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Abstract

We consider the problem of stealthy communication over a multipath network in the presence

of an active adversary. The multipath network consists of multiple parallel noiseless links, and the

adversary is able to eavesdrop and jam a subset of links. We consider two types of jamming—erasure

jamming and overwrite jamming. We require the communication to be both stealthy and reliable, i.e.,

the adversary should be unable to detect whether or not meaningful communication is taking place,

while the legitimate receiver should reconstruct any potential messages from the transmitter with high

probability simultaneously. We provide inner bounds on the stealthy capacities under both adversarial

erasure and adversarial overwrite jamming.
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I. INTRODUCTION

Suppose an activist (Alice) occasionally wishes to communicate with a news agency, say BBC

(Bob), and can use several social media accounts she has to do so. However, the government

James is eavesdropping on some of these accounts (Alice and Bob do not know which ones),

and is able to jam (i.e., erase or corrupt) information on these. The goal is to ensure that (i) the

activist Alice can communicate with the BBC Bob even if the government James attempts to

disrupt communication, and (ii) Alice’s communication should be stealthy—any communication

posted on the social media that James observes should be explainable as “innocent behaviour”.

The classical information-theoretic security problem aims to hide the content of communi-

cation. However, in certain scenarios the mere fact that communication is taking place should

also be hidden. Stealthy communication, first studied in [2] for Discrete Memoryless Channels

(DMCs), requires that the transmitter Alice should be able to reliably communicate with the

legitimate receiver Bob, and simultaneously ensure the communication is undetectable by a

malicious adversary James. The work [3] generalized the communication medium from classical

DMCs to networks, and particularly studies stealthy communication over a noiseless multipath

network wherein James is able to eavesdrop on a subset of links.

Stealthy communication is closely related to the well-studied covert communication problem.

The major difference lies in the assumptions on the innocent distribution (when no communi-

cation happens)—covert communication requires that, under innocent transmission, the channel

inputs must be the “zero symbols”, while stealthy communication allows the inputs to follow a

non-zero innocent distribution. Prior works have investigated the covert communication problem

under different settings, including additive white Gaussian noise (AWGN) channels [4]–[6],

DMCs [5], [7], [8], binary symmetric channels (BSCs) [9], multiple-access channels [10], broad-

cast channels [11], [12], compound DMCs [13], continuous-time channels [14]–[17], quantum

channels [18]–[20], etc. In particular, instead of the broadly studied random noise channels, the
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work [21] shifted the focus to the adversarial noise channels, i.e., the channel between Alice

and Bob can be maliciously jammed by James, and the coding scheme there should be resilient

to every possible (including the worst) jamming strategy induced by James.

This paper builds upon the insights obtained in [3], [21]. Suppose Alice and Bob communicate

over a multipath network, which consists of C parallel noiseless links. Unlike [3] wherein James

is only able to eavesdrop on a subset of links passively, this work considers the situation in which

James also has the ability to jam the same subset of links to disturb any potential communication

(even if he cannot detect the existence of communication), based on his knowledge about the

communication scheme used by Alice and Bob. When Alice does not wish to communicate with

Bob, her transmissions on the C links are sampled according to an innocent distribution (known

a priori to Bob and James). When she is communicating with Bob, her transmissions are chosen

from a public codebook. In both scenarios, James is able to control (eavesdrop on/jam) at most

Z out of C links, but which subset of links is controlled is not known to Alice and Bob.

James first estimates whether or not Alice is transmitting by observing the transmission

patterns on the links he controls. The stealth is measured via a hypothesis-testing metric—the

communication is deemed to be stealthy if regardless of James’ estimator, his probability of false

alarm plus his probability of missed detection always approaches one asymptotically. Afterwards,

on the basis of his observations and his prior knowledge about the communication scheme, James

tries to adversarially jam the links he controls. We consider two types of jamming—erasure

jamming and overwrite jamming. Erasure jamming means that James can only erase everything

on the links he controls, while overwrite jamming allows him to replace the original transmission

with his carefully designed transmission patterns. Under both erasure and overwrite jamming,

we show that stealthy communication with positive rate is achievable.
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A. Comparison with Related Work

Since stealthy communication allows a non-degenerate innocent distribution, the throughputs

with guarantees on both stealth and reliability, in this work and also in [2], [3], scale linearly

in the blocklength. This is in contrast to covert communication wherein one can only transmit

O(
√
n) bits covertly and reliably over n channel uses. Another, somewhat technical difference, is

that in our setup, the channel from Alice to James is not known a priori to Alice and Bob because

of James’ flexibility in choosing which subset of Z links to sit on. Stealthy communication over

multipath networks is also studied in [3]; however, the adversary there is passive. Furthermore,

we point out that the functionalities of the adversary in this work is fundamentally different

from the uninformed jammer considered in [14], wherein the jammer is present to help Alice

and Bob by sending “artificial noise” to the eavesdropper.

Another field that is closely related to stealthy communication is the steganography problem,

in which Alice aims to convey a message to Bob by concealing it into the covertext (i.e., the

innocent transmissions when Alice is inactive), and the adversary who has noiseless access to

the stegotext (i.e., the transmissions from Alice to Bob) should not be able to detect the existence

of the hidden message. Unlike this work, the adversary in the steganography problem usually

has noiseless observations of the transmissions, and most works assume that shared key between

Alice and Bob is available. An information-theoretic model of steganography is first proposed by

Cachin [22], and several follow-up works [23]–[27] also take the active jamming into account.

However, most of these works (except [24], [27]) focus on the memoryless attack or blockwise

memoryless attack (i.e., the attack channel designed by the adversary is essentially a memoryless

channel), and they usually impose distortion constraints on the attack channel. More importantly,

the schemes in all these works rely critically on the shared key between Alice and Bob. On the

contrary, this work does not require the distortion constraints, the shared key, and the channel

to be memoryless—our scheme works as long as the adversary’s channel is worse than Bob’s
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channel, and the analysis relies on the imperfection of the adversary’s observations.

Reliable communication (without stealth constraints) over a multipath network in the presence

of an adversary has been well-studied in the past [28]–[31]. The work [28] first shows that as

long as Z < C/2, Alice and Bob can fully utilize the rest of links to communicate, under both

erasure and overwrite jamming. Robustness against erasure jamming is relatively straightforward

while robustness against overwrite jamming requires non-trivial coding schemes (such as pairwise

hashing [28]). Similar results are obtained in this work while also taking stealth into account.

B. Our Contributions and High-level Intuition

Our schemes are the first that can attain two simultaneous goals—ensure stealth (i.e., James

cannot infer whether or not meaningful communication is occurring) and in parallel also ensure

robustness to jamming (i.e., James is unable to corrupt meaningful communication if it is

happening). Note that James is quite strong—he is computationally unbounded, knows a priori

the communication scheme (including the encoder, decoder, and codebook) that would be used

if meaningful communication were indeed happening, and is able to eavesdrop on any subset

of links of size at most Z and base his jamming strategy on what he sees (even if he is unable

to detect communication happening). However, Alice and Bob do not know the subset James

controls as well as the jamming strategy he uses.

Under erasure jamming, the channel between Alice and James can be viewed as an aggregation

of all the links controlled by James, while the channel between Alice and Bob can be viewed

as an aggregation of the complement of these links (since James erases everything on the links

he controls). The stealth constraint imposes a lower bound on the rate (as a consequence of the

channel resolvability [7], [32]), while the reliability constraint imposes an upper bound (as a

consequence of the channel coding theorem). As is standard in wiretap secrecy problems, we

create an artificial noisy channel at the encoder (which may hurt James more than Bob) in our

scheme to obtain a higher rate compared to a relatively straightforward approach.
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Coding against an overwrite adversary is significantly more non-trivial since James can use

any jamming strategy which is unknown to Alice and Bob. In this work we develop a coding

scheme with positive rate that is resilient to every (including even the worst-case) possible

jamming strategy. The essences of our proof lie in Lemma 2 presented in Section V and a

proper use of the McDiarmid’s inequality [33].

While the focus of this work is on robustness to active jamming, it has not escaped our attention

that composing our schemes with well-known techniques in the information-theoretic literature

allows us to get schemes that are secure against both information leakage and active jamming

attacks in this stealthy communication setting. A full characterization of this communication

setting with trifold objectives is a source of ongoing investigation.

II. MODEL

Random variables and their realizations are respectively denoted by uppercase letters and

lowercase letters, e.g., X and x. Sets are denoted by calligraphic letters, e.g., X . Vectors of

length-n are denoted by boldface letters, e.g., X and x. If the single-letter distribution on X is PX ,

then the corresponding n-letter product distribution
∏n

i=1 PX is denoted by PX. Throughout this

paper we use asymptotic notations [34, Ch. 3.1] to describe the limiting behaviour of functions.

The multipath network consists of C parallel links L1, L2, . . . , LC , each link Li carries a

symbol from the alphabet Xi per time instant. The alphabet for all the links taken together is

denoted by X ,
∏C

i=1Xi. Alice’s transmission status is denoted by T ∈ {0, 1}: T = 0 if Alice

is innocent, whereas T = 1 if Alice is active. The message M is either 0 (if Alice is innocent)

or uniformly distributed over {1, 2, . . . , N} (if Alice is active). Note that no prior distribution is

assigned to T and only Alice knows the values of T and M a priori. Let n be the blocklength

(number of time instants). The length-n vector transmitted on the j-th link is denoted by xj ,

and the collection of vectors on C links is denoted by x = [xT1 xT2 . . .x
T
C ]T . Note that x can

also be viewed as a length-n vector over X . The system diagram is illustrated in Figure 1.
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Encoder (Alice) Decoder (Bob)

Estimation/JammingJames

Fig. 1: System diagram

1) Innocent distribution: When Alice is innocent (T = 0), at each time instant t (1 ≤ t ≤ n),

an innocent transmission pattern on the C links is sampled according to the time-independent

innocent distribution P inn
X ∈ P(X ), where P(X ) denotes the set of all distributions on X . For

any subset J ⊆ {L1, L2, . . . , LC}, the marginal innocent distribution is denoted by P inn
XJ

. Over

n time instants, the corresponding n-letter innocent distribution and n-letter marginal innocent

distribution (for subset J) are product distributions with the form

P inn
X ,

n∏
t=1

P inn
X , P inn

XJ
,

n∏
t=1

P inn
XJ
.

2) Encoder: Alice’s encoder Ψ(., .) takes the transmission status T and the message M as

input, and outputs a length-n vector X. If T = 0 (thus M = 0), the encoder Ψ(0, 0) outputs a

vector X according to the innocent distribution P inn
X . If T = 1 and message m is transmitted,

the encoder Ψ(1,m) outputs the corresponding length-n vector x(m) for transmission. The rate

is defined as

R ,
logN

n
. (1)

Under overwrite jamming, the codebook is the collection of N length-n vectors {x(m)}Nm=1

over X n; while under erasure jamming, the codebook is the collection of N length-n vectors

{u(m)}Nm=1 over Un (as detailed in Section IV, we first map the message m to the codeword
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u(m) and then stochastically map u(m) to x(m) for transmission). We assume that the codebook

is known to all parties including the adversary.

3) Active distribution: The active distribution, which is averaged over the codebook, is denoted

by P̂X. Similarly, for any subset J ⊆ {L1, L2, . . . , LC}, the marginal active distribution is

denoted by P̂XJ
.

4) James’ estimation and jamming: The adversary James knows a priori the communication

scheme (including the encoder, decoder, and codebook) that would be used if meaningful

communication were indeed happening. Let J be the class of all possible subsets of size at

most Z, i.e., J , {J ⊆ {L1, L2, . . . , LC} : |J | ≤ Z}. James is able to control any subset

J ∈ J, and his choice is unknown to both Alice and Bob. Moreover, James is also assumed

to be computationally unbounded. On the basis of his observations on the subset he controls,

James estimates Alice’s transmission status T , and also non-causally jams the subset to prevent

reliable communication irrespective of his estimation.

Estimation: James’ estimator Φ(.) outputs a single bit T̂ = Φ(XJ) to estimate Alice’s trans-

mission status T . We respectively defined the probability of false alarm and the probability of

missed detection of an estimator Φ as α(Φ) , P(T̂ = 1|T = 0) and β(Φ) , P(T̂ = 0|T = 1).

We use a hypothesis testing metric to measure the stealth.

Definition 1 (Stealthy Communication). The communication is said to be stealthy if

lim
n→∞

min
Φ
{α(Φ) + β(Φ)} = 1. (2)

In other words, stealthy communication requires that regardless of which estimator Φ is chosen,

α(Φ) + β(Φ) should always approach one as n tends to infinity. Note that a naïve estimator

Φ̃ (which always outputs T̂ = 0 or T̂ = 1) also guarantees α(Φ̃) + β(Φ̃) = 1. Therefore,

the definition for stealthy communication implies that James’ optimal estimator (denoted by

Φ∗) cannot be much better than the naïve estimator Φ̃. A classical result on hypothesis test-
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ing [35] shows that the optimal estimator Φ∗ satisfies α(Φ∗)+β(Φ∗) = 1−V(P̂XJ
, P inn

XJ
), where

V(P̂XJ
, P inn

XJ
) , 1

2

∑
xJ
|P̂XJ

(xJ) − P inn
XJ

(xJ)| is the variational distance between the marginal

active distribution and the marginal innocent distribution. To prove the communication is stealthy,

it is equivalent to showing that for every J ∈ J,

lim
n→∞

V(P̂XJ
, P inn

XJ
) = 0. (3)

Jamming: James is also able to maliciously jam the set J he controls. Under erasure jamming,

the transmission xJ is completely replaced by the erasure symbols ‘⊥’, while under overwrite

jamming, xJ is replaced by a carefully designed yJ . In particular, James is able to choose the

jamming vector yJ stochastically according to any conditional distribution WYJ |XJ ,C , since he

knows xJ and the codebook. Note that Alice and Bob do not know James’ jamming strategy.

5) Decoder: Bob receives y through the multipath network.

1) Under erasure jamming, yJc = xJc on the subset J c (where J c denotes the complement of

set J), and yJ equals the erasure symbols ‘⊥’ on the subset J .

2) Under overwrite jamming, yJc = xJc on J c, while yJ is arbitrarily chosen by James.

Note that Bob can easily figure out the subset J under erasure jamming due to the appearance

of ‘⊥’, while it is not the case under overwrite jamming. Bob reconstructs the message M̂ by

applying his decoding function Γ(.) to his observation. The probabilities of error under erasure

and overwrite jamming are respectively defined as

P⊥err(Ψ,Γ) , max
J∈J

∑
t∈{0,1}

P(M̂ 6= M |T = t), P ow
err (Ψ,Γ) , max

J∈J
max

WYJ |XJ ,C

∑
t∈{0,1}

P(M̂ 6= M |T = t).

6) Achievable rate: A rate R is said to be achievable under erasure jamming (resp. achievable

under overwrite jamming) if there exists an infinite sequence of codes (Ψn,Γn) such that each

code in the sequence has rate at least R, and ensures limn→∞V(P̂XJ
, P inn

XJ
) = 0 for every J ∈ J

and limn→∞ P
⊥
err(Ψn,Γn) = 0 (resp. limn→∞ P

ow
err (Ψn,Γn) = 0).
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III. MAIN RESULTS

To facilitate the statement of our results, we first define an optimization problem (A), which

includes an auxiliary random variable U , for a fixed innocent distribution P inn
X and a non-negative

integer Z < C/2 as follows:

(A) sup
PU ,PX|U

min
J∈J

I(U ;XJc)

subject to P inn
XJ

=
∑
u

PU · PXJ |U , ∀J ∈ J, (4)

max
J∈J

I(U ;XJ) < min
J∈J

I(U ;XJc). (5)

The optimal value of (A) is denoted by K̄(P inn
X , Z). Consider another optimization

(B) sup
PX

min
J∈J

H(PXJc )

subject to P inn
XJ

= PXJ , ∀J ∈ J, (6)

max
J∈J

H(PXJ ) < min
J∈J

H(PXJc ), (7)

and let the optimal value be K(P inn
X , Z). It is worth noting that K(P inn

X , Z) is always bounded

from above by K̄(P inn
X , Z), since (A) is equivalent to (B) by restricting U = X . In the following,

we provide an example showing that K(P inn
X , Z) is sometimes strictly smaller than K̄(P inn

X , Z).

Example 1. Suppose the multipath network contains three links (C = 3), James is able to

arbitrarily control one link (Z = 1), and the alphabet of each link is binary, i.e., X1 = X2 =

X3 = {0, 1}. Let the innocent distribution P inn
X be a product distribution, i.e., P inn

X = P inn
X1
P inn
X2
P inn
X3

,

with P inn
X1

(0) = P inn
X2

(0) = 0.1 and P inn
X3

(0) = 0.5. We first show that the optimization (B)

is infeasible. This is because for all PX satisfying the first constraint of optimization (B), the

second constraint of optimization (B) cannot be satisfied since H(PX1X2) ≤ H(PX1)+H(PX2) =

H(0.1) +H(0.1) = 0.938 < 1 = H(PX3). Therefore, K(P inn
X , Z) = 0 in this setting.

DRAFT September 1, 2020



11

By introducing an auxiliary random variable U with U = {0, 1}, the optimal value K̄(P inn
X , Z)

of optimization (A) becomes non-zero. We choose PU(0) = 0.2 and the conditional probability

PX|U = PX1|UPX2|UPX3|U , where PX1|U , PX2|U , PX3|U are given in the following table.

PX1|U PX2|U PX3|U

X1 = 0 X1 = 1 X2 = 0 X2 = 1 X3 = 0 X3 = 1

U = 0 0.5 0.5 0.5 0.5 0.9 0.1

U = 1 0 1 0 1 0.4 0.6

One can verify that such choices of PU and PX|U satisfy the first constraint of optimization (A).

Moreover, we have maxJ∈J I(U ;XJ) = I(U ;X1) = 0.269, and

min
J∈J

I(U ;XJc) = I(U ;X2X3)
(a)
= I(U ;X2) + I(U ;X3)− I(X2;X3) = 0.34,

where (a) follows since X2 − U − X3 forms a Markov chain. Thus, the second constraint of

optimization (A) is also satisfied. Therefore, we know that K̄(P inn
X , Z) is at least 0.34.

As is usual in wiretap secrecy problems, Theorem 1 below shows that a higher rate K̄(P inn
X , Z)−

ε is achieved by introducing an auxiliary variable U .

Theorem 1 (Erasure jamming). For any P inn
X and non-negative integer Z < C/2, the rate

R = K̄(P inn
X , Z)− ε is achievable under erasure jamming for sufficiently small ε > 0.

Lemma 1 below provides a bound on the cardinality of the random variable U . The proof

relies on standard cardinality bound arguments [36] and is deferred to Appendix F

Lemma 1 (Cardinality Bound). Given any feasible random variable (U,X) in optimization (A),

there exists a feasible (U ′, X) with |U ′| ≤ |X |+ 2|J| − 1 that yields the same objective value.

Compared to erasure jamming, dealing with overwrite jamming is much more challenging

due to the fact that James, knowing Alice’s codebook, may attempt to “spoof” Alice’s transmis-

sions. Bob’s decoder should be robust to any jamming strategy (or any conditional distribution)
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WYJ |XJ ,C , including the one that maximizes his probability of decoding error. However, our next

result shows that stealthy communication with positive rate is still possible.

Theorem 2 (Overwrite jamming). For any P inn
X and non-negative integer Z < C/2, the rate

R = K(P inn
X , Z)− ε is achievable under overwrite jamming for sufficiently small ε > 0.

In addition to the achievability results presented in Theorems 1 and 2, Theorem 3 below also

provides upper bounds for both erasure jamming and overwrite jamming when Z < C/2.

Theorem 3 (Upper bounds for Z < C/2). Under erasure jamming (resp. overwrite jamming), we

consider a sequence of codes with increasing blocklength n such that εn , P⊥err (resp. εn , P ow
err )

and δn , maxJ∈JV(P̂XJ
, P inn

XJ
). If limn→∞ εn = limn→∞ δn = 0, we have that for any ε ∈ (0, 1),

lim
n→∞

R = lim
n→∞

logN

n
≤ sup

PX :V(PXJ ,P
inn
XJ

)≤ε,∀J∈J
min
J∈J

H(PXJc ).

Proof: For any sequence of codes satisfying limn→∞ εn = limn→∞ δn = 0, we have

logN = H(M) = I(M ; M̂) +H(M |M̂)

(a)
≤ I(M ; M̂) + nε′n

(b)
≤ min

J∈J
I(X;XJc) + nε′n

≤ min
J∈J

n∑
i=1

I(Xi; (Xi)Jc) + nε′n,

where (a) follows from Fano’s inequality and ε′n is a sequence that depends on εn and satisfies

limn→∞ ε
′
n = 0, (b) follows from data processing inequality, the fact that Bob can observe

YJc = XJc noiselessly, and the fact that James can choose any J ∈ J to minimize the mutual

information I(X;XJc). Recall that for any J ∈ J, the n-letter distribution P̂XJ
(induced by

the code) satisfies V(P̂XJ
, P inn

XJ
) ≤ δn, and let (P̂XJ

)i, for i ∈ {1, 2, . . . , n}, be the marginal
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distributions of P̂XJ
. We then have that for each J ∈ J,

V((P̂XJ
)i, P

inn
XJ

) =
1

2

∑
x
(i)
J

∣∣∣(P̂XJ
)i(x

(i)
J )− P inn

XJ
(x

(i)
J )
∣∣∣

(c)
=

1

2

∑
x
(i)
J

∣∣∣∣∣∣∣
∑
x
(−i)
J

(P̂XJ
)i(x

(i)
J )

P̂XJ
(x

(i)
J ,x

(−i)
J )

(P̂XJ
)i(x

(i)
J )

−
∑
x
(−i)
J

P inn
XJ

(x
(i)
J ,x

(−i)
J )

∣∣∣∣∣∣∣
≤ 1

2

∑
x
(i)
J

∑
x
(−i)
J

∣∣∣∣∣(P̂XJ
)i(x

(i)
J )

P̂XJ
(x

(i)
J ,x

(−i)
J )

(P̂XJ
)i(x

(i)
J )

− P inn
XJ

(x
(i)
J ,x

(−i)
J )

∣∣∣∣∣
= V(P̂XJ

, P inn
XJ

) ≤ δn,

where x(−i)
J , [x

(1)
J , . . . , x

(i−1)
J , x

(i+1)
J , . . . , x

(n)
J ] and (c) holds since P inn

XJ
=
∏n

t=1 P
inn
XJ

. That is, any

sequence of codes satisfying maxJ∈J V(P̂XJ
, P inn

XJ
) = δn has the property that for any J ∈ J, the

marginal distribution (P̂XJ
)i is close the the innocent distribution P inn

XJ
, i.e., V((P̂XJ

)i, P
inn
XJ

) ≤ δn.

Thus, the mutual information I(Xi; (Xi)Jc) for i ∈ {1, 2, . . . , n} satisfies

I(Xi; (Xi)Jc) ≤ sup
PX :V(PXJ ,P

inn
XJ

)≤δn,∀J∈J
H(PXJc )

(d)
≤ sup

PX :V(PXJ ,P
inn
XJ

)≤ε,∀J∈J
H(PXJc ),

where (d) holds for sufficiently large n since ε ∈ (0, 1) is independent of n. Therefore, we have

lim
n→∞

R = lim
n→∞

logN

n
≤ min

J∈J
sup

PX :V(PXJ ,P
inn
XJ

)≤ε,∀J∈J
H(PXJc ) = sup

PX :V(PXJ ,P
inn
XJ

)≤ε,∀J∈J
min
J∈J

H(PXJc ).

Remark 1. When Z ≥ C/2, it is impossible to communicate reliably and stealthily simulta-

neously under both erasure jamming and overwrite jamming. To explain the rational behind

the above argument, in the following we consider a concrete setting in which C is even and

Z = C/2. The analysis for the setting in which Z > C/2 is similar.

(a) Erasure Jamming: Note that James is able to choose any subset among all subsets of size

C/2, and Bob is required to reliably decode regardless of which subset is chosen by James.

If James chooses J = {1, . . . , C/2}, Bob is required to decode the message reliably based on
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his observations [xC/2+1, . . . ,xC ] on the subset J c. Thus, if James chooses a different subset

J which equals {C/2 + 1, . . . , C}, he observes [xC/2+1, . . . ,xC ] and then will also be able to

reliably decode the message (since the communication scheme including the codebook is public).

This implies that if the communication is reliable, it cannot be stealthy simultaneously.

(b) Overwrite Jamming: When James controls at least half of the links, he is at least as

powerful as Alice (since Alice and Bob do not have any shared key). Whatever Alice does,

James can do as well—James can pretend to be the transmitter and send a fake message to Bob

(using Alice’s encoder and the public codebook) on the links he controls; thus, Bob is unable to

distinguish Alice’s true message and James’ fake message. This implies that Bob’s probability

of decoding error cannot be vanishing.

Remark 2. Under a slightly different setting in which the adversary James does not know

the codebook (the other assumptions are the same), the maximum rates we achieve are still

K̄(P inn
X , Z)− ε (under erasure jamming) and K(P inn

X , Z)− ε (under overwrite jamming). In fact,

one of our main contribution is that the communication schemes we developed are robust to

a stronger adversary (i.e., knowing the codebook) and simultaneously achieve the same rates

compared to the setting with a weaker adversary (i.e., not knowing the codebook).

IV. ERASURE JAMMING

A. Achievability Scheme

Our achievability scheme relies on a random coding argument. Let the optimal distributions

in optimization (A) be PU and PX|U .

Encoder: We set R = K̄(P inn
X , Z)− ε = minJ∈J I(U ;XJc)− ε for some sufficiently small ε > 0

such that R > maxJ∈J I(U ;XJ), where the random variable pair (U,X) is distributed according

to PU · PX|U . For each message m ∈ {1, 2, . . . , N}, where N = 2nR, the codeword u(m) is

generated according to the n-letter product distribution PU ,
∏n

i=1 PU . The codebook C is the
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collection of all codewords {u(m)}Nm=1. To transmit m, Alice chooses u(m) and stochastically

maps u(m) to x(m) according to the n-letter product distribution PX|U(x(m)|u(m)), and x(m)

is then transmitted over the multipath network.

Decoder: Bob first determines the subset J (controlled by James) based on the erasure symbol

‘⊥’, and then applies typicality decoding based on yJc . Note that yJc = xJc since the subset J c

is not controlled by James. He decodes to T̂ = 1 and M̂ = m if there exists a unique m such

that (u(m),yJc) are jointly typical, whereas T̂ = 0 and M̂ = 0 if there does not exist any m

such that (u(m),yJc) are jointly typical.

B. Proof Sketch of Stealth

We provide a proof sketch of stealth in this subsection, and defer the detailed proof to

Appendix C). To satisfy the stealth constraint, one should guarantee that no matter which subset

J is controlled by James, the marginal active distribution P̂XJ
is indistinguishable from the

marginal innocent distribution P inn
XJ

. Note that

P̂XJ
(xJ) =

N∑
m=1

1

N
PXJ |U(xJ |u(m)), (8)

P inn
XJ

(xJ) =
∑
u

PU(u)PXJ |U(xJ |u). (9)

Equation (9) follows from the constraint in (4), which ensures that the stochastic process
∑

u PU ·

PXJ |U simulated by the encoder Ψ is identical to the marginal innocent distribution P inn
XJ

. The

constraint in (5) ensures the size of the codebook to be large enough so that with high probability

the active distribution P̂XJ
is sufficiently close to

∑
u PU ·PXJ |U — it turns out that R > I(U ;XJ)

is sufficient, as noticed in [7], from a channel resolvability perspective. To prove it, we first

denote the typical set of XJ by An,γXJ (where γ → 0 as n → ∞), and the jointly typical set

(resp. joint type class) of U with respect to a typical xJ by AUxJ (resp. TUxJ ). In the following,

we drop the subscripts of PU and PXJ |U for notational convenience. Recall that proving stealth
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is equivalent to bounding the variational distance V(P inn
XJ
, P̂XJ

) = 1
2

∑
xJ
|P inn

XJ
(xJ)− P̂XJ

(xJ)|.

For any typical xJ , we have∣∣∣P inn
XJ

(xJ)− P̂XJ
(xJ)

∣∣∣ (a)
≈
∣∣∣∣ ∑
u∈AUxJ

P (u)P (xJ |u)−
∑

m:u(m)∈AUxJ

1

N
P (xJ |u(m))

∣∣∣∣
(b)
≤
∑
TUxJ

∣∣∣∣ ∑
u∈TUxJ

P (u)P (xJ |u)−
∑

m:u(m)∈TUxJ

P (xJ |u(m))

N

∣∣∣∣
(c)
=
∑
TUxJ

P (xJ |u)

∣∣∣∣P (U ∈ TUxJ )− |m : u(m) ∈ TUxJ |
N

∣∣∣∣, (10)

where the approximation (a) is obtained by discarding negligible atypical events (see (18) in

Appendix C for a detailed calculation), (b) is obtained by dividing the typical set AUxJ into

typical type classes TUxJ , and (c) follows since P (xJ |u) is identical for all u ∈ TUxJ . Note that

µ , EC (|m : u(m) ∈ TUxJ |) = N · P (U ∈ TUxJ ), (11)

which is exponentially large since P (U ∈ TUxJ )
·

= 2−nI(U ;XJ ) and logN = nR > nI(U ;XJ)

(due to the code design). One can apply the Chernoff bound [37] (which is provided in Ap-

pendix A) to show that with probability at least 1 − 2e−
1
3
µε2n (i.e., super-exponentially close to

one) over the code design,∣∣∣P (U ∈ TUxJ )− |m : u(m) ∈ TUxJ |
N

∣∣∣ ≤ εnP (U ∈ TUxJ ), (12)

where εn → 0 as n → ∞. Finally, by substituting (12) for (10), and by taking a union bound

over exponentially many TUxJ and xJ , we prove that V(P inn
XJ
, P̂XJ

) ≤ f(εn) with high probability

for some function f(·), where f(εn)→ 0 as n→∞. Finally, note that the above analysis holds

for every possible subset J ∈ J that James may choose, since the rate R > maxJ∈J I(U ;XJ).

C. Proof of Reliability

To guarantee reliability, we note that the effective channel between Alice and Bob is PXJc |U

under erasure jamming, since Bob observes YJc = XJc noiselessly. Recall that our achievability

relies on a random coding argument with input distribution PU and an effective channel PXJc |U .

DRAFT September 1, 2020



17

Since the rate R is smaller than minJ∈J I(U ;XJc), the random coding argument directly implies

that with high probability over the code design, the probability of error tends to zero as n tends

to infinity, regardless of which subset J ∈ J is chosen by James.

V. OVERWRITE JAMMING

We first highlight two challenges for reliable decoding under overwrite jamming: (i) In contrast

to erasure jamming, it is not trivial for Bob to figure out which subset J ∈ J is controlled by

James. In fact, our coding scheme described below requires Bob to try every possible choice of

J . (ii) Though James can only control set J , he is not “completely blind” for the complement

set J c. This is because Alice is constrained to using a stealthy codebook, and hence any set of Z

links must have marginal distributions that look innocent. For instance, if James controls 2 out

of 5 links (say links 1 and 2), he knows that Alice’s transmissions on any other link j /∈ {1, 2}

must have joint distribution with links in {1, 2} according to the innocent distribution.

A. Achievability Scheme

The achievability scheme relies on a random coding argument. Let PX be the optimal distri-

bution in optimization (B).

Encoder: We set R = K(P inn
X , Z) − ε = minJ∈JH(XJc) − ε for some sufficiently small ε > 0

such that R > maxJ∈JH(XJ). For each message m, the codeword x(m) is generated according

to the n-letter product distribution PX ,
∏n

i=1 PX . Alice encodes m to x(m), and transmits

x(m) over the multipath network. The codebook C is a collection of codewords {x(m)}Nm=1;

for any set J , we denote the codebook subject to the set J as CJ , {xJ(m)}Nm=1.

Decoder: Since Bob does not know the set J controlled by James a priori, he attempts to

decode based on every possible choice of Ĵ ∈ J and applies an erasure-like decoding on its

corresponding decoding set Ĵ c. For a specific Ĵ , Bob outputs a message m to his list L if

its corresponding sub-codeword xĴc(m) on the decoding set Ĵ c equals yĴc . This procedure is
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repeated for every Ĵ ∈ J. Bob decodes to T̂ = 1 and M̂ = m if the list L contains a unique

message m, decodes to T̂ = 0 and M̂ = 0 if the list L is empty, and declares an error otherwise.

B. Proof of Stealth

Recall that under erasure jamming, we have shown in Section IV-B that the achievability

scheme with codebook generation distribution PU and artificial noisy channel PX|U at the encoder

ensures stealth (i.e., limn→∞V(P̂XJ
, P inn

XJ
) = 0 for every J ∈ J) as long as the rate R >

maxJ∈J I(U ;XJ). Note that the above result holds for any PU and PX|U .

To prove the stealth of the achievability scheme proposed in this section for overwrite jamming,

we can simply reuse the result for erasure jamming by replacing PU with PX and replacing

PX|U with a noiseless channel (i.e., PX|U(x|u) = 1{x = u}), thus the stealth is guaranteed as

long as the rate R is larger than maxJ∈J I(X;XJ) = maxJ∈JH(XJ). By noting that we set

R > maxJ∈JH(XJ) in our scheme, the proof of stealth is then completed.

C. Proof of Reliability

When Alice is active (T = 1), we first assume M = m is transmitted and the subset J ∈ J

is controlled by James. We consider the following two cases.

Case 1: When Bob decodes according to the “correct” decoding set Ĵ c = J c, the transmitted

message m ∈ L since the subset J c is noiseless and xJc(m) must equal Bob’s observations yJc .

In this case, error occurs if there exists a message m′ 6= m such that xJc(m′) = xJc(m). However,

since the rate R < H(PXJc ), it can be shown that the probability of error is vanishing (which

can also be viewed as a consequence of the channel coding theorem with an input distribution

PXJc and a noiseless channel).

Case 2: When Bob decodes according to any other “incorrect” decoding set Ĵ c (Ĵ c 6= J c), we

prove that with high probability, no other message m′ 6= m falls into L. We make it concrete in

the following. For any Ĵ c 6= J c, we partition Ĵ c into disjoint subsets G and B, where G , Ĵ c∩J c
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is the “good set”, while B , Ĵ c ∩ J is the “bad set”. For simplicity we consider the worst case

wherein B = J (i.e., the decoding set Ĵ c contains all the links controlled by James), thus

Ĵ c = G ∪ B = G ∪ J . James is able to replace xJ with yJ according to an arbitrary distribution

WYJ |XJ ,C . We denote Bob’s observation on the decoding set Ĵ c by yĴc , (xG(m),yJ), since

the observations on G corresponds to the sub-codeword xG(m) of the transmitted message m.

Hence, the average probability of error with respect to Ĵ c and WYJ |XJ ,C is given by
N∑
m=1

1

N

∑
yJ 6=xJ

W (yJ |xJ(m), C)1{(xG(m),yJ) ∈ CĴc}, (13)

where the indicator function equals one if Bob’s observation yĴc lies in CĴc (or equivalently,

there exists a message m′ 6= m such that xG(m′) = xG(m) and xJ(m′) = yJ ). Note that we

exclude yJ = xJ in (13), since no decoding error would occur if yJ = xJ (i.e., James does not

jam anything). By partitioning all xJ into typical and atypical sets and gathering all messages

with the same sub-codeword xJ together, one can bound (13) from above as∑
xJ∈An,γXJ

∑
m:xJ (m)=xJ

1

N

∑
yJ 6=xJ

W (yJ |xJ , C)1{(xG(m),yJ) ∈ CĴc}+
∑

xJ /∈An,γXJ

∑
m:xJ (m)=xJ

1

N

=
1

N

∑
xJ∈An,γXJ

∑
yJ 6=xJ

W (yJ |xJ , C)
∑

m:xJ (m)=xJ

1{(xG(m),yJ) ∈ CĴc}+
|m : xJ(m) /∈ An,γXJ |

N

=
1

N

∑
xJ∈An,γXJ

∑
yJ 6=xJ

W (yJ |xJ , C)
∣∣m :{xJ(m) = xJ} ∩ {(xG(m),yJ) ∈ CĴc}

∣∣+
|m : xJ(m) /∈ An,γXJ |

N
.

(14)

Lemma 2. For any yJ and typical xJ ∈ An,γXJ , with probability 1−2−ω(n) (i.e., super-exponentially

close to one) over the code design, a randomly chosen code C satisfies∣∣m : {xJ(m) = xJ} ∩ {(xG(m),yJ) ∈ CĴc}
∣∣∣∣m : xJ(m) = xJ

∣∣ ≤ ε′n, (15)

where ε′n → 0 as n→∞.

Lemma 2 is the crux of our proof, and is formally proved in Appendix D. Although showing

that on expectation the left-hand side (LHS) of (15) is a decaying function of n is relatively
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straightforward, it is much trickier to prove that the probability that the LHS of (15) is a decaying

function of n is super-exponentially close to one (which is essential for taking a union bound

over exponentially many xJ and yJ in the next step). This is because one cannot apply many

standard concentration inequalities (such as the Chernoff bound and the Hoeffding’s inequality)

to the numerator in (15) owing to the dependence issue. To circumvent this dependence issue, we

first represent the numerator in (15) by a function F (·) (to be defined in (30) of Appendix D) of

a subset of codewords, and then apply the McDiarmid’s inequality to concentrate the numerator.

By taking a union bound over exponentially many yJ and typical xJ , we have that no matter

which typical xJ is received and which yJ is overwritten by James, the induced probability of

error is always bounded from above by ε′n. Therefore, with probability 1− 2−ω(n), the first term

of (14) can be bounded from above by

ε′n
N

∑
xJ∈An,γXJ

∑
yJ

W (yJ |xJ , C) ·
∣∣m : xJ(m) = xJ

∣∣ ≤ ε′n,

for any conditional distribution WYJ |XJ ,C . It then remains to bound the second term of (14).

Lemma 3. With probability with probability 1 − 2−ω(n) (i.e., super-exponentially close to one)

over the code design, a randomly chosen code C satisfies
|m:xJ (m)/∈An,γXJ |

N
≤ 3

2
γ, where γ → 0 as

n→∞.

Lemma 3 is proved in Appendix E. Based on Lemma 3, one can show that the average

probability of error with respect to Ĵ c and any conditional distribution WYJ |XJ ,C is vanishing.

Note that we need to consider all possible decoding sets Ĵ c 6= J c. A union bound over all

decoding sets Ĵ c ∈ Jc yields that with high probability, there does not exist a fake message

m′ 6= m falling into L, which in turn implies the list L contains the correct message m only.

When Alice is innocent (T = 0), a similar proof technique shows that the list L is empty

with high probability. This completes the proof of reliability.
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D. Discussion

It would be interesting to see if it is possible to modify the proof technique above to show

that the rate K̄(P inn
X , Z)− ε is also achievable under overwrite jamming. The main challenge is

to deal with the complicated joint typicality relationship among (u,yJ ,xG), since we introduce

an auxiliary variable U and use typicality decoding. We believe that this proof strategy likely

works and conjecture the following achievability.

Conjecture 1. For any P inn
X and non-negative integer Z < C/2, the rate R = K̄(P inn

X , Z)− ε is

achievable under overwrite jamming for any small ε > 0.

VI. CONCLUSION AND FUTURE DIRECTIONS

This work investigates the problem of stealthy communication over an adversarially jammed

multipath network. We first present a coding scheme that is robust to the erasure jamming

attack. Subsequently, we show that even when the adversary is able to arbitrarily overwrite

the transmissions on links that he controls (i.e., under the overwrite jamming model), perhaps

surprisingly, a positive rate is also achievable. For both achievability schemes, we provide

rigorous proofs for both stealth and reliability.

Finally, we put forth two promising directions for future work.

1) One would expect to verify the correctness of Conjecture 1 by proving that the coding

scheme used for erasure jamming is also applicable to the overwrite jamming attack.

2) Another direction that is worth exploring is to characterize the stealthy capacities by devel-

oping tight information-theoretic upper bounds for this stealthy communication problem.

September 1, 2020 DRAFT



22

APPENDIX A

CHERNOFF BOUND

Let Q1, Q2, . . . , Qn be independent (but not necessarily identically distributed) random vari-

ables taking values in {0, 1}, and Q =
∑n

i=1Qi. Then, for any ε ∈ (0, 1),

P (Q ≥ (1 + ε)E(Q)) ≤ exp

(
−ε

2E(Q)

3

)
,

P (Q ≤ (1− ε)E(Q)) ≤ exp

(
−ε

2E(Q)

2

)
≤ exp

(
−ε

2E(Q)

3

)
.

APPENDIX B

PRELIMINARIES

Definition 2. The γ-strongly typical set An,γX with respect to PX is the set of x ∈ X n such that

N(x;x) = 0 if PX(x) = 0, and
∑

x∈X

∣∣∣N(x;x)
n
− PX(x)

∣∣∣ ≤ γ, where N(x;x) is the number of

occurrences of x in x, and γ → 0 as n→∞.

The γ-strongly typical sets An,γU and An,γXJ (with respect to PU and PXJ respectively) are

defined in a similar way.

Definition 3. The γ-strongly jointly typical set An,γUX with respect to PUX is the set of (u,x) ∈

Un×X n such that N(u, x;u,x) = 0 if PUX(u, x) = 0, and
∑

u∈U
∑

x∈X

∣∣∣N(u,x;u,x)
n

− PUX(u, x)
∣∣∣ ≤

γ, where N(u, x;u,x) is the number of occurrences of (u, x) in (u,x).

Definition 4. For any fixed typical x, We say u ∈ An,γUx if (u,x) ∈ An,γUX .

We define the γ-strongly typical setsAn,γU ,An,γXJ ,A
n,γ
XG
, and γ-strongly jointly typical setAn,γUXJ ,An,γXGXJ

in a similar way.

Remark 3. It is worth noting that if (u,x) ∈ An,γUX , then both u ∈ An,γU and x ∈ An,γX .
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APPENDIX C

PROOF OF STEALTH FOR ERASURE JAMMING

Note that the n-letter innocent distribution P inn
XJ

(xJ) on the subset J equals the stochastic

processes PU and PXJ |U simulated by the encoder Ψ. For a fixed xJ , by considering conditionally

typical u and atypical u, we have

P inn
XJ

(xJ) =
∑
u

PU(u)PXJ |U(xJ |u) =
∑

u∈An,γUxJ

PU(u)PXJ |U(xJ |u) +
∑

u/∈An,γUxJ

PU(u)PXJ |U(xJ |u).

The active distribution P̂XJ
(xJ) on the subset J (induced by the code C) equals

P̂XJ
(xJ) =

N∑
i=1

1

N
PXJ |U(xJ |u(m))

=
∑

m:u(m)∈An,γUxJ

1

N
PXJ |U(xJ |u(m)) +

∑
m:u(m)/∈An,γUxJ

1

N
PXJ |U(xJ |u(m)).

Recall that the variational distance between P inn
XJ

(xJ) and P̂XJ
(xJ) equals

V
(
P inn
XJ
, P̂XJ

)
=

1

2

∑
xJ∈An,γXJ

∣∣∣P inn
XJ

(xJ)− P̂XJ
(xJ)

∣∣∣+
1

2

∑
xJ /∈An,γXJ

∣∣∣P inn
XJ

(xJ)− P̂XJ
(xJ)

∣∣∣ (16)

≤ 1

2

∑
xJ∈An,γXJ

∣∣∣P inn
XJ

(xJ)− P̂XJ
(xJ)

∣∣∣
︸ ︷︷ ︸

Term (C)

+
1

2

∑
xJ /∈An,γXJ

P inn
XJ

(xJ)

︸ ︷︷ ︸
Term (D)

+
1

2

∑
xJ /∈An,γXJ

P̂XJ
(xJ)

︸ ︷︷ ︸
Term (E)

, (17)

where (16) is obtained by dividing xJ into typical xJ and atypical xJ , and (17) follows from

the triangle inequality. Note that term (C) can further be bounded from above as

(C) ≤ 1

2

∑
xJ∈An,γXJ

∣∣∣∣∣∣∣
∑

u∈An,γUxJ

PU(u)PXJ |U(xJ |u)−
∑

m:u(m)∈An,γUxJ

1

N
PXJ |U(xJ |u(m))

∣∣∣∣∣∣∣︸ ︷︷ ︸
Term (C1)

+
1

2

∑
xJ∈An,γXJ

∑
u/∈An,γUxJ

PU(u)PXJ |U(xJ |u)

︸ ︷︷ ︸
Term (C2)

+
1

2

∑
xJ∈An,γXJ

∑
m:u(m)/∈An,γUxJ

1

N
PXJ |U(xJ |u(m))

︸ ︷︷ ︸
Term (C3)

. (18)

Term (D) and term (C2) correspond to XJ /∈ An,γXJ and U /∈ An,γUxJ
(for a typical xJ ), respectively,

hence both of the two terms goes to zero as n tends to infinity (by the law of large number). Term
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(E) and term (C3) correspond to similar atypical events but depends on the specific codebook

C. Prior work [9] showed that with high probability over the code design, both of the two terms

approach zero as n tends to infinity. We now focus on term (C1) in the following.

(C1) =
1

2

∑
xJ∈An,γXJ

∣∣∣∣∣ ∑
u∈An,γUxJ

PU(u)PXJ |U(xJ |u)−
∑

m:u(m)∈An,γUxJ

1

N
PXJ |U(xJ |u(m))

∣∣∣∣
=

1

2

∑
xJ∈An,γXJ

∣∣∣∣∣ ∑
TUxJ

∑
u∈TUxJ

PU(u)PXJ |U(xJ |u)−
∑
TUxJ

∑
m:u(m)∈TUxJ

1

N
PXJ |U(xJ |u(m))

∣∣∣∣∣
=

1

2

∑
xJ∈An,γXJ

∣∣∣∣∣ ∑
TUxJ

PXJ |U(xJ |u) ·
(
PU (U ∈ TUxJ )− |m : u(m) ∈ TUxJ |

N

) ∣∣∣∣∣. (19)

Due to the linearity of expectation, we have

µ , EC (|m : u(m) ∈ TUxJ |) = N · PU (U ∈ TUxJ ) , (20)

which is exponentially large since N = 2nR > 2nI(U ;XJ ) and PU (U ∈ TUxJ )
·

= 2nH(U |XJ )/2nH(U) =

2−nI(U ;XJ ). Since the codewords u(m) are chosen independently, by the Chernoff bound we have

PC
(∣∣∣∣ |m : u(m) ∈ TUxJ |

µ
− 1

∣∣∣∣ ≤ ε1(n)

)
≥ 1− 2e−

1
3
µε21(n),

where ε1(n)→ 0 as n→∞. For instance, we set ε1(n) = n−1. Hence

PC

(∣∣∣∣PU (U ∈ TUxJ )− |m : u(m) ∈ TUxJ |
N

∣∣∣∣ ≤ n−1PU (U ∈ TUxJ )

)
≥ 1− 2e−

µ

3n2 . (21)

Replacing (21) into (19), we have

(C1)
w.h.p.
=

1

2n

∑
xJ∈An,γXJ

∣∣∣∣∣∣
∑
TUxJ

PXJ |U(xJ |u)PU (U ∈ TUxJ )

∣∣∣∣∣∣ =
1

2n

∑
xJ∈An,γXJ

∑
TUxJ

∑
u∈TUxJ

PXJ |U(xJ |u)PU(u)

≤ 1

2n

∑
xJ

∑
u

PXJ |U(xJ |u)PU(u) ≤ 1

2n
.

By combining (C1), (C2), (C3), (D), (E), we eventually show that with high probability over

the code design, a randomly chosen code C satisfies limn→∞V(P inn
XJ
, P̂XJ

) = 0 for every J ∈ J.
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APPENDIX D

PROOF OF LEMMA 2

By the strong asymptotic equipartition property (strong AEP), we know that for any typical

xJ , there exists ηγ > 0 such that ηγ → 0 as γ → 0 and

2−n(H(XJ )+ηγ) ≤ PXJ
(XJ = xJ) ≤ 2−n(H(XJ )−ηγ).

Since PX satisfies (7) in optimization (B), we have minJ∈JH(XJc) > maxJ∈JH(XJ) ≥ H(XJ).

Hence, there exists a δ > 0 such that δ , minJ∈JH(XJc)−H(XJ). We let ε� δ and ηγ � δ.

Claim 1. For any typical xJ , with probability 1− 2−ω(n) over the code design,

|m : xJ(m) = xJ | ≥ (1− n−1) · 2n(δ−ε−ηγ).

Proof: The expected number of codewords such that their sub-codeword on J equals xJ is

EC (|m : xJ(m) = xJ |) = 2nR · PXJ
(XJ = xJ) ≥ 2n(minJ∈JH(XJc )−ε) · 2−n(H(XJ )+ηγ) = 2n(δ−ε−ηγ),

which is exponentially large since ε� δ and ηγ � δ. Note that each of the codeword is chosen

independently, hence by the Chernoff bound,

P
(
|m : xJ(m) = xJ | ≥ (1− n−1)2n(δ−ε−ηγ)

)
≥ P

(
|m : xJ(m) = xJ | ≥ (1− n−1)EC(|m : xJ(m) = xJ |)

)
≥ 1− exp

(
−1

3
n−22n(δ−ε−ηγ)

)
= 1− 2−ω(n). (22)

For notational convenience let ξ , δ − 2ε− 2ηγ + 5νγ .

Claim 2. For any yJ and typical xJ , with probability 1− 2−ω(n) over the code design,

∣∣m : {xJ(m) = xJ} ∩ {(xG(m),yJ) ∈ CĴc}
∣∣ ≤ (1 + n−1)3 · 2nξ.
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Proof: Let S =
{
m : {xJ(m) = xJ} ∪ {xJ(m) = yJ}

}
be a subset of messages such that each

m ∈ S satisfies either xJ(m) = xJ or xJ(m) = yJ . Similar to (22), we have

P
(
|S| > 2(1 + n−1)2n(δ−ε−ηγ)

)
≤ 2−ω(n).

We denote the events {(xG,xJ) ∈ CĴc} and {(xG,yJ) ∈ CĴc} by ExG ,xJ and ExG ,yJ , respectively,

and it is worth noting that

∣∣m : {xJ(m) = xJ} ∩ {(xG(m),yJ) ∈ CĴc}
∣∣ =

∑
xG

1
{
ExG ,xJ ∩ ExG ,yJ

}
.

Let κ , (1 + n−1)
3

2nξ, we then have

P
(∣∣m : {xJ(m) = xJ} ∩ {(xG(m),yJ) ∈ CĴc}

∣∣ > κ
)

=
N∑
i=0

P(|S| = i)P

(∑
xG

1
{
ExG ,xJ ∩ ExG ,yJ

}
> κ

∣∣∣|S| = i

)

≤ 2−ω(n) +

2(1+ 1
n

)2n(δ−ε−ηγ )∑
i=0

P(|S| = i) · P

(∑
xG

1
{
ExG ,xJ ∩ ExG ,yJ

}
> κ

∣∣∣|S| = i

)
. (23)

When |S| = i, by symmetry we assume that the event

∆i , {m1,m2, . . . ,mi ∈ S, and mi=1, . . . ,mN /∈ S}

occurs. Hence,

P

(∑
xG

1
{
ExG ,xJ ∩ ExG ,yJ

}
> κ

∣∣∣|S| = i

)
= P

(∑
xG

1
{
ExG ,xJ ∩ ExG ,yJ

}
> κ

∣∣∣∆i

)
. (24)

Let’s first consider the expectation

EC

(∑
xG

1
{
ExG ,xJ ∩ ExG ,yJ

}∣∣∣∆i

)
=
∑
xG

P
(
ExG ,xJ ∩ ExG ,yJ

∣∣∣∆i

)
n→∞
=

∑
xG∈An,γXGxJ

P
(
ExG ,xJ ∩ ExG ,yJ

∣∣∣∆i

)
(25)

≤
∑

xG∈An,γXGxJ

P
(
ExG ,xJ

∣∣∣∆i

)
P
(
ExG ,yJ

∣∣∣∆i

)
. (26)
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Equation (25) follows from the negligibility of conditionally atypical xG , and inequality (26) is

due to the fact that if one codeword is fixed and not equals (xG,yJ), the probability that the

codebook contains (xG,yJ) decreases. Note that conditioned on ∆i, for xG ∈ An,γXGxJ and each

message mj (for j ∈ {1, 2, . . . , i}), there exists a νγ > 0 such that νγ → 0 as γ → 0, and the

probability that its corresponding sub-codewords XG(mj) and XJ(mj) respectively equal xG

and xJ is bounded from above as

P ({XG(mj) = xG} ∩ {XJ(mj) = xJ}|∆i)

= P (XJ(mj) = xJ |∆i) · P (XG(mj) = xG|XJ(mj) = xJ ,∆i) ≤ 2−n(H(XG |XJ )−νγ).

For i ∈ {1, 2, . . . , 2(1 + n−1)2n(δ−ε−ηγ)}, we have

PC
(
ExG ,xJ

∣∣∣∆i

)
≤ 1−

(
1− 2−n(H(XG |XJ )−νγ)

)i
= (1 + n−1)2n(δ−ε−ηγ−H(XG |XJ )+2νγ), (27)

PC
(
ExG ,yJ

∣∣∣∆i

)
≤ (1 + n−1)2n(δ−ε−ηγ−H(XG |XJ )+2νγ). (28)

Combining (26), (27), and (28), we have

EC

(∑
xG

1{ExG ,xJ ∩ ExG ,yJ}
∣∣∣∆i

)
≤

∑
xG∈An,γXGxJ

(1 + n−1)2 · 22n(δ−ε−ηγ−H(XG |XJ )+2νγ)

≤ (1 + n−1)2 · 2nξ, (29)

where (29) is obtained by noting |An,γXGxJ | ≤ 2n(H(XG |XJ )+νγ) and

H(XG|XJ) = H(XG, XJ)−H(XJ) ≥ min
J∈J

H(XJc)−H(XJ) = δ.

We now use the McDiarmid’s inequality to concentrate
∑

xG
1
{
ExG ,xJ ∩ExG ,yJ

}
conditioned on

∆i.

Lemma 4 (McDiarmid’s inequality [33]). Let X1, . . . , Xn be independent random variables

taking values in ranges R1, . . . , Rn, and let F : R1×· · ·×Rn → R be a function with the property

that if one freezes all but the i-th coordinate of F (x1, . . . , xn) for some 1 ≤ i ≤ n, then F only
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fluctuates by most ci > 0, i.e.,
∣∣F (x1, . . . , xi−1, xi, xi+1, . . . , xn)−F (x1, . . . , xi−1, x

′
i, xi+1, . . . , xn)

∣∣ ≤
ci, then for any λ > 0, one has

P(|F (X1, . . . , Xn)− EF (X1, . . . , Xn)| ≥ λσ) ≤ K exp(−kλ2),

for some constants K, k > 0, where σ2 =
∑n

i=1 c
2
i .

Let {Xj}ij=1
i.i.d.∼ PX|X∈S be the independent random variables corresponding to {mj}ij=1,

where PX|X∈S(x) = PX(x)1{x∈S}
PX(X∈S)

. Let

F (X1, . . . ,Xi) ,
∑
xG

1{ExG ,xJ ∩ ExG ,yJ}. (30)

Note that EF (X1, . . . ,Xi) ≤ (1 + n−1)2 · 2nξ by (29), and cj = 1 for all j ∈ {1, 2, . . . , i}, since

changing one codeword Xj can only fluctuate the function F (X1, . . . ,Xi) at most by one. By

letting λ = (1+n−1)3/2√
2n

2n( 1
2
δ− 3

2
ε− 3

2
ηγ+5νγ), we have

P
(
F (X1, . . . ,Xi) ≥ (1 + n−1)EF (X1, . . . ,Xi)

)
≤ K exp

(
−kλ2

)
= 2−ω(n).

Therefore, we obtain

PC
(∑

xG

1
{
ExG ,xJ ∩ ExG ,yJ

}
> (1 + n−1)3 · 2nξ

∣∣∣|S| = i
)
≤ 2−ω(n). (31)

Substituting (31) into (23) and taking a union bound over all typical size of |S|, we have

PC
(∣∣m : {xJ(m) = xJ} ∩ {(xG(m),yJ) ∈ CĴc}

∣∣ > (1 + n−1)3 · 2nξ
)
≤ 2−ω(n).

Finally, by combining Claims 1 and 2 and setting ηγ, νγ � ε, we have that with probability

at least 1− 2−ω(n) over the code design„∣∣m : {xJ(m) = xJ} ∩ {(xG(m),yJ) ∈ CĴc}
∣∣∣∣m : xJ(m) = xJ

∣∣ ≤ (1 + n−1)2 · 2−n(ε+ηγ−νγ) = ε′n,

which completes the proof of Lemma 2.
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APPENDIX E

PROOF OF LEMMA 3

First note that P
(
XJ /∈ An,γXJ

)
< γ according to the property of the γ-strongly typical set An,γXJ .

Thus, the expected number of codewords that do not belong to the typical set An,γXJ is

EC
(
|m : xJ(m) /∈ An,γXJ |

)
= N · P

(
XJ /∈ An,γXJ

)
= γN,

which is exponentially large since N = 2nR and γ = Ω(1/n) by definition. By applying the

Chernoff bound, we have that

P
(
|m : xJ(m) /∈ An,γXJ | ≤

3

2
γN

)
≥ 1− exp

(
−γN

12

)
,

which completes the proof of Lemma 3.

APPENDIX F

CARDINALITY BOUND

This appendix shows that the cardinality of the auxiliary random variable U in optimization

(A) is finite. The proof relies on the support lemma [36]. Consider any (U,X) defined over U×X

that satisfies the constraints in optimization (A), where U can be arbitrary and the probability

density function of U is denoted by FU . Let {PX|U=u}u∈U ∈ P(X ) be a collection of conditional

PMFs on X . For π ∈ P(X ), we have the following |X |+ 2|J| − 1 continuous functions

{
g

(1)
j (π)

}
j∈{1,··· ,|X |−1}

, {π(j)}j∈{1,··· ,|X |−1},{
g(2)(π)

}
J∈J , {H(π(XJ))}J∈J,

{
g(3)(π)

}
J∈J , {H(π(Xc

J))}J∈J,

where π(XJ) and π(Xc
J) respectively denote the marginal distributions of π on set J and set

J c. Note that the first group of functions are continuous, and the last two groups of functions

are also continuous in π due to the continuity of entropy function.
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By the support lemma, there exists a random variable U ′ with distribution PU ′ satisfying

|U ′| = |X |+ 2|J| − 1, and

PX (x) =

∫
U
PX|U (x|u) dFU(u) =

∑
u′∈U ′

PX|U ′ (x|u′)PU ′ (u′) , ∀x ∈ X , (32)

H(XJ |U) =

∫
U
H(XJ |U = u)dFU(u) =

∑
u′∈U ′

H(XJ |U ′ = u′)PU ′ (u
′) = H(XJ |U ′), ∀J ∈ J,

H(XJc|U) =

∫
U
H(XJc|U = u)dFU(u) =

∑
u′∈U ′

H(XJc|U ′ = u′)PU ′ (u
′) = H(XJc |U ′), ∀J ∈ J.

From (32), we note that H(X), H(XJ), and H(XJc) are preserved, and we then have

I(XJ ;U) = I(XJ ;U ′), ∀J ∈ J; and I(XJc ;U) = I(XJc ;U
′), ∀J ∈ J.

Therefore, the random variable pair (U ′, X) also satisfies the constraints in optimization (A).
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