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Abstract

We explore Sakharov’s seminal idea that gravitational dynamics
is induced by the quantum corrections from the matter sector. This
was the starting point of the view that gravity has an emergent origin,
which soon gained impetus due to the advent of black hole thermody-
namics. In the generalized framework of Riemann–Cartan spacetime
with both curvature and torsion, the induced gravitational action is
obtained for free nonminimally coupled scalar and Dirac fields. For a
realistic matter content, the induced Newton constant is obtained to
be of the magnitude of the ultraviolet cutoff, which implies that the
cutoff is of the order of the Planck mass. Finally, we conjecture that
the action for any gauge theory of gravity at low energies can be in-
duced by Sakharov’s mechanism. This is explicitly shown by obtaining
the Poincaré gauge theory of gravity.

Contribution to the Memorial Volume for Jacob Bekenstein

1 Introduction

The standard approach for dealing with ultraviolet-divergent quantum cor-
rections in quantum field theory is renormalization. Its techniques are well-
developed mathematically, and the running of coupling constants is verified
experimentally for the Standard Model. In curved spacetime, however, we
encounter some problems. Particularly, the gravitational couplings are ra-
diatively unstable in the sense that the cosmological constant and the New-
ton constant are extremely sensitive to any change of the parameters of the
matter sector or a change of the Wilsonian cutoff scale of the matter action.
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This problem could likely be solved by imposing constraints that keep
certain matter parameters and quantities of the effective action of mat-
ter invariant under phase transitions and spontaneous symmetry breaking.
The implementation of such constraints requires new physics beyond the
Standard Model. Here we explore an alternative and historically significant
approach to quantum corrections, which uses a cutoff scale that is related
to the observed gravitational couplings and offers an illuminating view on
the origin of gravity.

In Sakharov’s approach to induced gravity [1], classical gravity is con-
sidered to be induced by quantum corrections from the matter sector. At
first matter fields are regarded to live on a spacetime that is curved but
with a nondetermined geometry. The quantization of matter fields produces
correction terms in the action, which involve the curvature of spacetime. In
particular, one-loop corrections include the Einstein–Hilbert action of Gen-
eral Relativity (GR). Finally, elevating the nondetermined metric of space-
time to a dynamical variable turns the correction terms into a gravitational
action. In other words, the regulated (but not renormalized) effective action
of matter on a curved spacetime is identified as the gravitational action that
determines the dynamics of spacetime geometry. In order to avoid curva-
ture terms of arbitrarily high orders to be induced into the gravitational
action, one usually assumes in Sakharov’s approach that quantum correc-
tions beyond one-loop order are somehow suppressed. Recall that already
the squared Riemann curvature terms, which are present in the one-loop ef-
fective action of matter, generate new massive degrees of freedom that carry
negative energy [3, 2], so-called ghosts, which generate severe problems [4].
When coupled to ordinary fields, ghosts cause the system to evolve to an
infinitely excited state without a change in total energy. The inclusion of
higher-order curvature terms only makes the situation worse. Such terms
are typically present in the effective field theory of gravity, which is obtained
as a low-energy limit of various quantum theories. In the induced gravita-
tional action obtained in Sec. 4, the extra degrees of freedom are found to
have masses around the Planck mass, since the dimensionless coupling con-
stants of the squared curvature terms are smaller than one, and hence the
characteristic length scale in their Yukawa potentials [3, 2] is the Planck
length. Thus, the effect of the extra degrees of freedom can be regarded to
be negligible at low energies and long distances. We assume that a consistent
description of quantum gravity and matter will eventually solve the ghost
problem. Therefore, in this work, we adopt the view that higher-derivative
contributions to the effective action can be ignored in the low-energy regime.

The most important lesson of Sakharov’s vision is that any fundamental
theory that includes or produces a curved spacetime manifold, on which a
quantum field theory of matter can be set up, necessarily produces gravity
as well. In this sense, gravity is an unavoidable and necessary compan-
ion of quantum matter. The idea to induce gravity from quantum effects
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and spontaneous symmetry breaking was further developed, particularly by
Adler and Zee [5, 7, 6, 8, 9, 10, 11, 12]. A recent perspective on Sakharov’s
induced gravity is given in Ref. [13], which includes a discussion on dif-
ferent interpretations of quantum corrections. The idea of induced gravity
was naturally expanded to the realm of quantum gravity, where it has been
used in particular to derive Einstein gravity as a low-energy effective theory
of scale-invariant (and asymptotically-free) quantum field theory of gravity
[12, 14, 15, 16, 17].

When applied to matter fields, Sakharov’s induced gravity is an early
representative of the emergent approach to gravity, where gravity or at least
gravitational dynamics is regarded to arise from a quantum theory that
does involve a gravitational interaction in its initial definition. Sakharov’s
approach only addressess the induction of gravitational dynamics by produc-
ing the gravitational action, and consequently the field equations, but it does
not produce spacetime, since the existence of a curved spacetime manifold
is presumed. Since then many people have wondered whether spacetime
too could be an emergent concept, and perhaps even gravity as a whole
might have an emergent origin. An intriguing indication towards this view
is the deep connection of gravity and thermodynamics. It all began from
Bekenstein’s discovery of the area law for black hole entropy [18, 19, 20, 21],
which was predated by observations that the horizon surface area and the
irreducible mass of black holes can never decrease in a classical process
[22, 23, 24, 25]. The identification of horizon surface area as entropy and
surface gravity as temperature (both up to a constant factor) quickly led
to a full analogy between black hole mechanics and thermodynamics [26],
and soon after to Hawking’s discovery of thermal radiation of black holes
[27]. The universal upper limit on the entropy that can be contained within
a finite region of space which has a finite amount of energy, namely, the
Bekenstein bound [28, 29, 30, 31] means that a physical system with a finite
energy in a finite space is described by at most a certain finite amount of
information. A covariant generalization of the Bekenstein entropy bound
has been achieved [32], as well as a similar bound for asymptotically de
Sitter spacetimes [33]. Black hole thermodynamics and the entropy bound
were a major inspiration for ’t Hooft’s proposal of the holographic princi-
ple [34] and its subsequent string-theoretic interpretation by Susskind [35].
The gauge/gravity duality is the most rigorous realization of the holographic
principle [36]. It has been argued that since the black hole entropy is, at least
in part, an entanglement entropy [37], it would be most satisfactory if the
gravitational action is induced as Sakharov proposed, so that all black hole
entropy would be entanglement entropy [38, 39]. Black hole thermodynamics
(and the holographic principle) has also had an influence on many other ap-
proaches to understand the relation between gravity and thermodynamics.
The Einstein equation has been derived locally on Rindler causal horizons as
a thermodynamic equation of state [40, 41]. An extension of black hole ther-
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modynamics to causal horizons has been considered [42]. The holographic
relation of bulk and surface terms in gravitational actions [43] has been used
in arguing that the field equations of any diffeomorphism invariant theory
of gravity have a thermodynamic reinterpretation, and showing that the
equipartition of energy on the microscopic degrees of freedom of a horizon
can be used to derive gravity [44, 45, 46]. It has even been proposed that
gravity is an entropic force caused by changes in the information associated
with the positions of material bodies [48]. The existence of gravitationally
bound quantum states[49] can be used to impose some conditions on the
fundamental microscopic theory behind entropic gravity [50, 51], which is
presently unknown. These results suggest a view of gravity and spacetime
as emergent concepts, which may have a thermodynamic origin.

The gauge theory approach to gravity has been highly influential ever
since the gauge invariance idea introduced by Weyl [52] for U(1) was gener-
alized to SU(2) by Yang and Mills [53] and to all semisimple Lie groups by
Utiyama [54], who considered the gauging of the Lorentz group for the first
time. The first consistent gauge theory of gravity was obtained by Kibble via
gauging of the Poincaré group [55], the symmetry group of the Minkowski
spacetime, which was used to derive the Einstein–Cartan–Sciama–Kibble
theory of gravity [56, 55], but more generally yields a Lagrangian that in-
cludes quadratic curvature and torsion terms [57, 58]. From there on, gauge
theories of every symmetry group related to gravity have been proposed and
explored, including the group of translations [59], the Weyl group (Poincaré
group plus scale transformations) [60], the conformal and superconformal
groups [61], the affine group [62], and so on. See Ref. [63] for a review of
various gauge theories of gravity. The gauge theory approach has also been
used in attempts to understand the relation of gravity and quantum me-
chanics. For example, several proposals for the gauge theory of gravity on
noncommutative spacetime have been considered, e.g. [65, 64, 66, 67].

In this work, we consider Sakharov’s induced gravity on a Riemann–
Cartan spacetime with both curvature and torsion. We shall derive the in-
duced gravitational action at one-loop order for free scalar and Dirac fields.
The mass scale that determines the induced gravitational constants, espe-
cially the induced Newton constant Gind, is the ultraviolet cutoff Λ for the
effective action of matter fields. For gravity to have the observed strength,
G−1

ind = 8πM2
P, the ultraviolet cutoff Λ has to be comparable to the Planck

mass MP. The effect of torsion is generally weak except when the density
of matter and spin is very high [68, 69]. When the gravitational Lagrangian
is the curvature scalar of the Riemann–Cartan spacetime, L = 1

2κ R̃, which
gives the Einstein–Cartan–Sciama–Kibble theory of gravity, torsion does not
propagate in vacuum. In more general theories, especially, in the generic
Poincaré gauge theory of gravity (PG) with a Lagrangian that is quadratic
in torsion and curvature, L = R̃ + T 2 + R̃2, torsion does propagate in vac-
uum [70, 71, 72] (for recent development and further references, see [73]),
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which may also improve the chances for its detection in the future. For a
discussion of several physical implications of the torsion of spacetime, see
Refs. [68, 69, 74]. The effect of the induced gravitational terms with dimen-
sionless couplings, including the squared curvature terms, is found to be
very small in the low-energy regime, since their induced coupling constants
depend on the logarithm of the ultraviolet cutoff, which implies that those
coupling constants are of the order of one or lower.

Including torsion into the gravitational theory is highly appealing, since
then the intrinsic angular momentum of matter and gravity can be natu-
rally incorporated into the theory. In general, both torsion and nonmetric-
ity should be considered, in addition to curvature, in order to obtain a
comprehensive understanding of the nature of induced gravity in the non-
Riemannian setting. In this work, however, we confine the treatment to
spacetimes with a vanishing nonmetricity. This limitation is motivated by
our main goal, which is the emergence of PG as an induced theory of grav-
ity via Sakharov’s mechanism. PG is a viable alternative to GR, which has
been studied extensively [63]. We show that the quantization of Dirac fields
on Riemann–Cartan spacetime induces the low-energy action of PG. The
high-energy part of the induced action is found to contain additional terms
compared to the action of PG. That is expectable, since the effective action
is not limited to contain only terms quadratic in the field strengths, namely,
in torsion and curvature. On a more general spacetime with a non-metric
compatible connection, a general metric-affine gauge theory of gravity should
be induced in the same way.

2 Sakharov’s approach

We generalize Sakharov’s approach to Riemann–Cartan spacetime. As in
Riemannian spacetime, the procedure can be considered to consist of five
steps:

1. Assume a Lorentzian spacetime manifold. The geometric notions of
Riemann–Cartan spacetime can be derived by applying Einstein’s Equiv-
alence Principle to a Dirac spinor [63], which can be considered to
describe a neutron in a gravitational field, instead of applying it to a
point mass as in GR.

2. Leave the dynamics of the geometry undetermined, i.e., consider it
as an arbitrary classical background and do not define an action for
gravity.

3. Quantize matter fields and determine their effective action. In the lan-
guage of Feynman diagrams, the one-loop effective action represents
the sum of all one-loop diagrams coupled to an arbitrary number of
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external gravitons. In this visualization, gravitons refer to small per-
turbations of the geometric background fields around a fixed back-
ground. Regularize the effective action, and obtain the contribution
of the background geometry to the action.

4. Elevate the geometric background fields to gravitational variables. We
consider two possible choices for the variables: the vierbein and the
spin connection (a first-order formalism), or the metric and the torsion
(a second-order formalism).

5. Identify the regulated one-loop effective action as the leading contri-
bution to gravity. The gravitational action induced at one-loop order
consists of contributions to vacuum energy, curvature terms up to sec-
ond order and torsion terms up to fourth order.

Sakharov’s approach, and many subsequent induced gravity approaches,
involve several problems:

1. The induced Newton constant is not guaranteed to be unique and
positive. In general, the Feynman amplitudes for stress-energy ten-
sor operators are complex, and should be continued analytically. This
problem also appears in the approaches[8, 10] where gravity is induced
via symmetry breaking [76]. Some ways to addresss the problem has
been proposed [77]. A further ambiguity is caused by the choice of a
regularization method, since different methods imply different quan-
tum corrections.

An ultraviolet-finite induced Newton constant can be obtained by in-
cluding both scalar fields and spin-1/2 fields and by imposing fine-
tuning constraints [39] on the numbers, masses and couplings of the
scalar and spin-1/2 fields. Unfortunately, the masses of the constituent
fields have to be comparable with the Planck mass, which causes prob-
lems in the presence of gravity, since quantum gravity effects should
become significant at high energies.

2. The introduction of dimensional parameters that determine the scale
of gravitational couplings is not fully convincing. In our simplistic ap-
proach, cutoff regularization is used to set the mass parameter of the
induced theory of gravity to be of the order of the Planck mass. Alter-
natively, one could use any other regularization method, for example,
Pauli–Villars regulators with sufficiently high masses. If the scale of
gravitational couplings is set by the masses of fundamental fields, one
generally requires fields whose masses are comparable with the Planck,
which is problematic.

3. The elevation of the geometric notions to gravitational variables af-
ter the quantization of matter fields has no physical motivation (other
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than that it works). This problem is a consequence of the fact that
Sakharov’s approach does not address the emergence of spacetime ge-
ometry but rather only the emergence of gravitational dynamics.

3 Geometric definitions

The covariant derivatives associated with the connection involving torsion
Γ̃ and the torsionless connection Γ are denoted by ∇̃ and ∇, respectively.
The connections on Riemann–Cartan spacetime are defined to be metric
compatible. Namely, the nonmetricity tensor is assumed to vanish through-
out this work, Qµνρ = ∇̃µgνρ = 0. Relaxing the metric-compatibility would
lead to more general spacetime geometries, e.g., Weyl–Cartan [60] or metric-
affine [62, 78], which are not considered here. Greek indices (µ, ν, . . .) refer
to a coordinate basis, and Latin indices (a, b, . . .) refer to an orthonormal
noncoordinate basis.

The connection coefficient Γ̃ ρ
µν can be written as the sum of the Christof-

fel symbol Γ ρ
µν and the contortion tensor K ρ

µν ,

Γ̃ ρ
µν = Γ ρ

µν +K ρ
µν , (1)

where the contortion tensor K ρ
µν is defined by the torsion T ρ

µν ,

T ρ
µν = 2Γ̃

ρ
[µν] = Γ̃ ρ

µν − Γ̃ ρ
νµ , (2)

as

K ρ
µν =

1

2

(

T ρ
µν + T ρ

µν + T ρ
νµ

)

. (3)

In the second-order formalism of gravity, the independent gravitational vari-
ables can be chosen as the metric and the torsion, which determine the con-
nection (1). Torsion can be decomposed into three irreducible components:
the trace vector Vµ = T ν

µν , the axial vector Aµ = Tνρσǫ
νρσµ, and the tensor

component T ρ
µν with vanishing vector and axial vector parts, T ν

µν = 0 and
Tνρσǫνρσµ = 0. Then, in four-dimensional spacetime, we have

Tµνρ =
1

3
(Vµgνρ − Vνgµρ)−

1

6
ǫµνρσAσ + Tµνρ. (4)

The components of torsion couple to matter fields in different ways, which
is discussed for scalar and Dirac fields in Sec. 4. The contortion tensor is
expressed in terms of the components of torsion as

K ρ
µν =

1

3

(

gµνVρ − δ ρ
µ Vν

)

− 1

12
ǫµνλσg

λρAσ +
1

2

(

T ρ
µν + T ρ

µν + T ρ
νµ

)

, (5)

and we note that K µ
µν = −K µ

µ ν = −Vν and Kµνρǫ
µνρσ = 1

2Aσ.
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The curvature tensor of the connection (1) can be written in terms of
the curvature tensor of the torsionless connection and the contortion tensor
as1

R̃ ρ
µν σ = R ρ

µν σ + 2∇[µK
ρ

ν]σ + 2K
ρ

[µ|λ K
λ

|ν]σ , (6)

where
R̃ ρ

µν σ = 2∂[µΓ̃
ρ

ν]σ + 2Γ̃
ρ

[µ|λ Γ̃
λ

|ν]σ , (7)

and R ρ
µν σ is defined similarly in terms of Γ ρ

µν . We may also express the
curvature tensor of the torsionless connection as

R ρ
µν σ = R̃ ρ

µν σ − 2∇̃[µK
ρ

ν]σ − T λ
µν K ρ

λσ + 2K
ρ

[µ|λ K
λ

|ν]σ , (8)

where everything on the right-hand side is defined in terms of the connection
with torsion. Note that the order of tensor indices on curvature and torsion
is such that the commutator of two covariant derivatives is written as

[∇̃µ, ∇̃ν ]V
ρ = R̃ ρ

µν σV
σ − T σ

µν ∇̃σV
ρ, (9)

and the order will persist when the vierbein formalism and the spin represen-
tation are considered. The relations between the Ricci tensors, R̃µν = R̃ ρ

µρ ν

and Rµν = R ρ
µρ ν , and the scalar curvatures, R̃ = gµνR̃µν and R = gµνRµν ,

can be obtained from the relations (6) and (8). For the scalar curvatures we
get

R̃ = R− 2∇µVµ +
2

3
VµVµ − 1

24
AµAµ − 1

2
TµνρT µνρ, (10)

or the other way around,

R = R̃+ 2∇̃µVµ +
4

3
VµVµ +

1

24
AµAµ +

1

2
TµνρT µνρ. (11)

In the first-order formalism, which is particularly used in the gauge
theory approach to gravity, the independent variables are the vierbein eaµ
and the spin connection ω̃ a

µ b, or the corresponding one-forms, the coframe

θa = eaµdx
µ and the connection ω̃a

b = ω̃ a
µ bdx

µ. These variables are the
gauge fields that are required to ensure gauge invariance of the action. Ad-
ditionally, in a metric-affine gauge theory like PG, we assume the presence
of a metric, gabθ

a ⊗ θb, which is here taken to be an orthonormal coframe,
gab = ηab (the Minkowski metric), so that the metric in a coordinate basis
is defined as

gµν = ηabe
a
µe

b
ν . (12)

We consider PG, which is based on the Lorentz connection, ω̃ab = ω̃[ab],
i.e., on an antisymmetric linear connection. More general gauge theories

1Tensor indexes in brackets are antisymmetrized, a[µbν] =
1
2
(aµbν −aνbµ), and indexes

between vertical lines are excluded from the antisymmetrization, a[µ|ρb|ν] = 1
2
(aµρbν −

aνρbµ).

8



of gravity require a more general linear connection.2 In the presence of a
metric, it is possible to decompose the spin connection into a torsionless
connection and a contortion component

ω̃ ab
µ = ω ab

µ +K νρ
µ eaνe

b
ρ, (13)

which consists of the torsionless part ω ab
µ and the part proportional to

contortion. The spin connection is related to the connection in a coordinate
frame by the so-called tetrad postulate

∇̃µe
a
ν = ∂µe

a
ν + ω̃ a

µ be
b
ν − Γ̃ ρ

µν e
a
ρ = 0, (14)

which can be equivalently written as

ω̃ a
µ b =

(

Γ̃ ρ
µν e

a
ρ − ∂µe

a
ν

)

e ν
b . (15)

The torsion two-form is defined in terms of eaµ and ω̃ a
µ b as the exterior

covariant derivative of the orthonormal coframe,

T a = dθa + ω̃a
b ∧ θb =

1

2
T a
µν dxµ ∧ dxν , (16)

where the components are defined as

T a
µν = 2∂[µe

a
ν] + 2ω̃

a
[µ| be

b
|ν]. (17)

The curvature two-form is defined as

R̃a
b = dω̃a

b + ω̃a
c ∧ ω̃c

b =
1

2
R̃ a

µν bdx
µ ∧ dxν , (18)

where the components are written as

R̃ a
µν b = 2∂[µω̃

a
ν] b + 2ω̃

a
[µ| cω̃

c
|ν] b. (19)

The curvature R a
µν b for the torsionless connection ω b

µ b is defined similarly
as (19). In a coordinate basis, the components of the curvature are given as

R̃ ρ
µν σ = R̃ a

µν be
ρ

a e
b
σ. (20)

When expressed entirely in the orthonormal frame {ea} (and the coframe
{θa}), where ea = e µ

a ∂µ, the components of the torsion and the curvature
are given as

R̃ c
ab d = 2e[aω̃

c
b] d + 2ω̃

c
[a| eω̃

e
|b] d − c e

ab ω̃
c

e d, (21)

T c
ab = 2ω̃

c
[a b]

− c c
ab , (22)

where ω̃ c
a b = e µ

a ω̃ c
µ b, and they involve the anholonomity of the basis:

[ea, eb] = c c
ab ec, c c

ab = 2e
µ

[a| ∂µe
ν

|b] e
c
ν . (23)

2Extending the local Poincaré group with local scale transformations would require
the connection to have a nonvanishing trace component, which leads to a gauge theory of
gravity with Weyl–Cartan geometry [60]. A general metric-affine gauge theory of gravity
is based on the local affine group, and it requires an unrestricted linear connection [62, 78].
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4 Induced gravitational action from quantized mat-
ter fields

One can considers matter fields that are coupled to curvature (and in the
present case also to torsion) minimally, although there is no physical prin-
ciple that would require such a restriction. In some cases, e.g. for scalar
fields, nonminimal couplings are necessary in order to achieve renormaliz-
ability. Here our goal is not renormalization, but rather derivation of the
one-loop effective action that is regulated but not renormalized. That way
the effective action can be regarded as the origin of gravity. Therefore, the
presence of nonminimal couplings is not necessary for the present approach,
but we shall consider them for the sake of generality.

4.1 Scalar fields

First consider a free real scalar field φ on four-dimensional Riemann–Cartan
spacetime. We can obtain the minimally-coupled Lagrangian from a free-
field Lagrangian on Minkowski spacetime with the replacement ∂µ → ∇̃µ.
The usual free-field Lagrangian on Minkowski spacetime with the kinetic
part 1

2η
µν∂µφ∂νφ gives the same Lagrangian as in Riemannian spacetime,

since ∇̃µφ = ∇µφ = ∂µφ, and hence the torsion does not appear in it.
Expressing the kinetic part of the Lagrangian in Minkowski spacetime as
−1

2φη
µν∂µ∂νφ leads to a different Lagrangian with a coupling to the vector

component of torsion as

− 1

2
φ�̃φ = −1

2
φ (�φ+ Vµ∇µφ) , (24)

where
�̃ = gµν∇̃µ∇̃ν , � = gµν∇µ∇ν . (25)

Thus, the minimal replacement rule does not lead to a unique scalar field
Lagrangian in Riemann–Cartan spacetime. Unlike in a Riemannian space-
time, the form of the initial Lagrangian in flat spacetime matters. Since it
would be a limited viewpoint to consider only the coupling to the vector
component of torsion, we will include other torsion terms as well. Hence,
we consider the parity-conserving free field Lagrangian with all nonminimal
coupling terms

L =
1

2

(

gµν∇µφ∇νφ−m2φ2 −
5
∑

i=1

ξiPiφ
2

)

, (26)

where ξi are dimensionless coupling constants and the corresponding even-
parity curvature and torsion terms are

P1 = R, P2 = ∇µVµ, P3 = VµVµ, P4 = AµAµ, P5 = TµνρT µνρ.
(27)
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The Lagrangian (26) could alternatively be written in terms of ∇̃, R̃ and
the components of torsion.

Note that we choose to write the Lagrangian in terms of the torsionless
covariant derivative and its curvature, since it makes the calculations more
convenient by enabling the use of techniques developed for quantum fields
on Riemannian spacetime (see the monographs [79, 80]). That is, the metric
and the torsion are regarded as the background fields. Note, however, that
the gravitational variables are not chosen yet. They will be chosen later,
after the quantum effective action has been obtained. Similar to the case of
spacetime without torsion, where only the first nonminimal coupling ξRφ2

appears, the nonminimal couplings would be necessary for renormalization
[81]. Naturally, including pseudoscalar fields and/or complex scalar fields
would allow further nonminimal coupling terms, which would again be nec-
essary for renormalization [81]. Recall, however, that our present goal is not
renormalization.

The action is defined by the Lagrangian (26) as

S =

∫

d4x
√−gL = −1

2

∫

d4x
√−g φDφ, (28)

where

D = �+m2 +

5
∑

i=1

ξiPi. (29)

The one-loop effective action is defined [82, 80] in terms of D as

S
(1)
eff =

i

2
ln det

(

l2D
)

=
i

2
Tr ln

(

l2D
)

, (30)

where the parameter l with dimension of length was introduced for dimen-
sional reasons, so that l2D is dimensionless. Since we consider only one-loop
corrections, and hence there is no need to keep track of higher powers of ~,
we have set ~ = 1, along with c = 1. We can use the identity

ln

(

D

D0

)

= −
∫ ∞

0

dτ

τ
[exp(−iτD)− exp(−iτD0)] , (31)

where D0 is the operator for a suitable reference background (g0, Γ̃0),
3 in

order to obtain

S
(1)
eff = S

(1)
eff,0 −

i

2
Tr

∫ ∞

0

dτ

τ
[exp(−iτD)− exp(−iτD0)] , (32)

where S
(1)
eff,0 is the one-loop effective action for the reference background. On

a noncompact spacetime the reference background has to be chosen so that

3Both operators D and D0 are considered to have a small negative imaginary part in
order to avoid divergence of the integration in (31).
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the physical action for induced gravity S
(1)
phys = S

(1)
eff − S

(1)
eff,0 is well defined.

We shall consider a compact spacetime for simplicity. This does not limit
the generality of the derivation. The contribution of a reference background
can be easily included into the induced action afterwards, in case one needs
the result for a noncompact spacetime. Thence, instead of associating the
operator D0 with a reference background, we can freely choose it to be
proportional to an identity operator as D0 = l−2I, so that we obtain

S
(1)
eff = − i

2
Tr

∫ ∞

0

dτ

τ
exp(−iτD) +

i

2
lim
ǫ→0+

∫ ∞

0

ds

s
exp(−is(1− iǫ))Tr I.

(33)
In units of mass, the dimensions of the above constant l and the integration
variables τ and s = l−2τ are [l] = −1, [τ ] = −2 and [s] = 0. The second
term in (33) is a constant, which is irrelevant dynamically, since it does not
depend on D or on any geometric quantities. Therefore, in the following,
we drop the constant term and write

S
(1)
eff = − i

2
Tr

∫ ∞

0

dτ

τ
exp(−iτD). (34)

We express the operator in the effective action in terms of a kernel func-
tion K(τ ;x, y), which is defined as

exp(−iτD)φ(x) =

∫

d4y
√−gK(τ ;x, y)φ(y). (35)

The kernel satisfies a Schrödinger-like equation

i
d

dτ
K(τ ;x, y) = DK(τ ;x, y), (36)

with the boundary condition

K(τ = 0;x, y) = Iδ(x, y), (37)

where I is the identity operator/matrix for the fields or field components.
We are working with a spacetime of Lorentzian signature so that the kernel
corresponds to a heat kernel with imaginary time [82, 83]. Strictly speaking,
the heat kernel technique is mathematically well defined only in Euclidean
signature, when the squared distance (x− y)2 of points is positive definite.
The kernel discussed here should be regarded as an analytic continuation of
the heat kernel, and it is only useful for finding the local contributions (in
the limit y → x) to the effective action. The trace of the operator in (34) is
given by

Tr exp(−iτD) =

∫

d4x
√−g trK(τ ;x, x), (38)
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where in the right-hand side the trace is taken over the field degrees of
freedom.4 The (divergent) gravitational terms that we are interested in
come from the zero end of the integral over τ . We use the local series
expansion of the kernel [79, 82, 80, 83]

K(τ ;x, x) =
i

(4πiτ)2

∞
∑

n=0

(iτ)nAn(x), (39)

where An(x) are constructed from the geometric quantities and parameters
involved in D, i.e., from the covariant derivative, the curvature, the torsion,
and the masses and couplings of the fields. We assume that the spacetime
has no boundary. If the spacetime had a boundary, we would have to in-
clude boundary terms into the series expansion of the operator (38). In the
presence of boundaries, each term in the series expansion except the zeroth
term involves an additional boundary contribution [83], and the series ex-
pansion (39) also involves half-integer terms, n = 1

2 ,
3
2 , . . ., which are purely

boundary terms.
Since the operator (29) is readily in the Laplace form

D = �+B, (40)

where the (endomorphism) term B does not involve derivatives,5 one obtains
the first three terms of the kernel (39) as6

A0 = I, (41)

A1 =
1

6
RI −B, (42)

A2 =

(

1

180
RµνρσRµνρσ − 1

180
RµνRµν +

1

72
R2 − 1

30
�R

)

I

+
1

2
B2 − 1

6
RB +

1

6
�B +

1

12
W µνWµν , (43)

where
Wµν = [∇µ,∇ν ]. (44)

For a single real scalar field, the identity is of course one-dimensional, I = 1,
(44) vanishes, Wµν = 0, and

B = m2 +

5
∑

i=1

ξiPi. (45)

4When a field with several components or several fields are involved, the operator D
and its kernel K are matrix-valued.

5We mean that B does not involve derivative operators acting on the field. Of course,
B itself involves derivatives of the gravitational fields, namely, in the present case the
curvature and torsion terms in (45).

6See Refs.[82, 85] and references therein for different techniques of derivation for the
kernel coefficients, and e.g. Refs.[79, 80, 83] for its use.
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Which terms of the expansion of the kernel (39) appear in the regular-
ized one-loop effective action depends on the chosen regularization method.
For example, dimensional regularization involves only the term A2, which
contains quadratic curvature and torsion terms. In that sense, it is a too
powerful regularization method for our purposes. We choose to use the
cutoff regularization, since it involves all the given terms (41)–(43). The
lower limit of the integral over τ is cut off at Λ−2 for the three divergent
terms, where the ultraviolet cutoff parameter Λ has the dimension of mass,
[Λ] = 1. For the third term with A2 the upper limit of the integral is cut off
at τ0 = ǫ−2, where ǫ is an infrared cutoff. We obtain the kernel expansion
of the cutoff-regularized one-loop effective action as

S
(1)
eff =

1

32π2

∞
∑

n=0

∫ ∞ or ǫ−2

0 or Λ−2

d(iτ)(iτ)n−3

∫

d4x
√−g trAn(x)

=
Λ4

64π2

∫

d4x
√−g trA0 +

Λ2

32π2

∫

d4x
√−g trA1

+
ln(Λ/ǫ)

16π2

∫

d4x
√−g trA2 + ultraviolet-finite terms.

(46)

The term of order Λ4, i.e., the quartic divergence, is given as trA0 = 1,
which contributes only to the vacuum energy. The term of order Λ2 in the
one-loop effective action (46) is given as

trA1 = −m2 +

(

1

6
− ξ1

)

R−
5
∑

i=2

ξiPi. (47)

The term proportional to the logarithm of the cutoff contains the second-
order gravitational terms: quadratic curvature terms and torsion terms up
to fourth power. The term 1

2B
2 of the contribution (43) proportional to

ln(Λ/ǫ) also contains the first-order terms m2
∑5

i=1 ξiPi. In total, we have

trA2 =
1

180
RµνρσRµνρσ − 1

180
RµνRµν +

1

72
R2 − 1

30
�R

+
1

2

(

m2 +

5
∑

i=1

ξiPi

)2

− 1

6
R

(

m2 +

5
∑

i=1

ξiPi

)

+
1

6

5
∑

i=1

ξi�Pi

=
1

180
RµνρσRµνρσ − 1

180
RµνRµν +

1

2

(

1

36
− ξ1

3
+ ξ21

)

R2

+
1

6

(

ξ1 −
1

5

)

�R+

(

ξ1 −
1

6

)

R

5
∑

i=2

ξiPi +
1

2

(

5
∑

i=2

ξiPi

)2

+
1

6

5
∑

i=2

ξi�Pi +

(

ξ1 −
1

6

)

m2R+m2
5
∑

i=2

ξiPi +
1

2
m4,

(48)
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where the sums in the latter expression are taken over the torsion terms, Pi

with i = 2, . . . , 5.
The Gauss-Bonnet-Chern term

G = RαβγδRµνρσǫ
αβµνǫγδρσ = RµνρσRµνρσ − 4RµνRµν +R2, (49)

whose integral is a topological invariant in four-dimensional spacetime, can
be used to absorb the Riemann tensor squared term from the effective action.

Alternatively, we could write the effective action in terms of the connec-
tion ∇̃ with torsion and its curvature (7) by using the relations between the
two connections (1) and their curvature tensors (8). That would be the ap-
propriate way, if one chooses the first-order formalism, where eaµ and ω̃ a

µ b

are the independent variables of the induced gravitational action. Such a
case is considered in Sec. 5, where the induced action for PG is obtained.

4.2 Spin-1/2 fields

Next we consider a Dirac spinor field ψ. The Dirac field can couple to the
vector and the axial vector components of torsion. Naturally, these couplings
are of the same form as the couplings for any other vector and axial vector
fields. In particular, the vector component Vµ couples to the Dirac spinor
in the same way as the electromagnetic field. In the Dirac action, spin-
1/2 fields do not couple to curvature or to higher-order torsion invariants
(27) due to dimensional reasons, since the mass dimensions are [ψ] = 3

2 ,
[Riemann] = 2 and [Torsion] = 1.7

The Hermitian Lagrangian for a free minimally coupled Dirac field is
written as

Lmin.
Dirac =

i

2

(

ψ̄γ
¯

µ∇̃µψ − ∇̃µψ̄γ
¯

µψ
)

−mψ̄ψ, (50)

where the spacetime-dependent γ matrices are defined as γ
¯
µ = e µ

a γa, where
e µ
a is the inverse of the vierbein eaµ. In four-dimensional spacetime, the
constant γ matrices satisfy

{γa, γb} = 2ηabI, (γ0)2 = I, (γi)2 = −I, (γa)† = γ0γaγ0, (51)

where a = 0, 1, 2, 3, i = 1, 2, 3, (ηab) = diag(1,−1,−1,−1) and I is the
four-dimensional identity matrix. The fifth γ matrix is defined as

γ5 = iγ0γ1γ2γ3, (52)

and it satisfies

(γ5)2 = I, (γ5)† = γ5, {γ5, γa} = 0. (53)

7We do not consider coupling constants with negative mass dimensions or couplings to
fractional or negative powers of curvature and torsion.
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The covariant derivative for the spinor and its conjugate ψ̄ = ψ†γ0 is defined
by

∇̃µψ = ∂µψ +
i

2
ω̃ ab
µ Σabψ,

∇̃µψ̄ = ∂µψ̄ − i

2
ψ̄ω̃ ab

µ Σab,

(54)

where Σab = − i
4 [γa, γb] satisfies the Lie algebra of SO(1, 3). Likewise, the

covariant derivative without torsion is

∇µψ = ∂µψ +
i

2
ω ab
µ Σabψ,

∇µψ̄ = ∂µψ̄ − i

2
ψ̄ω ab

µ Σab.

(55)

The action for the minimally coupled Lagrangian (50) can be written in two
forms, either in terms of ∇̃ or ∇, as

Smin.
Dirac =

∫

d4x
√−gψ̄

(

iγ
¯

µ∇̃µ − i

2
γ
¯

µVµ −m

)

ψ

=

∫

d4x
√−gψ̄

(

iγ
¯

µ∇µ +
1

8
γ
¯

µγ5Aµ −m

)

ψ,

(56)

where the boundary surface term coming from an integration by parts is
assumed to vanish,

∫

d4x∂µ(
√−gψ̄γ

¯
µψ) = 0. According to the second ex-

pression of (56) a minimally coupled spinor couples only to the axial vector
component of torsion. We shall consider a more general Dirac field that
couples to both the vector and axial components of torsion.

Written in terms of the torsionless covariant derivative, a nonminimally
coupled Dirac field has the action

Snon-min.
Dirac =

∫

d4x
√−gψ̄D1/2ψ,

D1/2 = iγ
¯

µDµ −m,

Dµ = ∇µ + iα1Vµ + iα2γ
5Aµ,

(57)

where α1 and α2 are dimensionless coupling constants for the vector and
the axial vector components of torsion, respectively. The minimally coupled
case (50) corresponds to the couplings α1 = 0, α2 = −1

8 .
The one-loop effective action is defined as

S
(1)
eff = −i ln det(lD1/2), (58)

where the minus sign and the factor of two compared to the spin-0 case
(34) come from the anticommuting and complex-valued nature of the Dirac
field, respectively. Since the Dirac operator D1/2 is a first-order differential
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operator, we cannot use the technique of Sec. 4.1 directly. However, we can
square the operator D1/2 as follows (for a more detailed proof, see [89]).
First we define a modification of the operator D1/2 as

D∗
1/2 = −iγ

¯

µDµ −m. (59)

In even-dimensional spacetime, the matrix γ5, which is Hermitian and sat-
isfies (γ5)2 = I, anticommutes with γ

¯
µ. Hence, γ5D∗

1/2γ
5 = D1/2,

8 and we
obtain

det(lD∗
1/2) = det(lγ5D∗

1/2γ
5) = det(lD1/2). (60)

Therefore, the operator D1/2 in the effective action (58) can be squared as

S
(1)
eff = − i

2
ln
[

det(lD1/2)
]2

= − i

2
ln det(l2D1/2D

∗
1/2). (61)

Hence, the operator D in the effective action of a Dirac spinor is written as

D ≡ D1/2D
∗
1/2 = (γ

¯

µDµ)
2 +m2. (62)

The operator D in (62) is not of the Laplace type for any of the derivatives
D, ∇ or ∇̃. We can see this by expanding the first term in (62) as

(γ
¯

µDµ)
2 = gµνDµDν − 2iα2γ

¯

µγ
¯

νγ5AµDν +
1

2
γ
¯

µγ
¯

ν [Dµ,Dν ], (63)

where the last term can be written as

1

2
γ
¯

µγ
¯

ν [Dµ,Dν ] =
1

4
R+

i

4
α1[γ

¯

µ, γ
¯

ν ]Vµν +
i

4
α2[γ

¯

µ, γ
¯

ν ]γ5Aµν , (64)

which involves the following second-rank tensors9

Vµν = ∇µVν −∇νVµ,

Aµν = ∇µAν −∇νAµ.
(65)

Therefore, the operator (62) contains a first-order derivative term. How-
ever, for any partial differential operator D that contains first-order and
second-order partial derivatives, with the second-order term taking the form
gµν∂µ∂ν , there exists [85] a unique connection ∇̂ and a unique endomorphism
B for which the operator takes the Laplace form

D = �̂+B, �̂ = gµν∇̂µ∇̂ν . (66)

8In even-dimensional spacetime, the matrices {γ
¯

µ} and {−γ
¯

µ} form equivalent repre-
sentations of the Clifford algebra (see e.g. [80]).

9In a more general setting, the vector Vµ and the axial vector Aµ could contain not
only the vector components of torsion but also gauge fields in some representation of a
given gauge group. In that case, Vµν and Aµν would be extended to include the field
strength tensors of the gauge fields.
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That connection consists of the Riemannian connection and a gauge (bundle)
part. In the present case (62), the operator (66) is given by

∇̂µ = Dµ − iα2γ
¯

νγ
¯µ
γ5Aν

= ∇µ + iα1Vµ +
i

2
α2

[

γ
¯µ
, γ
¯ν
]

γ5Aν
(67)

and

B =

(

1

4
R− 2α2

2AµAµ +m2

)

I +
i

4
α1[γ

¯

µ, γ
¯

ν ]Vµν + iα2γ
5∇µAµ. (68)

The tensor Wµν for the connection ∇̂ is given by

Wµν = −1

8
Rµνρσ[γ

¯

ρ, γ
¯

σ] + iα1Vµν + iα2γ
5Aµν

+ iα2γ
5γ
¯ρ

(

γ
¯µ

∇νAρ − γ
¯ν

∇µAρ
)

− α2
2

(

γ
¯µ
γ
¯ρ
γ
¯ν
γ
¯σ

− γ
¯ν
γ
¯ρ
γ
¯µ
γ
¯σ

)

AρAσ.

(69)

The kernel expansion and regularization of the effective action are per-
formed in a way identical to that of the scalar field case. Only now the oper-
ator D, the kernel K, the identity I and the tensorWµν are four-dimensional
square matrices. The tensor Wµν is given for the spinor in (69). The cutoff-
regularized effective action has the same expression as for a scalar field (46)
but with an opposite sign,

S
(1)
eff = − Λ4

64π2

∫

d4x
√−g trA0 −

Λ2

32π2

∫

d4x
√−g trA1

− ln(Λ/ǫ)

16π2

∫

d4x
√−g trA2 + ultraviolet-finite terms.

(70)

Then we evaluate the traces of the terms (41)–(43) of the kernel expansion
with (68) and (69). The first two terms of the effective action (70) are given
by

trA0 = 4, (71)

trA1 = −1

3
R+ 8α2

2AµAµ − 4m2, (72)

using tr I = 4 and trB = R− 8α2
2AµAµ + 4m2. Finally, after some lengthy

algebra, we obtain the term proportional to ln(Λ/ǫ) in the effective action
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(70) as

trA2 = − 7

360
RµνρσRµνρσ − 1

45
RµνRµν +

1

72
R2 +

1

30
�R

+
2

3
α2
1V

µνVµν +
2

3
α2
2A

µνAµν −
4

3
α2
2 �(AµAµ)

+
4

3
α2
2∇µ (Aν∇νAµ −Aµ∇νAν)

+
1

3
m2R− 8α2

2m
2AµAµ + 2m4.

(73)

This term does not explicitly contain terms involving both curvature and
torsion. Note, however, that the term ∇µ(Aν∇νAµ − Aµ∇νAν) contains
such a cross term between the Ricci tensor and the axial vector component
of torsion, RµνAµAν .

It is interesting to compare the torsion terms of the one-loop effective
actions for a scalar field and a Dirac field. The effective Lagrangian for a
scalar field (46) contains the following torsion terms:

Pi, �Pi, (i = 2, . . . , 5)

PiPj , (i = 1, . . . , 5, j = 2, . . . 5)
(74)

where Pi is defined in (27). The first term in (74) appears both as Λ2ξiPi

and (lnΛ/ǫ)m2ξiPi. The latter two terms in (74) appear in the term that
is proportional to ln(Λ/ǫ) in the effective action (46). On the other hand,
the effective Lagrangian for a Dirac field(70) involves the following torsion
terms:

AµAµ, �(AµAµ), V µνVµν , AµνAµν ,

∇µAν∇νAµ, (∇µAµ)2, RµνAµAν .
(75)

There are no cross terms between the three components of torsion in the
Dirac field case. It is noteworthy that the only common torsion terms in
the effective Lagrangians for a scalar field and a Dirac field are the following
three terms involving the squared norm AµAµ of the axial component of
torsion:

Λ2AµAµ, (ln Λ/ǫ)m2AµAµ, (ln Λ/ǫ)�(AµAµ). (76)

Notice that the quartic term (ln Λ/ǫ)(AµAµ)2 does not appear in the Dirac
field case (73). All the rest of the torsion terms in (74) and (75) appear only
for either a scalar field or for a Dirac field.

4.3 Induced gravitational couplings

We compare the induced gravitational actions (46) and (70) with the grav-
itational action

S =
1

16πG

∫

d4x
√−g (R− 2λ+ . . .) , (77)
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where the dots stand for all possible generally covariant terms constructed
from the torsion and the curvature (except R). The induced cosmological
constant is obtained from the induced actions (46) and (70) as

λind
Gind

=
∑

f

C
(0)
f

4π

(

Λ4

2
− Λ2m2

f + ln

(

Λ

ǫ

)

m4
f

)

, (78)

where the sum is taken over all scalar and Dirac fields (f = s, d), and the

constant C
(0)
s = −1 for a scalar field and C

(0)
d = 4 for a Dirac field, and the

induced Newton constant Gind will be discussed below. Since the masses
mf are taken to be much lighter than the ultraviolet cutoff, mf ≪ Λ, the
dominant contribution to the cosmological constant is

λind
Gind

≈ (4Nd −Ns)

8π
Λ4, (79)

where Nd and Ns are the number of Dirac fields and the number of scalar
fields, respectively. Since the ultraviolet cutoff has to be at least above
the electroweak scale, Λ & 1TeV, up to where the Standard Model has
been tested accurately, and setting Gind to its observed or of magnitude,
Gind ∼ 10−1M−2

P , we obtain λind . −10−64M2
P for a scalar field. A Dirac

spinor produces a positive cosmological constant, λind & 10−64M2
P. As usual,

the vacuum energy obtained from a quantum field theory is far too high com-
pared to the minuscule observed value λ ∼ 10−122M2

P. Actually, we will soon
see that the ultraviolet cutoff is expected to be comparable to the Planck
mass in this approach, so that the prediction for λind with fermionic matter
is much higher than the above estimate, around λind ∼ M2

P. Sakharov’s
approach does not help us with the vacuum energy problem. Consequently,
the vacuum energy term that is proportional to the volume of spacetime is
usually ignored in Sakharov’s approach. It might, however, be possible to
resolve the problem with fine tuning and radiative instability of the cosmo-
logical constant. For this purpose, we would like to highlight the proposal
of vacuum energy sequestering [86], and in particular its recent local for-
mulation [87, 88], where the perturbative instability of the vacuum energy
contribution of quantized matter fields is tamed by letting the gravitational
and cosmological constants become variables and introducing auxiliary vol-
ume four-forms for fixing the values of the given constants. Large contri-
butions to the vacuum energy from the matter sector are cancelled by the
sequestering mechanism. A potential problem with including the vacuum
energy sequestering mechanism into Sakharov’s induced gravity is that the
gravitational terms (and consequently the gravitational and cosmological
constants) are absent in the classical action prior to quantization of matter.
Hence, the additional Lagrangian that is needed for the local sequestering
mechanism has to be introduced by hand, unless one finds a way to induce
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those terms along with the gravitational action. A possible clue for such a
direction might be that the gravitational action along with the vacuum en-
ergy sequestering mechanism can be considered to emerge from gauge fixing
in an underlying theory [88].10

Thus, the induced Newton constant is obtained as

1

Gind
=
∑

f

C
(1)
f

π

(

Λ2

2
− ln

(

Λ

ǫ

)

m2
f

)

, (80)

where C
(1)
s = 1

6 − ξ1s for a scalar field and C
(1)
d = 1

3 for a Dirac spinor. Since
mf ≪ Λ, the dominant contribution to the Newton constant is obtained as

1

Gind
≈ (2Nd +Ns − 6

∑

s ξ1s)

12π
Λ2. (81)

This implies that for a single Dirac field Λ ∼ 10MP. Including a scalar
field or scalar fields with a large negative coupling ξ1s ≪ −1 would enable
Λ to be set lower than MP. Since such a strong nonminimal coupling of a
scalar field to the curvature is not known, and the fundamental matter fields
are fermions, we do not explore the case ξ1s ≪ −1 further here. Thus, for
a realistic model of matter, where several fermionic fields are present, the
ultraviolet cutoff Λ is comparable to the Planck mass.

We have obtained the one-loop effective actions for a scalar field and for
a Dirac field with arbitrary nonminimal couplings ξi and αj . In order to
estimate the magnitude of the induced couplings of the torsion terms, we
have to set the magnitudes of the constants ξi and αj. For a scalar field (26)
we assume that all the couplings satisfy |ξi| . 1, and the coupling to the
scalar curvature also satisfies ξ1 ≤ 1, which ensures that the induced Newton
constant (80) is not too negative, so that the positive contribution from
fermionic matter can outweigh it. The given range of couplings also includes
the special case 1

6R−∑5
i=1 ξiPi = R̃, where all couplings 10−1 . |ξi| . 1. In

the leading Λ2 order, that special case is Einstein–Cartain–Sciama–Kibble
gravity. Since Einstein–Cartain–Sciama–Kibble gravity resides in the upper
end of the chosen coupling range |ξi| . 1, it provides an estimate for the
effect of the torsion terms in this range. The spin-spin contact interaction in
Einstein–Cartain–Sciama–Kibble gravity is weak and becomes comparable
to the effect of mass at very high mass densities [69], around 1047 g/cm3

for electrons and 1054 g/cm3 for neutrons. These densities are so high that
they are only encountered in black holes and in the early universe, but

10In this extension of the theory [88], the gravitational action with the vacuum energy
sequestering mechanism is considered to be a gauge fixing action Sgf for an underlying
theory. The BRST-invariant action is constructed as usual by adding the appropriate
ghost action Sgh. The resulting gravitational action Sg = Sgf + Sgh is found to be not
only BRST invariant but also BRST exact, in the sense that Sg ∝ δBF , where δBF is the
BRST transformation of a certain functional F .
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they are still much lower than the Planck density at which the quantum
gravity effects are expected to dominate. Deviation from the special case of
Einstein–Cartain–Sciama–Kibble theory does enable propagation of torsion,
which is clearly possible in the generic induced action, but the magnitude
of the couplings remains weak. Next we shall give a similar estimation for a
Dirac field. We assume the couplings for a Dirac field (57) satisfy |αj | . 1.
This range includes the minimally-coupled Dirac field, which corresponds to
the couplings α1 = 0 and α2 = −1

8 . Thus, in the given range of couplings,
the leading-order torsion contributions in the induced action (70) are of a
similar magnitude as in the case of the scalar field analyzed above.

In the low-energy realm of classical gravity, the curvature and torsion
terms in the contributions (48) and (73), which are multiplied by ln(Λ/ǫ) in
the effective Lagrangian, are heavily suppressed compared to the leading Λ2

contribution discussed above. The infrared cutoff ǫ can be chosen to be at
most of the order of the mass of the lightest matter particles, which are the
neutrinos, so that we can set ǫ . 10−3 eV. Note that setting ǫ ten or twenty
orders of magnitude lower than 10−3 eV would still result in ln(Λ/ǫ) being of
the same order of magnitude, so that the present discussion does not depend
much on the chosen infrared cutoff. Hence, in the coupling ranges chosen
above, the dimensionless net couplings of the higher-order terms (Riemann2,
�R, Torsion4, �Torsion2, (∇Torsion)2 and Riemann × Torsion2) in the
effective Lagrangian are of the order one or below, and hence their effect
on low-energy physics is marginal (apart from their possible impact on the
propagation of torsion). This point of view can be justified by treating
gravity as a low-energy effective field theory.

5 Induced gauge theory of gravity

It is known that the two formulations of classical gravity on Riemann–Cartan
spacetime are not generally equivalent. In the second-order formulation, the
independent variables are the metric and the torsion. Induced gravity in the
second-order formulation was considered in Sec. 4, and it was noted that the
induced action can as well be written as a functional of the first-order vari-
ables. In the gauge theory formulation, which is a first-order formulation,
the independent variables are the gauge fields required to achieve a desired
local gauge symmetry. Here we consider Poincaré gauge symmetry, so that
the gauge fields consists of the vierbein and the Lorentz connection. The
two formulations of gravity with both curvature and torsion are equivalent
classically for the degenerate case of Einstein–Cartain–Sciama–Kibble grav-
ity (see e.g [69]), but not for PG generally. The decomposition of a Lorentz
connection to a Levi-Civita connection and contortion parts can always be
inserted into the field equations of PG. Inserting the decomposition of the
connection into the action, however, changes the theory significantly [75].
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Next we shall consider the induced gravitational action for PG. Recall
that gravitational dynamics does not yet exist at this stage, since the grav-
itational fields play the role of (classical) background fields, while matter
fields are quantized. Only after the one-loop effective action for matter has
been obtained, we will choose the independent variables for gravity, which
will be the vierbein and the Lorentz connection, after which the variational
principle can be applied to derive the gravitational field equations. Since
the elementary object of special relativity in the setting leading to gravity
on a Riemann–Cartan spacetime is a Dirac spinor [63] rather than a mass
point or a scalar field, we primarily consider quantization of Dirac fields in
this section.

With the intention of obtaining an induced Poincaré gauge theory of
gravity, we start from the Hermitian action for a minimally-coupled Dirac
spinor,

Smin.
Dirac =

∫

d4x
(

det eaµ
)

[

i

2

(

ψ̄γa∇̃aψ − ∇̃aψ̄γ
aψ
)

−mψ̄ψ

]

, (82)

where the Poincaré gauge covariant derivative is defined as ∇̃aψ = e µ
a ∇̃µψ

with the definition of ∇̃µψ given in (54).11 The action for a Dirac spinor
has a similar form as in the second-order formulation of Sec. 4.2 with (57)
or without (56) nonminimal couplings, except that now the geometry of the

background is determined by the independent variables eaµ and ω̃ ab
µ . The

minimally coupled action (82) is rewritten as

Smin.
Dirac =

∫

d4x
(

det eaµ
)

ψ̄

(

iγa∇̃a −
i

2
γaVa −m

)

ψ, (83)

where the vector component of torsion is defined as Va = e µ
a e ν

b T
b

νµ . Non-
minimal couplings to torsion could be included in a similar way as in Sec. 4.
However, we should note that the principle of gauge invariance does not
require such nonminimal terms. Therefore, we will consider the minimally
coupled case for simplicity.

The one-loop effective action is defined (as in Sec. 4.2) as

S
(1)
eff = − i

2
ln det(l2D)− i

2
Tr ln(l2D), (84)

where the squared differential operator D for the action (83) is written as

D =

[

γa
(

∇̃a −
1

2
Va

)]2

+m2. (85)

11Note that in the volume element,
(

det eaµ
)

= (det e µ
a )−1, if one prefers to use the

inverse vierbein that appears in the covariant derivative.
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The kernel expansion of the operator D for a spinor on Riemann-Cartain
spacetime has been studied before, particularly in [90, 91]. Such calcula-
tions are based on the decomposition of the connection into torsion-free
and torsion components in one way or another. We will adopt a similar
approach but with one crucial difference: the relation of the two connec-
tions (13) shall be used both ways. First the decomposition of the Lorentz
connection ω̃ab is used for the derivation of the one-loop effective action.
Next the Lorentz connection ω̃ab is composed back together, so that the
effective action is expressed in terms of the background fields eaµ and ω̃ ab

µ ,
namely, in terms of the gauge fields of PG. After that we can elevate the
said background fields into independent gravitational variables, and there-
after determine their dynamics by setting up the variational principle and
deriving the field equations. Varying the action before the full Lorentz con-
nection is composed would lead to inequivalent field equations [75], which
would ruin our chances to obtain parity with PG. We avoid this problem
with the approach described above.

The operator (85) is written with (13) as

D =

[

γ
¯

µ

(

∇̃µ − i

8
γ5Aµ

)]2

+m2. (86)

The one-loop effective action is derived in the same way as in Sec. 4.2. Then
we write it in terms of the variables eaµ and ω̃ ab

µ . We obtain it as

S
(1)
eff = − Λ4

64π2

∫

d4x
(

det eaµ
)

trA0 −
Λ2

32π2

∫

d4x
(

det eaµ
)

trA1

− ln(Λ/ǫ)

16π2

∫

d4x
(

det eaµ
)

trA2 + ultraviolet-finite terms.

(87)

The induced gravitational action at low energies is defined by the first two
terms in the effective action (87), which are obtained as

trA0 = 4, (88)

trA1 = −1

3
R̃− 2

3
∇̃aVa − 4

9
VaVa +

1

9
AaAa − 1

6
TabcT abc − 4m2. (89)

Thus, at low energies, we obtain the induced gravitational action as

Slow-energy
induced PG =

1

2κind

∫

d4x
(

det eaµ
)

(

R̃+
4

3
VaVa − 1

3
AaAa +

1

2
TabcT abc

− 2λind

)

. (90)

This is the low-energy part of the PG action [58] with the relative coupling
constants of the terms set to certain values. Thus, we have shown that the
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low-energy regime of PG is induced by quantized Dirac fields in Riemann–
Cartan spacetime.12 Note that we have dropped the total derivative term
∇̃aVa from the action (90). The induced gravitational couplings in the
action (90) are given as

λind
κind

=
1

8π2

(

NdΛ
4

2
−
∑

d

Λ2m2
d

)

, (91)

1

κind
=

Nd

48π2
Λ2, (92)

where Nd is the number of free Dirac fields, md is the mass of each Dirac
field, and we have omitted the terms of order ln(Λ/ǫ). What was said about
the nduced couplings in Sec. 4.3 still apply, including the assessment of the
orders of magnitudes for the cutoffs.

The third term in the one-loop effective action (87) provides the high-
energy or strong-gravity regime of the induced gravitational action. The
dimensionless coupling constants of those higher-order terms are of the order
of one or lower, and hence their effect is weak at energies well below the
ultraviolet cutoff Λ ∼MP. The high-energy part of the induced gravitational
action (87) does not exactly match the corresponding regime of PG. In PG,
the Lagrangian is defined to be quadratic in the field strengths, namely, in
curvature and torsion. Therefore, the high-energy part of the PG action
consists of squared curvature terms. On the other hand, the induced action
typically contains all terms which are gauge invariant and dimensionally
permitted. In the present case, it means that the high-energy part of the
induced action can also include quartic torsion terms, as well as terms which
involve covariant derivatives, for example, �̃R̃. This is in general the case
in the effective field theory approach to gravity. One should also note that
further contributions to the high-energy part are induced at higher loops.
Thus, it is practically impossible to achieve perfect parity with PG at high
energies in the induced gravity approach.

12For the nonminimally coupled Dirac action,

S
non-min.
Dirac =

∫

d
4
x
(

det eaµ
)

ψ̄
(

iγ
aD̃a −m

)

ψ,

D̃a = ∇̃a + iβ1Va + iβ2γ5Aa,

where the coupling constants βi are related to the couplings αi of the action (57) as

β1 = α1 +
i

2
, β2 = α2 +

1

8
,

the induced low-energy action is the same as in Eq. (90) except that the contribution
− 1

3
AaA

a of the axial component of torsion is replaced by

−
1

3

(

1− 2β2 + 8β2
2

)

AaA
a
.
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6 Conclusions and outlook

We have obtained the induced gravitational action on an Einstein–Cartan
spacetime by identifying it as the cutoff-regularized one-loop effective action
of quantized matter fields. This is the generalization of Sakharov’s induced
gravity [1] to a spacetime with both curvature and torsion. When the ul-
traviolet cutoff Λ is chosen to be comparable to the Planck mass, Λ ∼ MP,
the induced Newton constant (80) has the observed magnitude. As usual,
the induced cosmological constant (78) is much too large compared to the
observed value, since the vacuum energy contribution is comparable to the
square of the ultraviolet cutoff, λind ∼ Λ2 ∼ M2

P. We speculated that it
might be possible to use the local vacuum energy sequestering mechanism
[87] in induced gravity for setting the correct value for λind and avoiding its
radiative instability. In a reasonable range of nonminimal couplings for the
free matter fields, the contribution of torsion was found to be comparable
to that in Einstein–Cartan–Sciama–Kibble gravity. Hence, the effect of tor-
sion is quite weak except in very high matter densities. In general, however,
the induced gravitational action is more general than the Einstein–Cartan–
Sciama–Kibble theory, which implies that propagation of torsion is possible.
In the part of the induced action that dominates at high energies, the di-
mensionless coupling constants were found to be of the order one, which
implies that their effect on low-energy physics is marginal.

Then we have set out to show that the Poincaré gauge theory of gravity
(PG) can be obtained by using the Sakharov induced gravity mechanism.
We have shown that the quantization of free Dirac fields induces the low-
energy part of the PG action (90) with certain relative couplings between
the curvature and torsion terms. We conjecture that the result can be
generalized to any gauge theory of gravity, in particular to the more general
metric-affine gauge theories of gravity. The high-energy part of the induced
action was observed to differ from the Poincaré gauge theory of gravity, since
it does not contain only squared curvature terms but also terms that involve
covariant derivatives and further contributions from torsion. This is to be
expected in an approach based on effective field theory, since any term that
is both invariant under the given symmetry and dimensionally allowed can,
and often will, appear in the effective action. In conclusion, based on our
derivation of the Poincaré gauge theory of gravity and the general structure
of the effective action, we conjecture that the Sakharov mechanism can be
used to induce the action for any gauge theory of gravity.

If we regard that gravity is induced via quantization of matter, what
should we do with gravity itself? This is something that Sakharov’s ap-
proach cannot address. Most of us believe that gravity should be quantized
in one way or another. On the other hand, it is conceivable that space,
time and gravity could emerge at a length scale above the Planck length,
so that quantization in the conventional sense would be unnecessary. The
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fundamental theory behind all that, which would not involve a gravitational
interaction, might of course be a quantum theory of some kind. Perhaps the
strongest hint towards an emergent nature of gravity is the well known and
deep connection of gravity and thermodynamics.

The merit of Sakharov’s idea in this perspective is that, having a theory
that includes a curved spacetime and also the quantized matter and gauge
fields at the sub-Planckian energies, the gravitational interaction is neces-
sarily produced as well. In other words, gravity emerges as an unavoidable
companion of quantum matter.
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