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Abstract

It is a surprising fact that the proportion of integer lattice points visible from the origin is
exactly 6

�2
, or approximately 60 percent. Hence, approximately 40 percent of the integer lattice

is hidden from the origin. Since 1971, many have studied a variety of problems involving lattice
point visibility, in particular, searching for patterns in that 40 percent of the lattice comprised
of invisible points. One such pattern is a square patch, an n × n grid of n2 invisible points,
which we call a hidden forest. It is known that there exist arbitrarily large hidden forests in
the integer lattice. However, the methods up to now involve the Chinese Remainder Theorem
(CRT) on the rows and columns of matrices with prime number entries, and they have only
been able to locate hidden forests very far from the origin. For example, using this method
the closest known 4 × 4 hidden forest is over 3 quintillion, or 3 × 1018, units away from the
origin. We introduce the concept of quasiprime matrices and utilize a variety of computational
and theoretical techniques to find some of the closest known hidden forests to this date. Using
these new techniques, we find a 4 × 4 hidden forest that is merely 184 million units away from
the origin. We conjecture that every hidden forest can be found via the CRT-algorithm on a
quasiprime matrix.
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1 Introduction
Imagine the plane ℝ2 as a forest in which each non-origin lattice point in ℤ2 is a tree and each tree
is infinitely thin yet also opaque. In this scenario, we say that a tree is hidden if some other tree lies
in your line of sight from the origin.

Consider the four lines of sight denoted by the dashed line segments emanating from the origin
in Figure 1.1a. In these four lines of sight in the first quadrant, exactly four trees are visible—one
per each line of sight. These visible trees are located at the black bullet points. Obscured by them
are three other trees at the white bullet points, which are not visible from the origin. The tree at
(2, 6) is obscured by the visible tree at (1, 3), while the tree at (6, 3) is obscured by the tree at (4, 2),
which in turn is obscured by the visible tree at (2, 1). The question of the visibility (or invisibility)
of a lattice point from the origin can be recast in a number-theoretic setting, where it turns out
that the only visible points are the points (x, y) such that gcd(x, y) = 1. A proof for this visibility
criterion is given in Proposition 2.1.

It is well known that approximately 60% of the integer lattice is visible from the origin (see
Proposition 2.4). So a natural question to ask about the approximately 40% of the integer lattice
which is hidden from view is the following:

Are there arbitrarily large square patches of invisible lattice points?

2



1 2 3 4 5 6

1
2
3
4
5
6 (2,6)

(3,4)

(6,3)

(5,1)(2,1)

(1,3)
(4,2)

(a) Four visible trees

(10,7)
(4,3)

(3,2)

(7,5)

(20,14) (21,14)

(20,15) (21,15)

(b) A 2 × 2 hidden forest

Figure 1.1

The answer to this question is yes, and in this paper we focus on invisible n × n square patches
which we call hidden forests. An example of a 2 × 2 hidden forest is given in Figure 1.1b. In this
figure we note the specific four visible trees that obscure this hidden forest.

Lattice point visibility is a well-studied subject that arises in a variety of areas such as number
theory, integer optimization, and even theoretical physics (see Ch.10.4 of [2] for a brief survey).
In 1971, Herzog and Stewart studied patterns of both visible and invisible lattice points; one such
invisible pattern they explored is the one we call a hidden forest [9]. In 1990, Schumer also ex-
amined hidden forests [13]. He used the Chinese Remainder Theorem (in a form similar to our
Theorem 3.4) and gave an example of a 3 × 3 hidden forest very far from the origin and questioned
whether a closer one could be found. He then noted that finding a 4×4 forest would require solving
systems of linear congruence equations modulo the product of the first 16 primes, the so-called
16th primorial which is approximately 32 quintillion, and declared, “Such a project is beyond the
courage of this author!” In this paper we not only undertake this task of finding closer 4×4 hidden
forests, but also introduce a variety of theoretical and computational techniques to aid in finding
the closest known n × n hidden forests for n ≥ 4, a task which has not yet been done to this date.
The paper is broken down as follows:

• Section 2: We give a brief overview of lattice point visibility and provide a detailed proof of
the well-known result that the probability of two randomly selected integers being relatively
prime is 6

�2
.

• Section 3: We give the known method of finding hidden forests in Subsection 3.1. Given
n ∈ ℕ and a prime matrix Pn, there exists an n × n hidden forest Hn

(x,y) in the first quadrant
with bottom-left corner (x, y) that is found by applying the Chinese Remainder Theorem to
the rows and columns of Pn. We denote this process by the term CRT-algorithm. In Subsec-
tion 3.2, we elaborate on the relationship between a prime matrix Pn and its hidden forest
Hn

(x,y) with the introduction of an object called a gcd-matrix. In Subsection 3.3, we apply this
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method to find hidden forestsHn
(x,y) for n = 2, 3, 4.

• Section 4: We introduce the concept of a quasiprime matrix QPM and the QP-algorithm in
Subsection 4.1 and define the method of strings of strongly composite integers in Subsec-
tion 4.2. In Subsection 4.3, we explore the notion of an optimal gcd-matrix by considering
the minimal number of prime factors required in a quasiprime matrix to produce an n × n
hidden forest. With these three tools and some computational programming techniques, we
then use the CRT-algorithm on quasiprime matrices to find n×n hidden forests. The resulting
hidden forests turn out to be much closer to the origin than those found by the traditional
method (given in Section 3).

• Section 5: We combine the techniques detailed in the previous section to find the closest
known (to this date) 5 × 5 hidden forest.

• Section 6: We give a selection of open problems. We also briefly review some recent research
between second authorMbirika and collaborators Goins, Harris, and Kubik, generalizing this
classic setting of straight lines of sights to curved lines of sights [8].

Acknowledgments
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of these hidden forests at the AIM-NSF research workshop, REUF4, at ICERM in June 2012. We
also thank the Office of Research and Sponsored Programs at the University of Wisconsin-Eau
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of the computing resources of the Blugold Supercomputing Cluster of UWEC. Without access to
its unending hard work and processing power, the immense calculations that we needed probably
would not have been possible to complete within our lifetime.

2 Density of visible lattice points in ℤ2

As mentioned in the introduction, a criterion for the visibility of an integer lattice point can be
recast in the number-theoretic setting as the following proposition shows.
Proposition 2.1. Let (x, y) ∈ ℤ2 ⧵ {(0, 0)}. Then (x, y) is visible if and only if gcd(x, y) = 1.

Proof. Let (x, y) be a non-origin point in ℤ2. Suppose d = gcd(x, y). If d > 1 then
(

x
d
, y
d

)

lies
strictly between the points (0, 0) and (x, y), and hence (x, y) is not visible. Thus (x, y) visible implies
that gcd(x, y) = 1.

Conversely, assume that d = 1 and suppose by way of contradiction that (x, y) is not visible
from the origin. Then there is a point (x0, y0) ∈ ℤ2 such that (x, y) = (cx0, cy0) for some integer
c > 1. That is, c divides both x and y. But d = 1 is the greatest common divisor of x and y,
contradicting that c > 1. Thus if gcd(x, y) = 1 then (x, y) is visible.

4



Now that we have a simple criterion for an integer lattice point’s visibility, it is natural to inquire
what fraction of integer lattice points are visible from the origin. That is, we ask:

What is the density of visible lattice points in ℤ2?

Let T (n) equal the total number of integer lattice points in an n×n square centered at the origin, and
let V (n) equal the number of these points visible from the origin. Then it suffices to compute the
limit of V (n)

T (n)
as n approaches infinity. It turns out this limit is 6

�2
. Proofs of this famous result are well

known with the earliest proofs given in the late 19th century (see references in Remark 2.2). Many
modern solutions involve the Möbius inversion formula and Euler’s totient function. In Proposi-
tion 2.4, we provide an alternative proof that is essentially an application of Euler’s famous product
formula and utilizes the number-theoretic criterion for the visibility of a lattice point given in Propo-
sition 2.1.
Remark 2.2 (Historical background to the problem). The historical record of the original author-
ship of the result in Proposition 2.4 is inaccurately described on a number of occasions in the
literature. Originally, the question on the probability of two random integers being coprime was
raised in 1881 by Cesàro [3]. Two years later, he and Sylvester independently proved the result [4]
and [15], respectively. Earlier in 1849, Dirichlet proved a slightly weaker form of the result [7].
The generalization to k coprime integers with k > 2 was presented again by Cesàro in 1884 [5].
This result was apparently proven independently in 1900 by Lehmer [10].
Remark 2.3. Since there is no uniform distribution on the natural numbers, it is somewhat impre-
cise to speak about the probability that two integers chosen at random are relatively prime. However,
if we consider the uniform distribution on the set {1, 2,… , n} and take the limit as n approaches
infinity, then it is within this context that we make any probability statements in Proposition 2.4.
Proposition 2.4. The density of integer lattice points that are visible from the origin is 6

�2
, or

approximately 60%.

Proof. It suffices to show that a lattice point chosen at random has a probability of 6
�2

of being
visible from the origin. Let x and y be randomly selected integers. Recall that (x, y) is visible if
and only if gcd(x, y) = 1 by Proposition 2.1. Hence it suffices to compute the probability that no
prime divides both x and y. The probability that x is divisible by the prime p is 1

p
. Similarly y is

divisible by p with probability 1
p
. By mutual independence, the probability that both x and y are

divisible by p is 1
p2
. Hence, the probability that both integers x and y are not divisible by p is 1− 1

p2
.

For distinct primes, these divisibility events are mutually independent, thus the probability that no
prime divides both x and y is the following product over the primes:

∏

p

(

1 − 1
p2

)

.

To calculate this infinite product, it is helpful to consider the Riemann zeta function
� (s) =

∑

n≥1

1
ns

= 1
1s

+ 1
2s

+ 1
3s

+⋯
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for s > 1. A result of Euler connects this infinite sum with an infinite product of infinite sums over
the primes. The essence of Euler’s proof is his use of the fundamental theorem of arithmetic to
observe that the sum � (s) can be written as the following infinite product

∑

n≥1

1
ns

=
∏

p

(

1 + 1
ps

+ 1
p2s

+ 1
p3s

+⋯
)

. (1)

To prove Equation (1), Euler observed that since each n in the denominator on the left-hand side
is of the form n = p

�i1
i1
p
�i2
i2
⋯ p

�ik
ik

for some k by the fundamental theorem of arithmetic, then by
multiplying out the product on the right-hand side, each term 1

ns
on the left-hand side appears exactly

once, as a product of the appropriate powers of the primes in n. And since each multiplicand on
the right-hand side is a geometric series of the form 1

1 − 1
ps

, Equation (1) becomes

∑

n≥1

1
ns

=
∏

p

1
1 − 1

ps

.

Setting s = 2 and taking reciprocals, we get

� (2)−1 = 1
∑

n≥1
1
n2

=
∏

p

(

1 − 1
p2

)

,

where the right-hand side is the probability value we seek, and the left-hand side is the reciprocal
of the well-known evaluation of the Riemann zeta function at s = 2, namely � (2) = �2

6
(the solution

to the famous Basel Problem1). Hence the fraction of lattice points (x, y) visible from the origin is
6
�2

(or approximately 60%), as desired.

3 The traditional method to find hidden forests
In the previous section we showed that approximately 60% of the integer lattice is visible, and hence
approximately 40% lies hidden from view. In this section, we find arbitrarily large patches of hidden
square regions in ℤ2 using the known method. This technique is what we call the CRT-algorithm,
since it is mainly an application of the Chinese Remainder Theorem (CRT). The strategy is to find
two sets of n consecutive integers

X = {x1, x2,… , xn} and Y = {y1, y2,… , yn}

such that X∩Y = ∅ and gcd(xi, yj) > 1 for all 1 ≤ i, j ≤ n. Then it is clear that the n2 points in the
set {(xi, yj) | 1 ≤ i, j ≤ n} yield the desired hidden square region. To this end, we first establish
some necessary preliminary definitions.

1The Basel Problem asks for the exact sum of the reciprocals of the squares of the positive integers. There are a
variety of proofs of this result. Chapman in 2003 gives the details of 14 different proofs [6]. More recently in 2015,
Moreno compiles a comprehensive list of 85 references from Euler to the present that address the Basel Problem [11].
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Definition 3.1 (Hidden forest). An n×n hidden forest inℤ2 is a square patch of n2 adjacent invisible
integer lattice points. We denote this hidden forest by the symbolHn

(x,y) where (x, y) is the closestcorner lattice point of the square to the origin. By the remark below, this closest corner point is
well-defined.
Remark 3.2. Observe that the points (x,±1) and (±1, y) are visible for all x, y ∈ ℤ by Proposi-
tion 2.1. Hence no nontrivial (that is, n > 1) hidden forest Hn

(x,y) will contain any points on the x-
or y-axes. Hence we conclude that any Hn

(x,y) for n > 1 is completely contained in the interior of
one of the four quadrants.
Definition 3.3 (Prime matrix). Let {p1, p2,… , pn2} be the set of the first n2 primes. Construct an
n × n matrix with these primes by filling row i with p(i−1)n+1 through p(i−1)n+n for each 1 ≤ i ≤ n to
yield the following:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

p1 p2 ⋯ pj ⋯ pn
pn+1 pn+2 ⋯ pn+j ⋯ p2n
p2n+1 p2n+2 ⋯ p2n+j ⋯ p3n
⋮ ⋮ ⋮ ⋮

p(i−1)n+1 p(i−1)n+2 ⋯ p(i−1)n+j ⋯ p(i−1)n+n
⋮ ⋮ ⋮ ⋮

p(n−1)n+1 p(n−1)n+2 ⋯ p(n−1)n+j ⋯ pn2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Note that the prime p(i−1)n+j , boxed for visual ease, is located in row i and column j of the matrix.
We call this n × n matrix a prime matrix and denote it Pn.

3.1 The CRT-algorithm
The following theorem is the primary tool used in the CRT-algorithm to find hidden forests of arbi-
trary size.
Theorem 3.4. For each n ∈ ℕ, there exist two sets of n consecutive numbers X = {x1, x2,… , xn}
and Y = {y1, y2,… , yn} such that X ∩ Y = ∅ and gcd(xi, yj) > 1 for all 1 ≤ i, j ≤ n.

Proof. Fix n ∈ ℕ. Consider the prime matrix Pn. Let Ri and Cj be the product of the entries inrow i and column j, respectively, so we have

Ri =
n
∏

k=1
p(i−1)n+k and Cj =

n−1
∏

k=0
pkn+j .

Since they share no primes in common, the row products R1, R2,… , Rn are pairwise relatively
prime. Similarly, the column products C1, C2,… , Cn are pairwise relatively prime. Consider the

7



following pair of systems of linear congruences:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

x + 1 ≡ 0 (mod R1)
x + 2 ≡ 0 (mod R2)

⋮

x + n ≡ 0 (mod Rn)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

y + 1 ≡ 0 (mod C1)
y + 2 ≡ 0 (mod C2)

⋮

y + n ≡ 0 (mod Cn).

Observe that R1 ⋅ R2⋯Rn = C1 ⋅ C2⋯Cn =
∏n2

i=1 pi, which we denote M . By the Chinese
Remainder Theorem, there exist solutions x0 and y0 to the left and right systems, respectively,
such that x0 and y0 are unique modulo M . Define the set X = {x0 + 1, x0 + 2,… , x0 + n} and
the set Y = {y0 + 1, y0 + 2,… , y0 + n}. We claim that none of the integers in X are pairwise
relatively prime to any of the integers in Y. For an arbitrary x0 + i ∈ X and y0 + j ∈ Y, these two
elements by construction are multiples of Ri and Cj , respectively. Hence the prime that lies in the
intersection of row i and column j in the matrix, namely p(i−1)n+j , divides gcd(x0 + i, y0 + j). Thus
gcd(x0 + i, y0 + j) > 1 as desired.

Observe that for n ≥ 2 the sets X and Y are necessarily disjoint. Otherwise if X ∩ Y ≠ ∅
then some element a ∈ X is relatively prime to some element a ± 1 ∈ Y since gcd(a, a ± 1) = 1,
contradicting gcd(x0 + i, y0 + j) > 1 for all 1 ≤ i, j ≤ n. For the trivial case when n = 1, the
algorithm above yields X = Y = {2}. So set Y = {4} and hence X ∩ Y = ∅.

The CRT-algorithm to construct a hidden forestHn
(x,y):

1. Fix a value n ∈ ℕ.
2. Construct the prime matrix Pn.
3. Apply Theorem 3.4 to Pn to yield sets X and Y.
4. Construct the hidden forestHn

(x,y) from X and Y.

3.2 The gcd-grid and gcd-matrix yielded by prime matrices
By Theorem 3.4, the prime matrix Pn yields the hidden forest Hn

(x,y) comprised of the n2 points
(xi, yj) where xi = x0 + i ∈ X and yj = y0 + j ∈ Y for 1 ≤ i, j ≤ n. The forest Hn

(x,y) is shownin Figure 3.1a. For each Hn
(x,y) we can write a corresponding n × n array of numbers called the

gcd-grid where gi,j = gcd(xi, yj) for 1 ≤ i, j ≤ n. The gcd-grid is shown in Figure 3.1b.
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(xi, yn)
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(a) Hidden forestHn
(x,y)

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋯ ⋯

⋯ ⋯

⋯ ⋯

⋯ ⋯

⋯ ⋯

g1,1

g1,2

g1,j

g1,n

g2,1 gi,1 gn,1

gi,j

gi,n

gn,j

gn,n

(b) The gcd-grid ofHn
(x,y)

Figure 3.1

We may also consider the gcd-grid as a matrix if we collapse the grid structure and place the n2
gcd-values into a matrix in the same locations that they appear in the gcd-grid as follows:

GcdPn =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

g1,n g2,n ⋯ gi,n ⋯ gn,n
⋮ ⋮ ⋮ ⋮
g1,j g2,j ⋯ gi,j ⋯ gn,j
⋮ ⋮ ⋮ ⋮
g1,2 g2,2 ⋯ gi,2 ⋯ gn,2
g1,1 g2,1 ⋯ gi,1 ⋯ gn,1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

We call this matrix arising from the gcd-grid the gcd-matrix corresponding to Pn and denote it
GcdPn . If we denote the prime p(i−1)n+j in row i and column j of matrix Pn as pi,j , then the prime
matrix given in Definition 3.3 can be written as follows:

Pn =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

p1,1 p1,2 ⋯ p1,j ⋯ p1,n
p2,1 p2,2 ⋯ p2,j ⋯ p2,n
⋮ ⋮ ⋮ ⋮
pi,1 pi,2 ⋯ pi,j ⋯ pi,n
⋮ ⋮ ⋮ ⋮
pn,1 pn,2 ⋯ pn,j ⋯ pn,n

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Remark 3.5. The (i, j)-entry of Pn is pi,j . However, the (i, j)-entry of GcdPn is not
gi,j . In fact, the entry gi,j is in row n − (j − 1) and column i of GcdPn .

Comparing the locations of the entries gi,j and pi,j of the matrices GcdPn and Pn, respectively,as the values i and j vary, we observe that the subscripts of the entries in one matrix are a rotation
of the subscripts of the entries in the other. In particular, the following proposition describes the
relationship between the matrices GcdPn and Pn via a third matrix which we call G̃cdPn .
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Proposition 3.6. Let Pn be a prime matrix. A rotation by 90◦ counter-clockwise of the entries in Pn
gives a corresponding matrix which we denote by G̃cdPn , and the (i, j)-entry in G̃cdPn divides the
(i, j)-entry in the gcd-matrix GcdPn .

Proof. The rotational relationship between Pn and G̃cdPn is given by a simple matrix calculation. If
we let ADn be the anti-diagonal matrix—that is, a matrix with ones in the anti-diagonal and zeroes
elsewhere, then G̃cdPn = (Pn ⋅ ADn)T , where T denotes the transpose of a matrix. In particular,
multiplying Pn on the right by ADn reverses the columns of Pn, and then transposing this result
yields G̃cdPn as desired. After this rotation on Pn is performed, the entry pi,j of G̃cdPn is then
located in row n − (j − 1) and column i. In this same location in GcdPn is gi,j . Below we give an
illustration of this process.

Pn =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

p1,1 p1,2 ⋯ p1,j ⋯ p1,n
p2,1 p2,2 ⋯ p2,j ⋯ p2,n
⋮ ⋮ ⋮ ⋮
pi,1 pi,2 ⋯ pi,j ⋯ pi,n
⋮ ⋮ ⋮ ⋮
pn,1 pn,2 ⋯ pn,j ⋯ pn,n

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

↺
←←←←←←←←←←←←←←←←←←←←←←←←→
90◦ lef t

G̃cdPn =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

p1,n p2,n ⋯ pi,n ⋯ pn,n
⋮ ⋮ ⋮ ⋮
p1,j p2,j ⋯ pi,j ⋯ pn,j
⋮ ⋮ ⋮ ⋮
p1,2 p2,2 ⋯ pi,2 ⋯ pn,2
p1,1 p2,1 ⋯ pi,1 ⋯ pn,1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

In the proof of Theorem 3.4, we observed that by construction the prime pi,j divides the value
gcd(x0 + i, y0 + j) = gi,j . Hence, the (i, j)-entry in G̃cdPn divides the (i, j)-entry in GcdPn .
Remark 3.7. The rotational relationship between Pn and G̃cdPn proves to be very important in
Section 4 when we perform the reverse rotation. Starting from a gcd-matrix, a clockwise rotation
will help us produce a quasiprime matrix, crucial for finding closer hidden forests.

3.3 An application: the n = 2, 3, 4 cases
Example 3.8. In the 2 × 2 case, using Theorem 3.4, we set n = 2 and the prime matrix is

P2 =
(

2 3
5 7

)

.

The row products are R1 = 6 and R2 = 35, while the column products are C1 = 10 and C2 = 21.
Hence the corresponding linear congruences we need to solve are

x + 1 ≡ 0 (mod 6) y + 1 ≡ 0 (mod 10)
x + 2 ≡ 0 (mod 35) y + 2 ≡ 0 (mod 21).

By the CRT-algorithm, the left and right systems have the unique solutions x0 = 173 (mod 210)
and y0 = 19 (mod 210), respectively. Set X = {174, 175} and Y = {20, 21}. Then X ∩Y = ∅ and
gcd(xi, yj) > 1 for all 1 ≤ i, j ≤ 2. Thus there is a hidden forestH2

(174,20) of four trees at (174, 20),
(174, 21), (175, 20), and (175, 21). In the figure below we give the hidden forest on the left and its
corresponding gcd-grid on the right.
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(174,20)
(174,21)

(175,20)
(175,21)

gcd(174, 20) = 2

gcd(174, 21) = 3

5 = gcd(175, 20)

7 = gcd(175, 21)

Then by Proposition 3.6, we have the following map from P2 to G̃cdP2:

P2 =
(

2 3
5 7

)

↺
←←←←←←←←←←←←←←←←←←←←←←←←→
90◦ lef t

G̃cdP2 =
(

3 7
2 5

)

.

In this example, the G̃cdP2 coincides with the gcd-matrix GcdP2 , and so the (i, j)-entry of G̃cdP2divides the (i, j)-entry of GcdP2 as Proposition 3.6 guarantees. This is an effect of the so-called law
of small numbers, since we see in the larger n cases to follow that this coincidence does not occur.
Example 3.9. In the 3 × 3 case, using Theorem 3.4, we set n = 3 and the prime matrix is

P3 =
⎛

⎜

⎜

⎝

2 3 5
7 11 13
17 19 23

⎞

⎟

⎟

⎠

.

The CRT-algorithm gives the solutions x0 = 119,740,619 and y0 = 121,379,047, both unique
modulo 223,092,870. Hence the nine coordinates (xi, yj) ofH3

(119740620,121379048) have the followingvalues and respective prime factorizations:
x1 = 119,740,620 = 22 ⋅ 3 ⋅ 5 ⋅ 1,995,677 y1 = 121,379,048 = 23 ⋅ 7 ⋅ 17 ⋅ 59 ⋅ 2161
x2 = 119,740,621 = 7 ⋅ 11 ⋅ 13 ⋅ 37 ⋅ 53 ⋅ 61 y2 = 121,379,049 = 32 ⋅ 11 ⋅ 19 ⋅ 173 ⋅ 373
x3 = 119,740,622 = 2 ⋅ 17 ⋅ 19 ⋅ 23 ⋅ 8059 y3 = 121,379,050 = 2 ⋅ 52 ⋅ 13 ⋅ 232 ⋅ 353.

It is readily verified that the corresponding 3 × 3 hidden forest has the following gcd-grid:

22

3
2⋅5

7
11

13

2⋅17

19
2⋅23

For example, the top-right node corresponds to the (x3, y3)-coordinate, and it is labeled by the
value gcd(x3, y3) = 2 ⋅ 23 since x3 = 2 ⋅ 17 ⋅ 19 ⋅ 23 ⋅ 8059 and y3 = 2 ⋅ 52 ⋅ 13 ⋅ 232 ⋅ 353. And by
Proposition 3.6, we have the following map from P3 to G̃cdP3:

P3 =
⎛

⎜

⎜

⎝

2 3 5
7 11 13
17 19 23

⎞

⎟

⎟

⎠

↺
←←←←←←←←←←←←←←←←←←←←←←←←→
90◦ lef t

G̃cdP3 =
⎛

⎜

⎜

⎝

5 13 23
3 11 19
2 7 17

⎞

⎟

⎟

⎠

.

Observe that, as expected, the (i, j)-entry of G̃cdP divides the (i, j)-entry of the gcd-matrix

GcdP3 =
⎛

⎜

⎜

⎝

2⋅5 13 2⋅23
3 11 19
22 7 2⋅17

⎞

⎟

⎟

⎠

.
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Example 3.10. In the 4×4 case, the CRT-algorithm on the primematrix gives the following solution:
x0 = 2,847,617,195,518,191,809
y0 = 1,160,906,121,308,397,397.

The absurdly large solution values in Examples 3.9 and 3.10 reveal that the CRT-algorithm ap-
plied to prime matrices is hardly useful for finding n×n hidden forests which are close to the origin
for cases even as small as n = 3 and n = 4. For instance, we prove later that the closest H3

(x,y)
is at x = 1274 and y = 1308. Furthermore, we reveal that there is an H4

(x,y) at x = 134,043 and
y = 184,785,885. The x-value of the H4

(x,y) which the CRT-algorithm on a prime matrix yields is
2.12441 × 1013 times larger than this x-value, 134,043, of theH4

(x,y) which we found.
Remark 3.11. It turns out that the number 134,043 is a very interesting integer; it is the smallest
positive integer n such that the numbers in the set {n, n + 1, n + 2, n + 3} have exactly four prime
factors each.2 We later use this value to calculate the closest known H4

(x,y), bearing the smallest
x-value, in Example 4.8.

4 New methods to find closer hidden forests
The previous section detailed the well-knownmethod of using the CRT-algorithm on primematrices
to find arbitrarily large hidden forests. The main problem with that method is that for n ≥ 3, the
locations of theseHn

(x,y) are substantially further away from the origin and thus progressively harder
to compute. The aim of this section is to introduce two concepts, namely quasiprime matrices and
strings of strongly composite integers, to help find substantially closer Hn

(x,y). In this section we
give the closestHn

(x,y) for n = 2, 3 and the closest known (to this date)Hn
(x,y) for n = 4.

Recall in Remark 3.2, we observed thatHn
(x,y) can never contain points on the x- or y-axes when

n > 1, and hence eachHn
(x,y) lies completely within the interior of one of the four quadrants. Thus

the closest corner point (x, y) ofHn
(x,y) is well-defined up to quadrant selection.

Definition 4.1 (The closest n × n). A hidden forestHn
(x,y) is said to have distance d from the origin

where d is given by d(x, y) = √

x2 + y2. We say that Hn
(x,y) is the closest n × n hidden forest if it

has the minimum distance d of all hidden n × n forests.

Convention 4.2. In searching for the closest hidden forest it suffices to search only half of
Quadrant I. Observe that anyHn

(x,y), whose lower-left corner lies in Quadrant I and abovethe line y = x, will have seven other copies up to reflectional symmetries about the lines
y = x, y = −x, the x-axis, and the y-axis (see Figure 4.1). Moreover, these seven copies
are the same distance from the origin asHn

(x,y) is. So we focus only onHn
(a,b) in Quadrant Isuch that (a, b) lies above the diagonal y = x (that is, a < b). Note that Hn

(a,a) can never
exist if n > 1 since gcd(a, a + 1) = 1 and hence (a, a + 1) is a visible point.

2This is known as Problem 47 on the website https://projecteuler.net/about started in 2001 by Colin
Hughes [14]. Project Euler gives a series of challenging computational problems that require more than just mathe-
matical insights to solve. Nayuki Minase’s very simple solution via Mathematica to Problem 47 is given in Listing 1.
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(20,14) (21,14)
(20,15) (21,15)

(14,20) (15,20)
(14,21) (15,21)

(20,-15) (21,-15)
(20,-14) (21,-14)

(14,-21) (15,-21)
(14,-20) (15,-20)

(-21,14) (-20,14)
(-21,15) (-20,15)

(-15,20) (-14,20)
(-15,21) (-14,21)

(-21,-15) (-20,-15)
(-21,-14) (-20,-14)

(-15,-21) (-14,-21)
(-15,-20) (-14,-20)

Figure 4.1: Eight copies of the closest 2 × 2 hidden forest

4.1 Quasiprime matrices and the QP-algorithm
In Proposition 3.6, we begin with a prime matrix Pn and observe that a 90◦ counter-clockwise
rotation of Pn yields G̃cdPn which relates very closely to the gcd-matrixGcdPn of the corresponding
Hn

(x,y) (in particular, recall that the (i, j)-entry of G̃cdPn divides the (i, j)-entry of GcdPn). Now
suppose instead that we start with an Hn

(x,y) and its associated gcd-matrix, which we will denote
GcdM . If we rotate this matrix 90◦ clockwise, then we get some matrixM that is not necessarily
a prime matrix. Furthermore, applying the CRT-algorithm on M may not even be possible (see
Example 4.5). But from M , can we find a matrix M̃ such that the (i, j)-entry of M̃ divides the
(i, j)-entry of M and applying the CRT-algorithm on M̃ gives the original Hn

(x,y) from which we
started? Based on much computational evidence, the answer appears to be yes. The matrix M̃ is
what we call a quasiprime matrixQPM to be defined in Definition 4.6, but a formal proof still awaits.
For now, we proceed to give very substantial support that this conjecture holds for all Hn

(x,y) (seeQuestion 1).
To findM , we use the matrix equality in Proposition 3.6 and solve forM as follows:

GcdM = (M ⋅ ADn)T ⇐⇒ (GcdM )T =M ⋅ ADn

⇐⇒M = (GcdM )T ⋅ ADn, (2)
where Equation (2) follows since an anti-diagonal matrix with all ones in its nonzero entries is its
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own inverse. Below we give an illustration of this process.

GcdM =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

g1,n g2,n ⋯ gi,n ⋯ gn,n
⋮ ⋮ ⋮ ⋮
g1,j g2,j ⋯ gi,j ⋯ gn,j
⋮ ⋮ ⋮ ⋮
g1,2 g2,2 ⋯ gi,2 ⋯ gn,2
g1,1 g2,1 ⋯ gi,1 ⋯ gn,1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

↻
←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
90◦ right

M =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

g1,1 g1,2 ⋯ g1,j ⋯ g1,n
g2,1 g2,2 ⋯ g2,j ⋯ g2,n
⋮ ⋮ ⋮ ⋮
gi,1 gi,2 ⋯ gi,j ⋯ gi,n
⋮ ⋮ ⋮ ⋮
gn,1 gn,2 ⋯ gn,j ⋯ gn,n

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

In the case of n = 2, we see that M is a prime matrix (see Example 4.3). However in the
case of n = 3, the matrix M can have repeated prime number entries and hence is not a prime
matrix (see Example 4.5). And in the case of n ≥ 4, the matrix can have both repeated primes
and composite number entries, and hence is not a prime matrix (see Example 4.8). In these n ≥ 3
cases, we construct a quasiprime version ofM which we denote QPM. And an application of the
CRT-algorithm on QPM yields the Hn

(x,y) that has the original gcd-matrix corresponding to Hn
(x,y).Before we present an algorithm on how to produceQPM fromM , we give two motivating examples

in the n = 2 and n = 3 cases.
Example 4.3 (The closest 2×2). By examining a small grid of points in Quadrant I ofℤ2, it is easy
to notice that the closest H2

(x,y) occurs at x = 14 and y = 20. In the figure below, we give H2
(14,20)and to its right the gcd-grid corresponding to the four nodes.

(14,20)
(14,21)

(15,20)
(15,21)

2
7

5
3

By Equation (2), we can retrieve a matrixM from the gcd-grid above as follows:

GcdM =
(

7 3
2 5

)

↻
←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
90◦ right

M =
(

2 7
5 3

)

.

Applying the CRT-algorithm to this matrixM , we get x0 = 13 and y0 = 19 as desired. Hence at
the distance of d ≈ 24.4131 we have the closest hidden forestH2

(14,20).
Remark 4.4. Alternate permutations of the same primes in the gcd-grid, and consequently the ma-
trixM , may produce different solutions under the CRT-algorithm. This means that for each unique
set of n2 primes in the matrix Pn, the CRT-algorithm can yield up to n2 factorial (not necessarily
distinct)Hn

(x,y). Compare the previous example with Example 3.8. Both examples use the same set
of primes {2, 3, 5, 7} but yield drastically differentH2

(x,y).
Example 4.5 (The closest 3 × 3). At the distance of d ≈ 1825.91 we find the closest hidden forest
H3

(1274,1308). Though others have cited H3
(1274,1308) as a hidden forest [9, 16], none of these sources

have asserted that it is the closest. For the n = 3 case, the problem of finding the closest hidden
forest is computationally tractable via exhaustive means. In fact, we have written Java code3 which

3See Appendix A.1 for the Java code.
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exhaustively checked the square region with lower left endpoint (0, 0) and upper right endpoint
(1308, 1308), finally confirming that this is the closest 3 × 3 hidden forest. Below we give the
hidden forestH3

(1274,1308) and its corresponding gcd-grid:

(1274, 1308)

(1274, 1309)

(1274, 1310)

(1275, 1308)

(1275, 1309)

(1275, 1310)

(1276, 1308)

(1276, 1309)

(1276, 1310)

2
7
2

3
17

5

22

11
2

By Equation (2), we can retrieve a matrixM from the gcd-grid above as follows:

GcdM =
⎛

⎜

⎜

⎝

2 5 2
7 17 11
2 3 22

⎞

⎟

⎟

⎠

↻
←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
90◦ right

M =
⎛

⎜

⎜

⎝

2 7 2
3 17 5
22 11 2

⎞

⎟

⎟

⎠

.

Incidentally, theM given here is very similar to the one given in 1971 by Herzog and Stewart [9],
but neither neither of these matrices can possibly produce the correct H3

(x,y) because the ChineseRemainder Theorem simply cannot work on such matrices. For example, since the products of row
1 and row 3 of M each have a factor of 4, then any solution x0 to the three row equations would
also have to satisfy x + 1 ≡ 0 (mod 4) and x + 3 ≡ 0 (mod 4), but the existence of such an x0 isabsurd. However, this problem is resolved by introducing the concept of a quasiprime matrix.
Definition 4.6. Given a matrixM arising from a GcdM via Equation (2), we produce a quasiprime
matrix QPM defined by the QP-algorithm given below.

The QP-algorithm to construct a quasiprime matrix QPM:

1. Construct matrixM arising from a GcdM via Equation (2).
2. Let {pi}si=1 be the union of the sets of all primes appearing in the

prime factorizations of each entry ofM .
3. For a fixed pi with 1 ≤ i ≤ s, locate the entry inM which contains
pki for k ≥ 1 such that k is largest. If there is more than one entry
which contains pki , then choose exactly one.

4. Place the selected pki in QPM in the same location where it appears
inM . Place the value 1 inQPM in every location where a pji appearsinM for each j ≤ k.

5. Repeat the previous two steps for each pi with 1 ≤ i ≤ s.
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Example 4.7 (The closest 3 × 3 via a quasiprime matrix). From the matrixM in Example 4.5, we
can produce the quasiprime matrix as follows using the QP-algorithm:

M =
⎛

⎜

⎜

⎝

2 7 2
3 17 5
22 11 2

⎞

⎟

⎟

⎠

QP
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
algorithm

QPM =
⎛

⎜

⎜

⎝

1 7 1
3 17 5
22 11 1

⎞

⎟

⎟

⎠

.

By use of the CRT-algorithm on QPM, we solve the following system of linear congruences
x + 1 ≡ 0 (mod 7) y + 1 ≡ 0 (mod 22 ⋅ 3)
x + 2 ≡ 0 (mod 3 ⋅ 5 ⋅ 17) y + 2 ≡ 0 (mod 7 ⋅ 11 ⋅ 17)
x + 3 ≡ 0 (mod 22 ⋅ 11) y + 3 ≡ 0 (mod 5)

which has solutions x0 = 1273 and y0 = 1307. Hence theQPM yields the closest 3×3 hidden forest
H3

(1274,1308).

4.2 Computer-heavy approach: Strings of strongly composite integers
Another technique we implement that proves very powerful in finding hidden forests involves using
strings of consecutive integers each with several prime factors. In Section 5, we find that combin-
ing the technique below with a clever computational use of quasiprime matrices yields the closest
known n × n hidden forests for n ≥ 4.

In 1990, Schumer proved that there exist strings of n consecutive integers each divisible by at
least k distinct primes, which he calls strings of strongly composite integers [13]. The proof uses
the Chinese Remainder Theorem, and hence like Theorem 3.4 it produces very large numbers for
n ≥ 3. However, there is an efficient way to find the smallest set of n consecutive integers each with
at least k prime factors each (ignoring multiplicity). We can then use these values as our x-values
in our hunt for closer hidden forests for n ≥ 4.

The following Mathematica code easily produces the very first number n in a sequence of four
consecutive integers each with four prime factors (ignoring multiplicity):

Listing 1: Nayuki Minase’s solution to Project Euler Problem 47
1 Has4PrimeFactors[n_] := Length[FactorInteger[n]] == 4
2 i = 2;
3 While[! (Has4PrimeFactors[i ] && Has4PrimeFactors[i + 1] &&
4 Has4PrimeFactors[i + 2] && Has4PrimeFactors[i + 3]), i++]
5 i

The value that it yields is 134,043. This number and the next three consecutive integers have the
following prime factorizations:

134,043 = 3 ⋅ 7 ⋅ 13 ⋅ 491
134,044 = 22 ⋅ 23 ⋅ 31 ⋅ 47
134,045 = 5 ⋅ 17 ⋅ 19 ⋅ 83
134,046 = 2 ⋅ 32 ⋅ 11 ⋅ 677.
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Example 4.8 (The closest 4×4 to date with the smallest x-value). Using the four values 134,043 to
134,046 as the x-values of 4 × 4 hidden forest we seek, we exhaustively searched for the very first
set of four consecutive integers such that all four values share at least one prime factor with each of
the four values 134,043 to 134,046. After running for only two minutes4, the Java program which
we wrote outputs the value 184,785,885. This number and the next three consecutive integers have
the following prime factorizations:

184,785,885 = 32 ⋅ 5 ⋅ 312 ⋅ 4273
184,785,886 = 2 ⋅ 17 ⋅ 491 ⋅ 11,069
184,785,887 = 11 ⋅ 13 ⋅ 19 ⋅ 23 ⋅ 2957
184,785,888 = 25 ⋅ 3 ⋅ 7 ⋅ 83 ⋅ 3313.

Using these four numbers as the y-values of our H4
(x,y) and the four values 134,043 to 134,046 as

the x-values, we get a hidden forestH4
(134043,184785885) with the following gcd-grid:

3
491
13
3⋅7

31
2
23

22

5
17
19

83

32

2
11
2⋅3

By Equation (2), we retrieve a matrixM from the gcd-grid above as follows:

GcdM =

⎛

⎜

⎜

⎜

⎝

3⋅7 22 83 2⋅3
13 23 19 11
491 2 17 2
3 31 5 32

⎞

⎟

⎟

⎟

⎠

↻
←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
90◦ right

M =

⎛

⎜

⎜

⎜

⎝

3 491 13 3⋅7
31 2 23 22
5 17 19 83
32 2 11 2⋅3

⎞

⎟

⎟

⎟

⎠

.

Applying the QP-algorithm toM , we get the following quasiprime matrix

QPM =

⎛

⎜

⎜

⎜

⎝

1 491 13 7
31 1 23 22
5 17 19 83
32 1 11 1

⎞

⎟

⎟

⎟

⎠

.

Then applying the CRT-algorithm to QPM does indeed yield the forestH4
(134043,184785885) as desired.

Remark 4.9. The hidden forestH4
(134043,184785885) is distance d ≈ 1.84786 × 108 from the origin. In

comparison recall Example 3.10, where we used the only known method to date in the literature
4The run times for the Java code are based on the code running on the Blugold Supercomputing Cluster of UWEC,

while the run times for the Mathematica code are based on the code running on a standard office computer.
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(that is, the prime matrix P4 and Theorem 3.4). Using that traditional method we found the hidden
forestH4

(x1,y1)
with

x1 = 2,847,617,195,518,191,810
y1 = 1,160,906,121,308,397,398

at a distance d ≈ 3.07516×1018 which is 1.66418×1010 times farther than the hidden forest which
we found in Example 4.8! The matrix P4 and its associated gcd-grid of our closer hidden forest
H4

(134043,184785885) is as follows:

P4 =

⎛

⎜

⎜

⎜

⎝

2 3 5 7
11 13 17 19
23 29 31 37
41 43 47 53

⎞

⎟

⎟

⎟

⎠

Theorem 3.4
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
CRT−algorithm

2
3

2⋅5

7

11
13
17

19

2⋅23

29
22 ⋅31

37

41
3⋅43

47
53

Hence the gcd-matrix of this 4 × 4 hidden forest is

GcdM =

⎛

⎜

⎜

⎜

⎝

7 19 37 53
2⋅5 17 22 ⋅31 47
3 13 29 3⋅43
2 11 2⋅23 41

⎞

⎟

⎟

⎟

⎠

.

Remark 4.10. Other researchers have found 4×4 hidden forests of distances relatively close to the
one shown in Remark 4.9. In 2002 Pighizzini and Shallit addressed the issue of finding the closest
n × n hidden forests [12]. For a positive integer n, they define a function S(n), which is the least
positive integer r such that there exists m ∈ {0, 1,… , r} with gcd(r− i, m− j) > 1 for 0 ≤ i, j < n.
This is equivalent to finding the closest n × n hidden forest. They were only successful in finding
this value for n = 1, 2, 3, but for n = 4 they were able to give bounds 450000 < S(4) ≤ 172379781
by finding a hidden forestH4

(x,y) with x = 172,379,778 and y = 153,132,342. An even closer 4 × 4
hidden forest was later revealed in 2013 in a book by Baake and Grimm [1, pg.422]. The forest they
find has bottom left corner x = 13,458,288 and y = 13,449,225 however no proof or justification of
how this was found is given. Moreover, they give no assertion regarding whether this is the closest
known 4× 4 hidden forest. The following table gives the distances of the three closest known 4× 4
hidden forests in the literature.

Year Distance ofH4
(x,y) Proof/method given?

Pighizzini and Shallit 2002 2.30574 × 108 No
Baake and Grimm 2013 1.90265 × 107 No

Goodrich, Mbirika, and Nielsen 2014 5 1.84786 × 108 Yes
5We discovered this forest in 2014; however, it is in this 2020 paper in which we give its existence and proof.
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4.3 Computer-free approach: Minimum prime factors in an optimal gcd-
matrix

The concept of an “optimal” gcd-matrix for a hidden n×n forestHn
(x,y) depends on n and is based onthe minimal number of prime factors required in the gcd-grid ofHn
(x,y). We find that minimizing the

number of primes used in the gcd-matrix while simultaneously maximizing the number of locations
in the gcd-grid where a prime can be used again leads to a closerHn

(x,y) than the traditional method
given in Section 3.

Observe that the gcd-matrix of theH (4)
x,y in Remark 4.9 is hardly optimal in the sense that if the

corner entries were all multiples of 3, then we immediately get the four corners “hidden for free”,
as in the forest in Example 4.8—that is, the values x1, x4, y1 and y4 would all be divisible by 3 andhence none of the four points (x1, y1), (x4, y1), (x1, y4), or (x4, y4) would be visible. An optimal
situation is to have one corner, for example, the bottom-left coordinate (x1, y1) to be divisible by
both 2 and 3. Then we would have a forest where the gcd of the following 16 coordinates are
divisible by 2, 3, and nine other primes p1,… , p9 as in Figure 4.2.

2 × 3

p3

2
3

p1

p2

p5

p9

2
p4

2

p8

3
p6

p7

3

Figure 4.2
This leads one to consider a different type of gcd-matrix that does not give the exact gcd gi,j(recall Figure 3.1b) for each coordinate (xi, xj) (recall Figure 3.1a) ofHn

(x,y). But on the other hand,this new matrix would simply give the smallest prime divisor of the gcd for each coordinate. We
make this more precise in Definition 4.12. But first we need to recall the following number-theoretic
function.
Definition 4.11. The prime counting function � ∶ ℝ → ℕ counts the number of primes less than
or equal to a given real number.
Definition 4.12. Construct an optimal gcd-matrix as follows. Let one of the four corner entries of
the n × n matrix contain the product of the first kn ∶= �(n) primes (where � is the prime counting
function). Without loss of generality, choose the bottom-left corner for this value. Denote these
first kn primes as q1, q2,… , qkn . For each qi with 1 ≤ i ≤ kn, any entry in the matrix that is a
multiple of qi rows to the right of the bottom-left corner and/or a multiple of qi columns above
the bottom-left corner must be filled with the value qi. If more than one prime fits this criteria for
a specific matrix entry, then simply multiply the primes in that entry together. In the remaining
unfilled entries, place one prime in each entry from the set of the next smallest primes larger than
the prime qkn . Denote this set of primes by {p1, p2,…}. We denote this optimal gcd-matrix by the
symbol opt-GcdM .
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Example 4.13. An optimal 4 × 4 gcd-matrix is

opt-GcdM =

⎛

⎜

⎜

⎜

⎝

3 p9 p8 3
2 p5 2 p7
p3 p2 p4 p6

2 × 3 p1 2 3

⎞

⎟

⎟

⎟

⎠

where the entries p1,… , p9 are the nine smallest prime numbers other than 2 or 3. Observe that the
locations of the primes 2 and 3 correspond exactly to their location in the gcd-grid in Figure 4.2.
The manner in which the p1 through p9 are distributed in this particular matrix is the n = 4 case
that arises from the grid in Figure 4.3.

The grid in Figure 4.3 shows us the minimum number of primes and their relative locations in a
candidate for an optimal gcd-matrix for an n × n hidden forest. In this grid, we choose the bottom-
left corner (denoted with the symbol ∙) to contain the product of powers of the first kn primes where
kn is the value given in Definition 4.12. In the far-left shaded column, each entry refers to the size
n of the corresponding n × n grid. In the bottom shaded row, in each box we give the number of
additional primes that are needed to go from an n× n grid to an (n+1)× (n+1) grid. For example,
for n = 5, we need a minimum k5 + 3 + 2 + 4 + 4 = 15 distinct primes in the optimal gcd-matrix
for anH (5)

x,y. Indeed in Section 5, we see that this minimum is achieved.

n kn ∙-value
2 1 2
3 1 2
4 2 2 × 3
5 2 2 × 3
6 3 2 × 3 × 5
7 3 2 × 3 × 5
8 4 2 × 3 × 5 × 7
9 4 2 × 3 × 5 × 7
10 4 2 × 3 × 5 × 7
11 4 2 × 3 × 5 × 7
12 5 2 × 3 × 5 × 7 × 12

Figure 4.3: An optimal gcd-grid with bottom left corner having the product of kn primes

Example 4.14. If n = 4 then k4 = 2, and hence we place 2×3 in a corner location. This is because
the 4×4 portion of the grid in Figure 4.3 says that we need a minimum of 9 primes, not counting the
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primes 2 and 3 which are placed in the locations where they appear in the grid. Hence an optimal
gcd-matrix might be as follows:

opt-GcdM =

⎛

⎜

⎜

⎜

⎜

⎝

3 29 31 3
2 19 2 23
7 11 13 17

2 × 3 5 2 3

⎞

⎟

⎟

⎟

⎟

⎠

.

In the boxed entries in the matrix above, we place the 9 smallest primes larger than 3 where the
grid in Figure 4.3 places p1,… , p9.Observe that the forestH4

(134043,184785885) found in Example 4.8 is the closest known 4 × 4 forest
and is attained by cleverly using the method of strings of strongly composite integers. That is, using
computer computation to find the smallest four consecutive values x1,… , x4 which each have at
least 4 primes factors each, and then using computer computation again to compute the next set of
four values y1,… , y4 each of which is not relatively prime to all four x-values. However, the QPMassociated to this closest forest is not optimal in the sense that it uses 10 primes (not including 2
and 3), whereas an optimal QPM uses at most 9 primes (not including 2 and 3).

Note that much computer assistance was required to generate H4
(134043,184785885), however nocomputer assistance whatsoever is required to create the optimal gcd-matrix, opt-GcdM . From the

matrix opt-GcdM in this example, we can produce the quasiprime matrix as follows using the QP-
algorithm:

opt-GcdM =

⎛

⎜

⎜

⎜

⎝

3 29 31 3
2 19 2 23
7 11 13 17

2 × 3 5 2 3

⎞

⎟

⎟

⎟

⎠

QP
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
algorithm

QPM =

⎛

⎜

⎜

⎜

⎝

1 29 31 1
1 19 1 23
7 11 13 17
6 5 1 1

⎞

⎟

⎟

⎟

⎠

.

Applying the CRT-algorithm on QPM, we then get the forest H4
(x,y) with x = 153,630,616,137 and

y = 116,380,988,514 and the following prime factorizations of the 16 coordinates (xi, yj) for all
1 ≤ i, j ≤ 4:
x1 = 153,630,616,137 = 3 ⋅ 29 ⋅ 31 ⋅ 229 ⋅ 248,749 y1 = 116,380,988,514 = 2 ⋅ 33 ⋅ 7 ⋅ 37 ⋅ 8,321,249
x2 = 153,630,616,138 = 2 ⋅ 19 ⋅ 23 ⋅ 1723 ⋅ 102,019 y2 = 116,380,988,515 = 5 ⋅ 11 ⋅ 19 ⋅ 29 ⋅ 47 ⋅ 101 ⋅ 809

x3 = 153,630,616,139 = 7 ⋅ 11 ⋅ 13 ⋅ 17 ⋅ 9,028,067 y3 = 116,380,988,516 = 22 ⋅ 13 ⋅ 31 ⋅ 72,196,643.

x4 = 153,630,616,140 = 22 ⋅ 33 ⋅ 5 ⋅ 103 ⋅ 2,762,147 y4 = 116,380,988,517 = 3 ⋅ 17 ⋅ 23 ⋅ 883 ⋅ 112,363.

Below we summarize the distances of the 4 × 4 hidden forests found by the traditional method
versus the two new methods given in this paper.

Method Distance Location in paper
Traditional approach: CRT-algorithm 3.07516 × 1018 Example 3.10

Computer-heavy approach with QP-algorithm 1.84786 × 108 Example 4.8
Computer-free approach with QP-algorithm 1.92735 × 1011 Example 4.14
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So we can easily see that the two new methods produce substantially closer hidden forests than the
traditional methods. However, we find that merging the method of strings of composite integers
with the method of the optimal matrix is an even better idea. And that is precisely what we do in
the 5 × 5 case in the following section.

5 An application: the closest known 5 × 5 hidden forest
We employ a combination of the techniques from both strings of strongly composite integers and an
optimal quasiprime matrix to find the closest known 5 × 5 hidden forest to date. We first calculate
a length 5 analogue of the Project Euler Problem 47 (recall the footnote given in Remark 3.11).
By slightly altering Minase’s solution (see Listing 1), we find the smallest set of five consecutive
integers each with at least five prime factors. Mathematica completed this computation in 36
minutes. These five integers and their prime factorizations are

x1 = 129,963,314 = 2 ⋅ 13 ⋅ 37 ⋅ 53 ⋅ 2549
x2 = 129,963,315 = 3 ⋅ 5 ⋅ 31 ⋅ 269 ⋅ 1039
x3 = 129,963,316 = 22 ⋅ 7 ⋅ 97 ⋅ 109 ⋅ 439
x4 = 129,963,317 = 112 ⋅ 17 ⋅ 23 ⋅ 41 ⋅ 67
x5 = 129,963,318 = 2 ⋅ 3 ⋅ 89 ⋅ 199 ⋅ 1223.

In Example 4.8, it took the Java code only 2 minutes to find the smallest four consecutive values
which are each not relatively prime to the four values 134,043 through 134,046. However in this
n = 5 case, it is not as simple. After the Java code ran continuously for four days 6 , it had checked
up to the y-value of 500 billion and still did not find an H5

(x,y) with the x-values x1,… , x5 givenearlier. So we approached this problem from a more theoretical perspective instead.
Consider the list of five consecutive integers x1,… , x5. Observe that x1, x3, and x5 are divisibleby 2 and that x2 and x5 are divisible by 3. Hence a hidden 5×5 forest bearing these x-values would

be “optimal” if the corresponding five y-values (which we denote y1,… , y5) have the property that
y1, y3, and y5 are divisible by 2 and that y2 and y5 are divisible by 3. The benefit of this optimal
situation is that 12 of the 25 coordinates will automatically have gcd(xi, yj) > 1 and hence these
12 points are hidden. In the matrices below, we represent each of these 12 points with the symbol
∙ in the gcd-matrix GcdM on the left, and to its right we give the 90◦ clockwise rotation matrixM
from which we construct a quasiprime matrix.

GcdM =

⎛

⎜

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎟

⎠

y5 → ∙ ∙ ∙ d5 ∙
y4 → a2 b3 c2 d4 e1
y3 → ∙ b2 ∙ d3 ∙
y2 → a1 ∙ c1 d2 ∙
y1 → ∙ b1 ∙ d1 ∙

↑ ↑ ↑ ↑ ↑
x1 x2 x3 x4 x5

↻
←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
90◦ right

M =

y1 y2 y3 y4 y5
↓ ↓ ↓ ↓ ↓

⎛

⎜

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎟

⎠

x1 → ∙ a1 ∙ a2 ∙
x2 → b1 ∙ b2 b3 ∙
x3 → ∙ c1 ∙ c2 ∙
x4 → d1 d2 d3 d4 d5
x5 → ∙ ∙ ∙ e1 ∙

6Recall the footnote regarding computation times in Example 4.8.
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Since we know that x5 and y5 are both divisible by 2 and 3 in this optimal case, we place a 6 in this
entry, and the QPM matrix has the following abstract form

QPM =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 a1 1 a2 1
b1 1 b2 b3 1
1 c1 1 c2 1
d1 d2 d3 d4 d5
1 1 1 e1 6

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(3)

where
x1 = 2 ⋅ 13 ⋅ 37 ⋅ 53 ⋅ 2549 ⇐⇒ a1, a2 ∈ {13, 37, 53, 2549},
x2 = 3 ⋅ 5 ⋅ 31 ⋅ 269 ⋅ 1039 ⇐⇒ b1, b2, b3 ∈ {5, 31, 269, 1039},
x3 = 22 ⋅ 7 ⋅ 97 ⋅ 109 ⋅ 439 ⇐⇒ c1, c2 ∈ {7, 97, 109, 439},
x4 = 112 ⋅ 17 ⋅ 23 ⋅ 41 ⋅ 67 ⇐⇒ d1, d2, d3, d4, d5 ∈ {11, 17, 23, 41, 67}, and
x5 = 2 ⋅ 3 ⋅ 89 ⋅ 199 ⋅ 1223 ⇐⇒ e1 ∈ {89, 199, 1223}.

Observation 5.1. Consider the QPM matrix in (3). Then the following hold.
(1) There are 1,244,160 distinct ways to produce a quasiprime matrix QPM.
(2) Applying the CRT-algorithm to any of theQPM yields the same solution values x1,… , x5 as the

x-values of the hidden forestH5
(x1,y1)

. In particular, this unique x1 value is 129,963,314.
(3) The y-value solutions have the property that y1, y3, y5 ∈ 2ℤ and y2, y5 ∈ 3ℤ.
Proof of (1): There are P (4, 2) = 4!

(4−2)!
= 12 possible 2-permutations of a 4-element set. So since

a1 and a2 must be distinct elements of {13, 37, 53, 2549}, the ordered tuple (ai)2i=1 can be chosen in
12 ways. Applying a similar argument to count the possible (bi)3i=1, (ci)2i=1, (di)5i=1, and the (e1), wesee that the ordered tuple (bi)3i=1 can be chosen in 12 ways, the (ci)2i=1 in 12 ways, the (di)5i=1 in 120ways, and (e1) in 3 ways. Thus there are 1,244,160 distinct ways to produce a quasiprime matrix
QPM, which proves (1).
Proof of (2): Unfortunately, we only proved this by computational exhaustion using Mathematica.
See part (a) of Question 1.
Proof of (3): Consider an arbitrary QPM. Suppose y0 is a solution to the five linear congruences
y + k ≡ 0 (mod Ck) where Ck equals the product of the column entries of QPM for 1 ≤ k ≤ 5.
Setting yk = y0 + k, we observe that y5 ≡ 0 (mod 6 ⋅ d5), and thus y5 ≡ 0 (mod 2) and y5 ≡ 0
(mod 3). Hence y5 ∈ 2ℤ ∩ 3ℤ. Since y5 ∈ 2ℤ, it follows that y3 = y5 − 2 implies y3 ∈ 2ℤ, and
y1 = y5−4 implies y1 ∈ 2ℤ. Moreover since y5 ∈ 3ℤ, it follows that y2 = y5−3 implies y2 ∈ 3ℤ.
Thus (3) holds.

We wrote a program in Mathematica which applies the CRT-algorithm to each of the possible
1,244,160 matrices. Four minutes later, the program yields that the smallest y-value solution is

23



given by the following quasiprime matrix:

QPM =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 37 1 13 1
31 1 5 269 1
1 109 1 7 1
67 17 41 23 11
1 1 1 89 6

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (4)

This y-value and the next four consecutive integers have the following prime factorizations (with
commas omitted in the factorizations for readability):

y1 = 2,546,641,254,872,348 = 22 ⋅ 31 ⋅ 67 ⋅ 461 ⋅ 664921471
y2 = 2,546,641,254,872,349 = 32 ⋅ 17 ⋅ 37 ⋅ 109 ⋅ 8681 ⋅ 475421
y3 = 2,546,641,254,872,350 = 2 ⋅ 52 ⋅ 41 ⋅ 11113 ⋅ 111784759
y4 = 2,546,641,254,872,351 = 72 ⋅ 13 ⋅ 23 ⋅ 73 ⋅ 89 ⋅ 269 ⋅ 271 ⋅ 367
y5 = 2,546,641,254,872,352 = 25 ⋅ 3 ⋅ 11 ⋅ 2411592097417.

Comparing the x1,… , x5 with the y1,… , y5 we see that gcd(xi, yj) > 1 for all 1 ≤ i, j ≤ 5 and in
factH5

(x1,y1)
has the following gcd-matrix GcdM and corresponding matrixM :

GcdM =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

2 3 22 11 2⋅3
13 269 7 23 89
2 5 2 41 2
37 3 109 17 3
2 31 22 67 2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

↻
←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
90◦ right

M =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

2 37 2 13 2
31 3 5 269 3
22 109 2 7 22
67 17 41 23 11
2 3 2 89 2⋅3

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Remark 5.2. If we apply the QP-algorithm to theM above, then we are forced to place a 22 in either
the (3, 1)- or (3, 5)-entry ofQPM, and consequently the 6 in the (5, 5) entry becomes a 3. Hence this
new QPM differs from the quasiprime matrix in (4). However, applying the CRT-algorithm to this
new QPM gives the same hidden forest as expected.
Remark 5.3. The forest H5

(x,y) with x = 129,963,314 and y = 2,546,641,254,872,348 is at a
distance d ≈ 2.54664 × 1015 from the origin. Had we used the only known method until now (that
is, Theorem 3.4), then we get a forestH5

(x,y) with the following x and y values:
x = 251,080,644,933,696,940,130,615,676,720,763,950
y = 108,580,359,501,475,197,963,484,708,875,960,338.

This forest is at a distance d ≈ 2.73553 × 1035 from the origin, and hence is 1.07417 × 1020 times
farther than the forest we reveal in this paper! We have not found a computationally tractable
method to find the closest 5 × 5 hidden forest, nor do we believe that anyone else has. So for the
time being, theH5

(x,y) we present in this paper is the closest 5 × 5 hidden forest to date.
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6 Open problems and progress on recent research
There are many avenues for further research motivated from the work in this present paper. In this
section, we give not only some open problems identified during our research process, but also some
recent progress in generalizations of lattice point visibility.

6.1 Open problems
Question 1. Is it true that for every hidden forest Hn

(x,y), there exists a quasiprime matrix QPM in
Matn(ℤ) such that the CRT-algorithm applied to QPM yieldsHn

(x,y)? Related to this question are the
following subquestions:
(a) Why do all 1,244,160 distinct quasiprime matrices in Matrix (3) yield exactly the same x-value

solution under the CRT-algorithm?
(b) Do all distinct quasiprime matrices produce unique solutions?
(c) Can one code a computationally efficient method to search for the closestHn

(x,y) for n ≥ 4?
Question 2. Higher dimensional analogues of patches of invisible points can be found. Observe
that our proof of Proposition 2.4 can easily be extended to higher dimensions by setting the value
s (in the proof) to the appropriate dimension. That is, the probability that (x1, x2,… , xs) is visiblein ℤs is 1

� (s)
. In Example 6.1, we find a hidden 2 × 2 × 2 forest using a 3-dimensional analogue of

the CRT-algorithm, and we see that the forest found by this method is very far from the origin. Can
we generalize the quasiprime matrix to these higher dimensional settings and find closer hidden
n-dimensional forests?
Example 6.1. In Figure 6.1, we give an example of a hidden 2 × 2 × 2 forest with corner point
(x1, y1, z1) at x1 = 9,126,194, y1 = 8,286,564, and z1 = 8,822,099.

(x2, y1, z2) (x2, y2, z2)

(x2, y1, z1) (x2, y2, z1)

(x1, y1, z2) (x1, y2, z2)

(x1, y1, z1) (x1, y2, z1)

Figure 6.1: A 2 × 2 × 2 hidden forest

To find this 3-dimensional hidden forest, we considered a 3-dimensional version of the prime
matrix as a cube whose corners contain the first 8 prime numbers. Then to each face of the cube,
we multiplied the four numbers in each corner as the following image illustrates.
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Solving the following three pairs of systems of congruences
{

x + 1 ≡ 0 (mod Back)
x + 2 ≡ 0 (mod Front)

{

y + 1 ≡ 0 (mod Left)
y + 2 ≡ 0 (mod Right)

{

z + 1 ≡ 0 (mod Bottom)
z + 2 ≡ 0 (mod Top)

yields the three simultaneous solutions x0 = 9,126,193, y0 = 8,286,563, and z0 = 8,822,098. Then
the following values x1, y1, z1, x2, y2, and z2 have the prime factorizations

x1 = 2 ⋅ 7 ⋅ 11 ⋅ 19 ⋅ 3119 y1 = 22 ⋅ 3 ⋅ 112 ⋅ 13 ⋅ 439 z1 = 11 ⋅ 13 ⋅ 17 ⋅ 19 ⋅ 191
x2 = 3 ⋅ 5 ⋅ 13 ⋅ 17 ⋅ 2753 y2 = 5 ⋅ 7 ⋅ 17 ⋅ 19 ⋅ 733 z2 = 22 ⋅ 3 ⋅ 52 ⋅ 7 ⋅ 4201.

It is readily verified from these factorizations that each of the eight tuples of coordinates (xi, yj , zk)for 1 ≤ i, j, k ≤ 2 have the property gcd(xi, yj , zk) > 1. Hence this 3-dimensional forest is indeed
hidden from the origin.
Question 3. What can be said about hidden forests in the ℤ[i] × ℤ[i] lattice? What is meant by
the coordinate values (x, y) ∈ ℤ[i] × ℤ[i] being relatively prime? Recall that if R is a Euclidean
domain (as is the case for the ring ℤ[i] of Gaussian integers), then greatest common divisors can
be computed using the Euclidean algorithm. Can we apply methods in this paper to the visibility
of points in the lattice ℤ[i] × ℤ[i]?

6.2 Progress on recent research
The following open problem was initially started by the second author Mbirika and his colleagues
Pamela Harris and Bethany Kubik during their Visiting Assistant Professor appointments at West
Point Military Academy in the summer of 2015. This question below has been recently explored
in 2018 by Goins, Harris, Kubik, and Mbirika in [8].
Question 4 (Harris, Kubik, Mbirika). The classic setting focuses on integer lattice points which lie
on straight lines through the origin with rational slopes. We generalize this notion of lines of sights
to include all curves through the origin given by power functions of the form f (x) = axb where
a ∈ ℚ and b ∈ ℕ. What can we conclude about lattice point visibility in this generalized setting?
To begin to answer this question, we establish the following criterion for b-(in)visibility.
Definition 6.2 (Visible and invisible lattice points). Fix b ∈ ℕ. A point (r, s) ∈ ℕ×ℕ is said to be
b-invisible if the following two conditions hold:

26



(1) The point (r, s) lies on the graph of f (x) = axb for some a ∈ ℚ. That is s = arb.
(2) There exists an integer k > 1 such that k divides r and kb divides s.
The point is said to be b-visible if it satisfies Condition (1) but fails to satisfy Condition (2).

To speak about the b-visibility of a lattice point in this new setting, we develop a generalization
of the greatest common divisor.
Definition 6.3. Fix b ∈ ℕ. The generalized greatest common divisor of r and s with respect to b is
denoted gcdb and is defined as

gcdb(r, s) ∶= max{k ∈ ℕ ∣ k divides r and kb divides s}.
The following result gives a necessary and sufficient condition to determine b-visibility.

Proposition 6.4. A point (r, s) ∈ ℕ × ℕ is b-visible if and only if gcdb(r, s) = 1.

Figure 6.2 demonstrates both the classic and generalized setting. The red curve f (x) = 7x rep-
resents the classic setting while the blue and green curves g(x) = x2 and ℎ(x) = 1

7
x3, respectively,

represent the generalized setting.

◑

(1,7)
(2,14)

(3,21)
(4,28)

(5,35)
(6,42)

(8,56)

(1,1) (2,4)
(3,9)

(4,16)
(5,25)

(6,36)

(7,49)

(8,64)

1 2 3 4 5 6 7 8

7
14
21
28
35
42
49
56
63
70

Figure 6.2: Three lines of sight f (x) = 7x, g(x) = x2, and ℎ(x) = 1
7
x3.

Observe that the point (7, 49) is not 1-visible since gcd(7, 49) = 7 and is not 2-visible since
gcd2(7, 49) = 7. However the point (7, 49) is 3-visible since gcd3(7, 49) = 1.
Theorem 6.5 (Goins, Harris, Kubik, Mbirika [8]). Fix an integer b ∈ ℕ. Then the proportion of
points (r, s) ∈ ℕ × ℕ that are b-visible is 1

� (b + 1)
.
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Theorem 6.6 (Goins, Harris, Kubik, Mbirika [8]). For every m, n, b ∈ ℕ, there exists b-invisible
n × m forests.

Question 5. Can we apply the new techniques detailed in this paper to find the closest b-invisible
n × n forests?
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Appendix

A.1 Java code to verify closest hidden forests
In this appendix we provide the Java code that we wrote to exhaustively search the integer lattice
for the closest hidden forests.

Listing 2: Java code to search the integer lattice for hidden forests
1 package project1;
2
3 import java. util .Scanner;
4
5 public class Compiler {
6
7 public static void main(String [] args) {
8 Scanner in = new Scanner(System.in);
9 // long is a number;

10 // get bottom, leftmost , and rightmost from user input ;
11
12 System.out. println ("What␣is␣the␣bottom?");
13 long bottom = in.nextLong();
14
15 System.out. println ("What␣is␣the␣leftmost?");
16 long leftmost = in.nextLong();
17
18 System.out. println ("What␣is␣the␣rightmost?");
19 long rightmost = in.nextLong();
20
21 long boxWidth = rightmost − leftmost;
22 long count = 0;
23 long foundCount = 0;
24
25 System.out. println ("How␣often␣do␣you␣want␣to␣check?");
26 long check = in.nextLong();
27
28 System.out. println ("Starting");
29 boolean exit = false;
30
31 while (bottom < Long.MAX_VALUE − boxWidth && !exit) {
32 boolean equalsOne = false;
33 long startY = bottom+1;
34 for (long y = bottom; y < (startY + boxWidth) && !equalsOne
35 && !exit; ++y) {
36 ++count;
37 for (long x = leftmost; (x <= rightmost) && !equalsOne && !exit; ++x) {
38 ++foundCount;
39 if ( test (x, y) == 1) {
40 bottom = y;
41 equalsOne = true;
42 foundCount = 0;
43 x = leftmost;
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44 }// test end
45 if (foundCount == ((boxWidth+1)∗(boxWidth+1))) {
46 System.out. println ("found␣one!!␣upper␣right␣corner␣=␣x:"
47 + x + "␣y:" + y);
48 exit = true;
49 foundCount = 0;
50 }// foundCount end
51 }// for x end
52 if (count % check == 0) {
53 System.out. println (y + "␣is␣current␣y");
54 }// count%check end
55 }// for y end
56 ++bottom;
57 }// while 1 end
58 }// main end
59
60 private static long test (long x, long y) {
61 if (y == 0)
62 return x;
63 return test (y, x % y);
64 }
65 }// compiler end
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