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Abstract

We extend the assertion of the Generalized Lower Bound Theorem (GLBT)

to general polytopes under the assumption that their low dimensional skele-

ton is simplicial, with partial results for the general case. We prove a quan-

titative version of the GLBT for general polytopes, and use it to give a topo-

logical necessary condition for polytopes to have vanishing toric gk entry.

As another application of the QGLBT we prove a conjecture of Kalai on

g-numbers for general polytopes approximating a smooth convex body.

1 Introduction

The well known g-theorem [BL80, Sta80, McM70] characterizes the face num-

bers of simplicial polytopes, and in particular says that the g-numbers are non-

negative. The Generalized Lower Bound Theorem (GLBT) [MW71, MN13] char-
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acterizes the simplicial polytopes attaining equality gk = 0, being exactly the

(k − 1)-stacked polytopes. For general poytopes P , the toric g-vector, intro-

duced by Stanley [Sta87] , is computed from the face poset of the polytope,

and coincides with the g-vector in the simplicial case. Karu [Kar04] proved non-

negativity of the toric g-vector by showing it computes the dimension of the

primitive cohomology of the associated Combinatorial Intersection Homology

module IH (P ) (introduced in [BBFK02, BL03]) w.r.t. a Lefschetz element. The

following problem naturally arise:

Problem 1.1. Given 1 ≤ k ≤ d/2, for which d-polytopes P does toric gk(P ) = 0?

We provide a few results in this direction. A polytope is k-simplicial if all its

k-dimensional faces are simplices. The following generalizes the GLBT:

Theorem 1.2. Let P be a (2k − 1)-simplicial d-polytope with gk(P ) = 0 (k ≤ d/2).

Let ∆ be the collection of geometric d-simplices whose (k − 1)-skeleton is a subcomplex

of the face complex of P . Then ∆ is a triangulation of P .

This result is tight: note that the pyramid over P satisfies g(Pyr(P )) = g(P ).

Thus by taking a (d− (2k−1))-fold pyramid Q = Pyr(Pyr(· · · (Pyr(P )) · · · ) over

any simplicial (2k − 1)-polytope P , we have gk(Q) = 0, Q is (2k − 2)-simplicial,

and the clique complex over the (k − 1)-skeleton of Q is typically a strict subset

of Q.

The key point in the proof of Theorem 1.2 is noticing that, up to degree k, the

module IH (P ) is isomorphic to the corresponding Stanley-Riesner (quotient)

ring, and then use either of the proofs of the GLBT, [MN13] or [Adi17], via

crystallization or propagation resp.

The only d-polytope with g1(P ) = 0 is the d-simplex. The simplest open case

then is to characterize 2-simplicial 4-polytopes P with g2(P ) = 0. One reduces to

the prime case, namely when P has no missing tetrahedra T , as otherwise P =

P1∪TP2 and each g2(Pi) = 0, i = 1, 2. Paffenholz and Werner [PW06] constructed

examples of such polytopes with n vertices, for each n ≥ 13. We give a structural
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condition that all such polytopes must satisfy, given by restricting the following

theorem to k = 2. Let PW denote the polytopal complex whose faces are all

faces of a polytope P whose vertexset is contained in W , where W is a subset

of the vertexset V (P ) of P . Say a simplex σ is a missing simplex in P if ∂σ is a

subcomplex of ∂P and σ is not a face of P .

Theorem 1.3. Let P be d-polytope with gk(P ) = 0, d ≥ 2k ≥ 2, and let W denote any

subset of the vertices of P . Then the embedding of PW into the closure of ∂P \ PV (P )\W

induces the zero map on the (k−1)th rational homology groups. Moreover, any missing

k-simplex in P is contained in a facet of P .

Theorem 1.3 is inspired by, and extends, Kalai’s result [Kal87, Kal94] that

when such P is simplicial it has no missing k-simplices1. More generally, as we

shall see, the following extension of the quantitative GLBT (QGLBT) by Adipra-

sito [Adi17] to the toric case gives a lower bound on gk(P ) in terms of topological

Betti numbers of induced subcomplexes of P . Specifically,

Theorem 1.4. Let P be a d-polytope, and W any subset of its vertices V = V (P ). Let

k ≤ d
2
. Then the induced simplicial subcomplex PW satisfies

(
d+ 1

k

)
αk−1(PW ) ≤ gk(P ).

Here αk−1(PW ) denotes the dimension of the image of

Hk−1(PW ) → Hk−1(cl(∂P \ PV \W )),

where we consider homology with real coefficients.

We use Theorem 1.4 to extend the recent proof of Kalai’s conjecture on sim-

plicial polytopes approximating smooth convex bodies [ANS16] to the non-

simplicial case.

1The case d = 2k > 4 was not worked out by Kalai; later Nagel [Nag08, Cor.4.8] proved this
case as well.
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Corollary 1.5. Let K be a smooth convex body in R
d, and (Pn) a sequence of d-

polytopes such that Pn → K in the Hausdorff metric. Then for any 1 ≤ k ≤ d/2,

gk(Pn) → ∞ as n → ∞.

Further, if K has a C2 boundary, and a d-polytope P is ǫ-close to K for some small

enough ǫ > 0, then gk(P ) = Ω(ǫ−
d−1
2 ).

Outline: in Section 2 we recall the construction of IH (P) and prove Theo-

rem 1.2, in Section 3 we prove the QGLBT, namely Theorem 1.4, and deduce

from it Theorem 1.3 and Corollary 1.5.

2 Intersection cohomology for general fans

In order to work in the context of general polytopes, we use the Barthel-Brasselet-

Fieseler-Kaup [BBFK02] and Karu [Kar04] construction of the equivariant in-

tersection cohomology sheaf, constructed inductively on the ith skeleton, by

iteratively applying the Lefschetz theorem to faces of dimension i − 1. In par-

ticular, the equivariant sheaf L(P ) of a polytope P is constructed as a subspace

of L(sdP ), where sdP is the simplicial polytope whose boundary complex is

the derived subdivision of the boundary complex of P . The stalk over a proper

face σ of P in L(P ) is a free module over the primitive elements with respect to

the operation of the Lefschetz element induced on IH (σ), the (non-equivariant)

intersection cohomology of σ. It follows in particular that low-degree intersec-

tion cohomology depends more on the simplicial structure than higher degrees.

Specifically, for a geometric simplicial complex ∆ in R
d denote by A(∆) the quo-

tient of the Stanley-Riesner ring R[∆] of ∆ over R by the ideal generated by the

d elements of degree 1 corresponding to the embedding of the vertices of ∆ in

R
d.

Remark 2.1. We adopt Karu’s abuse of notation and do not adopt the natural

grading for intersection cohomology arising from toric geometry (where we

would naturally only have intersection cohomology in even degrees) and in-
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stead use degrees coming from the underlying model for the intersection ring,

the Stanley-Reisner ring.

Proposition 2.2. If the (2k− 1)-skeleton X≤2k−1 of a geometric polyhedral complex X

is simplicial, then IH
i(X) ∼= Ai(X≤2k−1) for every i ≤ 2k.

This proposition allows us to prove Theorem 1.2 by following either of the

proofs [MN13] and [Adi17].

Proof of Theorem 1.2 . Recall ∆ denotes the simplicial complex consisting of all

subsets σ of vertices of the d-polytope P all whose subsets of size ≤ k are sim-

plices in ∂P . Denote by ∆W the induced subcomplex of ∆ on the vertex set

W , and by V (F ) the vertices of a face F of P . We show the following three

properties for any i-face F of P :

(A) ∆V (F ) is Cohen-Macaulay of dimension dimF .

We can assume that F is of dimension at least 2k. It follows immediately

from flabbiness of the intersection cohomology sheaf that gj(F ) ≤ gj(P ) for

all j [BM99, Bra06]; hence the claim follows at once from [Adi17, Cor. 4.7]

for ∆V (F ), which is indeed applicable using Proposition 2.2 and Karu’s hard

Lefschetz for polytopes [Kar04].

(B) ∆V (F ) is a geometric complex embedded in F .

This is a result of McMullen, namely the argument in the proof of [McM04,

Thm.4.1]; see also [BD14, Prop.3.4] and [MN13, Lem.4.2].

(C) Finally, conclude that ∆V (F ) triangulates F .

For this we need that the geometric realization of ∆V (F ) contains the bound-

ary of F , which we know by the induction hypothesis (for i = 2k this is the

data that P is (2k − 1)-simplicial). But every Cohen-Macaulay subcomplex

of Ri and of dimension i is a ball.

For i = d we obtain that ∆ is a geometric triangulation of P , as desired.
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3 Quantitative generalized lower bound theorem and

applications

We shall predominantly need a notion of topology of induced subcomplexes.

Let X be a strongly regular CW complex, namely the open cells in X are em-

bedded and the intersection of closures of any two cells is the closure of a cell

in the boundary of both. Let W be a subset of the vertexset of X . We denote by

XW the collection of those faces whose vertices are subsets of W . Then αk−1(XW )

denotes the dimension of the image of Hk−1(XW ) in Hk−1(cl(X \XV (X)\W )).

3.1 Proof of Theorem 1.4

With the structure of intersection cohomology given in Section 2, we conclude

the proof of Theorem 1.4. While it is possible to prove the theorem in the same

way as in [Adi17], this is a little cumbersome as the ”support” of a Chow co-

homology class is a little tricky to phrase in the intersection ring. Instead, we

give a proof that focuses on an argument similar to [Kal87] and the appendix of

[ANS16], where we proved the same under the assumption that lower-dimensional

cohomologies vanish.

Let Q denote a simplicial polytope and let W denote a subset of vertices

of Q, which we may identify with a set of prime divisors. Assume that the

closed neighborhood N of the induced subcomplex QW , namely the subcomplex

consisting of all faces of Q that are contained in a face containing a vertex from

W , is a regular neighborhood of QW .

Define

I := ker[A(N) →
⊕

w∈W

A(stw N)].

Set B(N) := A(N)/I. Then A(N) ։ B(N).
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Then, by definition, we have an injection

B(N) −֒→
⊕

w∈W

A(stw N)

where A(stw N) denotes the quotient ring of A(N) corresponding to the closed

star of w in N .

Consider ℓ the class of an ample divisor in A(N). Then we have a diagram

0 Bk−1(N)
⊕

w∈W Ak−1(stw N)

0 Bk(N)
⊕

w∈W Ak(stw N)

ℓ ℓ

where the second vertical map ℓ, and therefore also the first, is an injection.

Finally, we have an isomorphism

Hk−1(N)(
d

k
) ∼= ker[Ak(N) −→

⊕

w∈W

Ak(stw N)], (1)

see [NS09, Thm.2.2]. Hence, we obtain an injection of (Hk−1(N))(
d

k) into

Ak(N)
/
ℓAk−1(N).

Remark 3.1. More elementary, one can prove this fact as follows. Consider the

chain complex P̃• defined as

0 −→ R
∗[∆] −→

⊕

v∈∆(0)

R
∗[stv ∆] −→ · · · −→

⊕

F∈∆(d−1)

R
∗[stF ∆] −→ 0,

and tensor it with the Koszul complex K• given by the linear system of pa-

rameters. Computing the second page of the associated filtrations, we obtain

Isomorphism (1). If d > 2k, this can be strengthened to

Hk−1(N)(
d+1
k
) ∼= ker

[
Ak(N)

/
ℓAk−1(N) →

⊕

w∈W

Ak(stw N)
/
ℓAk−1(stw N)

]
.
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If d = 2k, then we only obtain an injection

Hk−1(N)(
d+1
k
) −֒→ Ak(N)

/
ℓAk−1(N).

These maps are realized explicitly by the Ishida complex [Ish80, Secs.4,5] and

[Oda91].

In particular,

Lemma 3.2. Under the above conditions, Hk−1(N)(
d+1
k
) injects into A

k(N)
/
ℓAk−1(N).

We now go back to P . Subdivide it barycentrically twice to obtain P ′. Then

the corresponding subdivision P ′
W ′ of PW is an induced subcomplex satisfying

the regular neighborhood condition for the previous lemma. Let N denote its

closed neighborhood. Therefore, Hk−1(N)(
d+1
k ) injects into Ak(N)

/
ℓA

k−1
(N).

Now, using the decomposition theorem, the cokernel of the pullback in-

clusion of IH (P) to A(P ′) is generated by the images of the Gysin maps (see

[Ful98, Section 6.5]). Thus, these images correspond to cohomologically trivial

cycles in Hk−1(cl(∂P \ PV \W )). Hence, we conclude an injection of the image of

Hk−1(N)(
d+1
k
) ∼= Hk−1(PW )(

d+1
k
) in Hk−1(cl(∂P \ PV \W ))(

d+1
k
) into

IH
k(P)

/
ℓIH k−1 (P).

3.2 Applications: proofs of Theorem 1.3 and Corollary 1.5.

Proof of Theorem 1.3. That the image of Hk−1(PW ) in Hk−1(cl(∂P \ PV \W )) is zero

is immediate from the QGLBT, Theorem 1.4.

Finally, it remains to argue that a missing simplex ∂σ of dimension k in P is

indeed contained in a face of P . To this end, let v denote one of its vertices, and

observe that following Kalai [Kal87], the face σ−v must be contained in the star

of v in ∂P ; indeed, if that is not the case,

IH
k(stv P ∪ σ − v)

/
ℓIH k−1 (stv P ∪ σ − v)
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is nontrivial.

Proof of Corollary 1.5. When the convex body K is smooth, let b be bigger then

any given constant, and when K has a C2 boundary, let b = Ω(ǫ−
d−1
2 ) when P

is ǫ-close to K for small enough ǫ > 0. With Theorem 1.4 (QGLBT) at hand, we

proceed exactly as in [ANS16] and find b copies γ1, . . . , γb of the (k − 1)-sphere

in ∂K, and 0 < ǫ′ < ǫ (where P is ǫ-close to K, for some ǫ small enough) such

that:

(i) the ǫ-neighborhoods γi + ǫ, 1 ≤ i ≤ b, are pairwise disjoint in ∂K, and

each γi + ǫ deformation retracts to γi;

(ii) if v, u ∈ V (P ) such that v ∈ γi + ǫ′ and u ∈ γj + ǫ′ for some i 6= j, then no

proper face of P contains both v and u;

(iii) for Wi := V (P ) ∩ γi + ǫ′, the following inclusions hold

πPγi ⊂ PWi
⊆ ∂P ∩ convWi ⊆ γi + ǫ

where πP denotes the closest point projection to P .

We conclude the proof by noticing that (i) and (iii) imply αk−1(PWi
) ≥ 1, and

thus, by (ii), for W = ⊎iWi, αk−1(PW ) =
∑b

i=1 αk−1(PWi
) ≥ b.
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