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PERIOD SETS OF LINEAR RECURRENCES OVER FINITE

FIELDS AND RELATED COMMUTATIVE RINGS

MICHAEL R. BUSH AND DANJOSEPH QUIJADA

Abstract. After giving an overview of the existing theory regarding the periods of
sequences defined by linear recurrences over finite fields, we give explicit descriptions
of the sets of periods that arise if one considers all sequences over Fq generated by
linear recurrences for a fixed choice of the degree k in the range 1 ≤ k ≤ 4. We
also investigate the periods of sequences generated by linear recurrences over rings
of the form Fq1

⊕ . . .⊕ Fqr
.

1. Introduction

We begin by fixing some notation and recalling some definitions and basic results
concerning linear recurrence sequences. Let R be a commutative ring with unity
1 6= 0. Let a = (an)

∞

n=0 be a sequence with an ∈ R for all n ≥ 0. If there exist ci ∈ R
for 0 ≤ i ≤ k − 1 such that the terms in the sequence satisfy the following equation

(1) an+k =

k−1
∑

i=0

cian+i

for all n ≥ 0, then we say that a is a linear recurrence sequence over R. The equation
is called a linear recurrence and the quantity k is called the degree of the recurrence.
Formally, the linear recurrence is specified by a tuple of coefficients (c0, . . . , ck−1) ∈ Rk

and zero entries are allowed in any position including c0, thus the degree is not required
to be minimal in any sense.

Example 1.1. The well-known Fibonacci sequence

0, 1, 1, 2, 3, 5, 8, 13, . . .
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is a linear recurrence sequence over Z satisfying the degree 2 recurrence

an+2 = an+1 + an

for all n ≥ 0 with coefficients c0 = c1 = 1.

It is clear from the form of equation (1) that each term in the sequence de-
pends on the previous k terms. As a result, it is natural to consider the tuple
sn = (an, . . . , an+k−1) ∈ Rk (n ≥ 0), which we refer to as the n-th state vector of
the sequence. Any linear recurrence sequence of degree k is completely determined
by specifying the recurrence equation and initial state s0 = (a0, . . . , ak−1).
If R is a finite ring, then there are a finite number of possible states |Rk| = |R|k

and an argument using the pigeonhole principle shows that the sequence must be
ultimately periodic, ie. there exist positive N,m ∈ Z such that an+m = an for all
n ≥ N . In this situation, we will say the sequence a is m-periodic. The smallest
positive value of m with this property is called the period of the sequence and it will
be denoted by ρ(a). We note that some authors use the term least period for ρ(a), but
we will not. It is straightforward to verify using a Division Algorithm argument that
for any positive integer m, the sequence a is m-periodic if and only if ρ(a) divides m.
Important examples of finite commutative rings include the integers modulo n

which we denote Zn and also finite fields. We use the notation Fq to denote the finite
field of order q where q = pe with e ≥ 1 and p a prime integer. Recall that when
n = q = p these notions coincide and we have Zp

∼= Fp.

Example 1.2. Consider the Fibonacci recurrence an+2 = an+1+an over F2 = {0, 1}.
Starting from the initial state s0 = (a0, a1) = (0, 1), we obtain the sequence

0, 1, 1, 0, 1, 1, 0, 1, . . .

and so clearly we have ρ(a) = 3 in this case.

In general, if the coefficient c0 ∈ R is a unit, then one can invert the recurrence
equation (1) and observe that any state sn uniquely determines the preceding term
an−1 and hence the state sn−1. In this situation, the periodicity begins right from
the initial term. ie. an+m = an for all n ≥ 0. Throughout this paper we will restrict
attention to sequences defined by recurrence equations satisfying this condition.
It is natural to ask about the set of all possible periods of linear recurrence sequences

defined over a finite ring R and how this depends on the choice of ring. One easy
observation is that for a given degree k, the period is always bounded above by
|R|k − 1. This follows from the pigeonhole principle argument above. Since there are
|R|k state vectors, any list of |R|k + 1 consecutive states must include the repetition
of at least two states. This gives a bound of |R|k on the period. One can decrease this
slightly because the zero state vector (0, . . . , 0) clearly generates the zero sequence
of period 1. Hence any sequence containing infinitely many non-zero terms cannot
involve this state and so the maximum number of allowed states in a repeating cycle
is reduced to |R|k − 1.
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In the case where R = Fq, there is a well-developed theory describing the behavior of
these periods. In particular, it can be shown (see Corollary 2.10) that for each k ≥ 1,
there exist linear recurrence sequences of degree k with period equal to the upper
bound qk − 1. In Section 2, we give an overview of some of this theory. In Section 3,
we apply it to obtain our main result (Theorem 3.5) giving explicit descriptions of the
sets of periods that can be achieved for small values of the degree k over an arbitrary
finite field. In Section 4, we investigate the periods of sequences defined over a slightly
broader class of finite commutative rings.
Throughout we will assume that the reader is familiar with the basic facts about

finite fields and polynomial rings defined over fields as can be found in many intro-
ductory books on abstract algebra. See for instance [2, 5].

2. Linear recurrences over finite fields

In this section, we review some material concerning orders of polynomials and
then explain how this is connected with determining the periods of linear recurrence
sequences defined over finite fields. We follow the treatment in [6, Chapters 3 and
8] and further discussion and additional results can be found there. See also [1,
Section 6.2] although we note that the latter uses slightly different terminology.

Definition 2.1. Let f(x) ∈ Fq[x] and suppose f(x) = xrg(x) with r ≥ 0 and
gcd(g(x), x) = 1. Observe that r and g(x) are uniquely determined by f(x). The
order of f(x) (denoted ord (f(x))) is defined to be the smallest integer n > 0 such
that g(x) divides xn − 1. Equivalently, this quantity is the multiplicative order of
x+ 〈g(x)〉 in the group of units of the quotient ring Fq[x]/〈g(x)〉.

Remark 2.2. The fact that such an n exists follows since the quotient ring Fq[x]/〈g(x)〉
is finite and so has a finite multiplicative group of units. The condition gcd(g(x), x) =
1 ensures that α = x+ 〈g(x)〉 is an element of the unit group.
If the polynomial f(x) (or g(x)) is irreducible in Fq[x], then we have an isomorphism

Fq[x]/〈g(x)〉 ∼= Fqd were d = deg g(x). In this situation, α 6= 0 is a root of g(x) in
the larger field Fqd and the order of the polynomial is simply the multiplicative order
of α in F×

qd
= Fqd −{0}. It follows by Lagrange’s theorem that ord (f(x)) must divide

qd − 1 in this situation.

The problem of computing ord (f(x)) can be reduced to the irreducible case using
the following two results. For proofs, see [6, Theorems 3.8, 3.9 and 3.11].

Theorem 2.3. Let g(x) be irreducible over Fq with g(0) 6= 0 and ord (g(x)) = e, and
let f(x) = g(x)b with b ∈ Z>0. Let t be the smallest integer with pt ≥ b where p is the
characteristic of Fq. Then ord (f(x)) = ept.

Theorem 2.4. Let g1(x), . . . , gk(x) ∈ Fq[x] be pairwise relatively prime nonzero poly-
nomials, and let f(x) = g1(x) . . . gk(x). Then ord (f(x)) is equal to the least common
multiple of ord (g1(x)), . . . , ord (gk(x)).
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In order to establish the connection between the periods of linear recurrence se-
quences and the orders of certain polynomials, we must first introduce the following
matrix. Using the coefficients in Equation (1), we define a k× k matrix C over Fq by

(2) C =













0 0 . . . 0 c0
1 0 . . . 0 c1
0 1 . . . 0 c2
...

...
. . .

...
0 0 . . . 1 ck−1













.

This matrix is called the companion matrix of the linear recurrence. It is straightfor-
ward to verify that snC = sn+1 for all n ≥ 0 where sn is the nth state vector of a
sequence satisfying the recurrence and we view sn as a row vector. By induction, it
follows that sn = s0C

n for all n ≥ 0. From this point onwards, we will assume that
detC = (−1)k−1c0 6= 0 and hence that C is an element of the general linear group
GLk(Fq). Recall from Section 1 that under this assumption on c0, all sequences
associated with the recurrence are periodic starting from the initial state.
There is an important relationship between the periods of sequences defined by a

given linear recurrence and the order of the corresponding companion matrix C in
the multiplicative group GLk(Fq). Recall that the order of a matrix C is the smallest
positive integer n such that Cn = Ik where Ik ∈ GLk(Fq) is the k×k identity matrix.
We will denote this quantity by ord (C).

Theorem 2.5. Let a be a sequence satisfying a linear recurrence and let C be the
companion matrix, then ρ(a) divides ord (C). Furthermore, for any given companion
matrix C, there exists a sequence b satisfying the associated recurrence with ρ(b) =
ord (C).

Proof. This result appears in [6, Theorems 8.13 and 8.17]. Since the proof is fairly
short and contains some important ideas, we recall it here.
Let a be an arbitrary sequence satisfying the given recurrence. We first show that

ρ(a) divides ρ(b) for a special sequence b which we now introduce. Let b be the
sequence satisfying the same recurrence with initial state t0 = (0, . . . , 0, 1) – so the
first k − 1 entries equal 0 and the kth entry is 1. Then the nth state tn satisfies
tn = t0C

n for all n ≥ 0. The first k states then have the following special form

t0 = (0, . . . , 0, 0, 1)

t1 = (0, . . . , 0, 1, ∗)

t2 = (0, . . . , 1, ∗, ∗)
...

...

tk−1 = (1, ∗, . . . , ∗, ∗, ∗)



PERIOD SETS OF LINEAR RECURRENCES OVER FINITE FIELDS AND RELATED COMMUTATIVE RINGS5

where ∗ denotes some element in Fq that we do not specify exactly. Clearly, B = {ti |
0 ≤ i ≤ k − 1} is a basis for Fk

q since the matrix formed by these vectors has full
rank k. It follows that the initial state s0 of a can be expressed as a linear combination
of the vectors in B. Using the linearity of the recurrence, one can then see that the
sequence a is a linear combination of the sequences with initial states in B. These
sequences consist of b together with its cyclic shifts and so all have the same period
ρ(b). Any linear combination of m-periodic sequences is m-periodic, so the sequence
a must be ρ(b)-periodic. It follows that ρ(a) divides ρ(b).
To finish, we now show that ρ(b) = ord (C). Let m = ρ(b) and n = ord (C).

Since Cn = Ik, we see that tn = t0C
n = t0. It follows that b is n-periodic and so

m must divide n. We note that this part of the argument does not make use of the
special nature of b and could be applied to an arbitrary sequence a, thus establishing
directly that ρ(a) always divides ord (C). Now observe that since b is m-periodic,
the sequence of state vectors must also be m-periodic and so we have tm+i = ti for all
i ≥ 0. But tm+i = tiC

m, thus tiC
m = tiIk for all i ≥ 0 and, in particular, this holds

for all of the state vectors in the basis B. It follows that Cm = Ik and so the order
n must divide m. Since m = ρ(b) and n = ord (C) are positive integers that divide
each other, we conclude that ρ(b) = ord (C) as desired. �

Remark 2.6. Theorem 2.5 shows that the maximum period for a given recurrence
with associated matrix C is ord (C). The sequence b with initial sequence t0 =
(0, . . . , 0, 1) which is shown to attain this maximum in the proof is called the im-
pulse response sequence for the given recurrence. If one examines the argument used
at the end of the proof, one sees that any sequence a, for which the first k state
vectors {si | 0 ≤ i ≤ k − 1} form a basis for Fk

q , will also have the property that
ρ(a) = ord (C).

There is an important polynomial associated to the matrix C and so also the
recurrence (1).

Definition 2.7. The characteristic polynomial of C ∈ GLk(Fq) is the polynomial

f(x) = det(xIk − C) ∈ Fq[x].

Observe that if C is a k × k matrix, then we have deg f(x) = k.

For matrices C of the special form (2) above, it is a straightforward exercise using
properties of determinants to show that

f(x) = det(xIk − C) = xk −
k−1
∑

i=0

cix
i.

The latter polynomial is very closely related to the original recurrence equation.
Indeed, if one sets n = 0 and formerly substitutes xi for ai in Equation (1), then this
polynomial appears after moving all of the terms to one side.
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We now show that there is a direct connection between the order of this polynomial
(as defined at the beginning of the section) and the order of the matrix C.

Theorem 2.8. Let C ∈ GLk(Fq) and let f(x) be the associated characteristic poly-
nomial. Then ord (C) = ord (f(x)).

Proof. This result appears in [6, Lemma 8.26]. The proof there assumes some famil-
iarity with advanced linear algebra so we give a self-contained proof here.
Consider the following set of polynomials

J = {g(x) ∈ Fq[x] | g(C) = 0}

where the expression g(C) is evaluated in the natural way (treating the constant term
as a scalar multiple of the identity matrix) and the equation g(C) = 0 means g(C) is
the zero matrix. It is a consequence of the Cayley-Hamilton Theorem, that f(C) = 0
and so f(x) ∈ J . For matrices C of the special form (2) above, this can also be seen
directly as follows. If we consider the impulse response sequence b with nth state
vector tn, then since the state vectors also satisfy the recurrence (1), we have

0 = tn+k −
k−1
∑

i=0

citn+i = tnC
k −

k−1
∑

i=0

ci(tnC
i)

= tn

(

Ck −
k−1
∑

i=0

ciC
i

)

= tnf(C)

for all n ≥ 0. In particular, this holds for all of the vectors in the basis B = {ti | 0 ≤
i ≤ k − 1} and so we must have f(C) = 0 as desired.
Having shown that f(x) ∈ J , we now observe that J is an ideal and so 〈f(x)〉 ⊆ J

where 〈f(x)〉 is the principal ideal generated by f(x). In fact, equality must hold.
This can be seen using the standard fact that Fq[x] is a principal ideal domain and
verifying that J does not contain any nonzero polynomials of smaller degree. Suppose
that this were not the case and g(x) ∈ J with deg g(x) < deg f(x) = k. Then since
g(C) = 0, we would have tng(C) = 0 for all n ≥ 0. Expanding the left-hand side
when n = 0 would then give a dependence relation among the vectors in B which is
a contradiction since these vectors are linearly independent.
Having established that J = 〈f(x)〉, we finish by noting that Cn = Ik holds if

and only if xn − 1 ∈ J which in turn holds if and only if f(x) divides xn − 1. It
follows from the definitions that ord (C) = ord (f(x)). Note that f(0) = −c0 6= 0, so
gcd(x, f(x)) = 1. �

Combining Theorem 2.5 and Theorem 2.8, we have

Corollary 2.9. Let f(x) be the characteristic polynomial of a linear recurrence and
let a be any sequence satisfying the recurrence, then ρ(a) divides ord (f(x)). Moreover,
there exist sequences with ρ(a) = ord (f(x)).
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Corollary 2.10. For each prime power q and k ∈ Z>0, there exists a linear recurrence
sequence a over Fq of degree k achieving the maximum possible period ρ(a) = qk − 1.

Proof. The multiplicative group of the finite field Fqk is cyclic of order qk − 1. Let
f(x) be the minimum polynomial of a generator for this group. (Such an irreducible
polynomial is said to be primitive). Then we have ord (f(x)) = qk − 1 by Remark 2.2
and so the statement now follows by Corollary 2.9. �

More can be said about the possible values of ρ(a). Observe that every periodic
sequence a satisfies a linear recurrence. For instance, if a is m-periodic then it auto-
matically satisfies the degree m recurrence an+m = an for all n ≥ 0. Among the set of
all such recurrences, we single out the one of smallest degree. This is uniquely deter-
mined since if there were two distinct recurrences of this degree, we could subtract,
cancel and divide by the non-zero coefficient on the largest index term remaining to
obtain a recurrence of even smaller degree satisfied by the sequence which would be
a contradiction.

Definition 2.11. Let a be a nonzero periodic sequence. We define the minimal poly-
nomial m(x) to be the characteristic polynomial of the (unique) linear recurrence of
smallest degree satisfied by a. For the zero sequence a = (0)∞n=0, we set m(x) = 1.

From the definition and preceding observations, we clearly have degm(x) ≤ ρ(a)
and degm(x) ≤ deg f(x) for all characteristic polynomials f(x) of linear recurrences
satisfied by a. In fact, a much stronger statement holds.

Theorem 2.12. Let a be a periodic sequence and let m(x) be the minimal polynomial
of a. Then f(x) is the characteristic polynomial of a linear recurrence satisfied by a

if and only if m(x) divides f(x). We also have ρ(a) = ord (m(x)).

Proof. For a proof of the divisibility statement, which we will not need in our subse-
quent work, see [6, Section 8.4]. Note that in [6], the minimal polynomial is defined
via a divisibility condition. After existence and uniqueness have been demonstrated,
it is straightforward to see that this is equivalent to the definition used here.
For the second statement, observe that ρ(a) divides ord (m(x)) by Corollary 2.9

and, as noted above, we have ord (m(x)) ≤ ρ(a). Equality follows immediately.
Alternatively, one can see directly that if deg(m(x)) = k, then the first k state
vectors of a must be linearly independent since a dependence relation would give rise
to a recurrence of smaller degree satisfied by the full sequence of state vectors and
hence also a. It follows that the first k state vectors form a basis of Fk

q since the
dimension is k, and so we can apply Remark 2.6 to see that ρ(a) = ord (m(x)). �

We conclude by showing how the results in this section provide information about
the periods of sequences in the case of the Fibonacci recurrence.

Example 2.13. The Fibonacci recurrence an+2 = an−1 + an has been extensively
studied over both Zn and finite fields. Recent work includes [3, 4] and additional
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references can be found in these papers. For this recurrence, the companion matrix is

C =

(

0 1
1 1

)

and the characteristic polynomial is f(x) = x2 − x − 1. The sequence a defined by
this recurrence with initial state s0 = (0, 1) is the impulse response sequence and so
attains the maximum possible period ρ(a) = ord (f(x)). Other initial states will give
rise to sequences whose periods divide this maximum. Since the recurrence and initial
state for a are both defined over the prime subfield Fp ⊆ Fq, the entire sequence will
also lie in Fp and so it suffices to consider the case q = p prime.
Determining the value of ord (f(x)) involves first factoring f(x) in Fp[x]. We now

consider various cases. If p = 2, then one observes that f(x) = x2+x+1 is irreducible.
Since α = x+ 〈f(x)〉 must have nontrivial multiplicative order in F2[x]/〈f(x)〉 ∼= F4,
we see that ord (f(x)) = 3. Alternatively, one can simply generate the sequence and
observe that the period is 3 as we did in Example 1.2.
If p is odd, then 2 is invertible in Fp and we can complete the square to write

f(x) = (x − 2−1)2 −∆/2−2 where ∆ = 5 is the discriminant of f(x). It follows that
f(x) will be irreducible over Fp if and only if 5 is not a square in Fp. By the law
of quadratic reciprocity, we see that 5 is not a square in Fp if and only if p ≡ 2, 3
(mod 5), and 5 is a square if and only if p ≡ 1, 4 (mod 5) or p = 5.

• If p ≡ 2, 3 (mod 5), then f(x) is irreducible over Fp and the order and hence
period of the sequence will be the multiplicative order of α = x + 〈f(x)〉 in
Fp[x]/〈f(x)〉 ∼= Fp2. It follows that the order will be a divisor of p2 − 1 that
does not divide p − 1. (The second condition is forced since α cannot belong
to the prime field Fp in this case.)

• If p ≡ 1, 4 (mod 5), then f(x) factors as a product of distinct linear factors
over Fp and applying Theorem 2.4 we see that the period will divide p− 1.

• Finally, if p = 5, then we have a repeated linear factor f(x) = (x− 3)2. Since
3 has order 4 in F5, we can apply Theorem 2.3 to see that ord (f(x)) = 20.
Alternatively, one can simply generate the sequence and observe that the period
is 20.

In fact, more can be said in the case where f(x) is irreducible as shown in [4,
Theorem 5]. Given one root α of f(x), the other root can be obtained by applying
the Frobenius automorphism and is simply αp. Since the product of the roots of a
quadratic is the constant coefficient, we obtain the relation α ·αp = αp+1 = −c0 = −1.
It follows that α2(p+1) = 1 and thus the order of α must divide 2(p+1) which is strictly
smaller than p2 − 1 for p > 3.

3. Period sets of small degree recurrences

In this section, we use the results from the previous section to determine the period
sets for recurrences of small degree over finite fields.
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Definition 3.1. Let k ∈ Z>0 and let q be a prime power. We define the period set
of degree k over Fq by

P (k,Fq) = {ρ(a) | a satisfies a linear recurrence of degree k over Fq}

and the order set of degree k over Fq by

O(k,Fq) = {ord (f(x)) | f(x) ∈ Fq[x] and deg f(x) = k}.

A simple inductive argument, in which the inductive step involves adding together
two copies of the recurrence equation for consecutive values of the leading index,
shows that every sequence satisfying a recurrence of degree j satisfies a recurrence of
degree k for all k ≥ j. Hence, we have P (j,Fq) ⊆ P (k,Fq) for all j ≤ k. Similarly,
from the definition, we have ord (f(x)) = ord (g(x)) for f(x) = xdg(x) with d ≥ 0, so
then O(j,Fq) ⊆ O(k,Fq) for all j ≤ k.
The next lemma shows that if we want to compute the period set of a given degree,

then it suffices to compute the corresponding order set.

Lemma 3.2. For all k ∈ Z>0 and prime powers q, we have P (k,Fq) = O(k,Fq).

Proof. We check containment in both directions. Let n ∈ P (k,Fq). Then n = ρ(a)
for some sequence a defined by a linear recurrence of degree k over Fq. Let f(x)
be the associated characteristic polynomial and let m(x) be the minimal polynomial
of a. Let d = degm(x). Then d ≤ k by definition of the minimal polynomial. It
follows from Theorem 2.12 that

n = ρ(a) = ord (m(x)) ∈ O(d,Fq) ⊆ O(k,Fq).

Thus P (k,Fq) ⊆ O(k,Fq).
Now suppose n ∈ O(k,Fq). Then n = ord (f(x)) for some f(x) ∈ Fq[x] with

deg f(x) = k. By Corollary 2.9, there exists a sequence a satisfying the linear re-
currence associated to f(x) with ρ(a) = ord (f(x)) = n, and so n ∈ P (k,Fq). Thus
O(k,Fq) ⊆ P (k,Fq). The desired set equality now follows. �

Before using Lemma 3.2 to give an explicit description of P (k,Fq) for small values of
k, we introduce some more notation. Given n ∈ Z>0, we let D(n) denote the set of all
positive integer divisors of n. For example, D(6) = {1, 2, 3, 6}. Given an integer a and
subsets S1, S2 ⊆ Z, we define aS1 = {ax | x ∈ S1} and S1S2 = {xy | x ∈ S1, y ∈ S2}.
For example, 5D(6) = {5, 10, 15, 30} and D(2)D(6) = {1, 2, 3, 4, 6, 12}.

Theorem 3.3. Let Fq have prime characteristic p. For all k ∈ Z>0, we have

k
⋃

i=1

{pj | 0 ≤ j ≤ ti}D(qi − 1) ⊆ P (k,Fq)

where ti = ⌈logp⌊k/i⌋⌉ = min{t ∈ Z | pt ≥ ⌊k/i⌋} for 1 ≤ i ≤ k.
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Proof. To prove the containment, let 1 ≤ i ≤ k and consider n = pjd with 0 ≤ j ≤ ti
and d ∈ D(qi − 1). We show that n ∈ P (k,Fq) by constructing an appropriate
polynomial f(x) with ord (f(x)) = n.
Since the multiplicative group of K = Fqi is cyclic of order qi − 1 and d divides

qi − 1, we can find an element α ∈ K of order d. Let g(x) ∈ Fq[x] be the minimal
polynomial of α over Fq. Then g(x) is irreducible with deg g(x) ≤ i and ord (g(x)) = d
by Remark 2.2. Now set f(x) = g(x)b with b = 1 if j = 0 and b = pj−1 + 1 if
j ≥ 1. Note that in both cases, j is the smallest integer such that pj ≥ b. Then
ord (f(x)) = ord (g(x))pj = dpj = n by Theorem 2.3, and

deg f(x) = b deg g(x) ≤ (pj−1 + 1)i ≤ (pti−1 + 1)i ≤ ⌊k/i⌋i ≤ k.

The inequality pti−1 + 1 ≤ ⌊k/i⌋ used in the second-last step above follows directly
from the definition of ti. We conclude that n ∈ O(k,Fq) = P (k,Fq) by Lemma 3.2. �

Remark 3.4. The exponent bounds ti and corresponding sets of prime powers ap-
pearing in Theorem 3.3 are often small. Observe that ti ≥ 0 for 1 ≤ i ≤ k and ti = 0
occurs for ⌊k/2⌋ + 1 ≤ i ≤ k. Since the largest value of the floor function ⌊k/i⌋
occurs when i = 1, it follows that for p > k, we have {pj | 0 ≤ j ≤ ti} = {1, p} for
1 ≤ i ≤ ⌊k/2⌋. Larger sets of prime powers can occur when k is large relative to p.

We now come to our main result.

Theorem 3.5. Let Fq have prime characteristic p. For 1 ≤ k ≤ 4, the set contain-
ment in Theorem 3.3 is actually an equality. In particular, we have

(i) P (1,Fq) = D(q − 1).
(ii) P (2,Fq) = D(q2 − 1) ∪ pD(q − 1).

(iii) P (3,Fq) =











D(q3 − 1) ∪D(q2 − 1) ∪ pD(q − 1), if p ≥ 3.

D(q3 − 1) ∪D(q2 − 1) ∪ {2, 4}D(q − 1), if p = 2.

(iv) P (4,Fq) =











D(q4 − 1) ∪D(q3 − 1) ∪ pD(q2 − 1), if p ≥ 5.

D(q4 − 1) ∪D(q3 − 1) ∪ pD(q2 − 1) ∪ p2D(q − 1), if p = 2, 3.

Proof. It is straightforward to verify that the set expressions appearing on the right
above match the one appearing in Theorem 3.3 for 1 ≤ k ≤ 4. Note that some
simplification has been carried out. For instance, if i divides j, then qi − 1 divides
qj−1 and one then has D(qi−1) ⊆ D(qj−1). It follows that if both of these occur in
a set union then the first is redundant and can be omitted. In particular, D(q−1) has
been omitted from most of the expressions above. D(q2 − 1) has also been omitted
when D(q4 − 1) occurs.
Since Theorem 3.3 shows containment in one direction, we will establish equality

by checking the reverse containment for each value 1 ≤ k ≤ 4. We have P (k,Fq) =
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O(k,Fq) by Lemma 3.2, so it will suffice to verify that ord (f(x)) belongs to the given
set union for all f(x) with deg f(x) = k. We will make frequent use of the fact that
if g(x) ∈ Fq[x] is irreducible and deg g(x) = d, then ord (g(x)) ∈ D(qd − 1) which
follows from Remark 2.2. We also note that the order of a polynomial is invariant
under multiplication by nonzero scalars. Thus we can restrict our attention to monic
polynomials and will also assume, without loss of generality, that all factors are monic
when working with factorizations of such polynomials.
If deg f(x) = 1, then f(x) must be irreducible so ord (f(x)) ∈ D(q − 1) as noted

above. This establishes part (i).
If deg f(x) = 2, then either f(x) is irreducible, in which case we have ord (f(x)) ∈

D(q2−1), or we have a factorization f(x) = g1(x)g2(x) with deg g1(x) = deg g2(x) = 1.
There are then two cases to consider. If the factors are distinct (not associates), then
we see that ord (f(x)) is the least common multiple of ord (g1(x)) and ord (g2(x)) by
Theorem 2.4. Since both orders divide q − 1, it follows that ord (f(x)) ∈ D(q − 1).
On the other hand, if g1(x) and g2(x) are associates, then they must be equal since
we are assuming all factors are monic. Thus we have f(x) = g1(x)

2. Applying
Theorem 2.3, we see that ord (f(x)) = p ord (g1(x)) ∈ pD(q − 1) since p = p1 ≥ 2 for
all p. Combining the above cases, we have thus established that if deg f(x) = 2, then

ord (f(x)) ∈ D(q2 − 1) ∪D(q − 1) ∪ pD(q − 1) = D(q2 − 1) ∪ pD(q − 1).

This establishes part (ii).
The same sort of arguments are used to handle the remaining values k = 3, 4 and

we now outline the main subcases. If deg f(x) = 3, then one of the following must
hold:

• f(x) is irreducible. In this case, we have ord (f(x)) ∈ D(q3 − 1).
• f(x) = g(x)h(x) with g(x), h(x) ∈ Fq[x] irreducible and deg g(x) = 2 and
deg h(x) = 1. Then ord (g(x)) ∈ D(q2 − 1) and ord (h(x)) ∈ D(q − 1). Since
q − 1 divides q2 − 1, we see that ord (f(x)) ∈ D(q2 − 1).

• f(x) = g1(x)g2(x)g3(x) with deg g1(x) = deg g2(x) = deg g3(x) = 1 and the
factors pairwise distinct. We see that ord (gi(x)) ∈ D(q − 1) for i = 1, 2, 3.
Since D(q − 1) is closed under least common multiples, we have ord (f(x)) ∈
D(q − 1).

• f(x) = g1(x)
2g2(x) with deg g1(x) = deg g2(x) = 1 and g1(x) distinct from

g2(x). We see that ord (g1(x)
2) ∈ pD(q − 1) and ord (g2(x)) ∈ D(q − 1).

Since D(q − 1) is closed under least common multiples, we have ord (f(x)) ∈
pD(q − 1).

• f(x) = g(x)3 with deg g(x) = 1. We have ord (g(x)) ∈ D(q− 1). The smallest
value of t such that pt ≥ 3 is t = 1 if p ≥ 3 and t = 2 if p = 2. It follows that
ord (f(x)) ∈ pD(q − 1) if p ≥ 3, and ord (f(x)) ∈ 4D(q − 1) if p = 2.
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Combining the above, we see that if deg f(x) = 3 and p ≥ 3, then

ord (f(x)) ∈ D(q3 − 1) ∪D(q2 − 1) ∪D(q − 1) ∪ pD(q − 1)

= D(q3 − 1) ∪D(q2 − 1) ∪ pD(q − 1)

If p = 2, then 4D(q−1) must also be included in the union. This establishes part (iii).
Finally, if deg f(x) = 4, then one of the following must hold:

• f(x) is irreducible. Then ord (f(x)) ∈ D(q4 − 1).
• f(x) is the product of degree 3 and degree 1 irreducible polynomials. Since
q − 1 divides q3 − 1, we see that ord (f(x)) ∈ D(q3 − 1).

• f(x) is the product of two irreducible quadratics. One must consider both the
case where the quadratic factors are distinct and also the case where one is
repeated. Combining, one sees that ord (f(x)) ∈ {1, p}D(q2 − 1).

• f(x) is the product of an irreducible quadratic and two degree 1 polynomials
(where the latter might be repeated). Then ord (f(x)) ∈ {1, p}D(q2 − 1). In
deriving this statement, note that the least common multiple of an element in
D(q2 − 1) and pD(q − 1) will lie in pD(q2 − 1).

• f(x) is the product of 4 linear factors. These could all be distinct or there could
be some repetition. The cases where f(x) includes a repeated factor g(x)3 or
g(x)4 are the ones where the behavior is slightly different for small p. In
particular, the smallest value of t such that pt ≥ 4 is t = 1 for p ≥ 5 and t = 2
for p = 2, 3. Analyzing all the cases, we see that if p ≥ 5, then ord (f(x)) ∈
{1, p}D(q − 1), and if p = 2, 3, then ord (f(x)) ∈ {1, p, p2}D(q − 1).

Combining the above, we see that if deg f(x) = 4 and p ≥ 5, then

ord (f(x)) ∈ D(q4 − 1) ∪D(q3 − 1) ∪ {1, p}D(q2 − 1) ∪ {1, p}D(q − 1)

= D(q4 − 1) ∪D(q3 − 1) ∪ pD(q2 − 1).

If p = 2, 3, then p2D(q − 1) must also be included in the union. This establishes
part (iv) and completes the proof. �

Example 3.6. Consider the field F2 so q = p = 2. Using Theorem 3.5, we can easily
compute all possible periods for linear recurrence sequences of degree k ≤ 4 over this
field. We have:

P (1,F2) = D(1) = {1}.

P (2,F2) = D(3) ∪ 2D(1) = {1, 2, 3}.

P (3,F2) = D(7) ∪D(3) ∪ {2, 4}D(1) = {1, 2, 3, 4, 7}.

P (4,F2) = D(15) ∪D(7) ∪ 2D(3) ∪ 4D(1) = {1, 2, 3, 4, 5, 6, 7, 15}.

Remark 3.7. It is relatively easy to find examples showing that the containment in
Theorem 3.3 can be strict once k ≥ 5. For example, the polynomials g(x) = x2+x+1
and h(x) = x3 + x + 1 are primitive over F2 and so achieve the maximum possible
order 2k−1 relative to their degree k as discussed in Corollary 2.10. If we set f(x) =
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g(x)h(x) = x5 + x4 +1 = x5 − x4 − 1, then ord (f(x)) = lcm(ord (g(x)), ord (h(x))) =
lcm(3, 7) = 21. It follows that the impulse response sequence defined by the corre-
sponding linear recurrence

a5 = a4 + a0
has period 21. This can also be verified directly by computing the sequence

0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, . . .

Observe that 21 /∈ D(2k − 1) for 1 ≤ k ≤ 5 which demonstrates that the containment
in Theorem 3.3 is strict when k = 5 and q = p = 2.

4. Linear recurrences and period sets over other finite rings

Let q be a power of the prime p. The finite field Fq can be constructed as a quotient
Fp[t]/〈f(t)〉 where f(t) ∈ Fp[t] is irreducible. In this section, we consider sequences
defined by linear recurrences over a broader class of finite commutative rings, some
of which arise by weakening this assumption on f(t).
Let f(t) =

∏r

i=1 fi(t) with fi(t) ∈ Fp[t] monic and irreducible for 1 ≤ i ≤ r. Define
R = Fp[t]/〈f(t)〉. If we assume that the factors fi(t) are pairwise distinct (hence
relatively prime), then we can apply the Chinese Remainder Theorem to obtain a
ring isomorphism

R ∼= Fp/〈f1(t)〉 ⊕ . . .⊕ Fp/〈fr(t)〉 ∼= Fpd1 ⊕ . . .⊕ Fpdr

where di = deg fi(t) for 1 ≤ i ≤ r. The induced projection πi from R onto the ith
component Fp/〈fi(t)〉 ∼= Fpdi is given explicitly by

g(t) + 〈f(t)〉 7−→ g(t) + 〈fi(t)〉.

More generally, we will consider rings of the form R = Fq1 ⊕ . . . ⊕ Fqr in which the
finite fields in different components are not required to have the same characteristic.
Suppose we have a sequence a = (aj)

∞

j=1 defined over such a ring R. Applying
the projection maps πi : R → Fqi, we obtain r sequences πi(a) := (πi(aj))

∞

j=1, each
one defined over the corresponding component field Fqi. Conversely, given sequences

(a
(i)
j )∞j=1 defined over Fqi for 1 ≤ i ≤ r, we can form r-tuples to obtain a sequence

a = (a
(1)
j , . . . , a

(r)
j )∞j=1 defined over R. The following lemma is easily verified.

Lemma 4.1. The sequence a is periodic if and only if πi(a) is periodic for all 1 ≤
i ≤ r. When a is periodic, we have

ρ(a) = lcm(ρ(π1(a)), . . . , ρ(πr(a))).

Some straightforward algebraic manipulations show that the sequence a is defined
by a linear recurrence of degree k over R if and only if this holds for all of the
component sequences πi(a). The recurrence equations for the latter are obtained by
simply applying the projection maps to the coefficients of the recurrence equation
for a.
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We will continue to restrict attention to linear recurrence equations in which the
lowest indexed coefficient c0 is a unit. This condition holds for c0 ∈ R if and only if
πi(c0) is a unit in Fqi for all i, equivalently πi(c0) 6= 0 for all i. Recall from Section 1
that sequences defined by such a linear recurrence of degree k over R will be periodic
with ρ(a) bounded above by |R|k − 1. As we will see shortly, this upper bound on
the period is not always attained.
Extending the period set notation introduced in the previous section and using the

lemma and other observations above, we have the following result.

Lemma 4.2. Let R = Fq1 ⊕ . . .⊕ Fqr and k ≥ 1. Then

P (k,R) = {lcm(ω1, . . . , ωr) | ωi ∈ P (k,Fqi) for 1 ≤ i ≤ r}.

Example 4.3. Let R = F2 ⊕ F3 ⊕ F5. First consider k = 1. Using Theorem 3.5, we
see that:

P (1,F2) = D(1) = {1}.

P (1,F3) = D(2) = {1, 2}.

P (1,F5) = D(4) = {1, 2, 4}.

It follows by Lemma 4.2 that

P (1,R) = {lcm(ω1, ω2, ω3) | ω1 ∈ P (1,F2), ω2 ∈ P (1,F3), ω3 ∈ P (1,F5)}

= {1, 2, 4}.

When k = 2,

P (2,F2) = D(3) ∪ 2D(1) = {1, 2, 3}.

P (2,F3) = D(8) ∪ 3D(2) = {1, 2, 3, 4, 6, 8}.

P (2,F5) = D(24) ∪ 5D(4) = {1, 2, 3, 4, 5, 6, 8, 10, 12, 20, 24}.

By Lemma 4.2, we then have

P (2,R) = {lcm(ω1, ω2, ω3) | ω1 ∈ P (2,F2), ω2 ∈ P (2,F3), ω3 ∈ P (2,F5)}

= {1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120}.

We will skip over k = 3 and k = 4 since our main point is to demonstrate how
easily one can obtain the full period sets without doing a brute force enumeration of
all possible combinations of linear recurrence equations and initial states. Even for
k = 2, there are 8 · 30 = 240 choices for the coefficients (c0, c1) with c0 a unit, and
each of these can be paired with 302 = 900 different initial states s0 = (a0, a1).

Remark 4.4. By the Chinese Remainder Theorem, we have F2⊕F3⊕F5
∼= Z30 so the

calculations in the preceding example can be viewed as determining the period sets for
linear recurrences of small degree defined over Z30. More generally, the methods in this
paper can be applied to find period sets of linear recurrences defined over Zn for any
n that decomposes as a product of distinct prime numbers. The periods of sequences
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in the case where n includes nontrivial prime powers have also been investigated. We
refer the reader to [7, 10] for more details.

We have the following upper bound on the periods of sequences defined over such
rings.

Lemma 4.5. Let R = Fq1 ⊕ . . . ⊕ Fqr and k ≥ 1. Let a be a sequence defined by a
linear recurrence of degree k over R. Then

ρ(a) ≤

r
∏

i=1

(qki − 1).

Proof. We have ρ(a) = lcm(ω1, . . . , ωr) ≤
∏r

i=1 ωi with ωi ∈ P (k,Fqi) for 1 ≤ i ≤ r.
Since ωi ≤ qki − 1 for all i, the result follows. �

One easy consequence of this upper bound is the following characterization of the
fields among such rings. Note that R = Fq1 ⊕ . . .⊕ Fqr is not a field if r > 1 due to
the presence of zero divisors.

Theorem 4.6. Let R = Fq1 ⊕ . . . ⊕ Fqr and k ≥ 1. Among all sequences a defined
by linear recurrences of degree k over R, the maximum period |R|k − 1 is achieved if
and only if R is a field (r = 1).

Proof. By Corollary 2.10, the maximum can be achieved when R is a field so the
reverse implication holds. The forward implication follows from the preceding lemma
by observing that if r > 1, then

ρ(a) ≤

r
∏

i=1

(qki − 1) <

(

r
∏

i=1

qki

)

− 1 = |R|k − 1

for all sequences a defined by a linear recurrence of degree k over R . �

We have investigated the maximum periods for some families of rings that are not
fields. One particularly simple family are those of the form An = Fp[t]/〈t

n − 1〉 for
n > 1. These are also called cyclic group algebras since the elements of An can be
identified with formal linear combinations of the elements of a cyclic group of order
n with coefficients in Fp. The multiplication operation can then be viewed as arising
by extending the group multiplication to such linear expressions in a natural way.
The factorization tn − 1 = (t− 1)(tn−1 + . . .+ t + 1) immediately implies that An

is not a field for n > 1 and the maximum period for a linear recurrence sequence of
degree k over An must be strictly smaller than |An|

k − 1 = pnk − 1. (Note that the
latter assertion holds even when f(t) has repeated irreducible factors which occurs
when p divides n.) Computer experiments show that there is a lot of variation in
the maximum period. This is not surprising since it depends on the structure of An

which in turn depends on the factorization of tn − 1 into irreducibles over Fp as p
varies. In general, it seems that the larger the number of factors of tn−1, the smaller
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the maximum period, although we have not formulated a precise statement regarding
this relationship.
We conclude with one general observation about the family {An}

∞

n=1. It is well
known that if n = ℓ is a prime integer, then the cyclotomic polynomial Φℓ(t) = tℓ−1+
. . .+t+1 is irreducible over Q. It follows from the Frobenius Density Theorem (see [9,
pg 32] for more details on the latter), that Φℓ(t) remains irreducible when reduced
modulo p for infinitely many primes p. For such p, we have Aℓ

∼= Fp ⊕ Fpℓ−1 and so
the maximum period of linear recurrence sequences of degree k over Aℓ is at least
p(ℓ−1)k − 1 ≈ 1

pk
(|Aℓ|

k − 1) in this case. This follows since there are sequences defined

over the field Fpℓ−1 in the second component with period p(ℓ−1)k−1 by Corollary 2.10.
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18 (1996), 26–37.

[10] M. Ward, The Arithmetical Theory of Linear Recurring Series, Trans. Amer. Math. Soc. 35
(1933), 600–628.

Department of Mathematics, Washington and Lee University, 204 W. Washington

St., Lexington, VA 24450, USA.

E-mail address : bushm@wlu.edu

Department of Mathematics, University of Southern California, 3620 S. Vermont

Ave., KAP 104, Los Angeles, CA 90089-2532, USA.

E-mail address : dquijada@usc.edu

http://abstract.ups.edu
https://repository.wlu.edu/handle/11021/32172

	1. Introduction
	2. Linear recurrences over finite fields
	3. Period sets of small degree recurrences
	4. Linear recurrences and period sets over other finite rings
	References

