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UNIVERSAL SUMS OF GENERALIZED PENTAGONAL

NUMBERS

JANGWON JU

Abstract. For an integer x, an integer of the form P5pxq “ 3x2
´x
2

is called

a generalized pentagonal number. For positive integers α1, . . . , αk , a sum

Φα1,...,αk
px1, x2, . . . , xkq “ α1P5px1q `α2P5px2q ` ¨ ¨ ¨ `αkP5pxkq of general-

ized pentagonal numbers is called universal if Φα1,...,αk
px1, x2, . . . , xkq “ N

has an integer solution px1, x2, . . . , xkq P Zk for any non-negative integer N . In

this article, we prove that there are exactly 234 proper universal sums of gen-

eralized pentagonal numbers. Furthermore, the “pentagonal theorem of 109”

is proven, which states that an arbitrary sum Φα1,...,αk
px1, x2, . . . , xkq is uni-

versal if and only if it represents the integers 1, 3, 8, 9, 11, 18, 19, 25, 27, 43, 98,

and 109.

1. Introduction

Let m be any positive integer greater than equal to three. A polygonal number

of order m (or an m-gonal number) is defined by the integer

Pmpxq “
pm ´ 2qx2 ´ pm ´ 4qx

2

for some non-negative integer x. If x is an arbitrary integer, then we say Pmpxq is

a generalized polygonal number of order m (or a generalized m-gonal number).

A famous assertion of Fermat says that every non-negative integer is written as

a sum of m polygonal numbers of order m. In 1770, Lagrange proved that Fermat’s

assertion holds form “ 4. In 1796, Gauss proved that the assertion holds form “ 3.

Finally, in 1813, Cauchy proved the assertion completely. The Fermat polygonal

number theorem stated above was generalized in many directions.

As a natural generalization of Lagrange’s four square theorem, Ramanujan pro-

vided a list of 55 candidates of quaternary diagonal integral quadratic forms that

represent all non-negative integers. In [4], Dickson pointed out the diagonal qua-

ternary quadratic form x2 ` 2y2 ` 5z2 ` 5z2 in Ramanujan’s list does not rep-

resent 15 and confirmed that all the other 54 diagonal quadratic forms in the

list represent all non-negative integers. Conway, Miller and Schneeberger proved

the so-called “15-theorem”, which states that a positive definite integral quadratic

form represents all non-negative integers if and only if it represents the integers

1, 2, 3, 5, 6, 7, 10, 14, and 15, irrespective of its rank (for details, see [1]). Recently,

Bhargava and Hanke [2] generalized the “15-theorem” to the arbitrary positive
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2 JANGWON JU

definite integer-valued quadratic forms by proving the so-called “290-theorem”,

which states that a positive-definite integer-valued quadratic form represents all

non-negative integers if and only if it represents the integers

1, 2, 3, 5, 6, 7, 10, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29,

30, 31, 34, 35, 37, 42, 58, 93, 110, 145, 203, and 290.

Here, a quadratic form

fpx1, x2, . . . , xnq “
ÿ

1ďi,jďn

aijxixj paij “ ajiq

is called integral if aij P Z for any i, j, and is called integer-valued if aii P Z and

aij ` aji P Z for any i, j.

For positive integers α1, α2, . . . , αk, a sum α1Pmpx1q`α2Pmpx2q`¨ ¨ ¨`αkPmpxkq

of generalized polygonal numbers of order m is called universal if the diophantine

equation

α1Pmpx1q ` α2Pmpx2q ` ¨ ¨ ¨ ` αkPmpxkq “ N

has an integer solution px1, x2, . . . , xkq P Z
k for any non-negative integer N .

In 1862, Liouville generalized Gauss’ triangular theorem by proving that a ternary

sum α1P3px1q `α2P3px2q `α3P3px3q of triangular numbers is universal if and only

if pα1, α2, α3q is one of the following triples:

p1, 1, 1q, p1, 1, 2q, p1, 1, 4q, p1, 1, 5q, p1, 2, 2q, p1, 2, 3q, p1, 2, 4q.

Recently, Bosma and Kane [3] proved, so-called, the “triangular theorem of eight”

which states that an arbitrary sum α1P3px1q `α2P3px2q ` ¨ ¨ ¨ `αkP3pxkq of trian-

gular numbers is universal if and only if it represents the integers 1, 2, 4, 5, and 8.

One may consider this as a natural generalization of the “15-theorem”.

In [7] and [14], it was proven that there are exactly 40 quaternary universal sums

of generalized octagonal numbers. Furthermore, the “octagonal theorem of sixty”

was proven in [7], which states that an arbitrary sum a1P8px1q ` a2P8px2q ` ¨ ¨ ¨ `

akP8pxkq of generalized octagonal numbers is universal if and only if it represents

1, 2, 3, 4, 6, 7, 9, 12, 13, 14, 18, and 60.

In [12], Oh proved that there are exactly 20 ternary universal sums of generalized

pentagonal numbers, which was conjectured by Sun in [15]. In fact, a ternary sum

α1P5px1q ` α2P5px2q ` α3P5px3q of generalized pentagonal numbers is universal if

and only if pα1, α2, α3q is one of the triples:

(1.1)

pα1, α2, α3q “ p1, 1, sq, for 1 ď s ď 10 and s ‰ 7,

p1, 2, 2q, p1, 2, 3q, p1, 2, 4q, p1, 2, 6q, p1, 2, 8q,

p1, 3, 3q, p1, 3, 4q, p1, 3, 6q, p1, 3, 7q, p1, 3, 8q, p1, 3, 9q.

In this paper, we prove that there are exactly 234 proper universal sums of

generalized pentagonal numbers. Furthermore, we prove the “pentagonal theorem

of 109” which states that an arbitrary sum α1P5px1q`α2P5px2q` ¨ ¨ ¨`αkP5pxkq of

generalized pentagonal numbers is universal if and only if it represents the integers

1, 3, 8, 9, 11, 18, 19, 25, 27, 43, 98, and 109.
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This might also be considered as a natural generalization of the “15-theorem”.

Assume that a quadratic form fpx1, x2, . . . , xnq “
ř

1ďi,jďn aijxixj paij “ ajiq is

positive definite and integral. The symmetric matrix corresponding to f is defined

by Mf “ paijq. Note that our definition on the Gram matrix is slightly different

from
´

B2f

BxiBxj

¯

. If aij “ 0 for any i ‰ j, then we simply write

f “ xa11, a22, . . . , anny.

For a non-negative integer N , if the diophantine equation fpx1, x2, . . . , xnq “ N

has an integer solution, then we say N is represented by f . The genus of f , denoted

by genpfq, is the set of all quadratic forms that are isometric to f over Zp for any

prime p. The number of isometry classes in genpfq is called the class number of f ,

and denoted by hpfq.

Any unexplained notations and terminologies can be found in [9] or [13].

2. General tools

Let α1, α2 . . . , αk be positive integers. Recall that a sum

Φα1,α2,¨¨¨ ,αk
px1, x2, . . . , xkq “ α1P5px1q ` α2P5px2q ` ¨ ¨ ¨ ` αkP5pxkq

of generalized pentagonal numbers is said to be universal if the diophantine equation

Φα1,α2,¨¨¨ ,αk
px1, x2, . . . , xkq “ N

has an integer solution px1, x2, . . . , xkq P Z
k for any non-negative integer N . We

say the sum Φα1,α2,...,αk
of generalized pentagonal numbers is proper universal if

Φα1,α2,...,αk
is universal and there does not exist a proper subset ti1, i2, . . . , iuu Ă

t1, 2, . . . , ku such that the partial sum Φαi1
,...,αiu

is universal.

One may easily show that the equation Φα1,α2,...,αk
px1, x2, . . . , xkq “ N has an

integer solution if and only if the equation

α1p6x1 ´ 1q2 ` α2p6x2 ´ 1q2 ` ¨ ¨ ¨ ` αkp6xk ´ 1q2 “ 24N ` α1 ` α2 ` ¨ ¨ ¨ ` αk

has an integer solution. Note that if an integer v is relatively prime to 6, then one of

the integers v or ´v is congruent to ´1 modulo 6. Therefore, the sum Φα1,α2,...,αk
of

generalized pentagonal numbers is universal if and only if the diophantine equation

α1x
2

1 ` α2x
2

2 ` ¨ ¨ ¨ ` αkx
2

k “ 24N ` α1 ` α2 ` ¨ ¨ ¨ ` αk

has an integer solution px1, x2, . . . , xkq P Z
k such that gcdpx1x2 ¨ ¨ ¨xk, 6q “ 1 for

any non-negative integer N .

In some particular cases, representations of quadratic forms with some congru-

ence condition correspond to representations of a subform which is suitably taken

(for details, see [8]).

In [8], [10], and [12], we developed a method on determining whether or not

integers in an arithmetic progression are represented by some particular ternary

quadratic form. We briefly introduce this method for those who are unfamiliar

with it.

Let d be a positive integer and let a be a non-negative integer pa ď dq. We define

Sd,a “ tdn ` a | n P N Y t0uu.
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For integral ternary quadratic forms f, g, we define

Rpg, d, aq “ tv P pZ{dZq3 | vMgv
t ” a pmod dqu

and

Rpf, g, dq “ tT P M3pZq | T tMfT “ d2Mgu.

A coset (or, a vector in the coset) v P Rpg, d, aq is said to be good with respect to

f, g, d and a if there is a T P Rpf, g, dq such that 1

d
¨ vT t P Z

3. The set of all good

vectors in Rpg, d, aq is denoted by Rf pg, d, aq. If Rpg, d, aq “ Rf pg, d, aq, we write

g ăd,a f . If g ăd,a f , then by Lemma 2.2 of [10], we have

(2.1) Sd,a X Qpgq Ă Qpfq.

Note that Rpg, d, aq and Rpf, g, dq are both finite sets, so the determination whether

g ăd,a f or not could be computed in a finite time. In general, if d is large, then

it is not easy to determine by hand whether or not two finite sets Rpg, d, aq and

Rf pg, d, aq are equal. A computer program for this based on MAPLE is available

upon request to the author.

3. Universal sums of generalized pentagonal numbers

In this section, we determine all proper universal sums of generalized pentagonal

numbers. Furthermore, we give an effective criterion on the universality of an

arbitrary sum of generalized pentagonal numbers, which is a natural generalization

of the “15-theorem”.

For positive integers α1, α2, . . . , αk, let

Φα1,α2,...,αk
px1, x2, . . . , xkq “ α1P5px1q ` α2P5px2q ` ¨ ¨ ¨ ` αkP5pxkq

be a sum of generalized pentagonal numbers. For an integer N , if the diophantine

equation

Φα1,α2,...,αk
px1, x2, . . . , xkq “ N

has an integer solution px1, x2, . . . , xkq P Z
k, then we say the sum Φα1,α2,...,αk

represents N , and we write N Ñ Φα1,α2,...,αk
. When the sum Φα1,α2,...,αk

of gen-

eralized pentagonal numbers is not universal, the least positive integer that is not

represented by Φα1,α2,...,αk
is called the truant of Φα1,α2,...,αk

.

Since all of ternary universal sums of generalized pentagonal numbers are com-

pletely determined as in (1.1), we first consider the quaternary case.

Theorem 3.1. There are exactly 90 quaternary proper universal sums of general-

ized pentagonal numbers.

Proof. For positive integers α1, α2, α3, α4, let Φα1,α2,α3,α4
be a quaternary proper

universal sum of generalized pentagonal numbers. Without loss of generality, we

may assume that α1 ď α2 ď α3 ď α4. Since 1 Ñ Φα1,α2,α3,α4
, we have α1 “ 1.

Since the truant of Φ1 is 3 and 3 Ñ Φ1,α2,α3,α4
, we have α2 “ 1, 2, or 3. If

pα1, α2q “ p1, 1q, then 1 ď α3 ď 11, for the truant of Φ1,1 is 11 and 11 Ñ Φ1,1,α3,α4
.

Similarly, for i “ 2 or 3, if pα1, α2q “ p1, iq, then i ď α3 ď i`6, for the truant of Φ1,i

is i ` 6 and i ` 6 Ñ Φ1,i,α3,α4
. If pα1, α2, α3q ‰ p1, 1, 7q, p1, 1, 11q, p1, 2, 5q, p1, 2, 7q,
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and p1, 3, 5q, then each ternary sum Φα1,α2,α3
of generalized pentagonal numbers is

universal by (1.1). Note that the truant t of each Φα1,α2,α3
is

t “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

25 if pα1, α2, α3q “ p1, 1, 7q,

43 if pα1, α2, α3q “ p1, 1, 11q,

18 if pα1, α2, α3q “ p1, 2, 5q,

27 if pα1, α2, α3q “ p1, 2, 7q,

19 if pα1, α2, α3q “ p1, 3, 5q.

Therefore, α3 ď α4 ď t for each possible case, where t is the integer given above. We

show that there are exactly 90 quaternary universal sums of generalized pentagonal

numbers among the above candidates. For the complete list of proper universal

sums of generalized pentagonal numbers, see Table 3.1.

Table 3.1. Proper universal sums of generalized pentagonal numbers

Sums α

(3-1) Φ1,1,α 1 ď α ď 10 and α ‰ 7

(3-2) Φ1,2,α 2 ď α ď 8 and α ‰ 5, 7

(3-3) Φ1,3,α 3 ď α ď 9 and α ‰ 5

(4-1) Φ1,1,7,α 7 ď α ď 25 and α ‰ 8, 9, 10

(4-2) Φ1,1,11,α 11 ď α ď 43 and α ‰ 22, 33

(4-3) Φ1,2,5,α 5 ď α ď 18 and α ‰ 6, 8

(4-4) Φ1,2,7,α 7 ď α ď 27 and α ‰ 8

(4-5) Φ1,3,5,α 5 ď α ď 19 and α ‰ 6, 7, 8, 9

(5-1) Φ1,1,11,22,α α “ 22, 33 or 44 ď α ď 98

(5-2) Φ1,1,11,33,α α “ 33 or 44 ď α ď 109

In the case (4-1), we will explain how our method works in detail. Since every-

thing is quite similar to this for all the other cases, we briefly provide all parameters

needed for computations, in the remaining cases.

Case (4-1) pα1, α2, α3q “ p1, 1, 7q. It is enough to show that for any α such that

7 ď α ď 25 and α ‰ 8, 9, 10, the equation

x2 ` y2 ` 7z2 ` αt2 “ 24N ` 9 ` α

has an integer solution px, y, z, tq P Z
4 such that gcdpxyzt, 6q “ 1 for any non-

negative integer N .

Since the proofs are quite similar to each other, we only provide the proof of the

case when α “ 21. Let 24N `30 “ 72sp24n`6q for some non-negative integers n, s

such that 24n` 6 ı 0 pmod 72q. For the case when n “ 0, note that for any s ě 1,

p7sq2 ` p7sq2 ` 7p5 ¨ 7s´1q2 ` 21p7s´1q2 “ 6 ¨ 72s

If 1 ď n ď 105, then one may directly show that the equation

x2 ` y2 ` 7z2 ` 21t2 “ 24n ` 6
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has an integer solution px, y, z, tq P Z
4 such that gcdpxyzt, 6q “ 1. Therefore, we

assume that n ě 106. Note that the genus of fpx, y, zq “ x2 ` y2 ` 7z2 consists of

Mf “ x1, 1, 7y and M2 “ x1y K

ˆ

2 1

1 4

˙

.

One may easily show that every non-negative integer not of the form k ¨ 72l`1 for

any non-negative integers l, k such that
`

k
7

˘

“ ´1 is represented by Mf or M2 by

102:5 of [13], for it is represented by Mf over Zp for any prime p.

Let g be the quadratic form associated to M2. Note that Rpg, 4, 1q consists of

24 cosets. Actually, it is the union of following sets:

R1 “ tpv1, v2, v3q P pZ{4Zq3 | v1 ” 1 pmod 2q, v2 ” 0 pmod 2qu,

R2 “ tpv1, v2, v3q P pZ{4Zq3 | v1 ” v2 ” v3 ” 1 pmod 2qu.

Furthermore, note that Rpf, g, 4q consists of 64 matrices and in particular, it con-

tains the following two matrices:

T1 “

¨

˝

0 2 8

4 0 0

0 ´2 0

˛

‚ and T2 “

¨

˝

0 2 ´6

4 0 0

0 ´2 ´2

˛

‚.

For each i “ 1, 2, one may easily show that for any pv1, v2, v3q P Ri,

1

4
¨ pv1, v2, v3q ¨ T t

i P Z
3.

Therefore, g ă4,1 f holds; hereafter, we simply abbreviate M2 ă4,1 Mf when

the associated quadratic forms satisfy the relation g ă4,1 f . Then by (2.1), every

positive integer congruent to 1 modulo 4 which is represented by g is also represented

by f . As a sample, for p1, 5, 1q P Z
3, note that gp1, 5, 1q “ 65 and p1, 5, 1q ”

p1, 1, 1q pmod 4q P Rf pg, 4, 1q. Then

fp1, 1,´3q “ f

ˆ

1

4
¨ p1, 5, 1q ¨ T t

2

˙

“ gp1, 5, 1q “ 65.

One may easily show that there is an integer d P t1, 5, 7, 11u such that 24n `

6 ´ 21d2 ” 1 pmod 4q and 24n ` 6 ´ 21d2 ‰ k ¨ 72l`1. Furthermore, since we are

assuming that n ě 106, 24n`6´21d2 is a positive integer. Therefore, the equation

x2 ` y2 ` 7z2 “ 24n ` 6 ´ 21d2

has an integer solution px, y, zq “ pa, b, cq P Z
3 by (2.1). Assume that a ” b ” c ”

0 pmod 3q. We may assume that b ” c pmod 4q. If we define

τ “
1

6

¨

˝

2 5 7

´2 ´2 14

´2 1 ´1

˛

‚,

then one may easily check that τpa, b, cqt “ pa1, b1, c1qt is also an integer solution

of the equation

(3.1) x2 ` y2 ` 7z2 “ 24n ` 6 ´ 21d2

such that b1 ” c1 pmod 4q. Therefore, there is a positive integer m such that

τmpa, b, cqt “ pam, bm, cmqt is an integer solution of Equation (3.1) and one of
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whose component is not divisible by 3 or for any positive integer m, τmpa, b, cqt “

pam, bm, cmqt is an integer solution of Equation (3.1) each of whose component is

divisible by 3. Since there are only finitely many integer solution of Equation (3.1)

and τ has an infinite order, the latter is impossible unless pa, b, cq is an eigenvector

of τ . Note that the ˘p1,´3, 1q are the only integral primitive eigenvectors of τ .

Since u2 ` p´3uq2 ` 7u2 “ p´uq2 ` p´3uq2 ` 7u2 for any u P Z, we may assume

that pa, b, cq is not an eigenvector of τ . Therefore, the equation

x2 ` y2 ` 7z2 “ 24n ` 6 ´ 21d2

has an integer solution px, y, zq “ pa, b, cq P Z
3 such that abc ı 0 pmod 3q. We

may assume that a ” 1 pmod 2q. If b ” c ” 1 pmod 2q, then we are done. Assume

b ” c ” 0 pmod 2q. Note that b ” c pmod 4q. Let b “ 2i and c “ 2j. Assume

i ” j ” 1 pmod 2q. Then

b2 ` 7c2 “

ˆ

3i ˘ 7j

2

˙2

` 7

ˆ

i ¯ 3j

2

˙2

and one of the integer i´3j

2
or i`3j

2
is relatively prime to 6. Therefore, there

are integers b1, c1 such that b2 ` 7c2 “ b21 ` 7c21 and gcdpb1c1, 6q “ 1. Assume

i ” j ” 0 pmod 2q. There are integers i1, j1 such that b2`7c2 “ 4spi21`7j21q for some

integer s ě 2 with i1 ” j1 ” 1 pmod 2q or i1 ı j1 pmod 2q. If i1 ” j1 ” 1 pmod 2q,

then

(3.2) 4pi21 ` 7j21q “

ˆ

3i1 ˘ 7j1
2

˙2

` 7

ˆ

i1 ¯ 3j1
2

˙2

and one of the integers i1´3j1
2

or i1`3j1
2

is relatively prime to 6. Therefore, there

are integers b2, c2 such that b2 ` 7c2 “ b22 ` 7c22 such that gcdpb2c2, 6q “ 1. Assume

i1 ı j1 pmod 2q. Note that

16pi21 ` 7j21q “ p3i1 ˘ 7j1q2 ` 7p3j1 ¯ i1q2.

Therefore, there are integers b3, c3 such that b2`7c2 “ b23`7c23 and gcdpb3c3, 6q “ 1

by Equation (3.2). Hence, the equation

x2 ` y2 ` 7z2 ` 21t2 “ 24N ` 30

has an integer solution px, y, z, tq P Z
4 such that gcdpxyzt, 6q “ 1.

Case (4-2) pα1, α2, α3q “ p1, 1, 11q. It is enough to show that for any α such that

11 ď α ď 43 and α ‰ 22, 33, the equation

x2 ` y2 ` 11z2 ` αt2 “ 24N ` 13 ` α

has an integer solution px, y, z, tq P Z
4 such that gcdpxyzt, 6q “ 1 for any non-

negative integer N .

Since the proofs are quite similar to each other, we only provide the proof of the

case α “ 11. Let 24N`24 “ 112s ¨24n for some non-negative integers n, s such that

24n ı 0 pmod 112q. If 1 ď n ď 55, then one may directly show that the equation

x2 ` y2 ` 11z2 ` 11t2 “ 24n
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has an integer solution px, y, z, tq P Z
4 such that gcdpxyzt, 6q “ 1. Therefore, we

assume n ě 56. Note that the genus of fpx, y, zq “ p6x` yq2 ` y2 `11z2 consists of

Mf “ x2, 11, 18y, M2 “

¨

˝

5 1 1

1 7 3

1 3 13

˛

‚, M3 “

¨

˝

4 2 2

2 5 0

2 0 26

˛

‚, and M4 “ x2, 2, 99y.

One may easily show that every non-negative integer congruent to 13 mod 24 which

is not of the form k ¨ 112l`1 for any non-negative integers l, k such that
`

k
11

˘

“ ´1

is represented by Mf , M2, M3 or M4 by 102:5 of [13], for it is represented by Mf

over Zp for any prime p. Note that

(3.3) M3 ă24,13 M2 and M4 ă24,13 M2.

Therefore, every positive integer congruent to 13 modulo 24 which is represented

by M3 or M4 is also represented by M2.

Let g be the quadratic form associated with M2. We show that every positive

integer congruent to 13 modulo 24 which is represented by g is also represented by

f , provided it is not of the form 1309 ¨ 112l for any non-negative integer l. At first,

assume that gpvq “ 144n1 ` 13 for some non-negative integer n1 and v P Z
3. One

may check that there are exactly 55296 vectors in Rpg, 144, 13q and 464 matrices in

Rpf, g, 144q. Furthermore, all vectors in Rpg, 144, 13q are good vectors with respect

to f, g, 144 and 13 except 240 vectors. Note that Rpg, 144, 13qzRfpg, 144, 13q is the

union of the following two sets.

P1 “tpv1, v2, v3q P Rpg, 144, 13q : v1 ” 3 pmod 6q, v2 ” ˘4 pmod 24q,

v3 ” 6 pmod 12q, ´8v1 ` 3v2 ` 16v3 ” 0 pmod 36qu

P2 “tpv1, v2, v3q P Rpg, 144, 13q : v1 ” ˘5,˘11 pmod 24q, v2 ” ˘4 pmod 24q,

v3 ” ˘6 pmod 24q, 52v1 ` 43v2 ` 84v3 ” 0 pmod 144qu

Now, define

T1 “

¨

˝

´88 6 ´184

112 12 ´80

´8 102 88

˛

‚, T2 “

¨

˝

´92 ´101 84

´88 38 ´120

20 83 132

˛

‚.

Note that T t
iMgTi “ 1442Mg for i “ 1, 2. For any vector u P Z

3 such that

u pmod 144q P P1,

(3.4)
1

144
¨ uT t

1 P Z
3 and

1

144
¨ uT t

1 pmod 144q P P2 Y Rf pg, 144, 13q.

Similarly, for any vector u P Z
3 such that u pmod 144q P P2,

(3.5)
1

144
¨ uT t

2 P Z
3 and

1

144
¨ uT t

2 pmod 144q P P1 Y Rf pg, 144, 13q.

All computations were done by a computer program based onMAPLE. If v pmod 144q

is a good vector with respect to f, g, 144 and 13, then there is a T P Rpf, g, 144q such

that 1

144
¨vT t P Z

3 and f
`

1

144
¨ vT t

˘

“ 144n1`13. Assume that v pmod 144q is con-

tained in Rpg, 144, 13qzRfpg, 144, 13q. We may further assume that v pmod 144q P



UNIVERSAL SUMS OF GENERALIZED PENTAGONAL NUMBERS 9

P1 by (3.5). Then by (3.4), we know that

1

144
¨ vT t

1 P Z
3 and

1

144
¨ vT1 pmod 144q P P2 Y Rf pg, 144, 13q.

If 1

144
¨vT t

1 pmod 144q P Rf pg, 144, 13q, then we are done. Assume 1

144
¨vT t

1 pmod 144q P

P2. Then by (3.5), we know that

ˆ

1

144

˙2

¨ vT t
1T

t
2 P Z

3 and

ˆ

1

144

˙2

¨ vT t
1T

t
2 pmod 144q P P1 Y Rf pg, 144, 13q.

Now, inductively, there are three possibilities:

(i) there is a positive integer m such that
ˆ

1

144

˙

2m

¨ vpT t
1T

t
2qm P Z

3
and

ˆ

1

144

˙

2m

¨ vpT t
1T

t
2qm pmod 144q P Rf pg, 144, 13q;

(ii) there is a positive integer m such that
ˆ

1

144

˙

2m`1

¨vpT t
1T

t
2qmT

t
1 P Z

3
and

ˆ

1

144

˙

2m`1

¨vpT t
1T

t
2qmT

t
1 pmod 144q P Rf pg, 144, 13q;

(iii) for any positive integer m,

ˆ

1

144

˙

2m

¨ vpT t
1T

t
2qm P Z

3
and

ˆ

1

144

˙

2m

¨ vpT t
1T

t
2qm pmod 144q P P1.

Since there are only finitely many integer solution of gpx, y, zq “ 144n1 ` 13 and
`

1

144

˘2
¨T2T1 has an infinite order, the latter is impossible unless v is an eigenvector

of T2T1. Note that ˘p9, 4, 6q are the only integral primitive eigenvectors of T2T1.

Hence, if 144n1 `13 is not of the form Qp˘9t,˘4t,˘6tq “ 1309t2 for some positive

integer t, then it is also represented by f . Assume that 144n1 ` 13 “ 1309t2 for

a positive integer t. Further assume that t has a prime divisor relatively prime to

2 ¨ 3 ¨ 11. Since genpfq “ spnpfq and M2,M3 and M4 represent 1309, f represents

1309t2 by Lemma 2.4 in [8]. Note that f represents 1309 ¨22 and 1309 ¨32. Therefore

if 144n1 ` 13 ‰ 1309 ¨ 112l for any non-negative integer l, then 144n1 ` 13 is also

represented by f . Similary, one may prove that every positive integer congruent to

r modulo 144 that is represented by g, is also represented by f , provided it is not of

the form 1309 ¨ 112l, for any r P t37, 61, 85, 109, 133u. Then by (3.3), we know that

every positive integer congruent to 13 modulo 24 which is not of the form k ¨ 112l`1

and 1309 ¨112l, for any non-negative integers l, k such that
`

k
11

˘

“ ´1 is represented

by f .

One may easily show that there is an integer d P t1, 5, 7, 11u such that 24n´11d2

is not of the form 1309 ¨ 112l and k ¨ 112l`1 for any non-negative integers l, k such

that
`

k
11

˘

“ ´1. Furthermore, since we are assuming that n ě 56, 24n ´ 11d2 is a

positive integer. Therefore, the equation

x2 ` y2 ` 11z2 “ 24n ´ 11d2

has an integer solution px, y, zq P Z
3 such that x ” y pmod 6q. Then one may easily

show that gcdpxyz, 6q “ 1. This completes the proof.
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Case (4-3) pα1, α2, α3q “ p1, 2, 5q. It is enough to show that for any α such that

5 ď α ď 18 and α ‰ 6, 8, the equation

x2 ` 2y2 ` 5z2 ` αt2 “ 24N ` 8 ` α

has an integer solution px, y, z, tq P Z
4 such that gcdpxyzt, 6q “ 1 for any non-

negative integer N .

Since the proofs are quite similar to each other, we only provide the proof of the

case α “ 15. Let 24N `23 “ 52sp24n`23q for some non-negative integers n, s such

that 24n ` 23 ı 0 pmod 52q. If 0 ď n ď 29, then one may directly check that the

equation

x2 ` 2y2 ` 5z2 ` 15t2 “ 24n ` 23

has an integer solution px, y, z, tq P Z
4 such that gcdpxyzt, 6q “ 1. Therefore, we

assume n ě 30. Since hpx1, 2, 5yq “ 1, one may easily show that every non-negative

integer not of the form k¨52l`1 for any non-negative integers l, k such that
`

k
5

˘

“ ´1

is represented by x1, 2, 5y. One may easily show that there is an integer d P t1, 5, 7u

such that 24n ` 23 ´ 15d2 ‰ k ¨ 52l`1. Furthermore, since we are assuming that

n ě 30, 24n ` 23 ´ 15d2 is a positive integer. Therefore, the equation

x2 ` 2y2 ` 5z2 “ 24n ` 23 ´ 15d2

has an integer solution px, y, zq “ pa, b, cq P Z
3. Assume a ” b ” 0 pmod 3q. If

a2 ` 2b2 ‰ 0, then there are integers a1, b1 such that a2 ` 2b2 “ a21 ` 2b21 and

a1b1 ı 0 pmod 3q by Theorem 9 of [6] (see also [5], and for more generalization

see [11]). If a2 ` 2b2 “ 0, then c ” 0 pmod 4q. Let c “ 4c1. Then 5c2 “ 80c21 “

p5c1q2 ` 2p5c1q2 ` 5c21 with c1 ı 0 pmod 3q. Assume a ” c ” 0 pmod 3q. If

a2 ` 5c2 ‰ 0, then there are integers a2, c2 such that a2 ` 5c2 “ a22 ` 5c22 and

a2c2 ı 0 pmod 3q by Theorem 9 of [6]. If a2 ` 5c2 “ 0, then b ” 0 pmod 2q. Let

b “ 2b2. Then 2b2 “ 8b22 “ b22 ` 2b22 ` 5b22 with b2 ı 0 pmod 3q. Therefore, the

equation

x2 ` 2y2 ` 5z2 “ 24n ` 23 ´ 15d2

has an integer solution px, y, zq “ pa, b, cq P Z
3 such that abc ı 0 pmod 3q. By

taking suitable signs of a, b and c, we may assume that a ” b ” c pmod 3q. Then

either a ” b ” c ” 1 pmod 2q or a ” c pmod 4q and b ” 0 pmod 2q. Assume that

a ” c pmod 4q and b ” 0 pmod 2q. If we define

τ “
1

4

¨

˝

3 2 5

´1 ´2 5

´1 2 1

˛

‚,

then τpa, b, cqt “ pa1, b1, c1qt is also an integer solution of the equation

(3.6) x2 ` 2y2 ` 5z2 “ 24n ` 23 ´ 15d2.

Note that a1b1c1 ı 0 pmod 3q and a1 ı b1 ” c1 pmod 3q. Assume a1 ” c1 pmod 4q

and b1 ” 0 pmod 2q. Then τpa1, b1, c1qt “ pa2, b2, c2qt is also an integer solution of

Equation (3.6) such that a2b2c2 ı 0 pmod 3q and a2 ” b2 ” c2 pmod 3q. Therefore,

either there is a positive integerm such that τmpa, b, cqt “ pam, bm, cmqt is an integer

solution of Equation (3.6) satisfying ambmcm ı 0 pmod 3q and am ” bm ” cm ”
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1 pmod 2q or for any positive integer m, τmpa, b, cqt “ pam, bm, cmqt is an integer

solution of Equation (3.6) such that ambmcm ı 0 pmod 3q, am ” cm pmod 4q and

bm ” 0 pmod 2q. Since there are only finitely many integer solution of Equation (3.6)

and τ has an infinite order, the latter is impossible unless pa, b, cq is an eigenvector

of τ . Note that ˘p0,´5, 2q are the only integral primitive eigenvectors of τ . Since

a ı 0 pmod 3q, we may assume that pa, b, cq is not an eigenvector of τ . Therefore,

the equation

x2 ` 2y2 ` 5z2 “ 24n ` 23 ´ 15d2

has an integer solution px, y, zq “ pa, b, cq P Z
3 such that gcdpabc, 6q “ 1. This

completes the proof.

Case (4-4) pα1, α2, α3q “ p1, 2, 7q. It is enough to show that for any α such that

7 ď α ď 27 and α ‰ 8, the equation

x2 ` 2y2 ` 7z2 ` αt2 “ 24N ` 10 ` α

has an integer solution px, y, z, tq P Z
4 such that gcdpxyzt, 6q “ 1 for any non-

negative integer N .

Since the proofs are quite similar to each other, we only provide the proof of the

case α “ 21. Let 24N ` 31 “ 72sp24n` 7q for some non-negative integers n, s such

that 24n ` 7 ı 0 pmod 72q. For the case when n “ 0, note that for any s ě 1

p7sq2 ` 2p7sq2 ` 7p5 ¨ 7s´1q2 ` 21p7s´1q2 “ 72s`1.

If 1 ď n ď 105, one may directly check that the equation

x2 ` 2y2 ` 7z2 ` 21t2 “ 24n ` 7

has an integer solution px, y, z, tq P Z
4 such that gcdpxyzt, 6q “ 1. Therefore, we

assume n ě 106. Note that the genus of fpx, y, zq “ p3x ` yq2 ` 2y2 ` 7z2 consists

of

Mf “ x3, 6, 7y and M2 “ x1y K

ˆ

9 3

3 15

˙

.

One may easily show that every non-negative integer congruent to 1 modulo 3 which

is not of the form k ¨ 72l`1 for any non-negative integers l, k such that
`

k
7

˘

“ ´1 is

represented by Mf or M2 by 102:5 of [13], for it is represented by Mf over Zp for

any prime p. Note that M2 ă8,2 Mf . One may easily show that there is an integer

d P t1, 5, 7, 11u such that 24n ` 7 ´ 21d2 ” 1 pmod 3q, 24n ` 7 ´ 21d2 ” 2 pmod 8q

and 24n ` 7 ´ 21d2 ‰ k ¨ 72l`1. Furthermore, since we are assuming that n ě 106,

24n ` 7 ´ 21d2 is a positive integer. Therefore, the equation

x2 ` 2y2 ` 7z2 “ 24n ` 7 ´ 21d2

has an integer solution px, y, zq “ pa, b, cq P Z
3 such that a ” b pmod 3q by (2.1).

Assume a ” b ” 0 pmod 3q. Since 7c2 ı 2 pmod 8q, we know that a2 ` 2b2 ‰ 0.

Then there are integers a1, b1 such that a2 ` 2b2 “ a21 ` 2b21 and a1b1 ı 0 pmod 3q

by Theorem 9 of [6]. Therefore, the equation

x2 ` 2y2 ` 7z2 “ 24n ` 7 ´ 21d2



12 JANGWON JU

has an integer solution px, y, zq “ pa, b, cq P Z
3 such that abc ı 0 pmod 3q. Note

that b ” 1 pmod 2q and either a ” c ” 1 pmod 2q or a ” c ” 0 pmod 2q and

a ” c pmod 4q. Similarly as in the proof of Case (4-1), there are integers a2, c1 such

that a2 ` 7c2 “ a22 ` 7c21 with gcdpa2c1, 6q “ 1. This completes the proof.

Case (4-5) pα1, α2, α3q “ p1, 3, 5q. It is enough to show that for any α such that

5 ď α ď 19 and α ‰ 6, 7, 8, 9, the equation

x2 ` 3y2 ` 5z2 ` αt2 “ 24N ` 9 ` α

has an integer solution px, y, z, tq P Z
4 such that gcdpxyzt, 6q “ 1 for any non-

negative integer N .

Since the proofs are quite similar to each other, we only provide the proof of the

case α “ 15. Let 24N ` 24 “ 52s ¨ 24n for some non-negative integers n, s such that

24n ı 0 pmod 52q. If 1 ď n ď 30, then one may directly check that the equation

x2 ` 3y2 ` 5z2 “ 24n

has an integer solution px, y, z, tq P Z
4 such that gcdpxyzt, 6q “ 1. Therefore, we

assume n ě 31. Note that the genus of fpx, y, zq “ p2x ` zq2 ` 3p2y ` zq2 ` 5z2

consists of

Mf “

¨

˝

4 2 2

2 9 3

2 3 9

˛

‚ and M2 “ x1y K

ˆ

8 4

4 32

˙

.

One may easily show that every non-negative integer congruent to 1 modulo 8 which

is not of the form k ¨ 52l`1 for any non-negative integers l, k such that
`

k
5

˘

“ ´1 is

represented by Mf or M2 by 102:5 of [13], for it is represented by Mf over Zp for

any prime p. Note that M2 ă24,9 Mf . One may easily show that there is an integer

d P t1, 5, 7u such that 24n ´ 15d2 ” 9 pmod 24q and 24n ´ 15d2 ‰ k ¨ 52l`1 for any

non-negative integers l, k such that
`

k
5

˘

“ ´1. Furthermore, since we are assuming

that n ě 31, 24n ´ 15d2 is a positive integer. Therefore, the equation

x2 ` 3y2 ` 5z2 “ 24n ´ 15d2

has an integer solution px, y, zq “ pa, b, cq P Z
3 such that a ” b ” c ” 1 pmod 2q

by (2.1). Assume a ” c ” 0 pmod 3q. Since a ” c ” 1 pmod 2q, a2 ` 5c2 ‰ 0.

By Theorem 9 of [6], there are integers a1, c1 such that a2 ` 5c2 “ a21 ` 5c21 with

a1c1 ı 0 pmod 3q. Furthermore, a1 ” c1 ” 1 pmod 2q. Therefore, the equation

x2 ` 3y2 ` 5z2 “ 24n ´ 15d2

has an integer solution px, y, zq “ pa, b, cq P Z
3 such that a ” b ” c ” 1 pmod 2q

and ac ı 0 pmod 3q. If b ı 0 pmod 3q, then we are done. Assume b ” 0 pmod 3q.

Since a ” b ” 1 pmod 2q, a2 ` 3b2 ‰ 0. Then

a2 ` 3b2 “

ˆ

a ˘ 3b

2

˙2

` 3

ˆ

a ¯ b

2

˙2

,

where
`

a˘3b
2

˘

¨
`

a¯b
2

˘

ı 0 pmod 3q and one of the integers a´b
2

or a`b
2

is odd.

Therefore, the equation

x2 ` 3y2 ` 5z2 ` 15t2 “ 24N ` 24



UNIVERSAL SUMS OF GENERALIZED PENTAGONAL NUMBERS 13

has an integer solution px, y, z, tq P Z
4 such that gcdpxyzt, 6q “ 1. This completes

the proof. �

Theorem 3.2. There are exactly 124 quinary proper universal sums of generalized

pentagonal numbers.

Proof. For positive integers α1, α2, . . . , α5, let Φα1,α2,...,α5
be a proper universal sum

of generalized pentagonal numbers. From the above theorem, we may assume that

pα1, α2, α3, α4q “ p1, 1, 11, 22q or p1, 1, 11, 33q. Now, one may directly check that

the remaining candidates Φ1,1,11,22 and Φ1,1,11,33 are not universal and their truants

are 98 and 109, respectively. If pα1, α2, α3, α4q “ p1, 1, 11, 22q, then α5 ď 98, for

the truant of Φ1,1,11,22 is 98 and 98 Ñ Φ1,1,11,22,α5
. Similarly, if pα1, α2, α3, α4q “

p1, 1, 11, 33q, then α5 ď 109.

Case (5-1) pα1, α2, α3, α4q “ p1, 1, 11, 22q. It is enough to show that for any α

such that α “ 22, 33 or 44 ď α ď 98, the equation

x2 ` y2 ` 11z2 ` 22t2 ` αs2 “ 24N ` 35 ` α

has an integer solution px, y, z, t, sq P Z
5 such that gcdpxyzts, 6q “ 1 for any non-

negative integer N . Similarly as in the proof of Case (4-2), one may show that the

equation

x2 ` y2 ` 11z2 ` 22t2 “ 24N ` 35

has an integer solution px, y, z, tq P Z
4 such that gcdpxyzt, 6q “ 1 for any non-

negative integer N except 98. The proof follows immediately.

Case (5-2) pα1, α2, α3, α4q “ p1, 1, 11, 33q. It is enough to show that for any α

such that α “ 33 or 44 ď α ď 109, the equation

x2 ` y2 ` 11z2 ` 33t2 ` αs2 “ 24N ` 46 ` α

has an integer solution px, y, z, t, sq P Z
5 such that gcdpxyzts, 6q “ 1 for any non-

negative integer N . Similarly as in the proof of Case (4-2), one may show that if

24N ` 46 ‰ 2 ¨ 112s`1 for any s ě 1, then the equation

x2 ` y2 ` 11z2 ` 33t2 “ 24N ` 46

has an integer solution px, y, z, tq P Z
4 such that gcdpxyzt, 6q “ 1. If 24N ` 46 ‰

2 ¨ 112s`1 for any integer s ě 1, then the equation

x2 ` y2 ` 11z2 ` 33t2 “ 24N ` 46 ` α ´ α ¨ 12

has an integer solution px, y, z, tq P Z
4 such that gcdpxyzt, 6q “ 1. If 24N ` 46 “

2 ¨ 112s`1 for some integer s ě 1, then the equation

x2 ` y2 ` 11z2 ` 33t2 “ 24N ` 46 ` α ´ α ¨ 52

has an integer solution px, y, z, tq P Z
4 such that gcdpxyzt, 6q “ 1 since 24N ` 46`

α ´ α ¨ 52 ı 0 pmod 112q. This completes the proof. �

We provide an effective criterion on the universality of an arbitrary sum of gen-

eralized pentagonal numbers.
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Theorem 3.3. For a positive integer k, let α1, α2, . . . , αk be positive integers. An

arbitrary sum

Φα1,α2,...,αk
px1, x2, . . . , xkq “ α1P5px1q ` α2P5px2q ` ¨ ¨ ¨ ` αkP5pxkq

of generalized pentagonal numbers is universal if and only if it represents

1, 3, 8, 9, 11, 18, 19, 25, 27, 43, 98, and 109.

Proof. Without loss of generality, we may assume that α1 ď α2 ď ¨ ¨ ¨ ď αk. If the

sum Φα1,α2,...,αk
of generalized pentagonal numbers represents above 12 integers,

then one may easily show that there is an integer u such that 1 ď u ď k and

the partial sum Φα1,α2,...,αu
of Φα1,α2,...,αk

is one of the sums in Table 3.1. Then

the partial sum Φα1,α2,...,αu
of Φα1,α2,...,αk

is universal by (1.1) and Theorems 3.1

and 3.2. Therefore, the sum Φα1,α2,...,αk
of generalized pentagonal numbers is

universal. �
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