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Compactness of Kahler-Ricci solitons on Fano manifolds
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Abstract

In this short paper, we improve the result of Phong-Song-Sturm on degeneration
of Fano Kahler-Ricci solitons by removing the assumption on the uniform bound of the
Futaki invariant. Let R (n) be the space of Kdhler-Ricci solitons on n-dimensional
Fano manifolds. We show that after passing to a subsequence, any sequence in
KR(n) converge in the Gromov-Hausdorff topology to a Kahler-Ricci soliton on an
n-dimensional Q-Fano variety with log terminal singularities.

1 Introduction

The Ricci solitons on compact and complete Riemannian manifolds naturally arise
as models of singularities for the Ricci flow [7]. The existence and uniqueness of
Ricci solitons has been extensively studied. A gradient Ricci soliton is a Riemannian
metric satisfying the following soliton equation

Ric(g) = \g + V?u (1.1)

for some smooth function f with A = —1,0,1. Such a soliton is called a gradient
shrinking Ricci soliton if A > 0. If we let the vector field V be defined by V = Vu,
the soliton equation becomes

Ric(g) = A\g + Lyg, (1.2)

where Ly, is the Lie derivative along V.

A Kahler metric g on a Kahler manifold X is called a Kahler-Ricci soliton if
it satisfies the soliton equation (I]) or equation ([L2)) for V = Vu. Any shrinking
Kéhler-Ricci soliton on a compact Kéahler manifold X must be a gradient Ricci
soliton and such a Kéhler manifold must be a Fano manifold, i.e. ¢;(X) > 0. The
vector field ¥V must be holomorphic and it can be expressed in terms of the Ricci
potential u, with

Rij = g;7 — uig, wij = uz =0, V= —gﬁu;. (1.3)
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The well-known Futaki invariant associated to the Kéhler-Ricci soliton (X, g, V)
on a Fano manifold X is given by

]—"X(V):/ |vu\2dvg:/ [V|?aV, > 0.
X X

Let KR(n,F) be the set of compact Kéhler-Ricci solitons (X, g) of complex
dimension n with

Ric(g) = g+ Lvg, Fx(V) < I\

It is proved by Tian-Zhang [I7] that KR (n, F') is compact in the Gromov-Hausdorff
topology with an additional uniform upper volume bound. In [10], Phong-Song-
Sturm established a partial C%-estimate on KR (n, F), generalizing the celebrated
result of Donaldson-Sun [6] for the space of uniformly non-collapsed Kéhler manifolds
with uniform Ricci curvature bounds. An immediate consequence of the partial C°-
estimate in [I0] is that the limiting metric space must be a Q-Fano variety equipped
with a Kéahler-Ricci soliton metric.

The purpose of this paper is to remove the assumption in [10] on the bound of
the Futaki invariant.

Definition 1.1 Let KR(n) be the set of compact Kihler-Ricci solitons (X, g,V) of
complex dimension n with
Ric(g) = g+ Lyg.

The following is the main result of the paper.

Theorem 1.1 Let {(X;, g;,Vi)}2, be a sequence in KR(n) with n > 2. Then after
possibly passing to subsequence, (X;, g;) converges in the Gromov-Hausdorff topology
to a compact metric length space (X, ds) satisfying the following.

1. The singular set o, of the metric space (Xoo, ds) 18 a closed set of Hausdorff
dimension no greater than 2n — 4.

2. (Xi,9:,V;) converges smoothly to a Kdihler-Ricci soliton (Xoo \ Yioos Joos Vo)
satisfying
Ric(gm) = Joo T LVoogom (1'4)

where Vo, is a holomorphic vector field on X \ Y-

3. (Xeo,doo) coincides with the metric completion of (Xoo \ Loo, Joo) and it is a
projective Q-Fano variety with log terminal singularities. The soliton Kahler
metric §oo extends to a Kahler current on X, with bounded local potential and
Vs extends to a global holomorphic vector field on X .



The assumption on the bound of the Futaki invariant in [10] is used to obtain a
uniform lower bound of Perelman’s u-functional. We use the recent deep result of
Birkar [I] in birational geometry and show that there exists e(n) > 0 such that for
any n-dimensional Fano manifold X, there exists a Kéhler metric g with Ric(g) > eg.
In particular, the p-functional for (X, g) is bounded below by a uniform constant
that only depends on n. Then for any Kahler-Ricci soliton (X, g) € KR(n), the
p-functional for (X g) is uniformly bounded below because the soliton metric is the
limit of the Kéahler-Ricci flow. The proof of Theorem [l also implies a uniform
bound for the scalar curvature and the Futaki invariant for all (X, g) € KR(n).

Corollary 1.1 There exist F' = F(n), D = D(n) and K = K(n) > 0 such that for
any (X, g,u) € KR(n), the Futaki invariant, the diameter and scalar curvature R of

(X, g) satisfy
Fx < F, diam(X,9) <D, 0< R<K.

We also derive some general compactness for compact or complete gradient
shrinking solitons assuming a uniform lower bound of Perelman’s p-functional (see
Section 3). For any closed or complete gradient shrinking soliton (M, g, u), one can
always normalize u such that [, e “dVy, = 1. We define RS(n, A) to be the space
of closed or complete shrinking gradient soliton (M, g,u) of real dimension n > 4
satisfying

pu(g) = —A. (1.5)

Then for any A > 0 and any sequence (M;,g;,uj,p;) € RS(n,A) with p; being
the minimal point of u;, after passing to a subsequence, it converges in the pointed
Gromov-Hausdorff topology to a compact or complete metric space (M., ds) of
dimension n with smooth convergence to a shrinking gradient Ricci soliton outside
the closed singular set of dimension no greater than n — 4.

2 Proof of Theorem [1.1]

Let us first recall the a-invariant introduced by Tian on a Fano manifold [14].

Definition 2.1 On a Fano manifold (X,w) with w € c1(X), the a-invariant is
defined as

a(X) =sup{a > 0] 3C, < oo such that / emalsix P < O Vo € PSH(X,w)}.
X

It is obvious that the a(X) does not depend on the choice w € ¢;(X).

Definition 2.2 Let X be a normal projective variety and A an effective Q-Cartier
divisor, the pair (X, A) is said to be log canonical if the coefficients of components



of A are no greater than 1 and there exists a log resolution w : Y — X such that
7 (suppA) U exc(m) is a divisor with normal crossings satisfying

KYIW*(KX+A)+Zaij, QaajZ—l,Vj.
J
Definition 2.3 Let X be a projective manifold and D be a Q-Cartier divisor. The
log canonical threshold of D s defined by
let(X, D) = sup{t € R | (X,tD) is log canonical}.

It is proved by Demailly that the a-invariant is related to the log canonical thresholds

of anti-canonical divisors through the following formula (see Theorem A.3. in the
Appendix A of [5]).

Theorem 2.1 For any Fano manifold X,
a(X) = inf inf ‘lct(X, m~'D)

m€Z>o De ‘ —-mKx

Recently Birkar (Theorem 1.4 of [I]) obtains a uniform positive lower bound of
the log canonical threshold and the following is an immediate corollary of Birkar’s
result.

Theorem 2.2 There exists £ = £o(n) > 0 such that for any n-dimensional Fano
manifold X
a(X) > go(n).

From the Harnack inequality in [14], for any fixed Ké&hler metric w € ¢;(X), the
curvature equation for w; along the continuity method

Ric(w;) = t(wy) + (1 — t)w (2.1)

can be solved for all t € [0, (n+1)a(X)/n). As a consequence, we have the following
corollary:.

Corollary 2.1 There exists 1 = e1(n) > 0 such that for any n-dimensional Fano
manifold X, there exists a Kdhler metric @ € c1(X) satisfying

Ric(w) > g1w. (2.2)

We can also assume that @ is invariant under the group action of the maximal
compact subgroup G of Aut(X) by choosing a G-invariant Kéhler metric w in the

equation (2.1]).
The greatest Ricci lower bound R(X) for a Fano manifold X is introduced in
[T6, 12] and is defined by
R(X) =sup{t € R| Jw € ¢1(X) such that Ric(w) > tw}.

Immediately one has the following corollary.
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Corollary 2.2 There exists anry = ro(n) > 0 such that for any n-dimensional Fano
manifold X,
R(X) > ro. (2.3)

We are informed by Xiaowei Wang that Corollary is already a consequence
of results in [§]. In fact, Theorem 5.2 and Proposition 5.1 in [§] will imply that
there exist m = m(n) > 0 and § = f(n) € (0, 1] such that for any n-dimensional
Fano manifold X, there exists a smooth divisor D € | —mK x| and a conical Kéhler-
Einstein metric w € ¢;(X) satisfying

Ric(w) = Bw + (1 — B)m~'[D].

Then Corollary 2.2] immediately follows by the relation between R(X) and the exis-
tence of conical Kahler-Einstein metric established in [I1].

Now let us recall Perelman’s entropy functional for a Fano manifold (X, ¢g) with
the associated Kéhler form w, € ¢;(X). The W-functional is defined by

Wi ) =55 [ (B [97F +f =200 faV,

where V' = (X)), and the p-functional is defined by

o) =t (Wi, | - [ etav, =1},

Lemma 2.1 There exists A = A(n) > 0 such that for the Riemannian metric §
associated to the form w in (2.2)

n(g) = —A.

Proof Since Ric(g) is bounded from below by a uniform positive constant €1(n), by
Myers’ theorem and volume comparison,

Vol(X, §) < C(n), diam(X,q) < C(n).

On the other hand, since @ € ¢;(X) is in an integral cohomology class, in particular
Vol(X,g) > ¢(n) > 0. By Croke’s theorem, the Sobolev constant Cs of (X, g) is
uniformly bounded. It is well-known that a Sobolev inequality implies the lower
bound of u-functional. For completeness, we provide a proof below.

For any f € C* with [, e /dV; =V, we write e~/ = ¢. By Jensen’s inequality

7 [ oot <iog (g [ o)
<tog (Cs [ (V6P + )
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So

WG, 1) =55 [ (RS + 4190 = log )V, — 20 = ~Cn).

O

Let (X, g) € KR(n) be a gradient shrinking Kéhler-Ricci soliton which satisfies
the equation
Ve

1 _
R’iC((A@) + 788[6 = Wy, VVu = 0. (24)

Let G C Aut(X) be the compact one-parameter subgroup generated by the holo-
morphic vector field Im(Vu). As we mentioned before, the metric @ in (Z2]) can be
taken to be G-invariant.

Corollary 2.3 For any (X, g) € KR(n), we have

puig) = -4,
where A = A(n) is the constant in Lemma 2.

Proof We consider the normalized Kéhler-Ricci flow with initial metric @ in ([2.2)
G-invariant.

Ow(t)
ot
By the convergence theorem for Kéhler-Ricci flow ([I7,[19]), w(t) converges smoothly
to wy, modulo some diffeomorphisms. So limy_, 1(g(t)) = p(g).
On the other hand, u(g(t)) is monotonically non-decreasing along the Kéhler-
Ricci flow ([9]). The lower bound of p(g) follows from this monotonicity and the
lower bound of p(g) established in Lemma 2.1

= —Ric(w(t)) +w(t), w(0)=w.

O

Now we can apply the same argument as in [10] because the assumption of the
uniform bound for the Futaki invariant in [I0] is to obtain a uniform lower bound
for the u-functional. This will complete the proof of Theorem [LIl The argument
in [I0] also implies the uniform bound for the scalar curvature and diameter of
(X, g,u) € KR(n) as well as |Vu|* and hence the Futaki invariant of (X, g). This
implies Corollary [L.1]

3 Generalizations

We generalize our previous discussion to Riemannian complete gradient shrinking
Ricci solitons (M™, g, u) satisfying the equation
1
Ric(g) + Vu = 59

By [3] we can always normalize u such that [ y € dVy =1
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Definition 3.1 We denote RS(n, A) to the set of n-dimensional closed or complete
shrinking gradient Ricci solitons (M, g,u) satisfying

nlg) > —A
with the normalization condition fM e udV, = 1.

The following proposition is the main result of this section and most results in
the proposition are straightforward applications of the compactness results [20] 21]
with Bakry-Emery Ricci curvature bounded below.

Proposition 3.1 Let {(M;, gi,ui,pi)}2, be a sequence in RS(n, A) with n > 4,
where p; be a minimal point of u;. Then after possibly passing to subsequence,
(M;, gi, ui, p;) converges in the Gromov-Hausdorff topology to a metric length space
(Myo, doo, Uno) satisfying the following.

1. The singular set X, of the metric space (M, ds) is a closed set of Hausdorff
dimension no greater than n — 4.

2. (M;, gi,w;) converges smoothly to a gradient shrinking Ricci soliton (Mo \Xoo; oo, Uoo)
satisfying

1
Ric(goo) = 5 + V.

3. (My,ds) coincides with the metric completion of (Muo \ Loo, goo)-

Furthermore, if there exists V' > 0 such that Vol, (M;) <V for alli = 1,2, ..., the
limiting metric space (M, ds) 1s compact.

Proof For any (M,g,u) € RS(n,A), R = n/2 — Au > 0 ([23]), the potential
function u satisfies

Au—I|VulP+u=a, a= ue “dV,.
o g

We denote @ = u — a. From Au < n/2 and immediately we have |Vi|? < n/2 + .
By [3], the minimum of @ is achieved at some finite point p € M, so mina = u(p) >
—n/2. Applying maximum principle to @ which satisfies Au — |Va|* + @ = 0 at a
minimum point p € M, we obtain that miny, @ = u(p) < 0.

From |Va|? < @+ n/2, we have [Vy/@ + n/2| < 1. Thus for any z € M

1

i(z) < 5 d(p,z)*+ C(n). (3.1)

d(p,z)* + u(p) + C(n) <

Immediately we have



and
/2 < —Aii(z) < %d(p, ) + C(n). (3.3)

When (M, g) is closed and Vol(M,g) < V. We note by Jensen’s inequality
a < logV. The Ricci soliton (M, g,u) gives rise to a Ricci flow ¢g(t) = ¢g with
initial metric ¢g(0) = g, where ¢, is the diffeomorphism group generated by Vu,
6%—9 = —2Ric(g(t)) + g(t). Combining with the fact that R(g) > 0 and Perelman’s
non-collapsing theorem, we see that (M, g) is non-collapsed in the sense that if
R < r~? on B.(z), then Vol(B,(z)) > k(n, A)r", for all r € (0,7(n, A)]. With this
non-collapsing and equations ([B.]), (8.2]) and (3.3]), we can apply the same argument
of Perelman as in Section 3 of [I3] to show that there exists a uniform constant
C(n, A, V) > 0 such that for any closed (M, g,u) € RS(n,A) with the additional
assumption Vol(M, g) <V,

[ull oo + 1Vull e rg) + | Bl e + diam(M, g) < C(n, A, V). (3.4)

The non-collapsing of (M, g) also implies a uniform lower bound on Vol(M, g). Now
we can apply the main theorem of [22].

In general, when (M, g) is complete, applying [9] to the Ricci flow associated to
(M, g), there exists a kK = k(A, n) such that (M, g) is k-noncollapsed. In particular,
Vol(B(p,1)) > ¢(A,n) > 0. On any geodesic ball B(p,r) with p being the minimal
point of u, |[Vu| < 2r? + C(n, A). By the Cheeger-Colding theory for Bakry-Emery
Ricci tensor Ric(g) + VZu ([20, 21]), for any sequence of (M;, gi, u;, p;) € RS(n, A)
converges (up to a subsequence) in pointed Gromov-Hausdorff topology to a metric
space (M, doo, Do ). Here we choose p; to be a minimum point of u;. M, has the
regular-singular decomposition M., = R U X. Recall a point y € R if all tangent
cone of (M, ds) at y is isometric to R". From [21I] we know the singular set ¥ is
closed and of Hausdorff dimension at most n — 4 and d., on R is induced by a C*

metric g... For any y € R and M; 3 y; <, y, when ¢ is large enough there exists
a uniform 7y = ro(y) such that (By, (yi, o), g;) has uniform C* bound (Theorem 1.2
of [21]). By choosing ry even smaller if possible, we may assume the isoperimetric
constant of (By,(yi,70), gi) is very small so that we can apply Perelman’s pseudo-
locality theorem ([9]) to the associated Ricci flow to derive uniform higher order
estimates of g; nearby y;, which in turn gives local estimates of u;. So locally near
yi, the convergence is smooth and we conclude that the metric g, in a small ball
around y is a Ricci soliton.

O

We remark that in the compact case, a compactness result is obtained earlier by
Zhang [22] assuming a uniform upper bound for the diameter and a uniform lower
bound for the volume.
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