tian-Zhang [17] that KR(n, F ) is compact in the Gromov-Hausdorff
topology with an additional uniform upper volume bound. In [10], Phong-Song-
Sturm established a partial C0-estimate on KR(n, F ), generalizing the celebrated
result of Donaldson-Sun [6] for the space of uniformly non-collapsed Kähler manifolds
with uniform Ricci curvature bounds. An immediate consequence of the partial C0-
estimate in [10] is that the limiting metric space must be a Q-Fano variety equipped
with a Kähler-Ricci soliton metric.

The purpose of this paper is to remove the assumption in [10] on the bound of
the Futaki invariant.

Definition 1.1 Let KR(n) be the set of compact Kähler-Ricci solitons (X, g,V) of
complex dimension n with

Ric(g) = g + LVg.

The following is the main result of the paper.

Theorem 1.1 Let {(Xi, gi,Vi)}∞i=1 be a sequence in KR(n) with n ≥ 2. Then after

possibly passing to subsequence, (Xi, gi) converges in the Gromov-Hausdorff topology

to a compact metric length space (X∞, d∞) satisfying the following.

1. The singular set Σ∞ of the metric space (X∞, d∞) is a closed set of Hausdorff

dimension no greater than 2n− 4.

2. (Xi, gi,Vi) converges smoothly to a Kähler-Ricci soliton (X∞ \ Σ∞, g∞,V∞)
satisfying

Ric(g∞) = g∞ + LV∞
g∞, (1.4)

where V∞ is a holomorphic vector field on X∞ \ Σ∞.

3. (X∞, d∞) coincides with the metric completion of (X∞ \ Σ∞, g∞) and it is a

projective Q-Fano variety with log terminal singularities. The soliton Kähler

metric g∞ extends to a Kähler current on X∞ with bounded local potential and

V∞ extends to a global holomorphic vector field on X∞.
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The assumption on the bound of the Futaki invariant in [10] is used to obtain a
uniform lower bound of Perelman’s µ-functional. We use the recent deep result of
Birkar [1] in birational geometry and show that there exists ǫ(n) > 0 such that for
any n-dimensional Fano manifold X , there exists a Kähler metric g with Ric(g) ≥ ǫg.
In particular, the µ-functional for (X, g) is bounded below by a uniform constant
that only depends on n. Then for any Kähler-Ricci soliton (X, g) ∈ KR(n), the
µ-functional for (X, g) is uniformly bounded below because the soliton metric is the
limit of the Kähler-Ricci flow. The proof of Theorem 1.1 also implies a uniform
bound for the scalar curvature and the Futaki invariant for all (X, g) ∈ KR(n).

Corollary 1.1 There exist F = F (n), D = D(n) and K = K(n) > 0 such that for

any (X, g, u) ∈ KR(n), the Futaki invariant, the diameter and scalar curvature R of

(X, g) satisfy
FX ≤ F, diam(X, g) ≤ D, 0 < R ≤ K.

We also derive some general compactness for compact or complete gradient
shrinking solitons assuming a uniform lower bound of Perelman’s µ-functional (see
Section 3). For any closed or complete gradient shrinking soliton (M, g, u), one can
always normalize u such that

∫

M
e−udVg = 1. We define RS(n,A) to be the space

of closed or complete shrinking gradient soliton (M, g, u) of real dimension n ≥ 4
satisfying

µ(g) ≥ −A. (1.5)

Then for any A ≥ 0 and any sequence (Mj , gj, uj, pj) ∈ RS(n,A) with pj being
the minimal point of uj, after passing to a subsequence, it converges in the pointed
Gromov-Hausdorff topology to a compact or complete metric space (M∞, d∞) of
dimension n with smooth convergence to a shrinking gradient Ricci soliton outside
the closed singular set of dimension no greater than n− 4.

2 Proof of Theorem 1.1

Let us first recall the α-invariant introduced by Tian on a Fano manifold [14].

Definition 2.1 On a Fano manifold (X,ω) with ω ∈ c1(X), the α-invariant is

defined as

α(X) = sup{α > 0 | ∃Cα < ∞ such that

∫

X

e−α(ϕ−supX ϕ)ωn ≤ Cα, ∀ϕ ∈ PSH(X,ω)}.

It is obvious that the α(X) does not depend on the choice ω ∈ c1(X).

Definition 2.2 Let X be a normal projective variety and ∆ an effective Q-Cartier

divisor, the pair (X,∆) is said to be log canonical if the coefficients of components

3



of ∆ are no greater than 1 and there exists a log resolution π : Y → X such that

π−1(supp∆) ∪ exc(π) is a divisor with normal crossings satisfying

KY = π∗(KX +∆) +
∑

j

ajFj , Q ∋ aj ≥ −1, ∀ j.

Definition 2.3 Let X be a projective manifold and D be a Q-Cartier divisor. The

log canonical threshold of D is defined by

lct(X,D) = sup{t ∈ R | (X, tD) is log canonical}.

It is proved by Demailly that the α-invariant is related to the log canonical thresholds
of anti-canonical divisors through the following formula (see Theorem A.3. in the
Appendix A of [5]).

Theorem 2.1 For any Fano manifold X,

α(X) = inf
m∈Z>0

inf
D∈|−mKX |

lct(X,m−1D)

Recently Birkar (Theorem 1.4 of [1]) obtains a uniform positive lower bound of
the log canonical threshold and the following is an immediate corollary of Birkar’s
result.

Theorem 2.2 There exists ε0 = ε0(n) > 0 such that for any n-dimensional Fano

manifold X
α(X) ≥ ε0(n).

From the Harnack inequality in [14], for any fixed Kähler metric ω ∈ c1(X), the
curvature equation for ωt along the continuity method

Ric(ωt) = t(ωt) + (1− t)ω (2.1)

can be solved for all t ∈ [0, (n+1)α(X)/n). As a consequence, we have the following
corollary.

Corollary 2.1 There exists ε1 = ε1(n) > 0 such that for any n-dimensional Fano

manifold X, there exists a Kähler metric ω̂ ∈ c1(X) satisfying

Ric(ω̂) ≥ ε1ω̂. (2.2)

We can also assume that ω̂ is invariant under the group action of the maximal
compact subgroup G of Aut(X) by choosing a G-invariant Kähler metric ω in the
equation (2.1).

The greatest Ricci lower bound R(X) for a Fano manifold X is introduced in
[16, 12] and is defined by

R(X) = sup{t ∈ R | ∃ ω ∈ c1(X) such that Ric(ω) ≥ tω}.

Immediately one has the following corollary.
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Corollary 2.2 There exists an r0 = r0(n) > 0 such that for any n-dimensional Fano

manifold X,

R(X) ≥ r0. (2.3)

We are informed by Xiaowei Wang that Corollary 2.2 is already a consequence
of results in [8]. In fact, Theorem 5.2 and Proposition 5.1 in [8] will imply that
there exist m = m(n) > 0 and β = β(n) ∈ (0, 1] such that for any n-dimensional
Fano manifold X , there exists a smooth divisor D ∈ |−mKX | and a conical Kähler-
Einstein metric ω ∈ c1(X) satisfying

Ric(ω) = βω + (1− β)m−1[D].

Then Corollary 2.2 immediately follows by the relation between R(X) and the exis-
tence of conical Kähler-Einstein metric established in [11].

Now let us recall Perelman’s entropy functional for a Fano manifold (X, g) with
the associated Kähler form ωg ∈ c1(X). The W-functional is defined by

W(g, f) =
1

V

∫

X

(R + |∇f |2 + f − 2n)e−fdVg,

where V = cn1 (X), and the µ-functional is defined by

µ(g) = inf
f

{

W(g, f)

∣

∣

∣

∣

1

V

∫

X

e−fdVg = 1

}

.

Lemma 2.1 There exists A = A(n) > 0 such that for the Riemannian metric ĝ
associated to the form ω̂ in (2.2)

µ(ĝ) ≥ −A.

Proof Since Ric(ĝ) is bounded from below by a uniform positive constant ε1(n), by
Myers’ theorem and volume comparison,

Vol(X, ĝ) ≤ C(n), diam(X, ĝ) ≤ C(n).

On the other hand, since ω̂ ∈ c1(X) is in an integral cohomology class, in particular
Vol(X, ĝ) ≥ c(n) > 0. By Croke’s theorem, the Sobolev constant CS of (X, ĝ) is
uniformly bounded. It is well-known that a Sobolev inequality implies the lower
bound of µ-functional. For completeness, we provide a proof below.

For any f ∈ C∞ with
∫

X
e−fdVĝ = V , we write e−f/2 = φ. By Jensen’s inequality

1

V

∫

X

φ2 logφ
2

n−1 ≤ log
( 1

V

∫

X

φ
2n

n−1

)

≤ log
(

CS

∫

X

(|∇φ|2 + φ2)
)

≤ 4

n− 1

∫

X

|∇φ|2 + C(n).
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So

W(ĝ, f) =
1

V

∫

X

(Rφ2 + 4|∇φ|2 − φ2 log φ2)dVĝ − 2n ≥ −C(n).

✷

Let (X, g) ∈ KR(n) be a gradient shrinking Kähler-Ricci soliton which satisfies
the equation

Ric(ωg) +

√
−1

2π
∂∂u = ωg, ∇∇u = 0. (2.4)

Let G ⊂ Aut(X) be the compact one-parameter subgroup generated by the holo-
morphic vector field Im(∇u). As we mentioned before, the metric ω̂ in (2.2) can be
taken to be G-invariant.

Corollary 2.3 For any (X, g) ∈ KR(n), we have

µ(g) ≥ −A,

where A = A(n) is the constant in Lemma 2.1.

Proof We consider the normalized Kähler-Ricci flow with initial metric ω̂ in (2.2)
G-invariant.

∂ω(t)

∂t
= −Ric(ω(t)) + ω(t), ω(0) = ω̂.

By the convergence theorem for Kähler-Ricci flow ([17, 19]), ω(t) converges smoothly
to ωg, modulo some diffeomorphisms. So limt→∞ µ(g(t)) = µ(g).

On the other hand, µ(g(t)) is monotonically non-decreasing along the Kähler-
Ricci flow ([9]). The lower bound of µ(g) follows from this monotonicity and the
lower bound of µ(ĝ) established in Lemma 2.1.

✷

Now we can apply the same argument as in [10] because the assumption of the
uniform bound for the Futaki invariant in [10] is to obtain a uniform lower bound
for the µ-functional. This will complete the proof of Theorem 1.1. The argument
in [10] also implies the uniform bound for the scalar curvature and diameter of
(X, g, u) ∈ KR(n) as well as |∇u|2 and hence the Futaki invariant of (X, g). This
implies Corollary 1.1.

3 Generalizations

We generalize our previous discussion to Riemannian complete gradient shrinking
Ricci solitons (Mn, g, u) satisfying the equation

Ric(g) +∇2u =
1

2
g.

By [3] we can always normalize u such that
∫

M
e−udVg = 1.
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Definition 3.1 We denote RS(n,A) to the set of n-dimensional closed or complete

shrinking gradient Ricci solitons (M, g, u) satisfying

µ(g) ≥ −A

with the normalization condition
∫

M
e−udVg = 1.

The following proposition is the main result of this section and most results in
the proposition are straightforward applications of the compactness results [20, 21]
with Bakry-Emery Ricci curvature bounded below.

Proposition 3.1 Let {(Mi, gi, ui, pi)}∞i=1 be a sequence in RS(n,A) with n ≥ 4,
where pi be a minimal point of ui. Then after possibly passing to subsequence,

(Mi, gi, ui, pi) converges in the Gromov-Hausdorff topology to a metric length space

(M∞, d∞, u∞) satisfying the following.

1. The singular set Σ∞ of the metric space (M∞, d∞) is a closed set of Hausdorff

dimension no greater than n− 4.

2. (Mi, gi, ui) converges smoothly to a gradient shrinking Ricci soliton (M∞\Σ∞, g∞, u∞)
satisfying

Ric(g∞) =
1

2
g∞ +∇2u∞.

3. (M∞, d∞) coincides with the metric completion of (M∞ \ Σ∞, g∞).

Furthermore, if there exists V > 0 such that V olgi(Mi) ≤ V for all i = 1, 2, ..., the
limiting metric space (M∞, d∞) is compact.

Proof For any (M, g, u) ∈ RS(n,A), R = n/2 − ∆u ≥ 0 ([23]), the potential
function u satisfies

∆u− |∇u|2 + u = a, a =

∫

M

ue−udVg.

We denote ũ = u − a. From ∆u ≤ n/2 and immediately we have |∇ũ|2 ≤ n/2 + ũ.
By [3], the minimum of ũ is achieved at some finite point p ∈ M , so min ũ = ũ(p) ≥
−n/2. Applying maximum principle to ũ which satisfies ∆ũ − |∇ũ|2 + ũ = 0 at a
minimum point p ∈ M , we obtain that minM ũ = ũ(p) ≤ 0.

From |∇ũ|2 ≤ ũ+ n/2, we have |∇
√

ũ+ n/2| ≤ 1
2
. Thus for any x ∈ M

ũ(x) ≤ 1

2
d(p, x)2 + ũ(p) + C(n) ≤ 1

2
d(p, x)2 + C(n). (3.1)

Immediately we have

|∇ũ|2(x) ≤ 1

2
d(p, x)2 + C(n), (3.2)
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and

− n/2 ≤ −∆ũ(x) ≤ 1

2
d(p, x)2 + C(n). (3.3)

When (M, g) is closed and Vol(M, g) ≤ V . We note by Jensen’s inequality
a ≤ log V . The Ricci soliton (M, g, u) gives rise to a Ricci flow g(t) = ϕ∗

tg with
initial metric g(0) = g, where ϕt is the diffeomorphism group generated by ∇u,
∂g(t)
∂t

= −2Ric(g(t)) + g(t). Combining with the fact that R(g) ≥ 0 and Perelman’s
non-collapsing theorem, we see that (M, g) is non-collapsed in the sense that if
R ≤ r−2 on Br(x), then Vol(Br(x)) ≥ κ(n,A)rn, for all r ∈ (0, r̄(n,A)]. With this
non-collapsing and equations (3.1), (3.2) and (3.3), we can apply the same argument
of Perelman as in Section 3 of [13] to show that there exists a uniform constant
C(n,A, V ) > 0 such that for any closed (M, g, u) ∈ RS(n,A) with the additional
assumption Vol(M, g) ≤ V ,

‖u‖L∞ + ‖∇u‖L∞(M,g) + ‖R‖L∞ + diam(M, g) ≤ C(n,A, V ). (3.4)

The non-collapsing of (M, g) also implies a uniform lower bound on Vol(M, g). Now
we can apply the main theorem of [22].

In general, when (M, g) is complete, applying [9] to the Ricci flow associated to
(M, g), there exists a κ = κ(A, n) such that (M, g) is κ-noncollapsed. In particular,
Vol(B(p, 1)) ≥ c(A, n) > 0. On any geodesic ball B(p, r) with p being the minimal
point of u, |∇u| ≤ 1

2
r2 + C(n,A). By the Cheeger-Colding theory for Bakry-Emery

Ricci tensor Ric(g) +∇2u ([20, 21]), for any sequence of (Mi, gi, ui, pi) ∈ RS(n,A)
converges (up to a subsequence) in pointed Gromov-Hausdorff topology to a metric
space (M∞, d∞, p∞). Here we choose pi to be a minimum point of ui. M∞ has the
regular-singular decomposition M∞ = R ∪ Σ. Recall a point y ∈ R if all tangent
cone of (M∞, d∞) at y is isometric to Rn. From [21] we know the singular set Σ is
closed and of Hausdorff dimension at most n − 4 and d∞ on R is induced by a Cα

metric g∞. For any y ∈ R and Mi ∋ yi
GH−−→ y, when i is large enough there exists

a uniform r0 = r0(y) such that (Bgi(yi, r0), gi) has uniform Cα bound (Theorem 1.2
of [21]). By choosing r0 even smaller if possible, we may assume the isoperimetric
constant of (Bgi(yi, r0), gi) is very small so that we can apply Perelman’s pseudo-
locality theorem ([9]) to the associated Ricci flow to derive uniform higher order
estimates of gi nearby yi, which in turn gives local estimates of ui. So locally near
yi, the convergence is smooth and we conclude that the metric g∞ in a small ball
around y is a Ricci soliton.

✷

We remark that in the compact case, a compactness result is obtained earlier by
Zhang [22] assuming a uniform upper bound for the diameter and a uniform lower
bound for the volume.
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