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DERIVED k◦-ADIC GEOMETRY AND DERIVED RAYNAUD LOCALIZATION THEOREM

JORGE ANTÓNIO

ABSTRACT. The goal of the present text is to state and prove a generalization of Raynaud localization theorem in the
setting of derived geometry. More explicitly, we show that the ∞-category of quasi-paracompact and quasi-separated
derived k-analytic spaces can be realized as a localization of the ∞-category of admissible derived formal schemes. We
construct a derived rigidification functor generalizing Raynaud’s rigidification functor. In order to construct the latter we
will need to formalize derived formal k◦-adic formal geometry via a structured spaces approach. We prove that k◦-adic
Postnikov towers of derived k◦-adic Deligne-Mumford stacks decompose and we relate these to Postnikov towers of
derived k-analytic spaces. This is possible by a precise comparison between the k◦-adic cotangent complex and the
k-analytic cotangent complex.
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1. INTRODUCTION

1.1. Background material. Let k be a non-archimedean field of rank 1 valuation, k◦ its ring of integers and let
t ∈ k◦ be a fixed pseudo-uniformizer of k. Denote fSchk◦ the category of quasi-paracompact and quasi-separated
admissible k◦-adic formal schemes, i.e. formal schemes over Spf k◦ topologically of finite presentation whose
structure sheaf is (t)-torsion free. Let Ank denote the category of k-analytic spaces. There exists a rigidification
functor, also referred as Raynaud’s generic fiber functor,

(−)rig : fSchk◦ → Ank,
1

http://arxiv.org/abs/1805.03302v2


given by the formula
X ∈ fSchk◦ 7→ X

rig ∈ Ank.

When X = Spf(A), for some topologically of finite presentation k◦-adic algebra A, we have that

Spf(A)rig ≃ Sp(A⊗k◦ k) ∈ Ank,

where the latter denotes the k-affinoid space associated to the k-affinoid algebraA⊗k◦ k. Moreover, every quasi-
paracompact and quasi-separated k-analytic space X admits a formal model over Spf k◦. Concretely, there exists
X ∈ fSchk◦ such that

X
rig ≃ X.

In principle, one is then able to understand the analytic structure on X through the formal model X. Furthermore
one has the following crucial result, proved by Michel Raynaud in the quasi-compact case and by Rachid Lamjoun,
cf. [Lam99, Theorem 3.14], in the quasi-paracompact case:

Theorem 1 (Raynaud/Lamjoun, Theorem 8.4.3 in [Bos05]). The functor (−)rig : fSchk◦ → Ank is a localization
functor. More precisely, the latter factors through the localization of fSchk◦ at the class of admissible blow ups,
denoted S. Moreover, the induced functor

fSchk◦ [S−1]→ Anqpcqsk

is an equivalence of categories, where Anqpcqsk ⊆ Ank denotes the full subcategory of quasi-paracompact quasi-
separated k-analytic spaces.

Theorem 1 has many applications in practice. Indeed, such result allows us to extrapolate methods of modern
algebraic geometry into the rigid analytic setting. For instance, Theorem 1 is useful to study flatness and base
change theorems in the setting of rigid k-analytic geometry. Another instance of this principle is the study of
flat descent of coherent sheaves for rigid k-analytic geometry, proved in great generality by Bosch-Görtz [BG98].
Theorem 1 has also found applications to the study of rigid k-analytic moduli spaces, such as Drinfeld’s half upper
plane, the rigidification of moduli of abelian varieties equipped with level structures and more recently the moduli
of p-adic local systems of étale local systems on smooth varieties, LocSysp,n(X), see [Ant17].

Raynaud’s localization theorem allows us to bypass the intrinsic analytic difficulties by reducing the questions
at hand to the formal level. Furthermore, techniques coming from algebraic geometry can be used effectively to
study the geometry of formal schemes.

1.2. Main results. The main goal of the current text is to prove an analogue of Theorem 1 in the setting of derived
k-analytic geometry.

Derived k-analytic geometry was introduced and studied at lenght by M. Porta and T. Yu Yue in [PY16a,PY17].
On the other hand, spectral formal algebraic geometry was developped in [Lur16, §8] by J. Lurie. Unfortunately,
no link between the theory of derived k◦-adic schemes and that of derived k-analytic spaces has been established
prior to this text.

In order to state a derived analogue of Theorem 1 one needs a crucial ingredient, namely the existence of a
derived rigidification functor. Inspired by the construction of the derived analytification functor of [PY17, §3],
we will give a construction of the derived rigidification functor, see Corollary 4.1.8. Our construction requires the
development of a structured spaces approach to derived formal k◦-adic geometry.

This is achieved in §3: we develop a theory of derived (t)-adic formal geometry by means of Tad(k
◦)-structured

spaces. Here Tad(k
◦) denotes the k◦-adic pregeometry introduced in Definition 3.1.1. More concretely, we will

consider pairs (X,O) where X is an∞-topos and

O : Tad(k
◦)→ X

is a local Tad(k
◦)-structure, see Definition 2.1.6. We prove that the datum of such an object O is equivalent to the

datum of a sheaf of derived k◦-adic algebras, Oad, such that π0(Oad) is equipped with a natural adic topology. The
latter is further assumed to be compatible with the (t)-adic topology on k◦. This last statement can be interpreted
as a rectification type statement and it is the content of Theorem 3.2.5.

We will then give a definition of derived formal k◦-adic Deligne-Mumford stacks over k◦, via Tad(k
◦)-

structured spaces. Moreover, under certain mild finiteness conditions, this notion agrees with the simplicial
analogue of the spectral notion introduced in [Lur16, §8]. We then proceed to study k◦-adic Postnikov tower
decompositions and the k◦-adic cotangent complex. To the author’s best knowledge, the study of the k◦-adic
cotangent complex and its role in the study of Postnikov towers of k◦-adic Deligne-Mumford stacks has never
been addressed before in the literature.

2



Using the machinery developed in §3, we define a rigidification functor

(−)rig : RTop (Tad(k
◦))→ RTop (Tan(k))

which restricts to a well-defined functor

(−)rig : dfDMk◦ → dAnk,

where dfDMk◦ denotes the ∞-category of derived k◦-adic Deligne-Mumford stacks and dAnk the ∞-category
of derived k-anlytic spaces. See Definition 3.2.12 for the definition of the former and Definition 2.2.3 for the
definition of dAnk. We prove that the derived rigidification functor (−)rig coincides with the usual rigidification
functor when restricted to the category of ordinary formal schemes, cf. Corollary 4.1.5.

Theorem 1.2.1 (Theorem 4.4.4). Let Z ∈ dAnk be a quasi-paracompact and quasi-separated derived k-analytic
space. There exists Z ∈ dfDM such that one has an equivalence Z

rig ≃ Z in dAnk. In other words, Z admits a
formal model Z ∈ dfDMk◦ .

Let dfSchk◦ denote the full subcategory of dfDMk◦ spanned by those X ∈ dfDMk◦ such that t0 (X) is equiv-
alent to an ordinary admissible quasi-paracompact and quasi-separated formal scheme over k◦. We say that a
morphism f : X→ Y in dfDMk◦ is rig-strong if, for each i > 0, the induced map

πi
(
(f rig)−1OYrig

)
⊗π0((frig)−1O

Yrig
) π0(OXrig )→ πi (OXrig) ,

is an equivalence in the∞-category of the structure sheaf OXrig -modules, Modπ0(OXrig )
. Let dAnqpcqsk ⊆ dAnk

denote the full subcategory spanned by those X ∈ dAnk such that its 0-th truncation t≤0(X) is equivalent to
a quasi-paracompact and quasi-separated ordinary k-analytic space. The following is a direct generalization of
Raynaud’s localization theorem to the derived setting:

Theorem 2 (Theorem 4.4.9). Let S denote the saturated class generated by rig-strong morphisms f : X → Y

such that t0 (f) is an admissible blow up, in dfSchk◦ . Then the rigidification functor

(−)rig : dfSchk◦ → dAnqpcqsk .

factors through the localization∞-category dfSchk◦ [S−1]. Moreover, the induced functor

dfSchk◦ [S−1]→ dAnqpcqs
k .

is an equivalence of∞-categories.

Let us briefly sketch the proof of Theorem 4.4.9. In order to prove the statement it suffices to prove that
given X ∈ dAnk, as above, the comma category CX :=

(
dfSchk◦

)
X/

is contractible. We will prove a slightly
stronger result, namely CX is a filtered ∞-category. In order to illustrate the main ideas behind the proof it
suffices to explain how to lift a morphism f : X → Y in dAnk to a morphism f+ : X→ Y in dfSchk◦ , such that
(f+)rig ≃ f .

Our argument follows by induction on the Postnikov tower ofX . Suppose thatX ≃ t≤0(X) in the∞-category
dAnk. Notice that Theorem 1 implies that we can lift t≤0(f) to a morphism f+

0 : X0 → Y0 in the category fSchk◦ .
As X → Y factors through the canonical morphism t≤0Y → Y in dAnk, we conclude by Theorem 1.2.1 together
with Theorem 1 that we can find a formal model for f : X → Y , up to an admissible blow up of the 0-th
truncations.

Let n ≥ 0 be an integer. Assume further that we are giving a morphism

(f+
n ) : Xn → Yn,

in dfSchk◦ such that

(f+
n )rig ≃ t≤nf : t≤nX → t≤nY.

Consider the (n+ 1)-th step of the Postnikov tower, namely the pushout diagram

t≤nX [πn+1(OX)[n+ 2]] t≤nX

t≤nX t≤n+1X,

in the∞-category dAnk. In order to proceed, we will need to prove:
3



Proposition 1.2.2 (Corollary 4.3.8). Let X ∈ dfSchk◦ and denote X := X
rig ∈ dAnk. Then the rigidification

functor induces a canonical equivalence (
Lad
X

)rig
≃ Lan

X ,

in the∞-category ModOX .

The induction hypothesis combined with the universal property of the adic and analytic cotangent complexes
and with refined results on the existence of formal models for almost perfect modules onX , proved in both [AP19]
and Appendix A, imply that we can extend the morphism f+

n : Xn → Yn to a diagram

(1.2.1) f+
n ← f+

n [πn+1(f)
+[n+ 2]]→ t≤nf

+
n .

The latter is considered as an object in Fun
(
Λ2
0, dfSch

∆1

k◦

)
, where

πn+1(f)
+ ∈ Coh+(X0)

∆1

,

denotes a formal model for πn+1(f). By taking pushouts along Λ2
0 we obtain the desired lifting

f+
n+1 : Xn+1 → Yn+1,

of t≤n+1(f).
The main technical difficulty of the proof comes from the lifting of higher coherences involved in finite dia-

grams of derived k-analytic spaces to higher coherences of diagrams of formal models. This is needed in order to
extend (1.2.1) above in the case of more complex diagrams.

1.3. Notations and conventions. Throughout the text, unless otherwise stated, k denotes a non-archimedemean
field of rank 1 valuation and k◦ = {x ∈ k : |x| ≤ 1} its ring of integers. We denote t ∈ k◦ a pseudo-uniformizer
of k. Given an integer n ≥ 1, we will denote by k◦n the reduction modulo (tn) of k◦. We denote fSchk◦ the
(classical) category of formal schemes (topologically) of finite presentation over k◦.

Let n ≥ 0 be an integer, we define k◦〈T1, . . . , Tn〉 as the sub-algebra of k◦[[T1, . . . , Tn]] consisting of those
formal power series f = ΣIaiT

bI
I , such that the coefficients aI → 0, with I → ∞, in k◦. Denote by An

k◦ :=
Spf k◦〈T1, . . . , Tn〉 the k◦-adic affine n-space.

We say that a morphism between two (t)-adic complete k◦-algebras A → B is formally étale if, for each
n ≥ 0, its mod tn reduction is an étale homomorphism of k◦/tn-algebras.

We shall further denote by B
n
k := Sp〈T1, . . . , Tn〉 the closed unit disk and A

n
k :=

(
An

k

)an
the k-analytic affine

n-space.
Let R be a commutative simplicial ring, we denote CAlgR its∞-category of simplicial R-algebras. We will

refer to an object A ∈ CAlgR as a derived R-algebra. Similarly, if R is a discrete ring, we denote CAlg♥R the
category of discrete R-algebras.

Given an objectB ∈ CAlgR we denote by πi (B) the i-th homotopy group of the underlying space associated to
B. We will denoteModR the derived∞-category ofR-modules. Throughout the text we will employ homological
convention. Thus given M ∈ ModR we denote by πi(M) := Hi(M) its i-th homology group.

We denote by S the ∞-category of spaces and RTop the ∞-category of ∞-topoi together with geometric
morphisms between these. In this paper we will extensively use the machinery of structure spaces, developped
in [Lur11b]. We will introduce the k◦-adic pregeometry Tad(k

◦), spanned by (topologically) of finite presentation
formally smooth k◦-adic spaces. Given an∞-toposX we will denote CAlgR(X) := StrlocTdisc(R)(X), CAlg

sh
R (X) :=

StrlocTét(R)(X), fCAlgk◦(X) := StrlocTad(k◦)(X) and AnRingk(X) := StrlocTan(k)(X). We will often denote a general

pregeometry by the letter T. IfR is discrete, we shall also denote by CAlg♥R(X) the category of discreteR-algebras
on X. Let T be a pregeometry. In this paper, we always work with local structures, that is O ∈ StrlocT (X).

Throughout the present text we will freely cite [Lur16]. However, we warn the reader that [Lur16] deals with
spectral algebraic geometry. On the other hand, this paper is devoted to derived geometry and we never make
use of E∞-ring spectra. Fortunately, the statements which we will need from [Lur16] hold true in the simplicial
setting. Moreover, the corresponding proofs apply mutadis mutandins in the simplicial setting. It is also possible
to define spectral k◦-adic geometrical analogues of the results proved in the current text. However, we do not
explore this direction here.

1.4. Acknowledgments. The author is deeply thankful to Mauro Porta for sharing many ideas, remarks and
advices about the contents of the paper. The author is also thankful to Bertrand Toën and Marco Robalo for
valuable discussions about the contents of the paper.
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2. REVIEW ON DERIVED ALGEBRAIC AND ANALYTIC GEOMETRY

2.1. Derived algebraic geometry. In [Lur11b], J. Lurie introduced the notion of a (spectral) scheme, and more
generally (spectral) Deligne-Mumford stack via a structured spaces approach. We review some of the basic notions
for the reader’s convenience. The reader is referred to [Lur11b] and [PY16a] for more details.

Definition 2.1.1. A ringed∞-topos is a pair (X,O) where X denotes an∞-topos and O ∈ CAlg(X) is a CAlg-
valued sheaf, on X. We say that a ringed∞-topos is a locally ringed∞-topos if for each geometric point

x∗ : X ⇄ S : x−1,

the derived ring x−1O, on S, can be identified with a derived local k-ring.

Remark 2.1.2. Let X a topological space. We form the associated∞-topos X := Shv(X), of S-valued sheaves
on X . To a classical locally ringed pair (X,O) one (functorially) associates a locally ringed ∞-topos (X,O).
Indeed, O can be naturally promoted to a local CAlg-valued sheaf on X.

Definition 2.1.3. Let X be∞-topos. Given A ∈ CAlg(X), we say that A is almost of finite presentation if π0(A)
is a classical ring object on X, which is further assumed to be of finite presentation. We further require that, for
every i > 0, πi(A) is a coherent module over π0(A).

We now reformulate the notion of locally ringed∞-topos in terms of pregeometries:

Definition 2.1.4. A pregeometry consists of an∞-category T equipped with a class of admissible morphisms and
a Grothendieck topology. The latter is generated by admissible morphisms. Moreover we require the following
conditions to hold:

(i) T admits finite products;
(ii) Pullbacks along admissible morphisms exist and are again admissible;

(iii) If f and g are morphisms in T such that g and g ◦ f are admissible, then so is f .
(iv) Retracts of admissible morphisms are admissible.

We give a list of well known examples of pregeometries which will be useful later on.

Example 2.1.5. (i) Let Tdisc(k) denote the pregeometry whose underlying category is the full subcategory
of the category of affine k-schemes spanned by affine spaces {An

k}n≥0. The family of admissible mor-
phisms is the family of isomorphisms in Tdisc(k). We further equip it with the discrete Grothendieck
topology.

(ii) Let Tét(k) denote the pregeometry whose underlying category is the full subcategory of the category of
affine schemes spanned by smooth k-schemes. A morphism in Tét(k) is admissible if and only if it is an
étale morphism of affine schemes. We equip Tét(k) with the étale topology.

Definition 2.1.6. Let T be a pregeometry and X an ∞-topos. A T-local structure on X is a functor between
∞-categories O : T → X satisfying the following conditions:

(i) The functor O preserves finite products in T;
(ii) For a pullback square, in T

U ′ X ′

U X

f ,

such that f is admissible, the square

O(U ′) O(X ′)

O(U) O(X)

O(f)

is also a pullback square in X.
(iii) Let {fα : Uα → U} denote a τ -covering in T, such that the fα’s are admissible. Then the induced map

∐
O(Uα)→ O(U),

is an effective epimorphism in X.
5



A morphism O → O′ between T-local structures is said to be local if it is a natural transformation satisfying the
following additional condition: for every admissible morphism U → X in T, the resulting diagram

O(U) O′(U)

O(X) O′(X),

is a pullback square in X. We denote StrlocT (X) the ∞-category of local T-structures on X together with local
morphisms between these.

Construction 2.1.7. (i) In virtue of [Lur11b, Example 3.1.6, Remark 4.1.2], we have an equivalence of
∞-categories

StrlocTdisc
(X) ≃ ShvCAlg(X),

where the latter denotes the∞-category of CAlg-valued sheaves on X. More explicitly, given a ringed
∞-topos (X,O), we can promote it naturally to a Tdisc-structured via the construction:

An
k ∈ Tdisc 7→

(
O×n ∈ Shv (X) ≃ X

)
.

(ii) Similarly, a Tét(k)-local structure on X corresponds to a CAlgk-valued sheaf on X whose stalks are
strictly Henselian. We refer the reader to [Lur16, Lemma 1.4.3.9] for a detailed proof of this result.

Definition 2.1.8. A T-structured∞-topos is a pair X := (X,O), where X denotes an∞-topos and O is a T-local
structure on X. We denote by TopR (T) the∞-category of T-structured∞-topoi, cf. [Lur11b, Definition 3.1.9].

Definition 2.1.9. A derived Deligne-Mumford stack is a Tét(k)-structured∞-topos (X,O), verifying the following
conditions:

(i) The 0-truncation t≤0 (X,O) :=
(
X, π0(O

alg)
)

is equivalent to an (ordinary) Deligne-Mumford stack;
(ii) For each i > 0, the higher homotopy sheaf πi

(
Oalg

)
is a quasi-coherent sheaf on (X,O).

2.2. Derived k-analytic geometry. Let k denote a non-archimedean field of non-trivial valuation. Derived k-
analytic geometry, developped in [PY16a], is a vast generalization of the classical theory of rigid analytic geome-
try. In this §, we will review the basic definitions and we refer the reader to [PY16a, PY17] for a detailed account
of the foundational aspects of the theory.

Definition 2.2.1. Let Tan(k) denote the pregeometry whose underlying category consists of quasi-smooth k-
analytic spaces and whose admissible morphisms correspond to étale maps between them. We equip Tan(k) with
the étale topology.

Construction 2.2.2. Let X be an ordinary k-analytic space and denote Xét the small étale site associated to X .
Let X := Shvét(Xét)

∧ denote the hypercompletion of the∞-topos of étale sheaves on X . We can define a natural
Tan(k)-structure, on X, as follows: given U ∈ Tan(k), we define the sheaf O(U) ∈ X by the formula

Xét ∋ V 7→ HomAnk
(V, U) ∈ S.

As in the algebraic case, we can canonically identify O(A1
k) with the usual sheaf of analytic functions on X .

Definition 2.2.3. We say that Tan(k)-structured ∞-topos (X,O) is a derived k-analytic space if the following
conditions are satisfied:

(i) X is hypercomplete and there exists an effective epimorphism
∐

i Ui → 1X on X verifying:
(ii) For each i, the pair (X|Ui

, π0(O
alg|Ui)) is equivalent, in TopR (Tan(k)), to an ordinary k-analytic space,

via Construction 2.2.2.
(iii) For each index i and j ≥ 1, πj(Oalg|Ui) is a coherent sheaf over π0(Oalg|Ui).

We denote by dAnk the full subcategory of TopR (Tan(k)) spanned by derived k-analytic spaces.

Remark 2.2.4. In [PY16a] and [PY17] the authors prove three key statements concerning derived analytic geom-
etry. Namely the unramifiedness of the pregeometry Tan(k), cf. [PY16a, Corollary 3.11], a ”gluing along closed
immersions” statement, cf. [PY17, Theorem 6.5], and the existence of an analytic cotangent complex classifying
analytic square-zero extensions, loc. cit. [PY17, Proposition 5.18]. There is also a k-analytic analogue of the
Artin-Lurie representability theorem, cf. [PY17, Theorem 7.1].
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3. DERIVED k◦-ADIC GEOMETRY

In this section we introduce the k◦-adic pregeometry, denoted Tad(k
◦), and study the corresponding theory of

Tad(k
◦)-structured spaces. Our first goal is to give an alternative description of a Tad(k

◦)-structured ∞-topos
(X,O). Indeed, we prove that such (X,O) can be alternatively described as a locally ringed∞-topos (X,Oalg)
whose π0

(
Oalg

)
is equipped with an adic topology compatible with the (t)-adic topology. We will prove such

assertion in §3.1, under mild finiteness assumptions on O.
We will also extend the Spf-construction introduced in [Lur16, §8.2] to the context of Tad(k

◦)-structured
spaces. We will then proceed to develop a theory of modules in the setting of derived k◦-adic geometry, see
§3.3. Part §3.4 is devoted to the study of the k◦-adic cotangent complex. We will establish unramifiedness of the
pregeometry Tad(k

◦) in §3.5. In §3.6, we show that Postnikov towers for Tad(k
◦)-structured spaces do converge

and they are fully controlled by the adic cotangent complex.

3.1. Derived k◦-adic spaces.

Definition 3.1.1. The k◦-adic pregeometry, denoted Tad(k
◦), is the full subcategory of the category of affine

formal k◦-adic schemes spanned by those formally smooth formal k◦-schemes. We define the class of admissible
morphisms on Tad(k

◦) as the one generated by étale morphisms. We further equip Tad(k
◦) with the étale topology.

Notation 3.1.2. Denote by TopR (Tad(k
◦)) the ∞-category of Tad(k

◦)-structured∞-topoi. Given X ∈ TopR ,
we set

fCAlgk◦(X) := StrlocTad(k◦)(X),

the∞-category of local Tad(k
◦)-structures on X.

We start by showing that ordinary formal k◦-adic Deligne-Mumford stacks admit a natural description as
Tad(k

◦)-structured∞-topoi:

Notation 3.1.3. Consider the transformation of pregeometries

(−)∧t : Tdisc(k
◦)→ Tad(k

◦), (−)∧t : Tét(k
◦)→ Tad(k

◦),

obtained by performing completion along the (t)-locus. Precomposition along these transformations induce func-
tors

(−)alg : fCAlgk◦(X)→ CAlgk◦(X),

(−)sh : fCAlgk◦(X)→ CAlgshk◦(X),

which we will refer as the underlying algebra functor and the underlying Tét(k
◦)-structure functor, respectively.

The functor (−)alg sends every Tad(k
◦)-structure, on X, to its underlying algebra object. The latter is obtained

by evaluation on the formal affine line, A1
k◦ . Furthermore, the above construction induces canonical functors of

∞-categories of structured∞-topoi:

(−)alg : TopR (Tad(k
◦))→ TopR (Tdisc(k

◦)),

(−)sh : TopR (Tad(k
◦))→ TopR (Tét(k

◦)),

which are determined by the associations

(X,O) ∈ TopR (Tad(k
◦)) 7→ (X,Oalg) ∈ TopR (Tdisc(k

◦))

(X,O) ∈ TopR (Tad(k
◦)) 7→ (X,Osh) ∈ TopR (Tét(k

◦)),

respectively.

Definition 3.1.4. Let X be an ∞-topos. We denote by (CAlgadk◦)♥(X) the usual 1-category of discrete k◦-adic
algebras on X, i.e. discrete k◦-algebras equipped with an adic topology compatible with the (t)-adic topology.
Morphisms in (CAlgadk◦)♥(X) correspond to continuous ring morphisms for the adic topologies.

Definition 3.1.5. Let X denote an∞-topos. We define the∞-category of derived k◦-adic algebras on X, denoted
CAlgadk◦(X), via the pullback diagram

CAlgadk◦(X) CAlgk◦(X)

(CAlgadk◦)♥(X) CAlg♥k◦(X),

π0
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computed in Cat∞.

Lemma 3.1.6. Let X ∈ TopR be an∞-topos. The underlying algebra functor

(−)alg : fCAlgk◦(X)→ CAlgk◦(X),

can be upgraded to a well defined functor

(−)ad : fCAlgk◦(X)→ CAlgadk◦(X).

Proof. We start by explicitly describe (−)ad as follows: for each integer n ≥ 1 and for each A ∈ fCAlgk◦(X),
consider the canonical morphism

Aalg → Aalg ⊗k◦ k◦n ∈ CAlgk◦(X).

Denote by In := ker
(
π0(A

alg)→ π0(A
alg ⊗k◦ k◦n)

)
. The sequence of ideals {In}n≥1 defines an I-adic structure

on Aalg. The latter is further compatible with the (t)-adic topology on k◦. Moreover, for every morphism f : A→
B in fCAlgk◦(X), the underlying algebra morphism

falg : Aalg → Balg,

is compatible with the constructed adic topologies on both Aalg and Balg. Indeed, the latter can be checked
directly at the level of π0. In this case, the assertion follows from the fact that the composite

Aalg → Balg → Balg ⊗k◦ k◦n,

induces a unique morphism Aalg ⊗k◦ k◦n → Balg ⊗k◦ k◦n, which is a consequence of the universal property of
base change along k◦ → k◦n. By the construction of CAlgadk◦(X), we conclude that the (−)alg : fCAlgk◦(X) →
CAlgk◦(X) can be upgraded to a well-defined functor

(−)ad : fCAlgk◦(X)→ CAlgadk◦(X),

as desired. �

Proposition 3.1.7. Both functors

(−)alg : TopR (Tad(k
◦))→ TopR (Tdisc(k

◦))

(−)sh : TopR (Tad(k
◦))→ TopR (Tét(k

◦)),

admit right adjoints

L : TopR (Tdisc(k
◦))→ TopR (Tad(k

◦))

Lsh : TopR (Tét(k
◦))→ TopR (Tad(k

◦))).

Proof. This is an immediate consequence of [Lur11b, Theorem 2.1]. �

We now proceed to have a better understanding of the action of L at the level of Tdisc(k
◦)-structures:

Construction 3.1.8. Let (X,O) ∈ TopR (Tad(k
◦)) be a Tad(k

◦)-structured∞-topos. Consider the comma∞-
category fCAlgk◦(X)/O. The latter is a presentable∞-category thanks to [Por15a, Corollary 9.4]. The underlying
algebra functor induces a well defined functor

(−)alg : fCAlgk◦(X)/O → CAlgk◦(X)/Oalg .

Thanks to [Por15a, Corollary 9.5] the above functor commutes with limits and sifted colimits. Furthermore the
Adjoint functor theorem implies that

(−)alg : fCAlgk◦(X)/O → CAlgk◦(X)/Oalg ,

admits a left adjoint which we shall denote by ΨX : CAlgk◦(X)/Oalg → fCAlgk◦(X)/O. If the underlying∞-topos
X is clear from the context, we shall denote ΨX simply by Ψ.

Construction 3.1.9. Let A ∈ CAlgk◦(X)/Oalg be a Tdisc(k
◦)-structure on X. We define An as the pushout of the

diagram

(3.1.1)

A[u] A

A An,

u7→tn

u7→0
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in the∞-category CAlgk◦(X)/Oalg
n

. We have denoted A[u] the (commutative) derived free algebra on one gener-
ator in degree 0, over A. As Ψ is a left adjoint, we obtain a pushout square

(3.1.2)

Ψ(A[u]) Ψ(A)

Ψ(A) Ψ(An),

u7→tn

u7→0

in the∞-category fCAlgk◦(X)/On
. Every epimorphism is effective in an∞-topos. Moreover, Ψ is a left adjoint,

thus it preserves epimorphisms. These facts combined imply that the top horizontal morphism displayed in (3.1.2)
is an effective epimorphism, on X. The transformation of pregeometries Tdisc(k

◦) → Tad(k
◦) is unramified. It

thus follows from [Lur11a, Proposition 10.3] that we have a pushout diagram

Ψ(A[u])alg Ψ(A)alg

Ψ(A)alg Ψ(An)
alg,

u7→tn

u7→0

in the∞-category CAlgk◦(X)/Oalg
n

. Thus, for each integer n ≥ 1, the unit of the adjunction (Ψ, (−)alg) induces
morphisms

fA,n : An → Ψ(A)algn .

Since An can be realized as pushout of the diagram (3.1.1) and Ψ is a left adjoint we have a natural equivalence

Ψ(An) ≃ Ψ(A)n.

Therefore, we can consider fA,n naturally as a morphism

fA,n : An → Ψ(An)
alg.

Moreover, the ideals
In := ker (π0(A)→ π0(An)) ,

are mapped, under fA,n, to the ideals

Jn := ker
(
π0

(
Ψ(A)alg

)
→ π0

(
Ψ(A)algn

))
.

Therefore, the universal property of (t)-completion induces a canonical morphism

fA : A∧
t → Ψ(A)alg,

in the∞-category CAlgk◦(X). Moreover, the natural morphism

fA : A∧
t → Ψ(A)alg,

is continuous with respect to the I-adic and J-adic topologies on A and Ψ(A)alg, respectively. For this reason,
we can naturally consider the morphism fA as a morphism in the∞-category CAlgadk◦(X). This latter assertion is
a consequence of Lemma 3.1.6.

Definition 3.1.10. Let (X,O) ∈ TopR (Tét). Let A ∈ CAlgk◦(X)/O, we say that A is strictly Henselian if it

belongs to the essential image of the functor CAlgshk◦(X)/O → CAlgk◦(X)/Oalg , given on objects by the formula

A ∈ CAlgshk◦(X)/O 7→ Aalg := A ◦ ι ∈ CAlgk◦(X)/Oalg .

Here ι : Tdisc(k
◦)→ Tét(k

◦) denotes the canonical transformation of pregeometries.

We wish to prove that Ψ(A)alg identifies with the (t)-completion of A, via the morphism fA, constructed in
Construction 3.1.9. In order to establish this result, we need a few preliminaries:

Lemma 3.1.11. Let (F,G) : C→ D be an adjunction of presentable∞-categories. Suppose further that:

(i) Any epimorphism in C is effective;
(ii) G is conservative, preserves epimorphisms and sifted colimits;

Then epimorphisms in D are also effective. Moreover, if {Xα} is a family of compact generators for C then the
family {F (Xα)} generates D, under sifted colimits.
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Proof. Let g : V → Y be an epimorphism in the∞-category D. We wan to show that it is effective, that is the
canonical morphism g′ : Y ′ := |Č(g)| → Y , where Č(g) denotes the geometric realization of the Cech nerve of g,
is an equivalence in D. By assumption, G(g) is an epimorphism. Since G is a right adjoint, we have a canonical
equivalence

G
(
Č(g)

)
≃ Č (G(g)) .

As G commutes with sifted colimits, we see that G(Y ′) ≃ |Č (G(g)) | ≃ G(Y ), in D. We thus conclude that
Y ′ ≃ Y using the conservativity of G. This finishes the proof of the first assertion.

Let Y ∈ D. We can find a filtered category I and a diagram T : I → C such that

colim
α∈I

Tα ≃ G(Y ) ∈ C.

Consider the composition F ◦ T : I → D. For every α ∈ I , we obtain a natural map

ϕα : F (Tα)→ F (G(Y ))→ Y,

where the latter morphism is induced by the counit of the adjunction (F,G). These maps ϕα can be arranged into
a cocone from F ◦ T to Y . For each α, we can form the Čech nerve Č(ϕα). This produces a functor

T̃ : I ×∆
op → D,

informally defined by

(α, n) 7→ Č(ϕα)
n.

There is a natural cocone from T̃ to Y , and we claim that the induced map

ψ : colim
(α,n)∈I×∆op

T̃ (α, n)→ Y

is an equivalence. We remark that

colim
(α,n)∈I×∆op

T̃ (α, n) ≃ colim
n∈∆op

colim
α∈I

T̃ (α, n).

Since G is conservative, it is enough to check that G(ψ) is an equivalence. Observe that, since G commutes with
sifted colimits, we have

G

(
colim
n∈∆op

colim
α∈I

T̃ (α, n)

)
≃ colim

n∈∆op
colim
α∈I

G
(
T̃ (α, n)

)
.

Since I is a filtered category and G is a right adjoint, we obtain:

G

(
colim
α∈I

Č(ϕα)
n

)
≃ Č

(
colim
α∈I

G(F (Tα))→ G(Y )

)n

.

The unit of the adjunction (F,G) provide us with maps ηα : Tα → G(F (Tα)) such that the induced composition

colim
α∈I

Tα → colim
α∈I

G(F (Tα))→ G(Y )

is an equivalence. In particular, the map

colim
α∈I

G(F (Tα))→ G(Y )

is an effective epimorphism. Thus,

colim
(α,n)∈∆op

G(T̃ (α, n)) ≃ |Č(colim
α∈I

G(F (Tα))→ G(Y )| ≃ G(Y ).

We deduce then that G(ψ) is an equivalence. By conservativity of G we conclude that ψ was an equivalence to
start with. �

Remark 3.1.12. Notice that the functor CAlgshk◦(X)/O → CAlgk◦(X)/O introduced in Definition 3.1.10 is fully
faithful. This follows from [Lur11b, Proposition 4.3.19, Remark 2.5.13] combined with [Lur09b, Proposition
7.2.1.14] and the proof of [Por15a, Proposition 9.2]. Therefore, we will usually consider CAlgshk◦(X)/O as a full
subcategory of CAlgk◦(X)/O.

We can now understand explicitly the composite (−)alg ◦Ψ:
10



Proposition 3.1.13. Let (X,O) ∈ TopR (Tdisc(k
◦)). Suppose that the underlying∞-topos X has enough points.

Let A ∈ CAlgk◦(X)/O be an almost of finite presentation derived k◦-algebra on X, which is further assumed to
be strictly Henselian. Then the canonical map

fA : A∧
t → Ψ(A)alg ,

introduced in Construction 3.1.9, is an equivalence in the∞-category CAlgadk◦(X)/Ψ(O)alg .

Proof. We wish to show that the natural map

fA : A∧
t → Ψ(A)alg,

constructed in Construction 3.1.9, is an equivalence whenever A ∈ CAlgk◦(X)/Oalg is almost of finite presenta-
tion.

By hypothesis, X has enough geometric points. Thus, in order to show that fA is an equivalence it suffices to
show that its inverse image under any geometric point

(x−1, x∗) : X ⇄ S,

denoted x−1fA, is an equivalence in the ∞-category CAlgk◦ . Set A := x−1A. Thanks to [Por15b, Theorem
1.12], we deduce that ΨS(A)

alg ≃ x−1Ψ(A)alg. We are thus reduced to the case where X = S.
The∞-category (CAlgk◦)/Oalg is generated under sifted colimits by free objects of the form {k◦[T1, . . . , Tm]}m≥1.

Thanks to Lemma 3.1.11 we conclude that (fCAlgk◦)/O := (fCAlgk◦)/O (S) is generated under sifted colimits
by the family {Ψ(k◦[T1, . . . Tm])}m. As A ∈ (CAlgk◦)/x−1Oalg is almost of finite presentation we conclude that
it can be written as a retract of a filtered colimit of a diagram of the form

A0 → A1 → A2 → . . . ,

where A0 is an ordinary commutative ring of finite presentation over k◦ and Ai+1 can be obtained from Ai as the
following pushout

(3.1.3)

k◦[Sn] k◦[X ]

Ai Ai+1.

We have denoted k◦[Sn] the free simplicial k◦-algebra generated in degree n by a single generator. Notice that,
since A is almost of finite presentation we can choose the above diagram in such a way that, for i > 0, sufficiently
large, we have surjections π0(Ai) → π0(Ai+1). As Ψ is a left adjoint it commutes, in particular, with pushout
diagrams. We conclude that the diagram

(3.1.4)

Ψ(k◦[Sn]) Ψ(k◦[X ])

Ψ(Ai) Ψ(Ai+1),

is a pushout diagram in the ∞-category fCAlgk◦(X)/O. Moreover, the morphism Ψ(Ai) → Ψ(Ai+1) is an
epimorphism on π0. For each n > 0, the morphism k◦[Sn] → k◦[X ] is an effective epimorphism. As Ψ is a left
adjoint, the morphism Ψ(k◦[Sn])→ Ψ(k◦[X ]) is an epimorphism in the (hypercomplete)∞-topos X and thus an
effective epimorphism. Thanks to [PY16a, Proposition 3.14] it follows that the morphism

Ψ(k◦[Sn])alg → Ψ(k◦[X ])alg

is an effective epimorphism, as well. Moreover, the transformation of pregeometries θ : Tét(k
◦) → Tad(k

◦) is
unramified, see Proposition 3.5.5. It follows, cf. [Lur11a, Propositon 10.3], that the diagram,

(3.1.5)

Ψ(k◦[Sn])alg Ψ(k◦[X ])alg

Ψ(Ai)
alg Ψ(Ai+1)

alg,

is a pushout square in CAlgk◦ . By induction we might assume that Ψ(Ai)
alg is equivalent to (Ai)

∧
t .
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The transformation of pregeometries (−)∧t : Tét(k
◦)→ Tad(k

◦) is given by (t)-completion along the (t)-locus.
Therefore, one has a canonical equivalence

Ψ(k◦[X ])alg ≃ k◦〈X〉sh,

where the latter denotes the (t)-completion of the strict Henselianization of k◦[X ]. We now claim that the natural
map

Ψ(k◦[Sn])alg →
(
k◦[Sn]sh

)∧
t

is an equivalence: notice that k◦[Sn] fits into a pushout diagram

k◦[Sn−1] k◦[X ]

k◦[X ] k◦[Sn].

The result then follows by induction on n ≥ 0 and the case n = 0 was already treated. Since

Ψ(Ai)
alg → Ψ(Ai+1)

alg

is surjective on π0, it follows that π0(Ψ(Ai+1)
alg) is (t)-complete. For each i ≥ 0 the π0

(
Ψ(Ai+1)

alg
)
-modules

πn
(
Ψ(Ai+1)

alg
)

are of finite presentation, thus they are (t)-adic complete π0(Ψ(Ai+1)
alg)-modules. It follows

that Ψ(Ai+1)
alg is (t)-complete by [Lur16, Theorem 7.3.4.1].

Let now Ai+1 → B be a morphism in CAlgk◦ whose target is strictly Henselian and (t)-complete. Thanks to
(3.2), such morphism induces morphisms

Ai → B, k◦[T ]→ B,

compatible with both k◦[Sn] → k◦[T ] and k◦[Sn] → Ai, in the∞-category CAlgk◦ . By induction, the effect of
(−)alg ◦Ψ on

Ai, k◦[Sn] and k◦[X ]

agrees with the composite of strict henselianization followed by (t)-completion. SinceB is both strictly Henselian
and (t)-complete, it follows that the mapAi+1 → B induces a well defined morphism from the diagram displayed
in (3.1.5) to B. It follows that Ψ(Ai+1)

alg satisfies the universal property of the (t)-completion of the derived
k◦-algebra Ai+1. As Ψ(Ai+1)

alg is (t)-complete we conclude that the morphism

fAi+1 : (Ash
i+1)

∧
t → Ψ(Ai+1)

alg,

where Ash
i+1 denotes the strict henselianization of Ai+1, is necessarily an equivalence. Let now

A := colim
i

Ai,

in the∞-category CAlgk◦ . Fix i ≥ 0, then

τ≤i(Ψ(A)alg) ≃ τ≤i(Ψ(Aj)
alg),

for j sufficiently large. We conclude then that πi(Ψ(A)alg) is (t)-adic complete for i ≥ 0. [Lur16, Theorem
7.3.4.1] implies that Ψ(A)alg is also (t)-complete. Reasoning as before we conclude that it satisfies the universal
property of (t)-completion of A. It follows that

fA : A∧
t → Ψ(A)alg

is an equivalence in the∞-category CAlgk◦ , as desired. �

Warning 3.1.14. The functor (−)alg ◦ Ψ is not in general equivalent to the (t)-completion functor (−)∧t . In
fact, both (−)alg and Ψ commute with filtered colimits, thus so it does (−)alg ◦ Ψ. This is not the case of the
(t)-completion functor, in general.

We will need also the following ingredient:

Construction 3.1.15. Denote by k◦n the reduction of k◦ modulo (tn). Reduction modulo (tn) induces a transfor-
mation of pregeometries

pn : Tad(k
◦)→ Tdisc(k

◦
n)

Spf R 7→ SpecRn,
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where Rn := R⊗k◦ k◦n. Given X ∈ TopR , precomposition along pn induces a functor

p−1
n : CAlgk◦

n
(X)→ fCAlgk◦(X),

given on objects by the formula

O ∈ CAlgk◦
n
(X) 7→ p−1

n O := O ◦ pn ∈ fCAlgk◦(X).

Consequently, we have a well defined functor

p−1
n : TopR (Tdisc(k

◦
n))→ TopR (Tad(k

◦)),

given on objects by the formula

(X,O) ∈ TopR (Tdisc(k
◦)) 7→ (X,O ◦ pn) ∈ TopR (Tad(k

◦)).

Remark 3.1.16. We have a commutative triangle of transformations of pregeometries

Tdisc(k
◦) Tad(k

◦)

Tdisc(k
◦
n)

(−)∧t

−⊗k◦k◦
n

pn .

For this reason, for every X ∈ TopR , it follows that the composite

(−)alg ◦ p−1
n : CAlgk◦

n
(X)→ CAlgk◦(X),

coincides with the usual forgetful functor CAlgk◦
n
(X) → CAlgk◦(X) along the map k◦ → k◦n. Notice that the

latter functor admits a left adjoint which is given by extension of scalars along k◦ → k◦n, i.e. it is given on objects
by the formula

O ∈ CAlgk◦(X) 7→ O⊗k◦ k◦n ∈ CAlgk◦(X)

Notation 3.1.17. We will denote by (−)n : CAlgk◦(X)→ CAlgk◦
n
(X) the base change functor

O ∈ CAlgk◦(X) 7→ On := O⊗k◦ k◦n ∈ CAlgk◦(X).

It follows by [Lur11b, Theorem 2.1] that p−1
n admits a right adjoint Ln : TopR (Tad(k

◦))→ TopR (Tdisc(k
◦
n))

which we can explicitly describe:

Proposition 3.1.18. The functor p−1
n : TopR (Tdisc(k

◦
n))→ TopR (Tad(k

◦)) admits a right adjoint

Ln : TopR (Tad(k
◦))→ TopR (Tdisc(k

◦
n))

whose restriction to the full subcategory of TopR (Tad(k
◦)), spanned by pairs (X,O) whose underlying∞-topos

X has enough points, is given by the formula

(X,O) ∈ TopR (Tad(k
◦)) 7→ (X,Oalg

n ) ∈ TopR (Tdisc(k
◦
n)).

Proof. The existence of a left adjoint Ln : TopR (Tad(k
◦)) → TopR (Tdisc(k

◦
n)) follows directly from [Lur11b,

Theorem 2.1]. Let (X,O) ∈ TopR (Tdisc(k
◦
n)) and (Y,O′) ∈ TopR (Tad(k

◦)). Assume that both X, Y ∈ TopR

have enough points. Given any geometric morphism (f−1, f∗) : X → Y we have a morphism of fiber sequences
of the form
(3.1.6)

MapfCAlgk◦ (X)

(
f−1O′, p−1

n O
)

Map TopR (Tad(k◦))

(
(X, p−1

n O), (Y,O′)
)

Map TopR (X,Y)

MapCAlgk◦
n
(X)

(
(f−1O′)algn ,O

)
Map TopR (Tdisc(k◦

n))

(
(X,O), (Y, (O′)algn )

)
Map TopR (X,Y)

q p .

Moreover, the morphism q : MapfCAlgk◦ (X)

(
f−1O′, p−1

n ,O
)
→ MapCAlgk◦

n
(X)

(
(f−1O′)algn ,O

)
coincides with

the composite

MapfCAlgk◦ (X)

(
f−1O′, p−1

n O
)

MapCAlgk◦ (X)

(
(f−1O′)alg, p−1

n Oalg
)

MapCAlgk◦
n
(X)

(
(f−1O′)algn ,O

)
.

(-)alg

In order to prove the assertion of the proposition it suffices to show that the morphism p displayed in (3.1.6) is
an equivalence of mapping spaces. Thanks to the fact that the horizontal arrow diagrams in (3.1.6) form fiber
sequences we are reduced to prove that q is an equivalence of mapping spaces. As both X and Y have enough
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points we reduce ourselves to prove the statement of the Theorem at the level of stalks. For this reason we can
assume from the start that X = S = Y. Both target and source of q commute with filtered colimits on the first
argument, thus we are reduced, as in the proof of Proposition 3.1.13 to prove that q is an equivalence whenever
f−1O′ ≃ Ψ(k◦[T1, . . . , Tn]). We have natural equivalences of mapping spaces

MapfCAlgk◦

(
Ψ(k◦[T1, . . . Tm]), p−1

n O
)
≃MapCAlgk◦

(
k◦[T1, . . . Tm], (p−1

n O)alg
)

≃MapCAlgk◦
n

(
k◦[T1, . . . Tm]n, (p

−1
n O)alg

)

≃MapCAlgk◦
n

(k◦n[T1, . . . Tm],O) .

The result now follows from the observation that Ψ(k◦[T1, . . . Tm])
alg
n ≃ k◦n[T1, . . . , Tm] in the ∞-category

CAlgk◦
n

, which is a direct consequence Proposition 3.1.13. �

Corollary 3.1.19. Let X ∈ TopR be an ∞-topos. The functor Ln : TopR (Tad(k
◦)) → TopR (Tdisc(k

◦
n)), in-

troduced in Proposition 3.1.18, induces a well defined functor at the level of the corresponding∞-categories of
structures

(−)adn : fCAlgk◦(X)→ CAlgk◦
n
(X),

given on objects by the formula

O ∈ fCAlgk◦(X) 7→ Oalg
n ∈ CAlgk◦

n
(X).

Moreover, the functor (−)adn is a left adjoint to the forgetful p−1
n : CAlgk◦

n
(X)→ fCAlgk◦(X).

Proof. The existence of (−)adn is guaranteed by Proposition 3.1.18. The fact that (−)adn is a left adjoint to
p−1
n : CAlgk◦

n
(X) → fCAlgk◦(X) follows from the proof of Proposition 3.1.18 together with the fact that both

(−)adn and p−1
n are defined at the level of∞-categories of structures on the same underlying∞-topos. �

Notation 3.1.20. Consider the forgetful functor TopR (Tdisc(k
◦
n)) → TopR (Tdisc(k

◦)) given by restriction of
scalars along the morphism k◦ → k◦n. We will denote−×Speck◦Spec k◦n : : TopR (Tdisc(k

◦))→ TopR (Tdisc(k
◦
n))

its right adjoint.

Corollary 3.1.21. For each n ≥ 1, the composite Ln ◦ L : TopR (Tdisc(k
◦))→ TopR (Tdisc(k

◦
n)) coincides with

the base change functor

−×Speck◦ Spec k◦n : TopR (Tdisc(k
◦))→ TopR (Tdisc(k

◦
n)),

(X,O) ∈ TopR (Tdisc(k
◦)) 7→ (X,O)×Speck◦ Spec k◦n ∈ TopR (Tdisc(k

◦
n))

Proof. This is a direct consequence of the definitions together with the commutative triangle displayed in Con-
struction 3.1.15. �

3.2. Comparison with derived formal geometry. Our main goal now is to give comparison statements between
Tad(k

◦)-structured∞-topoi and locally adic ringed∞-topoi. The latter corresponding to pairs (X,O) where O is
a CAlgadk◦ -valued sheaf on the∞-topos X. This provides an explicit comparison between a simplicial analogue of
Lurie’s original definition of spectral k◦-adic Deligne-Mumford stacks and ours.

Definition 3.2.1. Let X be an ∞-topos and A ∈ CAlgadk◦(X). We say that A is topologically almost of finite
presentation if A is (t)-complete, the sheaf π0(A) is topologically of finite presentation and, for each i > 0, the
homotopy sheaf πi(A) is coherent as a π0(A)-module. We shall denote by CAlgad,taftk◦ (X)/Oad the full subcategory

of CAlgadk◦(X)/Oad spanned by topologically almost of finite presentation A ∈ CAlgadk◦(X).

Definition 3.2.2. Let X be an∞-topos and consider the functor (−)ad : fCAlgk◦(X)→ CAlgadk◦(X) introduced in
Lemma 3.1.6. We say that A ∈ fCAlgk◦(X) is topologically almost of finite presentation if the underlying sheaf
of adic algebras Aad is topologically almost of finite presentation. We denote fCAlgtaftk◦ (X) the ∞-category of
topologically almost of finite presentation local Tad(k

◦)-structures on X.

Construction 3.2.3. Consider the adjunction
(
Ψ, (−)alg

)
: CAlgk◦(X)/Oalg → fCAlgk◦(X)/O, introduced in

Construction 3.1.8. Let
(−)disc : CAlgadk◦(X)→ CAlgk◦(X)

denote the canonical functor obtained by forgetting the adic structure. Then the pair
(
Ψ ◦ (−)disc, (−)ad

)
: CAlgadk◦(X)/Oad → fCAlgk◦(X)/O
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forms an adjunction pair after restriction
(
Ψad, (−)ad

)
:=

(
Ψ ◦ (−)disc, (−)ad

)
: CAlgad,taftk◦ (X)/Oad → fCAlgtaftk◦ (X)/O.

In order to see this consider the unit
id→ (−)alg ◦Ψ

of the adjunction in Construction 3.1.8. It follows by the construction of (−)ad : fCAlgk◦(X)→ CAlgadk◦(X) that
we have an equivalence

(−)alg ≃ (−)disc ◦ (−)ad

in the∞-category Fun
(
fCAlgk◦(X)/O,CAlgk◦(X)/Oalg

)
. Therefore, for each A ∈ CAlgad,taftk◦ (X)/Oad the unit

of the adjunction

Adisc →
(
Ψ(Adisc)

)alg

induces a canonically defined, up to a contractible space of choices, morphism

A ≃ A∧
t →

(
Ψad(A)

)ad
.

This construction is functorial and it satisfies the universal property of a unit of adjunction. Therefore we obtain
an adjunction

(
Ψad, (−)ad

)
: CAlgad,taftk◦ (X)/Oad → fCAlgtaftk◦ (X)/O, as desired.

Notation 3.2.4. Let X be an∞-topos. We denote by CAlgadk◦(X)sh := CAlgadk◦(X)×CAlgk◦ (X) CAlgk◦(X)sh.

Theorem 3.2.5. Let X be an∞-topos with enough geometric points. Consider the functor

(−)ad : fCAlgk◦(X)/O → CAlgadk◦(X)/Oad ,

introduced in Lemma 3.1.6. Then the induced restriction functor

(−)ad : fCAlgtaftk◦ (X)/O → CAlgadk◦(X)sh/Oad ,

is fully faithful and its essential image agrees with the full subcategory of CAlgadk◦(X)sh/Oad spanned by those strictly

henselian A ∈ CAlgadk◦(X)/Oad topologically almost of finite presentation.

Proof. Consider the adjunction
(
Ψad, (−)ad

)
: CAlgad,taftk◦ (X)/Oad → fCAlgtaftk◦ (X)/O,

of Construction 3.2.3. Thanks to Proposition 3.1.13 the composite (−)ad ◦Ψad is an equivalence when restricted
to the subcategory C ⊆ CAlgad,taftk◦ (X) spanned by strictly Henselian objects. Therefore the left adjoint functor

Ψad : CAlgad,taftk◦ (X)/Oad → fCAlgk◦(X)/O

is fully faithfully when restricted to the full subcategory C. [PY16a, Lemma 3.13] implies that the right adjoint
functor (−)ad is conservative, the conclusion now follows. �

Remark 3.2.6. Theorem 3.2.5 can be interpreted as a rectification statement. Indeed, an element

A ∈ fCAlgk◦(X),

is a functor A : Tad(k
◦) → X satisfying the axioms of the definition of a Tad(k

◦)-structure on X. Furthermore,
morphisms

A→ B,

in fCAlgk◦(X) are local morphisms in Fun (Tad(k
◦),X). On the other hand, the∞-category CAlgadk◦(X) admits a

simpler description. Its objects are derived k◦-algebras on X, which admit an adic topology onπ0 and morphisms
are continuous local adic morphisms of derived k◦-algebras on X.

Construction 3.2.7 (The Spf-construction). Let A ∈ CAlgadk◦ be a derived adic k◦-algebra. We can associate to
A an object

Spf A := (XA,OA) ∈ TopR (Tad(k
◦)),

as follows: we let
XA := HShvadA ∈ TopR ,

denote the hypercompletion of the∞-topos ShvadA , introduced in [Lur16, Notation 8.1.1.8]. We then define

OA : Tad(k
◦)→ XA,
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as the Tad(k
◦)-structure on XA determined by the formula

Spf(R) ∈ Tad(k
◦) 7→

(
B ∈ CAlgad,ét

A 7→ MapCAlgad
k◦

(R,B)
)
.

Where CAlgad,ét
A denotes the full subcategory of CAlgadA spanned by those derived A-algebras B étale over A.

One checks directly that OA : Tad(k
◦)→ XA is indeed a Tad(k

◦)-structure on XA. Such association is functorial
in A ∈ CAlgadk◦ . We are provided with a well defined functor (up to contractible indeterminacy)

Spf :
(
CAlgadk◦

)op

→ TopR (Tad(k
◦)).

We refer to the latter functor as the Spf-construction functor.

Remark 3.2.8. Given A ∈ CAlgadk◦ , it follows immediately from the definitions that

Spf(A)ad := (XA,O
ad
A ) ∈ TopR (Tdisc(k

◦)),

agrees with the "simplicial version" of the Spf-construction introduced in [Lur16, §8.1.1]

Remark 3.2.9. Let n ≥ 1 and consider the right adjoint functor

Ln : TopR (Tad(k
◦))→ TopR (Tdisc(k

◦
n)),

introduced in Notation 3.1.17. Given A ∈ CAlgadk◦ , it follows by the description of Proposition 3.1.18 that

Ln (Spf(A)) ≃ (XA,OA,n) ,

where OA,n := O
alg
A ⊗k◦ k◦n ∈ CAlgk◦(X).

Proposition 3.2.10. The functor Spf :
(
CAlgadk◦

)op
→ TopR (Tad(k

◦)) is fully faithful. Moreover, its essentially
image agrees with the full subcategory of TopR (Tad(k

◦)) spanned by pairs (X,O) ∈ TopR (Tad(k
◦)) such that

(X,Oalg) ∈ TopR (Tdisc(k
◦)) is equivalent to an affine formal spectrum as in Construction 3.2.7.

Proof. LetA, B ∈ CAlgadk◦ and consider the corresponding formal spectrumsSpf(A) and Spf(B) ∈ TopR (Tad(k
◦)).

The datum of a morphism of local Tad(k
◦)-structures f : Spf(A) → Spf(B) is equivalent to the datum of a

geometric morphism of ∞-topoi (f−1, f∗) : XA → YB together with a local morphism α : f−1OB → OA of
Tad(k

◦)-structures on XA. Applying the underlying algebra functor at the level of structures we obtain a mor-
phism

αalg : f−1
(
Oad

B

)alg
→

(
Oad

A

)alg
,

in the ∞-category fCAlgk◦(XA). The unit of the adjunction (f−1, f∗) produces a well defined morphism of
derived k◦-algebras φ : B → A, up to contractible indeterminacy.

By the construction of the underlying ∞-topoi of both Spf(A) and Spf(B) together with [Lur16, Remark
8.1.1.7] it follows that the morphism φ : B → A is continuous with respect to the adic topologies on both A and
B. We obtain thus a well defined morphism of mapping spaces

Φ: Map TopR (Tad(k◦)) (Spf A, Spf B)→ MapCAlgad
k◦

(B,A) .

Let φ : B → A be a continuous morphism of derived k◦-adic algebras. In order to show that the functor

Spf :
(
CAlgadk◦

)op
→ TopR (Tad(k

◦))

is fully faithful it suffices to show that the fiber Zφ := fibφ(Φ) is contractible for any choice of φ. To any
continuous adic morphism, we can attach a well defined, up to contractible indeterminacy, morphism on the
corresponding (formal) étale sites. We have thus a canonical morphism at the level of mapping spaces

θ : MapCAlgad
k◦

(B,A)→ Map TopR (XA,YB) .

Let (f−1, f∗) : XA → YB be a morphism of∞-topoi which is equivalent to θ(φ). The fiber over (f−1, f∗) induces
a fiber sequence of mapping spaces:

MapfCAlgk◦ (X)

(
f−1OB,OA

)
Map TopR (Tad(k◦)) (Spf A, Spf B) Map TopR (XA,YB) .

θ
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Consider the commutative diagram in the∞-category S

(3.2.1)

Zφ MapfCAlgk◦ (X)

(
f−1OB,OA

)
Map TopR (Tad(k◦)) (Spf(A), Spf(B))

{φ} W MapCAlgad
k◦

(B,A)

{(f−1, f∗)} Map TopR (XA,YB)

.

Both the upper rectangle and and the bottom right squares are pullback diagrams. It follows that we can identify
Zφ with the pullback

Zφ ≃ MapfCAlgk◦ (X)

(
f−1OB,OA

)
×W {φ}.

Let F : Spf(A) → Spf(B) be a morphism of Tad(k
◦)-structured ∞-topoi such that Φ(F ) ≃ φ. It follows

by [Lur16, Remark 8.1.1.7] that the induced geometric morphism (f−1, f∗) : XA → YB can be identified with the
restriction to closed subtopoi of the geometric morphism of∞-topoi XA → YB . Thanks to the proof of [Lur16,
Proposition 1.4.2.4] it follows that the latter is uniquely determined. For this reason, (f−1, f∗) is also uniquely
determined by φ, up to a contractible space of choices. As a consequence we can identify Zφ with the fiber
product:

Zφ ≃ MapfCAlgk◦ (X)

(
f−1OB,OA

)
×W {φ}.

We have a sequence of natural equivalences of mapping spaces

MapfCAlgk◦ (X)

(
f−1OB,OA

)
×W {φ} ≃MapfCAlgk◦ (X)

(
f−1OB, limn≥1 (OA,n)

)
×W {φ}

≃
(
limn≥1MapfCAlgk◦ (X)

(
f−1OB,OA,n

))
×W {φ}.

We can further identify the last term with
(
limn≥1MapfCAlgk◦ (X)

(
f−1OB,OA,n

))
×W {φ} ≃

(
limn≥1MapCAlgk◦

n
(X)

(
f−1OB,n,OA,n

))
×W {φ}.

For each n ≥ 1, denote φn the base change of φ to k◦n. Passing to the limit over n ≥ 1 we can further identify the
last term with

limn≥1

(
MapCAlgk◦

n
(X)

(
f−1OB,n,OA,n

)
×Wn {φn}

)
≃ limn≥1

(
Map TopR (Tdisc(k◦

n))
(An, Bn)×Wn {φn}

)
.

(3.2.2)

Where Wn is defined as the fiber product of the corresponding diagram obtained as the reduction modulo tn of
the bottom right square, displayed in (3.2.1). Thanks to the proof of [Lur16, Corollary 1.2.3.5.] each term in the
limit displayed in (3.2.2) can be identified with

MapCAlgk◦
n

(Bn, An)×CAlgk◦
n
(Bn,An) {φn}.

The latter is a contractible space. The result now follows by a simple analysis on the corresponding Milnor exact
fiber sequence. �

Definition 3.2.11. A derived formal Deligne-Mumford stack, over Spf k◦ is a locally k◦-adic ringed ∞-topos
(X,O), where X is assumed to be hypercomplete, O ∈ CAlgadk◦(X) and there exists an effective epimorphism∐

i Ui → 1X, in X, such that, for each index i, (X/Ui
,O|Ui

) is equivalent to (Spf Ai)
ad, for suitableAi ∈ CAlgadk◦ .

We denote by dfDMLurie
k◦ the full subcategory of the k◦-adic ringed ∞-topoi spanned by derived formal

Deligne-Mumford stacks.

Definition 3.2.12. A derived k◦-adic Deligne-Mumford stack is a pair (X,O) ∈ TopR (Tad(k
◦)) such that

(X,Oad) is equivalent to a derived formal k◦-Deligne-Mumford stack. We say that a derived k◦-adic Deligne-
Mumford stack (X,O) is topologically almost of finite presentation if the Tad(k

◦)-structure

O ∈ fCAlgk◦(X),

is topologically almost of finite presentation.
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Notation 3.2.13. We denote dfDMk◦ (resp., dfDMtaft
k◦ ) the full subcategory of TopR (Tad(k

◦)) spanned by
derived k◦-adic Deligne-Mumford stacks (resp., topologically almost of finite presentation k◦-adic Deligne-
Mumford stacks).

Definition 3.2.14. We denote by dfSchk◦ the full subcategory of dfDMk◦ spanned by those objects X = (X,O)
such that (X, π0(Oad)) is equivalent to an ordinary formal scheme over k◦. We refer to objects in dfSchk◦ as
derived k◦-adic formal schemes. We also define the ∞-category of topologically almost of finite presentation
derived k◦-adic schemes as dfSchtaftk◦ := dfDMtaft ∩ dfSchk◦ .

Remark 3.2.15. The functor Spf : CAlgadk◦ → TopR (Tad(k
◦)), introduced in Construction 3.2.7, factors through

the fully faithful embedding dfSchk◦ →֒ TopR (Tad(k
◦)).

The following results compares Lurie’s definition of derived k◦-adic Deligne-Mumford stacks and the definition
in terms of Tad(k

◦)-structured∞-topoi:

Corollary 3.2.16. The functor

(−)ad : dfDMtaft
k◦ → dfDMLur

k◦ ,

given on objects by the association

(X,O) ∈ dfDMtaft
k◦ 7→ (X,Oad) ∈ dfDMLur

k◦ ,

is fully faithful and its essential image agrees with the full subcategory spanned by pairs (X,O) such that O is
topologically almost of finite presentation.

Proof. Let X := (X,OX) and Y := (Y,OY) be derived k◦-adic Deligne-Mumford stacks. For each geometric
morphism of∞-topoi f∗ : X ⇄ Y : f−1, we have a commutative diagram of fiber sequences of mapping spaces

MapfCAlgk◦ (X)(f
−1OY,OX) MapdfDMk◦

(X,Y) Map TopR (X,Y)

MapCAlgad
k◦ (X)(f

−1Oad
Y
,Oad

X
) MapdfDMLurie

k◦
(Xad,Yad) Map TopR (X,Y).

(−)ad =

It follows from Theorem 3.2.5 that the left vertical morphism is an equivalence whenever OX and OY are topolog-
ically almost of finite presentation Tad(k

◦)-structures. Fully faithfulness of the restriction of (−)ad : dfDMk◦ →

dfDMLurie
k◦ to dfDMtaft

k◦ ⊆ dfDMk◦ , now follows.
Let now X := (X,O) ∈ dfDMLurie

k◦ be such that O is topologically almost of finite presentation. Then, by
Theorem 3.2.5, there exists an essentially unique object O′ ∈ fCAlgk◦(X) such that (O′)ad ≃ O in CAlgadk◦(X).
By definition, (X,O′) ∈ dfDMtaft

k◦ and the result follows. �

3.3. Derived∞-categories of modules for Tad(k
◦)-structured spaces. Let C be an∞-category which admits

finite limits. The abelianization of C, denoted Ab(C), was defined in [PY17, Definition 4.2]. On the other hand,
the stabilization of C was introduced in [Lur12b, Definition 1.4.2.8]. We shall denote the latter as Sp(C).

Definition 3.3.1. Let X := (X,O) ∈ TopR (Tad(k
◦)). We define the∞-category of O-modules on X as

ModO := Sp
(
Ab

(
fCAlgk◦(X)/O

))
.

Similarly, we define the∞-category ModOalg as the∞-category of Oalg-module objects of ShvD(Ab)(X), where
D(Ab) denotes the derived stable∞-category of abelian groups.

Remark 3.3.2. Let (X,O) be as above. Both the∞-categories ModO and ModOalg are stable, by construction.

Construction 3.3.3. Given (X,O) ∈ TopR (Tad(k
◦)) we can also consider the ∞-category of modules on its

algebraization (X,Oalg) defined as ModOalg := ShvD(Ab) (X), where D(Ab) := ModZ denotes the derived
∞-category of Z-modules. Thanks to [Lur12b, Theorem 8.3.4.13] one has a natural equivalence

ModOalg ≃ Sp (Ab (CAlgk◦(X)Oalg)) ,

in the∞-category Catst∞. As the underlying algebra functor (−)alg : fCAlgk◦(X)/O → CAlgk◦(X)/Oalg is a right
adjoint it induces an exact functor at the level of derived∞-categories of modules denoted

galg : ModO → ModOalg .
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Lemma 3.3.4. The left adjoint Ψ: CAlgk◦(X)/Oalg → fCAlgk◦(X)Ψ(Oalg) induces a well defined functor

fad : ModOalg → ModO,

which is a left adjoint to galg.

Proof. It suffices to prove that Ψ commutes with finite limits. By Proposition 3.1.13, the composite (−)alg ◦ Ψ
agrees with the (t)-completion functor on the full subcategory of almost of finite presentation objects, denoted
CAlgk◦(X)

afp
/O . Consequently, it commutes with small limits on CAlgk◦(X)

afp
/Oalg . As (−)alg is a conservative right

adjoint, it follows that Ψ itself commutes with finite limits on CAlgk◦(X)
afp
/Oalg . Let now A ∈ CAlgk◦(X)/Oalg be

a general object. We can realize A as a filtered colimit of almost of finite presentation objects in CAlgk◦(X)/Oalg .
Let {Ai}i be a diagram indexed by a finite∞-category I , and for each i ∈ I choose a presentation

Ai ≃ colim
m∈J

Ai,m,

where Ai,m is almost of finite presentation and J is a filtered ∞-category. We have thus a sequence of natural
equivalences in the∞-category CAlgk◦(X)/Oalg

Ψ(lim
i
Ai)

alg ≃ colim
m

Ψ(lim
i
Ai,m)alg

≃ colim
m

lim
i
(Ai,m)∧t ≃ lim

i
colim

m
(Ai,m)∧t

≃ lim
i

colim
m

Ψ(Ai,m)alg ≃ lim
i
Ψ(Ai,m)alg,

and the conclusion now follows as in the preceding case. �

Proposition 3.3.5. Suppose X has enough points and Ψ(Oalg)alg ≃ Oalg. Then the functor

galg : ModO → ModOalg

is an equivalence of stable∞-categories.

Proof. Let fad : ModOalg → ModO denote a left adjoint to galg. Thanks to the previous proposition fad corre-
sponds to the stabilization of functor Ψ, introduced in Construction 3.1.8. We want to show that fad is an inverse
to galg, as functors. The functor galg is conservative as (−)alg was already conservative. Therefore, we are re-
duced to show that fad is a fully faithfully functor. It suffices to show that the unit η of the adjunction (fad, galg)
is an equivalence.

As X has enough geometric points we reduce ourselves to proof the last assertion at the level of stalks. We are
thus reduced to the case X = S. In this case, the∞-categoryModOalg is compactly generated by Oalg ∈ ModOalg .
The underlying algebra (−)alg commutes with filtered colimits (even sifted colimits). It follows that galg also
commutes with filtered colimits. As galg is an exact functor between stable ∞-categories we conclude that it
commutes with all colimits. Therefore, the unit η commutes with colimits. We are thus reduced to check that η is
an equivalence on the compact generator Oalg ∈ ModOalg . By our assumption on Oalg the result follows thanks
to Proposition 3.1.13. �

Definition 3.3.6. The equivalence of stable ∞-categories provided in Proposition 3.3.5 allows us to define a
t-structure on the ∞-category ModO by means of the functor galg: the ∞-category ModOalg admits a natural
t-structure, [Lur11c, Proposition 1.7]. Therefore, we set F ∈ ModO to be connective if and only if galg(F) ∈
ModOalg is connective.

Thanks to [Bos05, Corollary 6, page 165], every topologically almost of finite presentation (discrete) k◦-algebra
is coherent. Therefore, the following definition is reasonable:

Definition 3.3.7. Let X = (X,O) ∈ TopR (Tad(k
◦)) be a topologically almost of finite presentation Tad-

structured∞-topos. We define the ∞-category of coherent O-modules on X, Coh+(X), as the full subcategory
ModO spanned by those F such that, for each integer i, the homotopy sheaves πi(F) are coherent π0(Oalg)-
modules which vanish for sufficiently small i.
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3.4. k◦-adic cotangent complex. In this §, we will introduce the notion of formal cotangent complex, which will
prove to be of fundamental importance for us: we have a projection functor

Ω∞
ad : ModO → fCAlgk◦(X)/O,

which is given by evaluation on the object (S0, ∗) ∈ Sfin∗ × TAb. The functor Ω∞
ad admits a left adjoint

Σ∞
ad : fCAlgk◦(X)/O → ModO.

We refer the reader to [PY17, §5.1] and [Lur12b, §7.5] for more details about these constructions.

Definition 3.4.1. Let M ∈ ModO, we say that O⊕M := Ω∞
ad(M) is the trivial adic square-zero extension of O

by the module M .

Definition 3.4.2. Let X := (X,O) ∈ TopR (Tad(k
◦)) and let A ∈ fCAlgk◦(X)/O be a Tad(k

◦)-structure on X.
Given M ∈ModO, we define the space of A-linear adic derivations of O with values in M as

DeradA (O,M) := MapfCAlgk◦ (X)A//O
(O,O⊕M) ∈ S.

Proposition 3.4.3. The functor

DeradA (O,−) : ModO → S,

is corepresentable by an object

Lad
O/A ∈ModO,

which we refer to as the adic cotangent complex relative to O→ A.

Proof. The proof is a direct consequence of the existence of a left adjoint Σ∞
ad : fCAlgk◦(X)/O → ModO. Set

Lad
O/A

:= Σ∞
ad (O⊗A O). For every M ∈ ModO we have a sequence of natural equivalences of mapping spaces

DeradA (O,M) ≃ MapfCAlgk◦ (X)A//O
(O,O⊕M)

≃ MapfCAlgk◦ (X)A//O
(O,Ω∞

ad(M))

≃ MapfCAlgk◦ (X)O//O
(O⊗A O,Ω∞

ad(M))

≃ MapModO
(Σ∞

ad(O⊗A O),O)

≃ MapModO

(
Lad
O/A,M

)
.

The proof is now finished. �

Proposition 3.4.4. Let A→ B be a morphism in fCAlgk◦(X)/O, topologically almost of finite presentation. Then
Lad
B/A is a compact object in the∞-category ModO.

Proof. The proof of [Lur16, Proposition 4.1.2.1] applies. �

Construction 3.4.5. Thanks to [PY17, Lemma 5.15] we have a commutative diagram of∞-categories

ModO ModOalg

fCAlgk◦(X)/O CAlgk◦(X)/Oalg ,

galg

Ω∞
ad Ω∞

(−)alg

therefore passing to left adjoints we obtain a commutative diagram

(3.4.1)

ModO ModOalg

fCAlgk◦(X)/O CAlgk◦(X)/O

fad

Σ∞
ad Σ∞

Ψ

,

in the∞-category Cat∞. The commutativity of (3.4.1) provide us with a natural map

fad
(
LBalg/Aalg

)
→ Lad

B/A

in the∞-category ModO.
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Proposition 3.4.6. Let A → B be a morphism in fCAlgk◦(X)/O. Consider the algebraic cotangent complex
LBalg/Aalg associated to the morphism Aalg → Balg. Then the natural map introduced in Construction 3.4.5

fad
(
LBalg/Aalg

)
≃ Lad

B/A

is an equivalence in the∞-category ModO.

Proof. Let A→ B be a morphism in fCAlgk◦(X)/O and let LBalg/Aalg ∈ ModOalg denote the algebraic cotangent
complex associated to Aalg → Balg.

The construction of the adic cotangent complex, via the left adjoint Σ∞
ad, commutes with filtered colimits of

local Tad(k
◦)-structures. Therefore we can suppose from the beginning that A is topologically almost of finite

presentation and (t)-complete. Applying the same reasoning, we might as well assume that B is topologically
almost of finite presentation A-algebra and moreover (t)-complete. By applying the functor

fad : ModBalg → ModB,

we obtain the following sequence of natural equivalences of mapping spaces

MapModB

(
fad(LBalg/Aalg),M

)
≃MapMod

Oalg

(
LBalg/Aalg , galg(M)

)

≃MapCAlgk◦ (X)
Aalg//Balg

(
Balg,Balg ⊕ galg(M)

)

≃MapCAlgk◦ (X)
Aalg//Balg

(
Balg, (B⊕M)alg

)

≃MapfCAlgk◦ (X)A//B

(
Ψ(Balg),B⊕M

)

≃MapfCAlgk◦ (X)A//B
(B,B⊕M) .

The latter equivalence follows from the fact that B is assumed to be topologically almost of finite presentation and
(t)-complete combined with Proposition 3.1.13. �

Proposition 3.4.7. Let f : A→ B and g : B→ C be morphisms in the∞-category fCAlgk◦(X)/O. Then one has
a fiber sequence

Lad
B/A ⊗B C→ Lad

C/A → Lad
C/B,

in ModO.

Proof. This is a direct consequence of [PY17, Proposition 5.10]. �

Proposition 3.4.8. Suppose we are given a pushout diagram

A B

C D

in the∞-category fCAlgk◦(X)/O. Then the natural morphism

Lad
B/A ⊗B D→ Lad

D/C

is an equivalence in the∞-category ModO.

Proof. The assertion is a particular case of [PY17, Proposition 5.12]. �

3.5. Unramifiedness of Tad(k
◦). In this §, we prove that both the k◦-adic pregeometry Tad(k

◦) and the trans-
formation of pregeometries (−)∧t : Tét(k

◦)→ Tad(k
◦) are unramified. Unramifiedness of both Tad(k

◦) and (−)∧t
was used in a crucial way in the proof of Proposition 3.1.13. It will further play an important role when discussing
the derived rigidification functor, in §4.

Definition 3.5.1. Let T be a pregeometry. We say that T is unramified if for every morphism f : X → Y in T and
every object Z ∈ T, the diagram

X × Z X × Y × Z

X X × Y
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induces a pullback diagram

XX×Z XX×Y×Z

XX XX×Y

in TopR . We have denoted XX×Z , XX×Y×Z , XX and XX×Y the underlying∞-topoi associated to the absolute
spectrum construction, introduced in [Lur11b, §2.2].

Remark 3.5.2. Both the pregeometries Tét(k) and Tan(k) are unramified, see [Lur11a, Proposition 4.1] and
[PY16a, Corollary 3.11], respectively.

Proposition 3.5.3. The pregeometry Tad(k
◦) is unramified.

Proof. Let Z ∈ Tad(k
◦) and denote XZ denote the underlying∞-topos of the corresponding absolute spectrum

SpecTad(k
◦)(Z). The∞-topos XZ is equivalent to the hypercompletion of the étale∞-topos on the special fiber

of Z . As pullback diagrams are preserved by taking special fibers the result follows by unramifiedness of Tét(k
◦),

cf. [Lur11a, Proposition 4.1]. �

There is also a notion of relative unramifiedness:

Definition 3.5.4. Let ϕ : T → T′ be a transformation of pregeometries, and let Φ: TopR (T′) → TopR (T) the
induced functor given on objects by the formula

(X,O) ∈ TopR (T′) 7→ (X,O ◦ ϕ) ∈ TopR (T).

We say that the transformation f is unramified if the following conditions are satisfied:

(i) Both T and T′ are unramified;
(ii) For every morphism f : X ∈ Y and every object Z ∈ T, we have a pullback diagram

Φ
(
SpecT

′ (
X × Z

))
Φ
(
SpecT

′ (
X × Y × Z

))

Φ
(
SpecT

′ (
Z
))

Φ
(
SpecT

′ (
X × Y

))

in the∞-category TopR (T).

Proposition 3.5.5. The transformation of pregeometries (−)∧t : Tét(k
◦)→ Tad(k

◦) is unramified.

Proof. It suffices to prove condition (ii) in Definition 3.5.4. Proposition 3.2.10 implies that Φ
(
SpecTad(k

◦)(−)
)

is an ind-étale spectrum and the latter commutes with finite limits. �

3.6. Postnikov towers of k◦-adic spaces.

Definition 3.6.1. Let X = (X,O) ∈ TopR (Tad(k
◦)) and M ∈ (ModO)≥1 be an O-module concentrated in

homological degrees ≥ 1. A k◦-adic square zero extension of X by M consists of a Tad(k
◦)-adic structured

∞-topos X′ = (X,O′) equipped with a morphism f : X→ X
′ satisfying:

(i) The underlying geometric morphism of f is equivalent to the identity of X;
(ii) There exists a k◦-adic derivation

d : Lad
X →M [1] ∈ ModO,

such that we have a pullback diagram in the∞-category fCAlgk◦(X)/O

O′ O

O O⊕M [1]

d

d0

,

where d0 denotes the trivial k◦-adic derivation.
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Definition 3.6.2. Let T be a pregeometry and let n ≥ −1 be an integer. We say that T is compatible with n-
truncations if for every∞-topos X, every T-structure O : T → X and every admissible morphism U → V in T,
the induced square

O(U) τ≤nO(U)

O(V ) τ≤nO(U)

,

is a pullback diagram in X.

Remark 3.6.3. The above definition is equivalent to require that given a pair (X,O) ∈ TopR (T), the truncation
(X, τ≤nO) is again an object of the∞-category TopR (T). In other terms, τ≤nO : T → X is still a T-structure on
X. Here τ≤n : X→ X denotes the n-truncation functor on X.

Notation 3.6.4. Let T be a preogeometry compatible with n-truncations. We will denote TopR (T)≤n ⊆ TopR (T)
the full subcategory spanned by those pairs (X,O) such that the T-structure O : T → X is n-truncated.

Remark 3.6.5. The inclusion functor TopR (T)≤n ⊆ TopR (T) admits a right adjoint t≤n : TopR (T)→ TopR (T)≤n

which is given on objects by the formula

(X,O) ∈ TopR (T) 7→ (X, τ≤nO) ∈ TopR (T)≤n.

Lemma 3.6.6. The pregeometry Tad(k
◦) is compatible with n-truncations.

Proof. Assume first that the valuation on k is discretely valued. We follow closely [Lur11b, Proposition 4.3.28].
Reasoning as in the proof of the cited reference or as in the proof of Proposition 3.1.13, it suffices to prove
the following assertion: let U → V be an admissible morphism in Tad(k

◦) and O ∈ fCAlgk◦(S). Then the
commutative square

(3.6.1)

O(U) τ≤0O(U)

O(U) τ≤0(V )

is a pullback square in the∞-topos S. By the definition of Tad(k
◦), there are (t)-complete ordinary k◦-algebras

A and B such that U ∼= Spf A and V ∼= Spf B. Moreover, by construction, B is étale over some ring of the
form k◦〈T1, . . . Tm〉. [dJ+, Tag 0AR1, Lemma 84.10.3] implies that there exists an étale k◦[T1, . . . Tm]-algebra
B′ such that B ∼= (B′)∧t . The morphism U → V being admissible in Tad(k

◦) implies that the induced morphism
B → A is formally étale. [dJ+, Tag 0AR1, Lemma 84.10.3] implies that the morphismB → A can be realized as
the (t)-completion of k◦-algebras B′ → A′, where A′ is an étale k◦[T1, . . . , Tn] itself. Therefore, the morphism
of spaces

O(U)→ O(V ),

can be identified with a morphism

Osh(SpecA′)→ Osh(SpecB′).

The same conclusion holds for the morphism τ≤0(O(U)) → τ≤0(O(V )). Therefore we can identify the diagram
(3.6.1) with the diagram

Osh(SpecA′) τ≤0O
sh(SpecA′)

Osh(SpecB′) τ≤0O
sh(SpecB′)

in the∞-category S. The result now follows thanks to [Lur11b, Proposition 4.3.28].
Suppose now that k is a rank 1 valuation non-archimedean field. The proof follows along the same lines.

Indeed the main input in the previous argument was [dJ+, Tag 0AR1, Lemma 84.10.3]. The latter result is implied
by [dJ+, Lemma 84.7.4.], which is proved under noetherian assumptions.

We claim that the proof of [dJ+, Tag 0AR1, Lemma 84.7.4] holds over the ring of integers k◦, under the
assumption that the morphism we start with is étale. We will employ the same notations as in [dJ+, TAG 0AR1,
Lemma 84.7.4]. In this case, the k◦-adic cotangent complex Lad

A/B vanishes, by (formal) étaleness of B → A.
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Thus one verifies directly that the statement of [dJ+, TAG 0AR1, Lemma 84.4.1.] holds in our setting. We can
thus find C is a finitely generated k◦-algebra together with a surjection

ϕ : C∧ → A,

such that C is étale overB. The latter assertion is a consequence of [dJ+, Lemma 84.7.4, (4) (ii)]. For this reason,
the morphism ϕ is necessarily (formally) étale too. Consequently, A is a retract of C∧, and thus can be obtained
as the (t)-adic completion of B ×C∧ C which is itself a retract of C over B. This last assertion follows from the
fact that (classical) (t)-adic completion preserves finite limits of B-algebras. �

Definition 3.6.7. Let X = (X,O) ∈ TopR (Tad(k
◦)). We define its n-th truncation as

t≤n(X) := (X, τ≤nO) ∈ TopR (Tad(k
◦)).

Proposition 3.6.8. Let X = (X,O) ∈ TopR (Tad(k
◦)). Then for each integer n ≥ 0, the (n + 1)-th truncation

t≤n+1(X) is a square zero extension of t≤n(X). In particular, given a derived k◦-adic Deligne-Mumford stack, X,
its n-th truncation t≤n(X) is again a derived k◦-adic Deligne-Mumford stack.

Proof. We have a canonical morphism t≤n(X) →֒ t≤n+1(X) induced by the identity functor on the underlying
∞-topos X and the natural map τ≤n+1O → τ≤nO at the level of structures. Let B := τ≤n+1O and A := τ≤nO.
Thanks to [Lur12b, Corollary 7.4.1.28] we deduce that the underlying algebra morphism

Balg → Aalg

is a square zero extension. Thus we can identify Balg with the pullback of the diagram

(3.6.2)

Balg Aalg

Aalg Aalg ⊕ LBalg/Aalg

d

d0

in the∞-category CAlgk◦(X)/τ≤nO
. Consider the induced k◦-adic derivation

fad(d) : Lad
A → Lad

B/A,

and form the pullback diagram

(3.6.3)

B′ A

A A⊕ Lad
B/A

d0

in the∞-category fCAlgk◦(X)/A. In this way the canonical morphism B′ → A is a k◦-adic square zero exten-
sion and there exists a morphism B→ B′. As filtered colimits commute with finite limits we reduce ourselves to
the case that O, and therefore both A and B, are topologically almost of finite presentation. Thanks to Proposi-
tion 3.1.13, the functor Ψ applied to the pullback diagram (3.6.2) is the identity. Thus by conservativity of (−)alg

it follows that the diagram

(3.6.4)

Ψ(Balg) Ψ(Aalg)

Ψ(Aalg) Ψ(Aalg ⊕ LBalg/Aalg)

d

d0

is a pullback diagram in the∞-category fCAlgk◦(X)/A. Thanks to Theorem 3.2.5, one concludes that the diagram
(3.6.4) is equivalent to the pullback diagram (3.6.3). Therefore, the canonical map B′ → B is an equivalence in
the∞-category fCAlgk◦(X)/O, as desired. �

4. DERIVED RIGIDIFICATION FUNCTOR

4.1. Construction of the rigidification functor. Raynaud’s generic fiber construction [Bos05, §8], induces a
transformation of pregeometries

(−)rig : Tad(k
◦)→ Tan(k).
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Proposition 4.1.1. Precomposition along the transformation of pregeometries (−)rig : Tad(k
◦)→ Tan(k) induces

a functor
(−)+ : TopR (Tan(k))→ TopR (Tad(k

◦)),

which admits a right adjoint denoted

(−)rig : TopR (Tad(k
◦))→ TopR (Tan(k)).

Proof. It is a direct consequence of [Lur11b, Theorem 2.1]. �

Definition 4.1.2. We refer to the functor introduced in Proposition 4.1.1 as the rigidification functor.

Lemma 4.1.3. For each integer n ≥ 0, we have a commutative diagram

TopR (Tan(k)) TopR (Tad(k
◦))

TopR (Tan(k))
≤n TopR (Tad(k

◦))≤n

(−)+

(−)+

,

of∞-categories.

Proof. It follows immediately from the fact that both preogemetries Tan(k) and Tad(k
◦) are compatible with n-

truncations, cf. [PY16a, Theorem 3.23] and Lemma 3.6.6, in the k-analytic and k◦-adic settings, respectively. �

Corollary 4.1.4. Let n ≥ −1 be an integer. The diagram

TopR (Tad(k
◦)) TopR (Tan(k))

TopR (Tad(k
◦))≤n TopR (Tan(k))

(−)rig

t≤n t≤n

(−)rig

is commutative.

Proof. It follows by taking right adjoints in the diagram displayed in Lemma 4.1.3. �

These considerations imply the following useful result:

Corollary 4.1.5. Let X = (X,O) be a Tad(k
◦)-structured space which is equivalent to an ordinary k◦-adic formal

scheme topologically of finite presentation. Then X
rig is equivalent to an ordinary k-analytic space which agrees

with the usual generic fiber of X.

Proof. The question is local on X. We can thus assume that X ≃ Spf(A), where A ∈ CAlgadk◦ is a topologically
of finite presentation ordinary k◦-adic algebra. Therefore, choosing generators and relations for A we can find an
(underived) pullback diagram of the form

(4.1.1)

Spf(A) Am
k◦

Spf(k◦) An
k◦

,

of ordinary k◦-adic formal schemes. Let Z denote the (derived) pullback of the diagram (4.1.1), computed in
the ∞-category dfSchk◦ . Its existence is guaranteed by [Lur16, Proposition 8.1.6.1]. It follows that t≤0(Z) ≃
Spf(A). Notice that both Am

k◦ , An
k◦ and Spf(k◦) are objects of the pregeometry Tad(k

◦). Moreover, (−)rig is
induced by the usual generic fiber functor. Thus it follows that

Spf(k◦)rig ≃ Sp k, (Am
k◦)

rig
≃ A

m
k , (An

k◦)
rig
≃ A

n
k .

As (−)rig is a right adjoint, it commutes with pullback diagrams. We thus have a pullback diagram in the ∞-
category TopR (Tan(k))

Zrig
A

m
k

Sp(k) A
n
k

.
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Corollary 4.1.4 implies that t≤0

(
Zrig

)
≃ t≤0(Z)

rig. As t≤0(Z) ≃ Spf(A) we deduce that (Spf(A))rig is
equivalent to the (underived) pullback diagram

Spf(A)rig A
m
k

Sp(k) A
n
k

computed in the category of rigid k-analytic spaces. This agrees with the usual rigidification construction applied
to Spf A. �

Lemma 4.1.6. Let f : Z → X be a closed immersion of derived k◦-adic Deligne-Mumford stacks topologically
almost of finite presentation. Then f rig is a closed immersion in the∞-category dAnk.

Proof. It suffices to show that the truncation t≤0(f
rig) : t≤0(Z

rig)→ t≤0(X
rig) is a closed immersion. The latter

assertion is a consequence of Corollary 4.1.5. �

Proposition 4.1.7. Let X be a topologically almost of finite presentation derived k◦-derived Deligne-Mumford
stack. Then X

rig is a derived k-analytic space.

Proof. Our proof is inspired by [PY17, Proposition 3.7]. The question is étale local, by [Lur11b, Lemma 2.1.3].
We can thus reduce ourselves to the case X = Spf(A), where A ∈ CAlgadk◦ is a (t)-complete topologically almost
of finite presentation derived k◦-adic algebra. We wish to prove that Spf(A)rig is a derived k-affinoid space. Let C
denote the full subcategory of dfDMk◦ spanned by those affine derived k◦-adic Deligne-Mumford stacks Spf(A)
such that Spf(A)rig is equivalent to a derived k-affinoid space. We have:

(i) The∞-category C contains the essential image of Tad(k
◦), cf. [Lur11b, Proposition 2.3.18].

(ii) C is closed under pullbacks along closed immersions. Indeed, let

(4.1.2)
W Z

Y X,
f

be a pullback diagram in the∞-category dfDMk◦ , where X, Y and Z ∈ C. Assume further that f : Y →
X is a closed immersion. By unramifiedness of the pregeometry Tad(k

◦), Proposition 3.5.3, the diagram
(4.1.2) is also a pullback diagram in the ∞-category TopR (Tad(k

◦)). As (−)rig is a right adjoint the
diagram

(4.1.3)
W

rig
Z
rig

Y
rig

X
rig

is a pullback diagram in the∞-category TopR (Tan(k)). The∞-categorydAnk is closed under pullbacks
along closed immersions thanks to [PY16a, Proposition 6.2]. Lemma 4.1.6 then implies that the diagram
(4.1.3) is a pullback square in the∞-category dAnk. Thus W ∈ C, as desired.

(iii) The∞-category C is closed under finite limits. It suffices to prove that C is closed under finite products
and pullbacks. [PY16a, Lemma 6.4] implies that C is closed under finite products. General pullback
diagrams can be constructed as pullbacks along along closed immersions as in the proof of [PY16a,
Theorem 6.5]. Thanks to Corollary 4.1.5, (−)rig commutes with finite products of ordinary formal
schemes and preserves closed immersions by Lemma 4.1.6, the assertion follows.

(iv) C is closed under retracts: let X ∈ C and let

Y X Y,
j p

be a retract diagram in the ∞-category dfDMk◦ . Assume further that Y is affine. By assumption,
X
rig ∈ dAnk and t≤0(Y)

rig ∈ dAnk, see Corollary 4.1.5. It suffices to prove that for each i > 0, the
homotopy sheaf πi

(
O

rig
Y

)
is a coherent sheaf over π0

(
O

rig
Y

)
. The former is a retract of πi

(
O

rig
X

)
, which

is a coherent sheaf over π0
(
O

rig
X

)
. In this way, it follows that πi

(
O

rig
Y

)
is coherent over π0

(
O

rig
X

)
. As

π0
(
O

rig
Y

)
is a retract of π0

(
O

rig
X

)
, we deduce that πi

(
O

rig
Y

)
is coherent over π0

(
O

rig
Y

)
, as desired.
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Suppose now that we are given an affine object X ∈ dfDMtaft
k◦ . Write X ≃ Spf(A). We wish to prove that X ∈ C.

Corollary 4.1.5 guarantees that t≤0

(
X
rig

)
is a k-analytic space. We are thus reduced to show that πi

(
O

rig
X

)
is

a coherent sheaf over π0
(
O

rig
X

)
. For every n ≥ 0, the algebra τ≤n(A) is a compact object in the ∞-category(

CAlgadk◦

)≤n
, of n-truncated derived adic k◦-algebras. We can thus find a finite diagram of free simplicial k◦-

algebras
g : I → CAlgk◦ ,

such that τ≤n(A) is a retract of τ≤n(B), where

B := colim
I

(g)
∧
t ∈ CAlgadk◦ .

We have denoted (g)∧t the (t)-completion of the diagram g : I → CAlgk◦ . As the (t)-completion functor com-
mutes with finite colimits it follows that

B ≃ B∧
t ,

and in particularB is (t)-complete. As C is closed under finite limits and it contains all objects in the pregeometry
Tad(k

◦), we conclude that Spf(B) ∈ C. In particular Spf (τ≤nB) ∈ C. As C is moreover closed under retracts,
it follows that Spf (τ≤nA) ∈ C as well. It follows, that for each 0 ≤ i ≤ n, πn

(
O

rig
X

)
is coherent over π0

(
O

rig
X

)
.

Repeating the argument, for every n ≥ 0, we conclude. �

As a consequence of the previous results we obtain the following statement:

Corollary 4.1.8. The rigidification functor (−)rig : TopR (Tad(k
◦)) → TopR (Tan(k)) restricts to a well defined

functor (−)rig : dfSchtaftk◦ → dAnk, which agrees with the classical Raynaud’s rigidification functor. Moreover,
the functor (−)rig : dfSchtaftk◦ → dAnk commutes with finite limits.

Proof. The first assertion is an immediate consequence of Proposition 4.1.7. The second claim follows from the
arguments provided in (ii) and (iii) in the proof of Proposition 4.1.7. �

4.2. Rigidification of structures.

Construction 4.2.1. Let X = (X,O) ∈ TopR (Tan(k)) be a Tan(k)-structured ∞-topos. Suppose further that
there exists X = (X,OX) ∈ TopR (Tad(k

◦)) such that we have an equivalence X
rig ≃ X in TopR (Tan(k)).

Precomposition along the transformation of pregeometries

(−)rig : Tad(k
◦)→ Tan(k)

induces a functor at the level of∞-categories of structures

(−)+ : AnRingk(X)/O → fCAlgk◦(X)/O+

given on objects by the formula

A ∈ AnRingk(X)/O 7→ A+ := A ◦ (−)rig ∈ fCAlgk◦(X)/O+ .

The functor of presentable∞-categories (−)+ : AnRingk(X)/O → fCAlgk◦(X)/O+ preserves limits and filtered
colimits. Thanks to the Adjoint functor theorem it follows that there exists a left adjoint

(4.2.1) (−)rig,◦ : fCAlgk◦(X)/O+ → AnRingk(X)/O.

The counit of the adjunction
(
(−)+, (−)rig

)
: TopR (Tad(k

◦)) → TopR (Tan(k)) produces a well defined, up to
contractible indeterminacy, morphism

(4.2.2) f : X+ = (X,O+)→ (X,OX) = X,

in the∞-category TopR (Tad(k
◦)). Let (f−1, f∗) : X ⇄ X denote the underlying geometric morphism associated

to f . Then f−1 : X→ X induces a well defined functor

(4.2.3) f−1 : fCAlgk◦(X)/OX
→ fCAlgk◦(X)/f−1OX

.

Moreover, the morphism (4.2.2) induces a morphism at the level of structures

θ : f−1OX → O+.

The latter induces a well defined functor at the level of∞-categories of structures

(4.2.4) θ : fCAlgk◦(X)/f−1OX
→ fCAlgk◦(X)/O+ ,
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which is given on objects by the formula
(
A→ f−1OX

)
∈ fCAlgk◦(X)/f−1OX

7→
(
A→ O+

)
∈ fCAlgk◦(X)/O+ .

Therefore the composite (−)rig := (−)rig,◦ ◦ θ ◦ f−1 induces a functor

(−)rig : fCAlgk◦(X)/OX
→ AnRingk(X)/O,

which we refer to as the rigidification functor at the level of structures.

Definition 4.2.2. Let X ∈ dAnk and X ∈ dfDM. We say that X is a formal model for X if Xrig ≃ X , in dAnk.

Remark 4.2.3. Let X = (X,OX) be a derived k-analytic space and X = (X,OX) ∈ dfDMtaft
k◦ a formal model

for X . Thanks to Corollary 4.1.5, the geometric morphism of underlying∞-topoi f : X → X agrees with the
classical specialization morphism, in the∞-categorical setting.

Notation 4.2.4. We will denote the geometric morphism introduced in Construction 4.2.1 (f−1, f∗) : X → X by
sp = (sp−1, sp∗).

Construction 4.2.5. Notations as in Construction 4.2.1. Consider the following square of pregeometries

(4.2.5)

Tdisc(k
◦) Tdisc(k)

Tad(k
◦) Tan(k)

−⊗k◦k

(−)∧t (−)an

(−)rig

Notice that (4.2.5) is not commutative. The lower composite sends

A1
k◦ ∈ Tdisc 7→ A

1
k ∈ Tan(k)

whereas the top composite sends
A1

k◦ ∈ Tdisc 7→ B
1
k ∈ Tan(k).

Let A ∈ fCAlgk◦(X)/OX
. The counit of the adjunction ((−)+, (−)rig) induces a natural morphism at the level of

Tad(k
◦)-structures on X

θA : sp−1A→ Arig,+ :=
(
Arig

)+
.

Applying the underlying algebra functor (−)alg : fCAlgk◦(X)/O+ → CAlgk◦(X)/O+,alg to the morphism θA we
obtain a morphism

(4.2.6) θalg
A

: (sp−1A)alg → Arig,+,alg,

in the∞-category CAlgk◦(X)/O+,alg . As Arig,+,alg is a k-linear object, we obtain by adjunction a morphism

θ
alg

A : (sp−1A)alg ⊗k◦ k → Arig,+,alg :=
(
Arig,+

)alg
,

in the∞-categoryCAlgk(X)O+,alg . We can identifyArig,+,alg ≃ A(B1
k). There is a natural inclusion of k-analytic

spaces B1
k → A

1
k. We obtain thus a canonical morphism

(4.2.7) A(B1
k)→ A(A1

k),

in the∞-category CAlgk(X)/O(A1
k)
. Composing both (4.2.6) with (4.2.7) we obtain a natural morphism

(4.2.8) θA : (sp−1A)alg ⊗k◦ k → Arig(A1
k),

in the∞-category CAlg(X)/O(A1
k)

. We will take as (a probably confusing) convention to denote precomposition
with (−)an in (4.2.5) by

(−)alg : AnRingk(X)/O → CAlgk(X)/Oalg .

In this case, we might as well write (4.2.8) as

θA : (sp−1A)alg ⊗k◦ k → Arig,alg :=
(
Arig

)alg
.

Proposition 4.2.6. Let X = (X,OX) ∈ dAnk and X = (X,OX) ∈ dfDMk◦ be a formal model for X . Then for
every A ∈ fCAlgk◦(X)/OX

the natural morphism

θA : (sp−1A)alg ⊗k◦ k → Arig,alg,

constructed above, is an equivalence in the∞-category CAlgk(X)/Oalg .
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Proof. Both the underlying∞-topoi of X and X have enough points, as these are hypercomplete and 1-localic.
Therefore, thanks to [Por15b, Theorem 1.12], we are reduced to check the statement of the proposition on stalks,
(notice that given a geometric point x∗ : S→ X the composite sp∗ ◦ x∗ : S→ X is also a geometric point).

By doing so, we might assume from the start that X = S = X. Both composites (−)alg ◦ (−)rig and(
(−)alg ◦ sp−1

)
⊗k◦ k commute with sifted colimits. The proof of Proposition 3.1.13 implies that the∞-category

fCAlgk◦(S)/OX
is generated under sifted colimits by the family {Ψ(k◦[T1, . . . , Tm])}m, where the Ti’s sit in

homological degree 0. It thus suffices to show that

θA : (sp−1A)alg ⊗k◦ k → Arig,alg,

is an equivalence whenever A ≃ Ψ
(
k◦[T1, . . . , Tm]

)
. In this case, we have natural equivalences

(sp−1Ψ(k◦[T1, . . . , Tm])alg ⊗k◦ k ≃ k〈T1, . . . , Tm〉.

Since Ψ(k◦[T1, . . . , Tm]) can be identified with (a germ) of Am
k◦ ∈ TopR (Tad(k

◦)), it follows that

Ψ(k◦[T1, . . . , Tm])
rig,alg

≃ k〈T1, . . . , Tm〉,

in the∞-category CAlgk(X)/Oalg . The result now follows. �

4.3. Rigidification of modules. We start by recalling [PY17, Definition 4.3]:

Definition 4.3.1. Let X = (X,OX) ∈ dAnk be a derived k-analytic space. The∞-category of OX-modules on
X is defined as

ModOX
:= Sp

(
Ab

(
AnRingk(X)/OX

))
.

Similarly, the∞-category Mod
O

alg
X

is defined as the∞-category of OX -module objects in ShvD(Ab)(X).

One has the following result:

Proposition 4.3.2. [PY17, Theorem 4.5] There exists a canonical equivalence of∞-categories

ModOX ≃ Mod
O

alg
X
.

Remark 4.3.3. In particular, the∞-category ModOX inherits a natural t-structure induced from the t-structure on
Mod

O
alg
X

, where the latter is defined in [Lur11c, Proposition 1.7].

Lemma 4.3.4. Let X = (X,OX) ∈ TopR (Tan(k)) and X = (X,OX) ∈ TopR (Tad(k
◦)) such that Xrig ≃ X ,

in TopR (Tan(k)). The rigidification functor (−)rig : fCAlgk◦(X)/OX
→ AnRingk(X)/OX

induces a well defined
functor

(−)rig : ModOX
→ ModOX .

We shall refer it as the rigidification of modules functor.

Proof. It suffices to show that the functor (−)rig : fCAlgk◦(X)/OX
→ AnRingk(X)/OX

commutes with finite
limits. Thanks to Proposition 4.2.6 the composite functor (−)alg ◦ (−)rig agrees with localization at (t) and
therefore it commutes with finite limits. As (−)alg is a conservative right adjoint it follows that

(−)rig : fCAlgk◦(X)/OX
→ AnRingk(X)/OX

commutes with finite limits as well, and the proof is finished. �

By construction, we have a natural projection functor

Ω∞
an : ModOX → AnRingk(X)/OX

.

Definition 4.3.5. Let M ∈ ModOX , we shall denote OX ⊕M := Ω∞
an(M) and refer to it as the analytic split

square zero extension of OX by M .

Following the discussion in [PY17, §5.1] prior to [PY17, Definition 5.4] we conclude that the functor Ω∞
an

admits a left adjoint Σ∞
an : AnRingk(X)/OX

→ ModOX .

Definition 4.3.6. Suppose we are given A ∈ AnRingk(X)/OX
and consider the∞-categoryAnRingk(X)A//OX

.
We can consider the analytic A-linear derivations functor DeranA (OX ,−) : ModOX → S given on objects by the
formula

M ∈ ModOX 7→ MapAnRingk(X)A//OX
(OX ,OX ⊕M) .
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Thanks to [PY17, Proposition 5.18.] such functor is corepresentable by the analytic cotangent complex relative
to A→ OX , which we denote by Lan

OX/A. Explicitly, one has a natural equivalence of mapping spaces

MapModOX

(
Lan
OX/A,M

)
≃ DeranA (OX ,M) .

We can explicitly describe Lan
OX/A ≃ Σ∞

an (OX ⊗A OX) ∈ModOX .

Lemma 4.3.7. Let X = (X,OX) ∈ TopR (Tan(k)) and X = (Z,OX) ∈ TopR (Tad(k
◦)) such that Xrig ≃ X , in

∞-category TopR (Tan(k)). Then the diagram

ModOX
ModOX

fCAlgk◦(X)/OX
AnRingk(X)/OX

(−)rig

Σ∞
ad

(−)rig

Σ∞
an

is commutative up to coherent homotopy.

Proof. It suffices to prove that the corresponding diagram of right adjoints

ModOX
ModOX

fCAlgk◦(X)/OX
AnRingk(X)/OX

Ω∞
ad

(−)+

Ω∞
ad

(−)+

is commutative. But this follows by an immediate verification as done in [PY17, Lemma 5.15]. The result
follows. �

Corollary 4.3.8. We have a natural equivalence
(
Lad
OX/A

)rig
≃ Lan

O
rig
X

/Arig

in the∞-category ModOX .

Proof. It is an immediate consequence of Lemma 4.3.7 above. �

Definition 4.3.9. Let M ∈ Coh+(X). We say that M admits a formal model if there exists an OX-module
M ∈ Coh+(OX) such that

Mrig ≃M ∈ ModOX .

Proposition 4.3.10. Let X = (X,OX) ∈ dfDMk◦ and X = (X,OX) := X
rig, denote its rigidification. Then the

functor (−)rig : ModOX
→ ModO is t-exact.

Proof. The statement follows readily from Proposition A.1.4 combined with [HPV16, Corollary 2.9]. �

4.4. Main results. In this §, we state our two main results. The first one concerns the existence of formal models
for quasi-paracompact and quasi-separated derived k-analytic spaces. The second is a direct generalization of
Raynaud’s localization theorem.

Definition 4.4.1. Let A ∈ CAlgadk◦ . We say that A is an derived admissible k◦-adic algebra if A is (t)-complete
and topologically almost of finite presentation. We further required that, for every i ≥ 0, the homotopy sheaf
πi(A) is (t)-torsion free. We denote CAlgadmk◦ the full subcategory of CAlgadk◦ spanned by admissible adic derived
k◦-algebras.

Definition 4.4.2. Let X ∈ dfDMtaft
k◦ . We say that X is a derived admissible k◦-adic Deligne-Mumford stack (resp.

derived admissible k◦-adic scheme) if there exists
∐

i

Spf(Ai)→ X,

such that, for each index i, Ai ∈ CAlgadmk◦ . We denote by dfDMadm
k◦ (resp., dfSchadmk◦ ) the∞-category of derived

admissible k◦-adic Deligne-Mumford stacks (resp. derived admissible k◦-adic schemes).

Definition 4.4.3. Let X = (X,O) be a derived k-analytic space. We say that X is quasi-paracompact and
quasi-separated if the 0-th truncation t≤0(X) is equivalent to a quasi-paracompact and quasi-separated ordinary
k-analytic space.
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Thanks to [Bos05, Theorem 3, page 204], it follows that any (ordinary) quasi-paracompact and quasi-separated
k-analytic space, X , admits a classical formal model. We generalize this result to the derived setting:

Theorem 4.4.4. Let X = (X,O) be a quasi-paracompact and quasi-separated derived k-analytic space. ThenX
admits a derived formal model X = (X,OX) ∈ dfSchk◦ .

Proof. Let X0 := t≤0(X) denote the 0-truncation of X . Thanks to [Bos05, Theorem 3, page 204], it follows
that X0 admits an admissible formal model X0 ∈ fSchk◦ . We will construct inductively a sequence of derived
admissible k◦-adic schemes

X0 → X1 → X2 → . . . ,

such that we have equivalences
(Xn)

rig ≃ t≤n(X),

for each n ≥ 0.The case n = 0 being already dealt, we proceed with the inductive step. Suppose that Xn =
(X,OXn) has already been constructed, for n ≥ 0. As X is a derived k-analytic space, for each n ≥ 0, the
homotopy sheaf πn(OX) is a coherent module over π0(OX). Thanks to [PY17, Corollary 5.42] there exists an
analytic derivation d : Lan

t≤nX
→ πn+1(OX)[n+ 2] together with a pullback diagram

(4.4.1)

τ≤n+1OX τ≤nOX

τ≤nOX τ≤nOX ⊕ πn+1(OX)[n+ 2],

d

d0

in the∞-category AnRingk(X)/τ≤nOX
. Here d0 denotes the trivial analytic derivation. Proposition A.2.1 and its

proof imply that we can find a formal model for d in the stable∞-category Coh+(Xn), namely

δ : Lad
Xn
→Mn+1[n+ 2],

where Mn+1 ∈ Coh+(Xn) is a formal model for πn+1(OX). We can assume further that Mn+1 ∈ Coh+(Xn)
♥

does not admit non-trivial (t)-torsion. We define On+1 ∈ fCAlgk◦(X)/OXn
as the pullback of the diagram

(4.4.2)

On+1 OXn

OXn OXn ⊕Mn+1[n+ 2]

δ

d0

in fCAlgk◦(X)/OXn
. Define Xn+1 := (X,On+1). By construction, Xn+1 is a derived admissible k◦-adic Deligne-

Mumford stack. Both X
rig and t≤n+1(X) have equivalent underlying∞-topoi. Thus, we have a rigidification

functor
(−)rig : fCAlgk◦(X)/On+1

→ AnRingk(X)/OX
,

which commutes with finite limits. Thus the diagram (4.4.2) remains a pullback diagram after rigidification. For
this reason, we obtain a canonical morphism

αn+1 : (On+1)
rig → τ≤n+1OX

in the∞-category AnRingk(X)/τ≤n+1OX
. The morphism of Tan(k)-structures produces a morphism

θn+1 : t≤n+1(X)→ X
rig
n+1.

We claim that θn+1 is an equivalence in the ∞-category TopR (Tan(k)). Since the underlying∞-topoi of both
Xn+1 and of X0 are equivalent, we are reduced to show that αn+1 is an equivalence of structures. Thanks to
Proposition 4.2.6 we have an equivalence

(
O

rig
n+1

)alg

≃
(
sp−1On+1

)alg
⊗k◦ k.

By the inductive hypothesis together with the pullback diagrams (4.4.2) it follows that the natural morphism

(sp−1On+1)
alg ⊗k◦ k → (τ≤n+1OX)alg,

is an equivalence. By conservativity of (−)alg it follows that

αn+1 : O
rig
n+1 → τ≤n+1OX ,
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is also an equivalence the∞-category AnRingk(X)/τ≤n+1OX
. We conclude that

θn+1 : X
rig
n+1 ≃ t≤n+1X,

is an equivalence in TopR (Tan(k)). Define
X := colim

n≥0
Xn.

We claim that X is again an admissible derived k◦-adic Deligne-Mumford stack: the question being local on X

we reduce ourselves to the case X = Spf A and Xn ≃ Spf An, for suitable A, An ∈ CAlgadmk◦ . By construction,
τ≤n−1(An) ≃ An−1, for each n ≥ 1. We have moreover an identification

X ≃ Spf (limn≥0An) .

As An is admissible, for every n ≥ 0, we conclude that limn≥0An is again admissible. This concludes the proof
that X is a derived admissible k◦-adic Deligne-Mumford stack.

It only remains to show that Xrig ≃ X . We have a sequence of equivalences

t≤n(X
rig) ≃ (t≤nX)

rig ≃ X
rig
n ≃ t≤n(X),

which is a consequence of convergence for derived k-analytic stacks, cf. [PY17, §7]. Assembling these equiva-
lences together, we produce a map

f : Xrig → X,

in the∞-category dAnk. The underlying morphism of∞-topoi is an equivalence, since the underlying∞-topoi
are equivalent in every step of the inductive argument. Furthermore, f induces equivalences, for each i ≥ 0,

πi(O
rig
X
) ≃ πi(OX),

where OX := limn≥0OXn . By hypercompletion of the∞-topos X, it follows that

O
rig
X
≃ OX .

This shows that f is an equivalence, and the proof is complete. �

We now deal with our main result. We start with a useful lemma:

Lemma 4.4.5. Let F : C → D be a functor between∞-categories. Suppose that for any D ∈ D the following
assertions are satisfied:

(i) The∞-category C/D := C×D D/D is contractible;
(ii) let C′

/D denote the full subcategory of C/D spanned by those objects (C,ψ : F (C) → D) such that ψ is
an equivalence in D. Suppose further that C′

/D is non-empty and the inclusion C′
/D → C/D is cofinal.

Then F : C→ D induces an equivalence of∞-categories C[S−1]→ D, where S denotes the class of morphisms
f ∈ C∆1

such that F (f) is an equivalence.

Proof. Let E be an∞-category. We have to prove that precomposition along F induces a fully faithful embedding
of∞-categories

F ∗ : Fun (D,E)→ Fun (C,E) ,

whose essential image consists of those functors G : C → E which send morphisms in S to equivalences in D.
Given any functorG : D→ E, the compositeG ◦F : C→ E sends each morphism in S to an equivalence E, as F
does. Both hypothesis (i) and (ii) combined with the colimit formula for left Kan extensions imply that for every

G : C→ E,

such that every morphism in S is sent to an equivalence, the left Kan extension

F!(G) ∈ Fun (D,E) ,

exists. Furthermore, we have natural equivalences

F! ◦ F
∗ ≃ id, and F ∗ ◦ F! ≃ id.

The result now follows from the fact that F! is an inverse to F ∗, when restricted to the full subcategory of
Fun (C,E) spanned by those functors sending every morphism in S to equivalences in E. �

Remark 4.4.6. Lemma 4.4.5 implies that the localization functor of classical Raynaud theorem is∞-categorical,
i.e. the usual category Anqpcqsk of quasi-paracompact and quasi-separated k-analytic spaces is the∞-categorical
localization of fSchk◦ . This is not a common phenomenon: if C is a 1-category and S a collection of morphisms
in C then the∞-categorical localization C[S−1] is typically a genuine∞-category.
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Definition 4.4.7. Let dAnqpcqs
k ⊆ dAnk denote the full subcategory of dAnk spanned by quasi-paracompact and

quasi-separated derived k-analytic spaces X ∈ dAnk.

Definition 4.4.8. Let f : X→ Y be a morphism between derived k◦-adic schemes. We say that f is rig-strong if,
for each i > 0, the induced morphism

πi
(
(f rig)−1OYrig

)
⊗π0((frig)−1O

Yrig )
π0(OXrig )→ πi (OXrig) ,

is an equivalence in the∞-category Modπ0(OXrig
).

Theorem 4.4.9 (Derived Raynaud Localization Theorem). Let S denote the saturated class of morphisms in
dfSchadmk◦ generated by rig-strong morphisms f : X → Y whose t≤0(f) is an admissible blow-up of ordinary
k◦-adic schemes. Then the rigidification functor

(−)rig : dfSchadm
k◦ → dAnqpcqs

k ,

induces an equivalence of∞-categories

dfSchadm
k◦ [S−1] ≃ dAnqpcqsk .

Theorem 4.4.9 is an immediate consequence of Lemma 4.4.5 combined with the following Proposition:

Proposition 4.4.10. The rigidification functor (−)rig : dfSchadmk◦ → dAnqpcqs
k satisfies the dual assumptions of

the statement in Lemma 4.4.5.

Proof. The verification of the assumptions of Lemma 4.4.5 are made simultaneously: Let X ∈ dAnqpcqs
k and

define
CX :=

(
dfSchadm

k◦

)
X/
.

Denote by
p0 : CX → dfSchk◦ , p1 : CX → dAnqpcqsk ,

the canonical projections functors. We will show that for every finite space K and every functor f : K → CX ,
f can be extended to a (cone) functor f⊳ : K⊳ → CX in such a way that f⊳(∞) is a formal model for X ∈
dAnqpcqs

k . We denote ∞ ∈ K⊳ the cone point. This will imply that CX is a cofiltered ∞-category, hence its
homotopy type is weakly contractible. It also follows, that the inclusion of the full subcategory spanned by formal
models, for X , in CX , is final.

Let us first sketch the rough idea of proof: By induction on the Postnikov tower we are allowed to lift commu-
tative diagrams of derived k-analytic spaces to the formal level. This is done, by reducing questions concerning
liftings of Tad(k

◦)-structures, to analogue lifting questions at the level of the stable∞-categories of coherent mod-
ules. This is achieved using the universal property of the adic cotangent complex. Furthermore, the corresponding
questions for coherent modules can be dealt effectively using the results proved in Appendix A. The main technical
difficulty is to keep track of higher coherences, involved in commutative diagrams of derived k-analytic spaces,
when lifting these to the k◦-adic setting.

We will construct a sequence

{(Xn, t≤nX → X
rig) ∈ Ct≤nX}n∈N, with Xn := (Xn,OXn) ∈ dfSchadmk◦ ,

satisfiying the following conditions:

(i) For each n ≥ 0, Xn is n-truncated.
(ii) For each n ≥ 0, we have an equivalence

(
Xn

)rig
≃ t≤nX.

(iii) For each n ≥ 0, there exists a canonical equivalence

Xn → t≤nXn+1,

in dfSchadmk◦ . This implies, in particular, that the underlying∞-topoi Xn ∈ TopR are all equivalent.
(iv) For each n ≥ 0, there is a functor f⊳

n ∈ Fun
(
K⊳,Ct≤nX

)
whose restriction (f⊳

n )|K is naturally equiv-
alent to t≤nf , in the∞-category Fun

(
K,Ct≤nX

)
. Additionally, p0 (f⊳

n (∞)) ≃ Xn.

Assume that we have constructed such a sequence {(Xn, t≤nX → X
rig) ∈ Ct≤nX}n∈N satisfying conditions

(i) through (iv). Define X := colimn≥0 Xn and notice that the morphisms t≤nX → X
rig
n assemble to produce a

morphism
X → X

rig,
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in the∞-categorydAnk. Moreover, by the universal property of filtered colimits, the diagrams f⊳

n ∈ Fun
(
K⊳,Ct≤nX

)

assemble. There exists thus a well defined extension f⊳ ∈ Fun (K⊳,CX), of f : K → CX . As the rigidification
functor is compatible with n-th truncations, it follows that the functor f⊳, constructed in this way, when evaluated
on∞

p1
(
f⊳(∞)

)
∈
(
dAnqpcqsk

)
X/

agrees with the morphism

X → X
rig.

This finishes the proof of the claim. For this reason, we are reduced to prove the existence of a sequence
{(Xn, t≤nX → X

rig
n ) ∈ Ct≤nX}n∈N satisfying conditions (i) through (iv) above.

Step 1. (Case n = 0) Let X0 := t≤0X. By the universal property of n-truncation we can assume, without loss of
generality, that for each vertex x ∈ K , the component

(
Yx, ψx : X0 → Y

rig
x

)
:= f(x) ∈ CX0 is actually discrete.

More concretely, each YX is equivalent to an ordinary k◦-adic formal scheme. In this case, the result is now a
direct consequence of [Bos05, Theorem 3, page 204].

Step 2. (Inductive datum) Assume that, for a givenn ≥ 0, we have constructed a diagram f⊳

n ∈ Fun
(
K⊳,Ct≤nX

)

satisfying conditions (i) through (iv), above. Denote by αn,x : Xn → Yn,x the morphism associated to∞→ x in
K⊳, where Yn,x := t≤nYx =

(
Yn,x,On,x

)
. The functor f⊳

n ∈ Fun
(
K⊳,Ct≤nX

)
corresponds to the datum:

(i) A diagram f⊳

n,∗ : K
⊳ → TopR such that f(∞) ≃ Xn. Furthermore, for each x ∈ K , we have a

morphism αn,x,∗ : Xn → Yn,x in TopR . We remark that this data is constant for 0 ≤ m ≤ n.
(ii) A diagram f⊳,−1

n : K⊳,op → fCAlgk◦(Xn)/OXn
such that f⊳,−1(∞) ≃ idOXn

and f⊳,−1(x) corre-
sponds to a (structural) morphism hn,x : α

−1
n,xOYn,x → OXn , in the∞-category fCAlgk◦(Xn)/OXn

.

A similar analysis for the diagram t≤n+1f : K → Ct≤n+1X together with the Postnikov decomposition imply

that we have a functor f−1
n+1 : K

op ×
(
∆1

)2
→ fCAlgk◦(Xn)/OXn

, such that, for each x ∈ K , the induced
morphism

f−1
n+1,x :

(
∆1

)2
→ fCAlgk◦(Xn)/OXn

,

corresponds to a pullback diagram of the form

(4.4.3)

τ≤n+1(α
−1
x OYx) τ≤n(α

−1
x OYx)

τ≤n(α
−1
x OYx) τ≤n(α

−1
x OYx)⊕ α

−1
x πn+1

(
OYx

)
[n+ 2]

dn,x

d0
n,x

in fCAlgk◦(Xn)/OXn
. Here dn,x denotes a suitable k◦-adic derivation and d0n,x the trivial adic derivation.

Step 3. (Functoriality of the construction fCAlgk◦(X)O//O) Consider the functor I : fCAlgk◦(Xn)/OXn
→ Cat∞

given on objects by the formula
(
O→ OXn

)
∈ fCAlgk◦(Xn)/OXn

7→ fCAlgk◦(Xn)O//O ∈ Cat∞.

The transition morphisms correspond to (suitable) base change functors. Let D → fCAlgk◦(Xn)/OXn
denote

the corresponding coCartesian fibration obtained via the unstraightening construction. Notice that pullback along
O → OXn induces a functor gO : fCAlgk◦(Xn)OXn//OXn

→ fCAlgk◦(Xn)O//O, which admits a left adjoint
fO : fCAlgk◦(Xn)O//O → fCAlgk◦(Xn)OXn//OXn

. The latter is given by base change along O → OXn . There-
fore, applying the unstraightening construction, we obtain a well defined functor

G : fCAlgk◦(Xn)OXn//OXn
× fCAlgk◦(Xn)/OXn

→ D,

over fCAlgk◦(Xn)/OXn
. Moreover, its fiber at (O → OXn) ∈ fCAlgk◦(Xn)/OXn

coincides with the functor gO,
introduced above. Thanks to the (dual) discussion proceding [PY16b, Corollary 8.6], it follows that G admits a
left adjoint F : D→ fCAlgk◦(Xn)OXn//OXn

× fCAlgk◦(Xn)/OXn
.
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Step 4. (Base change of (4.4.3) along the morphism τ≤n(α
−1
x OYx)→ OXn ) The zero derivations d0n,x in (4.4.3)

assemble to give a a well defined functor d0n : K
op → D. Similarly the dn,x induce a well defined functor

dn : K
op → D. Denote

∆0 := F ◦ d0n, and ∆ := F ◦ dn : K
op → fCAlgk◦(Xn)OXn//OXn

.

Notice that ∆0 : K
op → fCAlgk◦(Xn)OXn//OXn

is given on objects by the formula

x ∈ Kop 7→

(
OXn → OXn ⊕ α

∗
xπn+1

(
OYx

)
[n+ 2]

d0
n,x
−−−→ OXn

)
∈ fCAlgk◦(Xn)OXn//OXn

.

Similary the functor ∆: Kop → fCAlgk◦(Xn)OXn//OXn
satisfies

x ∈ Kop 7→

(
OXn → OXn ⊕ α

∗
xπn+1

(
OYx

)
[n+ 2]

dn,x
−−−→ OXn

)
∈ fCAlgk◦(Xn)OXn//OXn

.

By construction, both functor ∆0 and ∆ factor through the full subcategory

fCAlgderk◦ (Xn)OXn//OXn
⊆ fCAlgk◦(Xn)OXn//OXn

spanned by those objects OXn → A→ OXn which correspond to k◦-adic derivations.

Step 5. (Reduction of the above diagrams to diagrams of modules) The universal property of the k◦-adic cotangent
complex implies that we have an equivalence of∞-categories

(−)der : fCAlgderk◦ (Xn)OXn//OXn
≃

(
ModOXn

)
Lad
O

Xn
/

.

Therefore, the functors ∆0 and ∆ correspond, under the equivalence (−)der, to functors

∆0, ∆: Kop →
(
ModOXn

)
Lad
O

Xn

,

given on objects by the formulas

x ∈ Kop 7→
(
d0n,x : L

ad
OXn
→ α∗

xπn+1

(
OYx

)
[n+ 2]

)
∈
(
ModOXn

)
Lad
O

Xn
/

,

and
x ∈ Kop 7→

(
dn,x : L

ad
OXn
→ α∗

xπn+1

(
OYx

)
[n+ 2]

)
∈
(
ModOXn

)
Lad
O

Xn
/

,

respectively. Thanks to the proofs of both [PY17, Lemma 5.35 and Corollary 5.38] the k◦-adic cotangent complex
Lad
OXn

is coherent and connective. Therefore the functors ∆0, ∆: Kop →
(
ModOXn

)
Lad
O

Xn
/

factor through the full

subcategory Coh+(OXn)Lad
O

Xn
/ ⊆

(
ModOXn

)
Lad
O

Xn
/

.

Step 6. (Rigidification of the corresponding diagrams of modules) Consider now the composites

∆rig
0 := (−)rig ◦∆0, ∆rig := (−)rig ◦∆: Kop → Coh+(Orig

Xn
)Lan

X
rig
n

/.

The same reasoning as above, applied to the rigidification of the diagram t≤n+1f : K → Ct≤n+1X , produces
well-defined extensions

∆̃rig
0 , ∆̃rig : K⊳,op → Coh+(Orig

Xn
)Lan

X
rig
n

,

of both (−)rig ◦∆0 and (−)rig ◦∆, respectively. Moreover, these satisfy:

(i) We have equivalences
(
∆̃0

)
|Kop ≃ (−)rig ◦∆0, ∆̃|Kop ≃ (−)rig ◦∆,

in the∞-category Fun
(
Kop,Coh+(Orig

Xn
)Lan

X
rig
n

/

)
.

(ii) We have further equivalences

∆̃0

rig
(∞) ≃

(
d0 : L

an
O

rig
Xn

→ πn+1

(
OX

)
[n+ 2]

)
,

and

∆̃rig(∞) ≃

(
d : Lan

O
rig
Xn

→ πn+1

(
OX

)
[n+ 2]

)
,

in the∞-category Coh+(t≤n(X))Lan
t≤nX/.
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Moreover, the derivations d0 and d considered above are induced by the pullback diagram

(4.4.4)

τ≤n+1OX τ≤nOX

τ≤nOX τ≤nOX ⊕ πn+1

(
OX

)
[n+ 2]

d

d0

,

computed in the∞-category AnRingk(X)/OX
.

Step 7. (Lifting of ∆̃0

rig
and ∆̃rig to diagrams in Coh+(Xn).) Thanks to Proposition A.2.1 and its proof, we can

lift both diagrams ∆̃rig
0 and ∆̃rig to (formal model) diagrams ∆0, ∆: Kop → Coh+(OXn)Lad

O
Xn

/
, respectively.

We have natural equivalences

∆0|Kop ≃ ∆0, ∆|Kop ≃ ∆.

We further have equivalences

∆0(∞) ≃
(
δ0 : L

ad
OXn
→ N [n+ 2]

)
(4.4.5)

∆(∞) ≃
(
δ : Lad

OXn
→ N [n+ 2]

)
.(4.4.6)

Where N ∈ Coh+(OXn) denotes a (t)-torsion free formal model of πn+1(OXn), concentrated in degree 0. The
choice of such N ∈ Coh+(OXn) can be realized as follows:

First choose a given formal model N ∈ Coh+(OXn) for πn+1(OX). As the rigidification functor (−)rig is
compatible with n-truncations, we can replace N with τ≤n(N) and thus suppose that N is truncated to begin
with. We can kill the (t)-torsion on N by multiplying it by a sufficiently large power of t. More precisely, we
can consider tmN , for m > 0 sufficiently large, such that tmN is (t)-torsion free. The conclusion is now a

consequence of the fact that the canonical map tmN → N induces an equivalence
(
tmN

)rig
≃ N rig.

Step 8. (Recovering the extension of the original diagram f−1
n+1 by means of the right adjointG above) Notice that

the rigidication of both (4.4.5) and (4.4.6) concides with the derivations d0 and d displayed in (4.4.4), respectively.
We can also consider the diagrams ∆0 and ∆ as morphisms ∆0 → δ0 and ∆ → δ, living in the ∞-category
Fun

(
Kop, fCAlgk◦(Xn)OXn//OXn

)
. Thanks to [Lur09b, Proposition 3.3.3.2] we can lift both diagrams ∆0 and ∆

to functors

K⊳,op → fCAlgk◦(Xn)OXn//OXn
× fCAlgk◦(Xn)/OXn

,

whose projection along the first component agrees with ∆0 and ∆, respectively. Furthermore projection along the
second component agrees with the composition F ◦ f⊳,−1. By adjunction, we obtain thus diagrams

D0, D : K⊳,op → D,

inducing D′
0, D

′ : K⊳,op ×∆2 → fCAlgk◦(Xn)OXn/. Notice that, evaluation on vertices x ∈ K gives us assign-
ments

x ∈ Kop

7→

(
τ≤n(α

−1
x OYx)

d0,n
−−−→ τ≤n(α

−1
x OYx)⊕ πn+1

(
OYx

)
[n+ 2]→ τ≤n(α

−1
x OYx)

)
∈ fCAlgk◦(Xn)OXn/

x ∈ Kop

7→
(
τ≤n(α

−1
x OYx)

dn−→ τ≤n(α
−1
x OYx)⊕ πn+1

(
OYx

)
[n+ 2]→ τ≤n(α

−1
x OYx)

)
∈ fCAlgk◦(Xn)OXn/,

respectively. Moreover, their value at∞ agrees with

OXn

d0−→ OXn ⊕N [n+ 2]→ OXn , OXn

d
−→ OXn ⊕N [n+ 2]→ OXn ,

respectively.
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Step 9. (Obtaining an extension, f⊳

n+1, of the diagram t≤n+1f ) By taking fiber products, along each {x} × Λ2
2,

we thus obtain a diagram f
⊳

n+1 : K
⊳,op → fCAlgk◦(Xn)OXn

. Evaluation on each x ∈ K agrees with

f
⊳

n+1(x) ≃ τ≤n+1(α
−1
x OYx).

More precisely, we have a canonical equivalence
(
f
⊳

n+1

)rig
|K
≃ τ≤n+1(f

−1) in AnRingk(X)/τ≤n+1OX
. Evaluation

at∞, f⊳

n+1(∞) ≃ On+1 ∈ fCAlgk◦(Xn) satisfies

O
rig
n+1 ≃ τ≤n+1(OX).

Let Xn+1 := (Xn,On+1). We obtain thus a well defined functor

f⊳

n+1 : K
⊳ → dfSchadmk◦ ,

whose rigidification coincides with

τ≤n+1f : K →
(
dAnqpcqsk

)
t≤n+1X/

.

Assembling these diagrams together, we obtain a functor f⊳

n+1 : K
⊳ → CX satisfying requirements (i) through

(iv) above. The proof is thus concluded. �

The proof of Theorem 4.4.4 also implies:

Corollary 4.4.11. Let f : X → Y be a morphism between quasi-paracompact and quasi-separated derived k-
analytic spaces. Then f admits a formal model, i.e. there exists a morphism f : X → Y in dfSchadm

k◦ such that
f
rig ≃ f in the∞-category dAnk.

Corollary 4.4.12. Let S be the saturated class generated by those morphisms f : A → B in CAlgadmk◦ such that
the induced map

(
Spf f

)rig
: Spf(B)rig → Spf(A)rig

is an equivalence in dAfdk. Then the rigidification functor
(−)rig :

(
CAlgadmk◦

)op
→ dAfdk factors via a canonical functor

(
CAlgadmk◦

)op
[S−1]→ dAfdk.

Moreover, the latter is an equivalence of∞-categories.

Proof. The result is a direct application of the proof of Theorem 4.4.9 when X ∈ dAfdk. �

APPENDIX A. VERDIER QUOTIENTS AND LEMMA ON Coh+

The results in this section where first proved in [AP19]. We present them here, for the sake of completeness.
We also present different proofs of the ones in [AP19].

A.1. Verdier Quotients. Let X be a quasi-compact and quasi-separated scheme and Z denote the formal com-
pletion of X along the (t)-locus. Consider the rigidification functor

(−)rig : Coh+
(
Z
)
→ Coh+

(
Zrig

)
.

Notation A.1.1. Let CatEx
∞ denote the∞-category of small stable∞-categories and exact functors between them.

Proposition A.1.2. [HPV16, Theorem B.2] Let C be a stable∞-category and A →֒ C a full stable subcategory.
Then the pushout diagram

A C

0 D

exists in the∞-category CatEx
∞ .

Definition A.1.3. Let A, C and D as in Proposition A.1.2. We refer to D as the Verdier quotient of C by A.
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Proposition A.1.4. Let X be a quasi-compact quasi-separated derived scheme almost of finite type over k◦. We
denote Z its formal (t)-completion. Then there exists a cofiber sequence

(A.1.1) K(Z) →֒ Coh+(Z)→ Coh+
(
Zrig

)
,

in the∞-category CatEx
∞ . Moreover, the functors in (A.1.1) are t-exact. In particular, the rigidification functor

(−)rig : Coh+(Z)→ Coh+
(
Zrig

)

exhibits Coh+
(
Zrig

)
as a (t-exact) Verdier quotient of Coh+(Z).

Proof. Let K(Z) denote the full subcategory of Coh+(Z) spanned by (t)-torsion almost perfect modules on Z .
Recall that M ∈ Coh+(Z) is of t-torsion if π∗(M) is of (t)-torsion. Consider the (quasi-compact) étale site Xét

of X . We define a functor

Coh+(−)/K(−) : Xét → CatEx
∞

given on objects by the formula

(U → X) quasi-compact and étale 7→ Coh+(U∧
t )/K(U∧

t ) ∈ CatEx
∞ ,

where U∧
t denotes the formal completion of U along the (t)-locus. Thanks to [HPV16, Theorem 7.3] this defines

a unique, up to contractible indeterminacy, CatEx
∞ -valued sheaf for the étale topology.

We will also need the following ingredient: define a functor

Coh+rig : Xét → CatEx
∞ ,

given on objects by the formula

(U → X) quasi-compact and étale 7→ Coh+
(
(U∧

t )
rig
)
∈ CatEx

∞ .

We remark thatCoh+ : Ank → CatEx
∞ satisfies fpqc descent for k-analytic spaces. Indeed, this follows by the main

theorem in [Con03] combined with the usual reasoning by induction on the Postnikov tower, for almost perfect
modules. Moreover, the formal completion and rigidification functors are morphisms of sites. As a consequence
we conclude that the assignment Coh+rig : Xét → CatEx

∞ is a sheaf for the étale topology on X .

The universal property of pushout induces a canonical morphism of sheaves Ψ: Coh+(−)/K(−)→ Coh+rig in
the∞-category Shvét(X,Cat

Ex
∞ ). We affirm that Ψ is an equivalence in Shvét(X,Cat

Ex
∞ ). By descent, it suffices

to prove the statement on affine objects of Xét. In such case, the result follows readily from the observation that
for a derived k◦-algebraA0 the∞-category Coh+

(
A0⊗k◦ k

)
∈ CatEx

∞ is obtained from Coh+(A0) by ”modding
out” the full subcategory spanned by (t)-torsion almost perfect modules. Moreover, thanks to [PY18, Theorem
3.1] we have a canonical equivalence

Coh+
(
(Spf A0)

rig
)
≃ Coh+

(
Γ
(
(Spf A0)

rig
))
,

in the∞-category CatEx
∞ . Where Γ

(
(Spf A0)

rig
)
∈ CAlgk denotes the derived global sections of Spf Arig

0 . On
the other hand Γ

(
(Spf A0)

rig
)
≃ A0 ⊗k◦ k and the result follows. �

A.2. Existence of formal models for modules. In this §, we prove some results concerning the existence of
formal models with respect to the functor (−)rig : Coh+(X) → Coh+(X) which prove to be fundamental in the
proof of Theorem 4.4.9.

Proposition A.2.1. Let X ∈ dAnk be a derived k-analytic stack which admits a formal model X ∈ dfSchk◦ .
Let F ∈ Coh+(X) be concentrated in finitely many cohomological degrees. Then F admits a formal model, i.e.
there exists G ∈ Coh+(X) such that Grig ≃ F in Coh+(X). Moreover, the∞-category of formal models of F is a
filtered∞-category.

Proof. Let F ∈ Coh+(X), be as in the stament of the Proposition A.2.1. Assume moreover that F is connective,
i.e. its non-zero cohomology lives in non-positive degrees. Notice that, by definition of ind-completion, F ∈
Ind

(
Coh+(X)

)
is a compact object.

Let Φ: Ind(Coh+(X)) → Ind(Coh+(X)) denote a fully faithful right adjoint to (−)rig. It follows from the
construction of Ind-completion that we have a canonical equivalence

(A.2.1) Φ (F) ≃ colim
G∈Coh+(X)/Φ(F)

G,
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in Ind
(
Coh+(X)

)
. Notice that, by construction, the limit indexing∞-category appearing on the right hand side

of (A.2.1) is filtered. As Φ is a fully faithful functor, the counit of the adjunction
(
(−)rig,Φ

)
is an equivalence.

Our argument now follows by an inductive reasoning using the Postnikov tower as we now detail:
Suppose first that F ∈ Coh+(X) has cohomology concentrated in degree 0, then it is well known that F admits

a formal model F̃ ∈ Coh+,♥(X), which we can moreover choose to be of no (t)-torsion. Moreover, we can choose
F̃ in such a way that we have a monomorphism F̃ →֒ F, in the heart Coh+,♥(X)). We are also allowed to chose
in such a way that its rigidification becomes an equivalence, in the (heart of) Ind

(
Coh+ (X)

)
. We are then dealt

with the base of our inductive reasoning.
Suppose now that F lives in cohomological degrees [0, n]. By the inductive hypothesis τ≤n−1F ∈ Coh+(X)

admits a formal model ˜τ≤n−1F ∈ Coh+(X), which we can assume to live in homological degrees [0, n+ 1]. We

can also assume its associated homotopy sheaves are (t)-torsion free and we have a map ˜τ≤n−1F → τ≤n−1F, in
Ind

(
Coh+(X)

)
. Moreover, by construction its rigidification becomes an equivalence. We have a fiber sequence

F τ≤n−1F πn (F) [n+ 1],

in the ∞-category Coh+(X). By applying the exact functor Φ we obtain a fiber sequence in the ∞-category
Coh+(X).

As ˜τ≤n−1F ∈ Ind
(
Coh+(X)

)
is a compact object, the composite ˜τ≤n−1F → τ≤n−1F → πn (F) [n + 1]

factors through G[n + 1], for a certain almost perfect complex G ∈ Coh+(X)♥. Moreover, such G can be chosen
in order to satisfy

Grig ≃ πn (F) .

By the base step, we can further assume that it is (t)-torsion free and admits a monomorphism G→ πn (F), in the
heart of the∞-category Ind

(
Coh+(X)

)
.

Using the fact that Φ is a right adjoint and the the counit is an equivalence, we deduce that the rigidification of

the constructed map ˜τ≤n−1F → G[n+ 1] is equivalent to τ≤n−1F → πn(F)[n+ 1].

Therefore F̃ := fib
(

˜τ≤n−1F → G[n+ 1]
)
, is a formal model for F, which lives in homological degrees [0, n],

of no t-torsion. Moreover, it admits a map F̃ → F, in∞-category Ind
(
Coh+(X)

)
, which become an equivalence

after rigidification. The first part of Proposition A.2.1 now follows.
We are now left to prove that the full subcategoryCF , of the∞-categoryCoh+(X)/F , spanned by those objects(

F̃, ψ : F̃rig → F

)
such that ψ is an equivalence, is also filtered.

By construction, the∞-category Coh+(X)/F is filtered. In order to prove that CF is filtered, it suffices to show
that every

(
G, φ : Grig → F

)
∈ Coh+(X)/F admits a morphism to an object in CF.

We first treat the case where F ∈ Coh+(X) lies in the heart so then we can write F ≃ colimi∈I Gi in

Ind
(
Coh+(X)

)♥
, where I is filtered. Moreover, we can assume that the Gi ∈ Coh+(X)♥ are (t)-torsion free

and for each i ∈ I they admit monomorphisms Gi → F, whose rigidification G
rig
i ≃ F in Ind

(
Coh+(X)

)♥
.

The structural morphism ψ : Grig → F corresponds by adjunction to a morphism G → Φ(F) ≃ colimi∈I Φ(Gi).
By compactness of G ∈ Coh+(X), it follows that the later factors through one of the Gi. To summarize, we
have obtained a morphism G → Gi which induces a morphism in Coh+(X)/F whose source corresponds to(
G, φ : Grig → F

)
and the target is an object lying in CF, as desired.

Suppose now that F ∈ Coh+(X) is connective whose non-zero homology lives in degress [0, n]. Given(
G, φ : Grig → F

)
∈ Coh+(X)/F we know by induction that

(
G,Grig → F → τ≤n−1F

)
∈ Coh+(X)/τ≤n−1F

admits a factorization through one object
(

˜τ≤n−1F, ˜τ≤n−1F
rig → τ≤n−1F

)
∈ Coh+(X)/τ≤n−1F

,

as before. We have a commutative diagram

τ≤nG τ≤n−1G πn(G)[n+ 1]

F τ≤n−1F πn(F)[n+ 1],
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where the horizontal maps form fiber sequences in the∞-category IndCoh+(X). Moreover, there exists a suffi-
ciently large formal model Hn ∈ Coh+(X)♥ for πn(F), which is (t)-torsion free, together with a monomorphism

Hn → πn(F) in Ind
(
Coh+(X)

)♥
. Additionally, both composites

τ≤n−1G→ ˜τ≤n−1F → τ≤n−1F → πn(F)[n+ 1],

and
τ≤n−1G→ πn(G)[n+ 1]→ πn(F)[n+ 1],

factor throughHn[n+1]. Thus we have a commutative diagram of fiber sequences in the∞-category Ind
(
Coh+(X)

)

τ≤nG τ≤n−1G πn(G)[n+ 1]

F̃ ˜τ≤n−1F Hn[n+ 1]

F τ≤n−1F πn(F)[n+ 1]

which provides a factorization
(
G, φ : Grig → F

)
→

(
F̃, ψ : F̃rig → F

)
in the ∞-category Coh+(X)/F where

(
F̃, ψ : F̃rig → F

)
∈ CF, this concludes the proof. �

Corollary A.2.2. Let X ∈ dAnk and f : F → G be a morphism Coh+(X), where G is of bounded cohomology,
i.e. G ∈ Cohb(X). Suppose we are given a formal model X ∈ dfSchtaftk◦ of X .

Then we can find a morphism f : F′ → G′ in Coh+(X) such that frig lies in the same connected component of f
in the mapping space MapCoh+(X)(F,G).

Proof. We will actually prove more: Fix F′ ∈ Coh+(X) a formal model for F, whose existence is guaranteed by
Proposition A.2.1. Then we can find a formal model G′ ∈ Coh+(X) for G such that the morphism

f : F → G,

lifts to a morphism,
f : F′ → G′,

in the ∞-category Coh+(X). Assume thus F′ ∈ Coh+(X) fixed. Given a generic G′ ∈ Coh+(X), denote by
Hom (F′,G′) ∈ QCoh((X)) the Hom-sheaf of (coherent) OX-modules. Notice that if G′ ∈ Cohb (X) then the
Hom-sheaf Hom (F′,G′) is still an object lying in the∞-category Coh+ (X).

By our assumption on G ∈ Coh+(X), we can find a cohomogically bounded formal model G′ ∈ Cohb (X) for
G, and thus Hom (F′,G′) ∈ Coh+ (X). Consider the colimit,

colim
G′∈C

Hom (F′,G′) ≃ Hom (F′, G (G))(A.2.2)

≃ Hom
(
(F′)

rig
,G

)
≃ G (Hom (F,G)) ,(A.2.3)

where C denotes the∞-category of (cohomological bounded) formal models for G. The first equivalence in (A.2.2)
follows from the fact that F′ ∈ Coh+(X) is a compact object in Ind(Coh+(X)), thus the Hom-sheaf, with source
F′, commutes with filtered colimits. The second equivalence follows from adjunction. By applying the global
sections functor on both sides of (A.2.2) we obtain an equivalence of spaces (notice that Φ being a right adjoint
commutes with global sections)

colim
G′∈C

Map(F′,G′) ≃ MapCoh+(X)(F,G).

We conclude thus that there exists G′ ∈ C and f : F′ → G′ such that (f)rig and f lie in the same connected
component of MapCoh+(X)(F,G), as desired. �

Corollary A.2.3. Let X ∈ dAnk and f : F → G be a morphism in Coh+(X), where G is of bounded homology.
Suppose we are given a formal model X for X together with formal models F′, G′ ∈ Coh+(X) for F and G,
respectively. Assume further that G′ ∈ Cohb(X). Then given an arbitrary f : F → G in Coh+(X), we can find
f : F′ → G′ in Coh+(X) lifting tnf : F → G, for sufficiently large n > 0.
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Proof. Consider the sequence of equivalences in (A.2.2). Then by applying the same argument as in the proof of
Proposition A.2.1 we obtain an equivalence,

(Hom(F′,G′))rig ≃ Hom(F,G),

in the∞-category Coh+(X). Therefore, by taking global sections we obtain

MapCoh+(X)(F
′,G′)[t−1] ≃MapCoh+(X)(F,G),

where the left hand side term denotes the colimit colimmult by t MapCoh+(X)(F
′,G′). Therefore, by multiplying

f ∈ MapCoh+(X)(F,G) by a sufficiently large power of t, say tn, then tnf lies in a connected component of
MapCoh+(X)(F

′,G′), as desired. �
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