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ON THE SO(n + 3) TO SO(n) BRANCHING MULTIPLICITY SPACE

EMILIO A. LAURET, FIORELA ROSSI BERTONE

Abstract. We study the decomposition as an SO(3)-module of the multiplicity space corre-
sponding to the branching from SO(n+ 3) to SO(n). Here, SO(n) (resp. SO(3)) is considered
embedded in SO(n+ 3) in the upper left-hand block (resp. lower right-hand block). We show
that when the highest weight of the irreducible representation of SO(n) interlaces the highest
weight of the irreducible representation of SO(n + 3), then the multiplicity space decomposes
as a tensor product of ⌊(n+ 2)/2⌋ reducible representations of SO(3).

1. Introduction

The branching law from a compact Lie group G to a closed subgroup K describes how an
irreducible representation π of G decomposes when is restricted to K (see [Kn, Ch. IX] and
[GW, Ch. 8] for comprehensive texts, and [Kn01, §1] for a detailed historical review). Since

(1.1) π ≃
⊕

τ∈K̂

τ ⊗ HomK(τ, π)

as K-modules (K̂ denotes the unitary dual of K, and K acts on the right-hand side at the left
in each term), the branching law is determined by the dimension of the branching multiplicity

space (or just multiplicity space) HomK(τ, π), for each τ ∈ K̂. In other words, dimHomK(τ, π)
is the number of times that τ occurs in π|K .

For d ≥ d′ ≥ 1, let G, K and H be given by a row in the table

(1.2)

G K H type

SO(d+ d′) SO(d) SO(d′) orthogonal
U(d+ d′) U(d) U(d′) unitary
Sp(d+ d′) Sp(d) Sp(d′) symplectic

.

In the sequel, we assume K (resp. H) embedded in G in the upper left-hand block (resp. lower
right-hand block). The quotient G/(K×H) is a compact symmetric space called (real, complex
or quaternionic) Grassmannian space.

We now examine some consequences from the fact that the subgroups K and H commute to
each other. The subgroup of G generated by K and H is isomorphic to K×H ; we denote it by
K×H . Thus, any irreducible representation of K×H is given by the outer tensor product σ⊗τ
for some σ ∈ K̂ and τ ∈ Ĥ. Furthermore, the branching multiplicity space HomK(σ, π) carries
the structure of anH-module. The action is given by (k·ϕ)(v) = π(k)·ϕ(v), for ϕ ∈ HomK(σ, π)
and v in the underlying vector space Vσ of σ. We conclude that the multiplicity of σ⊗ τ in π|K
is equal to

(1.3) dimHomK×H(σ ⊗ τ, π) = dimHomH(τ,HomK(σ, π)).
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Therefore, an explicit decomposition as an H-module of the multiplicity space HomK(σ, π) may
be seen as a more precise branching law from G to K ×H .

The branching law from G to K ×H is known only for specific choices of d and d′. We first
review the case when d′ = 1. In the orthogonal case, H ≃ SO(1) = {1}, thus the problem
reduces to the classical branching from SO(d+ 1) to SO(d). A similar situation takes place in
the unitary case where H ≃ U(1). In conclusion, in both cases, under standard choices for a
Cartan subalgebra and positiveness in the associated root systems (e.g. as in [Kn] or [GW]), if

λ = (λ1, λ2, . . . ) and µ = (µ1, µ2, . . . ) are the highest weights of π ∈ Ĝ and σ ∈ K̂ respectively,
then σ occurs in π|K if and only if µ simply interlaces λ, which roughly speaking means

(1.4) λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ λ3 ≥ · · · .

The symplectic case still assuming d′ = 1, which was established by Lepowsky [Le71], presents
more difficulties than the previous cases. For example, it is not multiplicity-free. Moreover,
the necessary condition HomK(σ, π) 6= 0 becomes in a doubly interlacing λi ≥ µi ≥ λi+2 for all
1 ≤ i ≤ d (with λd+2 = λd+3 = 0) between the coefficients (λ1, . . . , λd+1) and (µ1, . . . , µd) of
the highest weight of π and σ respectively. Wallach and Yacobi [WY09] (see also [Ya10] and
[KY12]) gave a clean decomposition for the multiplicity space. They proved that

(1.5) HomK(σ, π) ≃ τ (1) ⊗ · · · ⊗ τ (d+1)

as H-modules, where τ (i) denotes the irreducible representation of H = Sp(1) ≃ SU(2) of
dimension si − ti + 1, and {s1 ≥ t1 ≥ · · · ≥ sd+1 ≥ td+1} is the decreasing rearrangement of
{λ1, . . . , λd+1, µ1, . . . , µd, 0}. In their proof, they extended the Clebsch–Gordan formula to an
arbitrary tensor product of irreducible representations of SU(2) (see Theorem 2.1).

We now consider d′ = 2. In the orthogonal case, H = SO(2) is abelian, so its representations
are one-dimensional. In conclusion, a decomposition as an H-module of the multiplicity space
does not provide more information than its dimension. An implicit branching law from G =
SO(d + 2) to K × H = SO(d) × SO(2) was given by Tsukamoto [Ts81]. The implicit term
refers to the fact that the number of times that an irreducible representation σ ⊗ τk of K ×H
appears in π|K×H is given by the k-th coefficient of certain power series, where τk(h) acts on C

by multiplication by hk for any h ∈ S1 ≃ H .
Kim [Ki13] considered the unitary case when d′ = 2. He gave a decomposition of the branch-

ing multiplicity space as a U(2)-module similar to (1.5). In order to describe such decompo-

sition, let π ∈ Ĝ and σ ∈ K̂ with highest weights λ = (λ1, . . . , λd+2) and µ = (µ1, . . . , µd)
respectively, and write {s1 ≥ t1 ≥ · · · ≥ sd+1 ≥ td+1} for the decreasing rearrangement of
{λ1, . . . , λd+2, µ1, . . . , µd}. Kim’s decomposition (see [Ki13, Thm. 3.5]) is

(1.6) HomK(σ, π) ≃ C⊗ τ (1) ⊗ · · · ⊗ τ (d+1),

where C is the one-dimensional representation given by det(h)µ1+···+µd , and τ (i) denotes the
(si − ti + 1)-dimensional representation C ⊗ Symti−si(C2) of H , with h ∈ H acting on C by
det(h)si and C2 denotes the standard representation of H .

The next challenge is the case d′ = 3. The orthogonal case seems to be the simplest one
since SO(3) ≃ SU(2)/{±1} is three-dimensional, while U(3) and Sp(3) have dimensions 9 and
21 respectively.

The aim of this paper is to study, for G = SO(d+3), K = SO(d), H = SO(3), whether there
is a clean decomposition of the G to K branching multiplicity space as an H-module as in (1.5)
and (1.6). The conclusion is that this decomposition is pretty dirty.
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Nevertheless, when µ simply interlaces λ, we decompose the multiplicity space HomK(σµ, πλ)
as a tensor product of ⌊d+2

2
⌋ (reducible) representations of H (Theorems 3.1 and 4.1). Generi-

cally, each factor of the tensor product is non-trivial. We recall that HomK(σµ, πλ) 6= 0 if and
only if µ triply interlaces λ (cf. last paragraph in [Kn, §IX.3]).

Furthermore, Theorems 3.5 and 4.5 establish a partial decomposition of HomK(σ, π) as an
H-module under certain coincidence among the coefficients of the highest weights of π and σ.
Moreover, the decomposition is reduced to a simple branching law from U(3) to H = SO(3) by
using a duality by Knapp [Kn01].

Tsukamoto [Ts05] showed an implicit branching law fromG toK×H . Similarly as mentioned
above, his result gives the multiplicity of an irreducible representation σ⊗τ of K×H in π|K×H

for π ∈ Ĝ as the coefficient of certain power series. El Chami [ElC04][ElC12] applied the
same method to the branching laws from SO(d+ d′) to SO(d)× SO(d′) and from Sp(d+ d′) to
Sp(d) × Sp(d′). In all cases, their main goal was to describe the spectra of the corresponding
symmetric spaces.

The tools used in the proofs include Kostant’s branching formula, Tsukamoto’s implicit
branching law from SO(d + 3) to SO(d)× SO(3), and a duality of Knapp [Kn01] between the

SO(3)-representation V
SO(d)
π and certain canonical associated representation of U(3).

The article is organized as follows. Section 2 reviews standard facts used in the sequel. The
case when G = SO(2n+3), K = SO(2n) and H = SO(3), called the type B case, is considered
in Section 3. Similarly, Section 4 deals with the type D case, that is, when G = SO(2n + 4),
K = SO(2n+ 1) and H = SO(3).

2. Preliminaries

In this section we introduce several tools used in the sequel, divided in subsections. Such
tools are Kostant’s branching formula, Wallach and Yacobi’s extension of the Clebsch–Gordan
rule, and standard facts on characters of compact groups and representations of U(3).

In what follows, we denote compact Lie groups by capital letters (e.g. G), their Lie algebras
by the corresponding Gothic letter with the subscript 0 (e.g. g0), and their complexified Lie
algebras by the corresponding Gothic letter (e.g. g).

Furthermore, each time that a maximal torus T is fixed in a compact Lie group G, therefore
a Cartan subalgebra t of g is picked, we will use the following notation without any mention:
Φ(g, t) denotes the associated root system, Wg the Weyl group, and P (G) the weight lattice
of G. Moreover, a positive system Φ+(g, t) will be assumed, unless an order on t∗ is explicitly
chosen. In any of these cases, we denote by P++(G) the set of G-integral dominant weights in
t∗ and by ρg half of the sum of the positive roots.

2.1. Characters. We first review standard facts for characters. We refer to [Kn, Ch. IV–V] for
further details. Let G be a compact connected semisimple Lie group, let T be a maximal torus
in G, and let π be a finite-dimensional representation of G, that is, a continuous homomorphism
π : G → GL(Vπ), where Vπ is the complex finite-dimensional underlying vector space of π.

We denote by χπ : G → C the character of π, that is, χπ(g) = tr(π(g)). It is well known that
χπ determines π, that is, χπ = χπ′ if and only if π and π′ are equivalent. It will be useful to
consider χπ as a formal power series

∑
η∈P (G) mπ(η) e

η, with mπ(η) ∈ N0 the multiplicity of η

in π. The identification satisfies χπ(exp(X)) =
∑

η∈P (G) mπ(η) e
η(X) for all X ∈ t0. Of course,

mπ(η) = 0 for all but finitely many η ∈ P (G). For η ∈ P (G), we set

(2.1) ξG(η) =
∑

ω∈Wg

sgn(ω) eω(η).
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For λ ∈ P++(G), let πλ denote the irreducible representation of G with highest weight λ.
The Weyl character formula ensures that

(2.2) χπλ
=

ξG(λ+ ρg)

ξG(ρg)
.

Furthermore,

(2.3) ξG(ρg) =
∏

α∈Φ+(g,t)

(eα/2 − e−α/2).

Let K be a closed subgroup of G. Suppose that a maximal torus S of K is contained in
T . For β ∈ t∗, we denote by β̄ its restriction to s∗. We extend this operator to the formal
power series discussed above by setting eη = eη̄ for any η ∈ P (G). It turns out that, for a
representation π of G, the character of its restriction π|K to K satisfies

(2.4) χπ|K = χπ.

2.2. Kostant’s Branching Formula. We will follow [Kn, §IX.4] (see also [GW, §8.2]). This
formula is valid for a big amount of homogeneous spaces including all symmetric spaces.

Let G be a connected compact Lie group, and let K be a connected closed subgroup. We
assume that the centralizer T in G of a maximal torus S of K is abelian. Thus, T is a maximal
torus in G. Equivalently, there is a regular element of K that is regular in G. This allows us to
introduce compatible positive systems Φ+(g, t) and Φ+(k, s) by defining positivity relative to a
regular element in is0. Set

(2.5) Σ = Φ+(g, t)r Φ+(k, s).

More precisely, Σ is the multiset given by the elements α for α ∈ Φ+(g, t), repeated according to
their multiplicity, but deleting the elements in Φ+(k, s), each with multiplicity one. The Kostant
partition function PΣ is defined as follows: PΣ(ν) is the number of ways that a member ν of s∗

can be written as a sum of members of Σ, with the multiple versions of a member of Σ being
regarded as distinct.

Under the notation above, for λ ∈ P++(G) and µ ∈ P++(K), Kostant’s Branching Formula
tells us that the multiplicity of the irreducible representation σµ of K with highest weight µ in
the restriction of the irreducible representation πλ of G with highest weight λ is given by

(2.6) dimHomK(σµ, πλ) =
∑

w∈Wg

sgn(ω) PΣ(ω(λ+ ρg)− ρg − µ).

2.3. Generalized Clebsch–Gordan formula. We now recall the extension of the Clebsch–
Gordan formula given by Wallach and Yacobi [WY09] for an arbitrary tensor product of ir-
reducible representations of SU(2). It is well known that the representations of SU(2) are
parametrized by non-negative integer numbers. We denote them by τk/2 for k ∈ Z≥0, whose
underlying vector space Vτk/2 has dimension k + 1.

Let {ε1, . . . , εn+1} denote the canonical basis of Cn+1. We set

(2.7) Σ′ = {εi ± εn+1 : 1 ≤ i ≤ n}.

For ν ∈ Cn+1, denote by PΣ′(ν) the number of ways of writing ν as a sum of elements in Σ′,

(2.8) PΣ′(ν) = #

{
{aα}α∈Σ′ : aα ∈ N0,

∑

α∈Σ′

aαα = ν

}
.
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Theorem 2.1. [WY09, Thm. 2.3] For non-negative integers r1, . . . , rn+1, the number of times
that τk/2 appears in τr1/2 ⊗ · · · ⊗ τrn+1/2 is equal to

dimHomSU(2)(τk/2,⊗
n+1
i=1 τri/2) = PΣ′

(
n+1∑
i=1

riεi − kεn+1

)
−PΣ′

(
n+1∑
i=1

riεi + (k + 2)εn+1

)
.

Write [[1, n]] = {m ∈ Z : 1 ≤ m ≤ n}, and for any I ⊂ [[1, n]], set βI =
∑

i∈I εi. The following
elementary lemma will be very useful in the sequel.

Lemma 2.2. We have that
∑

I⊂[[1,n]]

PΣ′(ν − βI) = PΣ′(2ν) for every ν ∈ Cn+1.

Proof. Write u±
i = εi ± εn+1 for i = 1, . . . , n. Let

A =

{
(a1, b1, . . . , an, bn) ∈ N

2n
0 :

n∑
i=1

aiu
+
i + biu

−
i = ν − βI for some I ⊂ [[1, n]]

}
;(2.9)

B =

{
(c1, d1, . . . , cn, dn) ∈ N

2n
0 :

n∑
i=1

ciu
+
i + diu

−
i = 2ν

}
.(2.10)

We will prove that there exists a bijective correspondence between A and B.
For (a1, b1, . . . , an, bn) ∈ A, we have ai + bi = νi − 1 for all i ∈ I, ai + bi = νi for all i /∈ I,

and
∑n

i=1 ai − bi = νn+1, for some I ⊂ [[1, n]]. Define

ci =

{
2ai + 1 if i ∈ I,

2ai if i /∈ I;
and di =

{
2bi + 1 if i ∈ I,

2bi if i /∈ I.
(2.11)

Hence, (c1, d1, . . . , cn, dn) ∈ B, since 2ci + 2di = 2νi for all i and
∑n

i=1 ci − di = 2νn+1.
Moreover, if (c1, d1, . . . , cn, dn) ∈ B, then for each i = 1, . . . , n we have ci ≡ di (mod 2). This

implies that the correspondence is bijective and the lemma follows. �

2.4. Representations of U(3). We now fix the notation to parametrize the irreducible rep-
resentations of U(3) = {g ∈ GL(3,C) : g∗g = I3}. Let T ′ = {diag(eiθ1 , eiθ2, eiθ3) : θj ∈ R ∀j}
with associated Cartan subalgebra h′ of u(3) given by h′ = {diag(θ1, θ2, θ3) : θj ∈ C ∀j}. Let
ε′j ∈ (h′)∗ for 1 ≤ j ≤ 3 given by ε′j(diag(θ1, θ2, θ3)) = θj .

We consider the standard order given by the lexicographic order with respect to the ordered
basis {ε′1, ε

′
2, ε

′
3}. Thus, the irreducible representations of U(3) are in correspondence with

P++(U(3)) = {
∑3

j=1 λ
′
jε

′
j : aj ∈ Z ∀ j, a1 ≥ a2 ≥ a3}. For λ′ ∈ P++(U(3)), let π′

λ′ denote the

irreducible representation of U(3) with highest weight λ′.

3. Type B case

Throughout this section, we set

G = SO(2n+ 3), K = SO(2n), H = SO(3),

for any n ≥ 2. We have that g = so(2n + 3,C) is a classical Lie algebra of type Bn+1.

3.1. Root system notation for type B case. We first fix compatible notation for the cor-
responding root systems associated to G, K, H , and K ×H . We pick the maximal torus of G
given by

(3.1) T := {diag(R(θ1), . . . , R(θn+1), 1) : θj ∈ R ∀ j},

where R(θ) =
(

cos θ sin θ
− sin θ cos θ

)
, whose associated Cartan subalgebra is given by

(3.2) t :=
{
diag

((
0 iθ1

−iθ1 0

)
, . . . ,

(
0 iθn+1

iθn+1 0

)
, 0
)
: θj ∈ C ∀j

}
.
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For any 1 ≤ j ≤ n + 1, let εj ∈ t∗ given by εj(X) = θj for X in t as above. Then, the set of
roots is Φ(g, t) = {±εi ± εj : 1 ≤ i < j ≤ n+ 1} ∪ {±εj : 1 ≤ j ≤ n+ 1}.

The maximal torus T ∩K of K satisfies (k∩t)∗ = spanC{ε1, . . . , εn}, thus Φ(k, t) = {±εi±εj :
1 ≤ i < j ≤ n}. Similarly, T ∩H is a maximal torus in H satisfying that (h∩t)∗ = spanC{εn+1},
thus Φ(h, t) = {±εn+1}.

We fix the order on t∗ given by the lexicographic order with respect to the ordered basis
{ε1, . . . , εn+1}. We have compatible order on (k ∩ t)∗ and (h ∩ t)∗. Then

Φ+(g, t) = {εi ± εj : 1 ≤ i < j ≤ n + 1} ∪ {εj : 1 ≤ j ≤ n+ 1},(3.3)

Φ+(k, t) = {εi ± εj : 1 ≤ i < j ≤ n}, Φ+(h, t) = {εn+1},(3.4)

P (G) = ⊕n+1
j=1Zεj, P++(G) = {

∑n+1
j=1 λjεj ∈ P (G) : λ1 ≥ · · · ≥ λn+1 ≥ 0},(3.5)

P (K) = ⊕n
j=1Zεj , P++(K) = {

∑n
j=1 λjεj ∈ P (K) : λ1 ≥ · · · ≥ λn−1 ≥ |λn|},(3.6)

P (H) = Zεn+1, P++(H) = {kεn+1 ∈ P (H) : k ≥ 0},(3.7)

ρg :=
n+1∑

i=1

(n + 3
2
− i)εi, ρk :=

n∑

i=1

(n− i)εi, ρh :=
1
2
εn+2.(3.8)

We will denote by πλ, σµ, τkεn+1
the irreducible representations of G, K and H with highest

weights λ ∈ P++(G), µ ∈ P++(K), and kεn+1 ∈ P++(H), respectively. We will abbreviate
τk = τkεn+1

.
We now describe the Weyl group Wg. Any element ω ∈ Wg is of the form ω = sp, with p a

permutation of the n+ 1 coordinates and s a multiplication by −1 on a subset of coordinates.
For 1 ≤ i ≤ n+1, write si : t

∗ → t∗ the reflexion with respect to the axis i, that is, si(εi) = −εi
and si(εj) = εj for all j 6= i.

We consider the inner product 〈·, ·〉 on g given by 〈X, Y 〉 = 1
2
tr(XY ). With respect to its

extension to t∗, {ε1, . . . , εn+1} is an orthonormal basis.

3.2. Main theorem for type B case. The main result in this section is the following.

Theorem 3.1. Let n ≥ 2, G = SO(2n + 3), K = SO(2n), H = SO(3), λ =
∑n+1

i=1 λiεi ∈
P++(G), µ =

∑n
i=1 µiεi ∈ P++(K). If µ simply interlaces λ, i.e. λi ≥ |µi| ≥ λi+1 for 1 ≤ i ≤ n,

then

(3.9) HomK(σµ, πλ) ≃ τλn+1
⊗

n⊗

j=1




⌊(λj−|µj |)/2⌋⊕

m=0

τλj−|µj |−2m




as H-modules.

The absolute value on every µi simplifies the notation, though |µi| = µi for all i < n.
Kostant’s Branching Formula 2.6 will be the main tool to prove Theorem 3.1. We next give

the first steps to apply it to the symmetric space G/(K ×H). The maximal torus T in G (see
(3.1)) is also a maximal torus in K ×H . In particular, the restriction denoted by a bar is the
identity operator on t∗. Furthermore, Φ+(k× h, t) = Φ+(k, t∩ k)∪Φ+(h, t∩ h). From (3.3) and
(3.4), it follows that

(3.10) Σ = {εi ± εn+1 : 1 ≤ i ≤ n} ∪ {εi : 1 ≤ i ≤ n},

each element with multiplicity one. Clearly, for ν ∈ t∗,

(3.11) PΣ(ν) > 0 =⇒ νi := 〈εi, ν〉 ∈ Z ∀i, νi ≥ 0 ∀ 1 ≤ i ≤ n, |νn+1| ≤
n∑

i=1

νi.
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Let λ =
∑n+1

i=1 λiεi ∈ P++(G), µ =
∑n

i=1 µiεi ∈ P++(K), and kεn+1 ∈ P++(H). We obtain

from (2.6) that the number of times that σµ ⊗ τk ∈ K̂ ×H occurs in πλ|K×H is given by

(3.12) dimHomK×H(σµ ⊗ τk, πλ) =
∑

ω∈Wg

sgn(ω) PΣ

(
ω(λ+ ρg)− ρg − µ− kεn+1

)
.

The next lemmas will indicate the set of elements ω ∈ Wg such that the ω-th term in the
above formula does not vanish.

Lemma 3.2. Assume µn ≥ 0. If ω ∈ Wg satisfies that the ω-th term in (3.12) is non-zero,
then ω = p or ω = sn+1p, for some permutation p.

Proof. Write ω = sp as above. Suppose that s(εj) = −εj for some 1 ≤ j ≤ n. Since PΣ(ω(λ+
ρg)− ρg − µ− kεn+1) > 0 by assumption, (3.11) forces 0 ≤ 〈εj, ω(λ+ ρg)− ρg − µ− kεn+1〉, so
0 < 〈εj, ρg + µ + kεn+1〉 ≤ 〈εj, ω(λ+ ρg)〉 = 〈εj, sp(λ+ ρg)〉 = −〈εj, p(λ + ρg)〉 ≤ 0, which is a
contradiction. Hence, s(εj) = εj for all 1 ≤ j ≤ n and the claim follows. �

Lemma 3.3. Assume λi ≥ µi ≥ λi+1 for all 1 ≤ i ≤ n. If w ∈ Wg satisfies that the ω-th term
in (3.12) is non-zero, then ω = 1 or ω = sn+1.

Proof. By Lemma 3.2, we may assume that w = sp with p a permutation and s = sn+1 or
s = 1. Let l be an index distinct to n + 1 and let r be the index such that p(εr) = εl. Since
PΣ(ω(λ+ρg)−ρg−µ−kεn+1) > 0 by assumption, (3.11) gives 0 ≤ 〈εl, ω(λ+ρg)−ρg−µ−kεn+1〉 =
〈εr, λ+ ρg〉 − 〈εl, ρg + µ+ kεn+1〉 = λr − µl + (l − r). We conclude that λr ≥ µl + r − l.

If l = 1, then r = 1. Indeed, if r ≥ 2, then λ2 ≥ λr ≥ µ1+r−1 > λ2 by assumption, which is a
contradiction. Suppose l ≤ n−1 and ω(εi) = εi for all 1 ≤ i < l, and let r be an index such that
ω(εr) = εl. Clearly, r ≥ l. If r ≥ l + 1, then λl+1 ≥ λr ≥ µl + r− l > µl ≥ λl+1 by assumption,
which is again a contradiction. We conclude that r = l. We have shown that ω(εi) = εi for all
1 ≤ i ≤ n−1. In other words, ω = s or ω = spn,n+1 where pn,n+1 preserves εi for all 1 ≤ i ≤ n−1
and switches εn and εn+1. If ω = spn,n+1, then 0 ≤ 〈εn, ω(λ+ρg)−ρg−µ−kεn+1〉 = λn+1−1−µn

which is impossible when µn ≥ 0 because |µn| ≥ λn+1. This completes the proof. �

We now show that it is sufficient to prove Theorem 3.1 for µn ≥ 0. We set µ̃ =
∑n−1

i=1 µiεi −
µnεn for any µ =

∑n
i=1 µiεi ∈ P++(K). Note µ̃ ∈ P++(K).

Lemma 3.4. For any λ ∈ P++(G), µ ∈ P++(K), k ≥ 0, σµ ⊗ τk and σµ̃ ⊗ τk occur in πλ|K×H

the same number of times.

Proof. We set g0 ∈ diag(1, . . . , 1,−1, 1, 1, 1) ∈ O(2n + 3). Although g0 is not in G, the map
ϕ : x 7→ g0xg0 is an automorphism of G. It turns out that πλ ◦ ϕ ≃ πλ, σµ ◦ ϕ|K ≃ σµ̃, and
τk ◦ ϕ|H = τk. It follows immediately that HomK×H(σµ ⊗ τk, πλ) ≃ HomK×H(σµ̃ ⊗ τk, πλ) as
complex vector spaces, as asserted. �

We are now in position to prove the main theorem of this section.

Proof of Theorem 3.1. To establish the isomorphism of H-modules in (3.9), we will show that
each irreducible representation τk of H occurs in both sides with the same multiplicity. For the
right-hand side, we will use Theorem 2.1. For the left-hand side, we use that

(3.13) dimHomH(τk,HomK(σµ, πλ)) = dimHomK×H(σµ ⊗ τk, πλ),

and then we apply Kostant’s Branching Formula toG/(K×H). Note that (3.13) and Lemma 3.4
allow us to assume µn ≥ 0 for the rest of the proof.
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Lemmas 3.2 and 3.3 tell us that the only non-zero terms in (3.12) are given by ω = 1 and
ω = sn+1. The term corresponding to the last choice is equal to

(3.14) PΣ

(
sn+1(λ+ ρg)− ρg − µ− kεn+1

)
= PΣ

( n∑
i=1

λiεi − µ− (λn+1 + k + 1)εn+1

)

= PΣ

(
sn+1

( n∑
i=1

λiεi − µ+ (λn+1 + k + 1)εn+1

))
= PΣ

(
λ− µ+ (k + 1)εn+1

)
.

The last identity follows by PΣ(sn+1v) = PΣ(v) for all v. We have established so far that

(3.15) dimHomH(τk,HomK(σµ, πλ)) = PΣ(λ − µ − kεn+1) − PΣ(λ − µ + (k + 1)εn+1).

Since Σ′ = {εi ± εn+1 : 1 ≤ i ≤ n} ⊂ Σ, it follows that the previous expression becomes

(3.16)

λ1−µ1∑

ν1=0

· · ·

λn−µn∑

νn=0

(
PΣ′

(
λ− µ− kεn+1 − ν

)
−PΣ′

(
λ− µ+ (k + 1)εn+1 − ν

))

=

⌊
λ1−µ1

2
⌋∑

γ1=0

· · ·

⌊λn−µn
2

⌋∑

γn=0


 ∑

I⊂[[1,n]]

PΣ′

(
λ− µ− kεn+1 − 2γ − βI

)

−
∑

I⊂[[1,n]]

PΣ′

(
λ− µ+ (k + 1)εn+1 − 2γ − βI

)

 .

Here and subsequently, we write ν =
∑n

i=1 νiεi and γ =
∑n

i=1 γiεi, whenever νi and γi for
1 ≤ i ≤ n are determined. The notation for βI was introduced before Lemma 2.2. Such lemma
implies

(3.17) dimHomH(τk,HomK(σµ, πλ))

=

⌊
λ1−µ1

2
⌋∑

γ1=0

· · ·

⌊λn−µn
2

⌋∑

γn=0

(
PΣ′

(
2(λ− µ− kεn+1 − 2γ)

)
− PΣ′

(
2(λ− µ+ (k + 1)εn+1 − 2γ)

))
.

On the other hand, the right-hand side of (3.9) is

(3.18)

⌊
λ1−µ1

2
⌋⊕

γ1=0

· · ·

⌊λn−µn
2

⌋⊕

γn=0

τλ1−µ1−2γ1 ⊗ · · · ⊗ τλn−µn−2γn ⊗ τλn+1
.

One has that H = SO(3) ≃ SU(2)/{±1}. The irreducible representation τk/2 of SU(2) with
k odd does not descend to a representation of SO(3). Furthermore, the (2k + 1)-dimensional
representation τk of SU(2) descends to SO(3). Therefore, Theorem 2.1 ensures that the number
of times that τk occurs in the factor τλ1−µ1−2γ1 ⊗ · · · ⊗ τλn−µn−2γn ⊗ τλn+1

is equal to

(3.19) PΣ′

(
2
(
λ− µ− 2γ

)
− 2kεn+1

)
− PΣ′

(
2
(
λ− µ− 2γ

)
+ (2k + 2)εn+1

)
.

It follows that the number of times that τk occurs in (3.18) coincides with (3.17), as asserted. �

3.3. Prescribed highest weight end for type B case. The aim in this subsection is to prove
Theorem 3.5. Roughly speaking, it is a decomposition of the multiplicity space HomK(σµ, πλ)
as H-module when the ending coefficients of λ coincide with a part of the coefficients of µ.



BRANCHING MULTIPLICITY SPACE 9

Theorem 3.5. Let G = SO(2n + 3), K = SO(2n), and H = SO(3) for any n ≥ 2. For
µ =

∑n
i=1 µiεi ∈ P++(K) and λ =

∑n+1
i=1 λiεi ∈ P++(G) with λi+3 = µi for all 1 ≤ i ≤ n − 2

and µn−1 ≤ λn+1, we have that

(3.20) HomK(σµ, πλ) ≃ π′
λ′ |H ⊗




µn−1⊕

j=|µn|

τj




as H-modules, where π′
λ′ denotes the irreducible representation of U(3) with highest weight

λ′ := λ1ε
′
1 + λ2ε

′
2 + λ3ε

′
3 (see Subsection 2.4).

We note that the condition µn−1 ≤ λn+1 is redundant unless n = 2.
It turns out that Kostant’s branching formula is not adequate to prove this result, since the

number of non-zero terms in the formula (3.12) is too high. We will use the branching law from
G to K ×H given by Tsukamoto [Ts05]. We first recall such a result.

Fix λ ∈ P++(G). It will be convenient to set λn+2 = λn+3 = 0 and a0 = µ0 = λ1. Further-
more, for µ ∈ P++(K), let σ̃µ denote the representation of K given by σ̃µ = σµ if µn = 0 and
σ̃µ = σµ ⊕ σµ̃ otherwise.

Tsukamoto established in the proof of Theorem 1 in [Ts05] that

(3.21) χπλ|K×H
=

1

(e
1

2
εn+1 − e−

1

2
εn+1)

∑

µ

χσ̃µ

∑

(a1,...,an)

n+1∏
i=1

(eliεn+1 − e−liεn+1)

(eεn+1 − e−εn+1)n
,

where the first sum is over every µ ∈ P++(K) triply interlacing λ, that is, λi ≥ µi ≥ λi+3

for all 1 ≤ i ≤ n, the second sum is over the n-tuples (a1, . . . , an) ∈ Zn satisfying that
a1 ≥ · · · ≥ an ≥ 0 and max(µi, λi+2) ≤ ai ≤ min(µi−1, λi) for all 1 ≤ i ≤ n, and the parameters
l1, . . . , ln+1 are given by

(3.22)

{
li = min(λi, ai−1)−max(λi+1, ai) + 1 for all 1 ≤ i ≤ n,

ln+1 = min(λn+1, an) + 1/2.

Since χτk = ξH(kεn+1 + ρh)/ξH(ρh) by (2.2), with ξH(kεn+1 + ρh) = ξH((k + 1
2
)εn+1) =

e(k+
1

2
)εn+1 − e−(k+ 1

2
)εn+1 and ξH(ρh) = e

1

2
εn+1 − e−

1

2
εn+1, Tsukamoto thus obtained the following

implicit branching rule from G = SO(2n+ 3) to K ×H = SO(2n)× SO(3).

Theorem 3.6. [Ts05, Theorem 1] Let λ ∈ P++(G), µ ∈ P++(K), and kεn+1 ∈ P++(H). If
λi ≥ µi ≥ λi+3 for all 1 ≤ i ≤ n − 1 and λn ≥ |µn|, then the number of times that σµ ⊗ τk
occurs in πλ|K×H is given by mk, where the coefficients mp for p ≥ 0 are defined by

(3.23)
∑

(a1,...,an)

n+1∏
i=1

(eliεn+1 − e−liεn+1)

(eεn+1 − e−εn+1)n
=
∑

p≥0

mp

(
e(p+

1

2
)εn+1 − e−(p+ 1

2
)εn+1

)
,

where the sum at the left is over the n-tuples (a1, . . . , an) ∈ Zn satisfying that a1 ≥ · · · ≥ an ≥ 0,
max(µi, λi+2) ≤ ai ≤ min(µi−1, λi) for all 1 ≤ i ≤ n−1, max(|µn|, λn+2) ≤ an ≤ min(µn−1, λn),
and l1, . . . , ln+1 are given by (3.22). Otherwise, σµ ⊗ τk does not occur in πλ|K×H.

Proof of Theorem 3.5. We will assume throughout the proof that µn ≥ 0, which is possible by
Lemma 3.4. We will first show that

(3.24) HomK(σµ, πλ) ≃ HomK(σ0, πλ′)⊗

(
µn−1⊕

j=µn

τj

)
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as H-modules, where λ′ = λ1ε1 + λ2ε2 + λ3ε3. To do that, we will check that the term
accompanying χσµ in χπλ

coincides with the term accompanying χσ0
in χπλ′

times
∑µn−1

j=µn
χτj .

From (3.21), the term accompanying χσµ in χπλ
equals

(3.25)
1

ξH(ρh)

∑

(a1,...,an)

n+1∏
i=1

(eliεn+1 − e−liεn+1)

(eεn+1 − e−εn+1)n
,

where the sum is over (a1, . . . , an) ∈ Zn satisfying that a1 ≥ · · · ≥ an ≥ 0 and max(µi, λi+2) ≤
ai ≤ min(µi−1, λi) for all 1 ≤ i ≤ n, and the parameters l1, . . . , ln+1 are given by (3.22).
By assumption, λi+3 = µi for all 1 ≤ i ≤ n − 2. This implies that the sum reduces to
(a1, . . . , an) ∈ Zn satisfying that λ3 ≤ a1 ≤ λ1, µn ≤ an ≤ µn−1, and ai = λi+2 for all
1 ≤ i ≤ n− 1, thus l1 = λ1+1−max(λ2, a1), l2 = min(λ2, a1)−λ3+1, li = 1 for all 3 ≤ i ≤ n,
ln+1 = an + 1/2. Hence, the previous expression becomes

(3.26)

λ1∑

a1=λ3

(el1εn+1 − e−l1εn+1)(el2εn+1 − e−l2εn+1)

(eεn+1 − e−εn+1)2

µn−1∑

an=µn

(eln+1εn+1 − e−ln+1εn+1)

ξH(ρh)

=

(
λ1∑

a1=λ3

(el1εn+1 − e−l1εn+1)(el2εn+1 − e−l2εn+1)

(eεn+1 − e−εn+1)2

)(
µn−1∑

an=µn

χτan

)
,

where l1 = λ1 + 1 − max(λ2, a1) and l2 = min(λ2, a1) − λ3 + 1. We conclude that the proof
of (3.24) follows by checking that the second term in the right-hand side of the last expression
coincides with the term accompanying χσ0

in χπλ′
. This can be easily checked by (3.21) since

λ′
i+3 = µi = 0 for all i ≥ 1. Indeed, one obtains λ3 ≤ a1 ≤ λ1, ai = 0 for all 2 ≤ i ≤ n,

l1 = λ1 + 1−max(λ2, a1), l2 = min(λ2, a1)− λ3 + 1, li = 1 for all 3 ≤ i ≤ n, and ln+1 = 1/2.
He have established so far the identity (3.24). Now, by using Knapp’s duality [Kn01], the

multiplicity space HomK(σ0, πλ′) is isomorphic as an H-module to the restriction of the repre-
sentation π′

λ′ of U(3) to H = SO(3). This completes the proof. �

Remark 3.7. The branching law from U(3) to SO(3) has been thoroughly studied. It states
that (see for instance [GL91, (1.18)]) the number of times that τk occurs in π′

λ′ |SO(3) with

λ′ =
∑3

j=1 λ
′
jε

′
j, is given by

(3.27)





0 if 0 ≤ p ≤ k − 1,

⌈p−k+1
2

⌉ − ⌈p−k−q
2

⌉ if k ≤ p ≤ 2k, 0 ≤ q ≤ p− k,

⌈p−k+1
2

⌉ if k ≤ p ≤ 2k, p− k ≤ q ≤ k,

⌈p−k+1
2

⌉ − ⌈ q−k
2
⌉ if k ≤ p ≤ 2k, k ≤ q,

⌈p−k+1
2

⌉ − ⌈p−k−q
2

⌉ if 2k ≤ p, 0 ≤ q ≤ k,

⌈p−k+1
2

⌉ − ⌈p−k−q
2

⌉ − ⌈ q−k
2
⌉ if 2k ≤ p, k ≤ q ≤ p− k,

⌈p−k+1
2

⌉ − ⌈ q−k
2
⌉ if 2k ≤ p, p− k ≤ q,

where p = λ′
1 − λ′

3, q = λ′
2 − λ′

3, and ⌈·⌉ stands for the ceiling function (i.e. ⌈x⌉ is the least
integer greater than or equal to x). Now, Theorem 3.5 and (3.27) give an explicit expression
for the number of times that σµ ⊗ τk occurs in πλ|K×H for λ and µ as in Theorem 3.5.

Remark 3.8. Knapp’s duality [Kn01] was already present in [GK84] (cf. second-to-last para-
graph in §2 of [HTW05]).
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4. Type D case

We consider in this section the case d = 2n+ 1, thus for any n ≥ 1, we set

G = SO(2n+ 4), K = SO(2n+ 1), H = SO(3).

The Lie algebra g = so(2n + 4,C) is a classical Lie algebra of type Dn+2. There are several
similarities with the previous case considered in Section 3, so we will omit many details.

4.1. Root system notation for type D case. We pick the maximal torus

T := {diag(R(θ1), . . . , R(θn+2)) : θj ∈ R ∀ j},(4.1)

t :=
{
diag

((
0 iθ1

−iθ1 0

)
, . . . ,

(
0 iθn+2

iθn+2 0

))
: θj ∈ C ∀j

}
.(4.2)

We define εj ∈ t∗ by εj(X) = θj for X in t as above, for 1 ≤ j ≤ n + 2. Then, Φ(g, t) =
{±εi ± εj : 1 ≤ i < j ≤ n+ 2}.

The maximal torus T ∩K of K satisfy (k∩ t)∗ = spanC{ε1, . . . , εn}, thus Φ(k, t) = {±εi± εj :
1 ≤ i < j ≤ n} ∪ {±εi : 1 ≤ i ≤ n}. Similarly, the maximal torus T ∩ H in H satisfies that
(h ∩ t)∗ = spanC{εn+2} and Φ(h, t) = {±εn+2}.

We pick compatible orders in t∗, (k ∩ t)∗ and (h ∩ t)∗, determined by the lexicographic order
with respect to the ordered basis {ε1, . . . , εn+2}. Thus

Φ+(g, t) = {εi ± εj : 1 ≤ i < j ≤ n + 2}, Φ+(h, t) = {εn+2},(4.3)

Φ+(k, t) = {εi ± εj : 1 ≤ i < j ≤ n} ∪ {εj : 1 ≤ j ≤ n},(4.4)

P (G) = ⊕n+2
j=1Zεj, P++(G) = {

∑n+2
j=1 λjεj ∈ P (G) : λ1 ≥ · · · ≥ λn+1 ≥ |λn+2|},(4.5)

P (K) = ⊕n
j=1Zεj , P++(K) = {

∑n
j=1 λjεj ∈ P (K) : λ1 ≥ · · · ≥ λn ≥ 0},(4.6)

P (H) = Zεn+1, P++(H) = {kεn+2 ∈ P (H) : k ≥ 0},(4.7)

ρg :=
n+2∑

i=1

(n+ 2− i)εi, ρk :=
n∑

i=1

(n+ 1
2
− i)εi, ρh :=

1
2
εn+2.(4.8)

For λ ∈ P++(G), µ ∈ P++(K), and kεn+2 ∈ P++(H), we denote by πλ, σµ, τk the corresponding
irreducible representations of G, K and H respectively.

The Weyl groupWg consists in elements ω = sp, with p a permutation of the n+2 coordinates
and s a multiplication by −1 on a subset of coordinates with even cardinality. We still denote
by si : t

∗ → t∗ the reflexion with respect to the axis i like in Subsection 3.1. Furthermore, we
define pi,j to be the transposition of the coordinates i and j.

We consider the inner product 〈·, ·〉 on g given by 〈X, Y 〉 = 1
2
tr(XY ). We extend it to t∗. It

turns out that {ε1, . . . , εn+2} is an orthonormal basis of t∗.

4.2. Main theorem for type D case. The main result in this section is the following.

Theorem 4.1. Let n ≥ 1, G = SO(2n + 4), K = SO(2n + 1), H = SO(3), λ =
∑n+2

i=1 λiεi ∈
P++(G), µ =

∑n
i=1 µiεi ∈ P++(K). If µ simply interlaces λ, i.e. λi ≥ µi ≥ λi+1 for 1 ≤ i ≤ n,

then

(4.9) HomK(σµ, πλ) ≃




λn+1⊕

k=|λn+2|

τk


⊗

n⊗

m=1




⌊(λm−µm)/2⌋⊕

j=0

τλm−µm−2j




as H-modules.
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Similarly as in the previous section, we first make the first steps of applying Kostant’s
Branching Formula (2.6) to (G,K×H). The maximal torus S := T ∩ (K×H) in K×H misses
the (n+ 1)-th 2× 2-block in (4.1). Thus, s∗ = spanC{ε1, . . . , εn, εn+2} and the restriction from
t∗ to s∗ denoted by a bar removes the (n + 1)-th coordinate, that is,

(4.10)
n+2∑
i=1

βiεi =
n∑

i=1

βiεi + βn+2εn+2.

Furthermore, Φ+(k× h, s) = Φ+(k, t ∩ k) ∪ Φ+(h, t ∩ h), thus

(4.11) Σ = {εi ± εn+2 : 1 ≤ i ≤ n} ∪ {εi : 1 ≤ i ≤ n} ∪ {−εn+2},

each element with multiplicity one. It follows that, for ν ∈ s∗,

(4.12) PΣ(ν) > 0 =⇒ νi := 〈εi, ν〉 ∈ Z ∀i, νi ≥ 0 ∀ 1 ≤ i ≤ n, νn+2 ≤
n∑

i=1

νi.

From (2.6), we obtain that the number of times that σµ ⊗ τk appears in πλ|K×H is given by

(4.13) dimHomK×H(σµ ⊗ τk, πλ) =
∑

ω∈Wg

sgn(ω) PΣ

(
ω(λ+ ρg)− ρg − µ− kεn+2

)
.

The next lemmas indicate the non-zero terms in the above sum. The proof of the first one is
completely analogous to the proof of Lemma 3.2.

Lemma 4.2. Assume λn+2 ≥ 0. If ω ∈ Wg satisfies that the ω-th term in (4.13) is non-zero,
then ω = p or ω = sn+1sn+2p, for some permutation p.

Lemma 4.3. Assume λi ≥ µi ≥ λi+1 for all 1 ≤ i ≤ n. If ω ∈ Wg satisfies that the ω-th term
in (4.13) is non-zero, then ω is in {1, sn+1 sn+2, pn+1,n+2, sn+1 sn+2 pn+1,n+2}.

Proof. We write ω = sp with s = 1 or s = sn+1sn+2 by Lemma 4.2. By proceeding as in the
proof of Theorem 3.1 we obtain that ω(εi) = εi for all 1 ≤ i ≤ n− 1.

Suposse ω(εn+1) = εn, then 0 ≤ 〈εn, ω(λ + ρg) − ρg − µ − kεn+2〉 = λn+1 − µn − 1 < 0
which is a contradiction. Finally, if ω(εn+2) = εn, then 0 ≤ 〈εn, ω(λ+ ρg)− ρg − µ− kεn+2〉 =
λn+2 − µn − 2 < 0 which is again a contradiction. Thus, ω(εn) = εn and the claim follows. �

We now show that it is sufficient to prove Theorem 4.1 for λn+2 ≥ 0. We set λ̃ =
∑n+1

i=1 λiεi−

λn+2εn+2 for any λ =
∑n+2

i=1 λiεi ∈ P++(G). Note λ̃ ∈ P++(G).

Lemma 4.4. For any λ ∈ P++(G), µ ∈ P++(K), k ≥ 0, we have that πλ|K×H ≃ πλ̃|K×H.

Proof. We set g0 ∈ diag(1, . . . , 1,−1) ∈ O(2n + 4). Although g0 is not in G, the map ϕ : x 7→
g0xg0 is an automorphism of G. It turns out that πλ ◦ϕ ≃ πλ̃, σµ ◦ϕ|K = σµ, and τk ◦ϕ|H ≃ τk.
The assertions then follows. �

We are now in position to prove the main theorem of this section.

Proof of Theorem 4.1. The strategy is the same as in the proof of Theorem 3.1. By Lemma 4.4,
we may assume λn+2 ≥ 0.

From (4.13) and Lemmas 4.2 and 4.3, we obtain that

(4.14) dimHomK×H(σµ ⊗ τk, πλ) = PΣ(λ̄− µ− kεn+2) + PΣ(λ̄− µ− (2λn+2 + k)εn+2)

− PΣ(λ̄− µ+ (λn+1 − λn+2 + 1− k)εn+2)− PΣ(λ̄− µ− (λn+1 + λn+2 + 1 + k)εn+2).
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Set Σ′′ = Σ′ ∪{−εn+2}, where Σ
′ = {εi± εn+2 : 1 ≤ i ≤ n}. One has that, see for instance [Kn,

(9.56)], PΣ′′(ν) = PΣ′′(ν +mεn+2) +
∑m−1

r=0 PΣ′(ν + rεn+2) for all ν ∈ s∗. Then,

(4.15) PΣ(λ̄− µ− kεn+2)− PΣ(λ̄− µ+ (λn+1 − λn+2 + 1− k)εn+2)

=

⌊
λ1−µ1

2
⌋∑

γ1=0

· · ·

⌊λn−µn
2

⌋∑

γn=0

∑

I⊂[[1,n]]

(
PΣ′′

(
λ̄− µ− kεn+2 − 2γ − βI

)

−PΣ′′

(
λ̄− µ+ (λn+1 − λn+2 + 1− k)εn+2 − 2γ − βI

))

=

λn+1∑

r=λn+2

⌊
λ1−µ1

2
⌋∑

γ1=0

· · ·

⌊λn−µn
2

⌋∑

γn=0

∑

I⊂[[1,n]]

PΣ′

(
λ̄− µ+ (r − λn+2 − k)εn+2 − 2γ − βI

)

=

λn+1∑

r=λn+2

⌊
λ1−µ1

2
⌋∑

γ1=0

· · ·

⌊λn−µn
2

⌋∑

γn=0

PΣ′

(
2(λ̄− µ+ (r − λn+2 − k)εn+2 − 2γ)

)
.

The last equality follows by Lemma 2.2. Similarly, one obtains that

(4.16) PΣ(λ̄− µ− (2λn+2 + k)εn+2)− PΣ(λ̄− µ− (λn+2 + λn+1 + 1 + k)εn+2)

= −

λn+1∑

r=λn+2

⌊
λ1−µ1

2
⌋∑

γ1=0

· · ·

⌊λn−µn
2

⌋∑

γn=0

PΣ′

(
2(λ̄− µ− (r + λn+2 + 1 + k)εn+2 − 2γ)

)
.

Now, substituting (4.15) and (4.16) in (4.14), we get

(4.17) dimHomH(τk,HomK(σµ, πλ)) = dimHomK×H(σµ ⊗ τk, πλ)

=

λn+1∑

r=λn+2

⌊
λ1−µ1

2
⌋∑

γ1=0

· · ·

⌊λn−µn
2

⌋∑

γn=0

(
PΣ′

(
2(λ̄− µ+ (r − λn+2 − k)εn+2 − 2γ)

)

−PΣ′

(
2(λ̄− µ− (r + λn+2 + 1 + k)εn+2 − 2γ)

))
.

Again, the right-hand side of (4.9) is

(4.18)

λn+1⊕

r=λn+2

⌊
λ1−µ1

2
⌋⊕

γ1=0

· · ·

⌊λn−µn
2

⌋⊕

γn=0

τλ1−µ1−2γ1 ⊗ · · · ⊗ τλn−µn−2γn ⊗ τr.

By Theorem 2.1, τk appears in the factor τλ1−µ1−2γ1 ⊗ · · · ⊗ τλn−µn−2γn ⊗ τr with coefficient

PΣ′

(
2
(
λ̄− µ− 2γ

)
+ 2(r − λn+2 − k)εn+2

)
− PΣ′

(
2
(
λ̄− µ− 2γ

)
+ 2(r − λn+2 + k + 1)εn+2

)
.

Since PΣ′(α) = PΣ′(sn+2α), it follows that the number of times that τk occurs in (4.18) coincides
with (4.17), as asserted. �

4.3. Prescribed highest weight end for type D case. We next show the analogous result
to Theorem 3.5 for the type D case, which gives an explicit decomposition of the multiplicity
space as an H-module when the ending coefficients of λ coincide with a part of the coefficients
of µ. This result will be also proved by Tsukamoto’s branching law from G to K ×H .
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Theorem 4.5. Let G = SO(2n + 4), K = SO(2n + 1), and H = SO(3) for any n ≥ 1. For
µ =

∑n
i=1 µiεi ∈ P++(K) and λ =

∑n+2
i=1 λiεi ∈ P++(G) with |λi+3| = µi for all 1 ≤ i ≤ n − 1

and µn ≤ |λn+2|, then

(4.19) HomK(σµ, πλ) ≃ π′
λ′ |H ⊗ τµn ,

as H-modules, where π′
λ′ denotes the irreducible representation of U(3) with highest weight

λ′ := λ1ε
′
1 + λ2ε

′
2 + |λ3|ε

′
3 (see Subsection 2.4).

We note that the condition µn ≤ |λn+2| is redundant unless n = 1. Furthermore, |λi+3| = λi+3

for all i ≤ n− 2.
Fix λ ∈ P++(G) with λn+2 ≥ 0. It will be convenient to set λn+3 = µn+1 = 0 and µ0 = µ−1 =

λ1. We recall from (2.4), that the character of π|K×H is given by χπ, for any finite dimensional
representation π of G. Tsukamoto established in the proof of Theorem 4 in [Ts05] that the
character of the restriction of πλ to K ×H is given by

(4.20) χπλ|K×H
= χπλ

=
1

(e
1

2
εn+1 − e−

1

2
εn+1)

∑

µ

χσµ

∑

(a1,...,an+1)

n+1∏
i=1

(eliεn+2 − e−liεn+2)

(eεn+2 − e−εn+2)n
,

where the first sum is over every µ ∈ P++(K) triply interlacing λ, that is, λi ≥ µi ≥ λi+3 for
all 1 ≤ i ≤ n, the second sum is over the (n + 1)-tuples (a1, . . . , an+1) ∈ Zn+1 satisfying that
a1 ≥ · · · ≥ an+1 ≥ 0 and max(µi, λi+1) ≤ ai ≤ min(µi−2, λi) for all 1 ≤ i ≤ n + 1, and the
parameters l1, . . . , ln+1 are given by

(4.21)

{
li = min(µi−1, ai)−max(µi, ai+1) + 1 for all 1 ≤ i ≤ n,

ln+1 = min(µn, an+1) + 1/2.

He thus got the next implicit branching law fromG = SO(2n+4) toK×H = SO(2n+1)×SO(3).

Theorem 4.6. [Ts05, Theorem 4] Let λ ∈ P++(G), µ ∈ P++(K), and kεn+1 ∈ P++(H). If
λi ≥ µi ≥ λi+3 for all 1 ≤ i ≤ n − 2, λn−1 ≥ µn−1 ≥ |λn+2|, and λn ≥ µn, then the number
of times that σµ ⊗ τk occurs in πλ|K×H is given by mk, where the coefficients mp for p ≥ 0 are
defined by

(4.22)
∑

(a1,...,an)

n+1∏
i=1

(eliεn+2 − e−liεn+2)

(eεn+2 − e−εn+2)n
=
∑

p≥0

mp

(
e(p+

1

2
)εn+2 − e−(p+ 1

2
)εn+2

)
,

where the sum at the left is over the (n + 1)-tuples (a1, . . . , an+1) ∈ Zn+1 satisfying that a1 ≥
· · · ≥ an+1 ≥ 0, max(µi, λi+1) ≤ ai ≤ min(µi−2, λi) for all 1 ≤ i ≤ n, |λn+2| ≤ an+1 ≤
min(µn−1, λn+1), and l1, . . . , ln+1 are given by (4.21). Otherwise, σµ ⊗ τk does not occur in
πλ|K×H.

Proof of Theorem 4.5. From Lemma 4.4, we assume that λn+2 ≥ 0. We will first show that

(4.23) HomK(σµ, πλ) ≃ HomK(σ0, πλ′)⊗ τµn

as H-modules, where λ′ = λ1ε1 + λ2ε2 + λ3ε3. We need to check that the term accompanying
χσµ in χπλ|K×H

coincides with the term accompanying χσ0
in χπλ′ |K×H

times χτµn .
By assumption, λi+3 = µi for all 1 ≤ i ≤ n− 1. Then, (4.20) yields that the term accompa-

nying χσµ in χπλ|K×H
is equal to

(4.24) χτµn

λ1∑

a1=λ2

λ2∑

a2=λ3

e(a1−a2+1)εn+1 − e−(a1−a2+1)εn+1

eεn+1 − e−εn+1
,
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On the other hand, also by (4.20), the term accompanying χσ0
in χπλ′ |K×H

is given by

(4.25)

λ1∑

a1=λ2

λ2∑

a2=λ3

e(a1−a2+1)εn+1 − e−(a1−a2+1)εn+1

eεn+1 − e−εn+1
,

which completes the proof of (4.23).
The proof follows by applying Knapp’s duality [Kn01] to the right-hand side of (4.23). �

Remark 4.7. Theorem 4.5 and (3.27), give an explicit expression for the number of times that
σµ ⊗ τk occurs in πλ|K×H for λ and µ as in Theorem 4.5.
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