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PUSH-FORWARDS OF CHOW GROUPS OF SMOOTH AMPLE
DIVISORS, WITH AN EMPHASIS ON JACOBIAN VARIETIES.

KALYAN BANERJEE, JAYA NN IYER AND JAMES D. LEWIS

ABSTRACT. With a homological Lefschetz conjecture in mind, we prove the injectivity of
the push-forward morphism on rational Chow groups, induced by the closed embedding
of an ample divisor linearly equivalent to a higher multiple of the Theta divisor inside
the Jacobian variety J(C), where C' is a smooth irreducible complex projective curve.
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1. INTRODUCTION

Suppose X is a smooth projective variety defined over the field of complex numbers. Let
D C X be an ample smooth divisor on X. Denote the closed embedding, j : D — X.
Consider the push-forward homomorphism on Chow groups induced by j:

J« : CHR(D; Q) — CHL(X; Q),

for £ > 0. In this paper, we investigate the kernel of the morphism j,. This question is
motivated by the following results and conjectures. When Chow groups are replaced by
the singular homology of a smooth projective variety over C, the (dual of the) Lefschetz
hyperplane theorem gives an isomorphism of the pushforward map:

Je : H(D,Z) — Hp(X,7Z)
for k < dim D, and surjectivity when k& = dim D. M. Nori [Nol, Conjecture 7.2.5] conjec-
tured the following:

“Mathematics Classification Number: 14C15,14C20,15C25, 14C35,14F42
YKeywords: Pushforward homomorphism, Theta divisor, Jacobian varieties, Chow groups, higher
Chow groups.
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Conjecture 1.1. Suppose D is a very general smooth ample divisor on X, of sufficiently
large degree. Then the restriction map (the refined Gysin map, [Ful):

j*: CH!(X;Q) — CH”(D; Q)

is an isomorphism, for p < dim D and is injective, for p = dim D.

More generally, we have (see Conjecture 1.5]):

Conjecture 1.2. Let D be a smooth ample divisor on X. Then the restriction map for
the inclusion of D in X:

CH"(X;Q) — CH"(D; Q)
is an isomorphism, for p < %.

It seems reasonable to pose the following dual of above Chow Lefschetz questions:

Conjecture 1.3. The pushforward map on the rational Chow groups, for a very general
ample divisor D C X of sufficiently large degree:

Jx : CHi(D; Q) — CHi(X;Q)

is injective, whenever k > 0.

Similarly, we could pose the dual version of Conjecture

Conjecture 1.4. Let D be a smooth ample divisor on X. The pushforward map on the
rational Chow groups,
Jx : CHR(D; Q) — CHR(X; Q)

dim D

is injective, whenever k > <5

In §2 we provide a motivic interpretation of Conjectures and [L4l If the Hodge
conjecture and Bloch-Beilinson conjecture (based on the injectivity of the Abel-Jacobi
map for for smooth projective varieties over Q) hold, then both Conjectures and [[4]
hold. Concerning Conjecture [[L4], we prove the following generalization. (See Theorem
2.01):

Theorem 1.5. Assume the Hodge and Bloch-Beilinson conjectures hold. Then:
dim D —
k> s = s FYCH(D; Q) — FYCH(X;Q),
where { FYCH"(X; Q) },>¢ is the Bloch-Beilinson filtration on CH"(X;Q). (The casev =0
yields the statement of Conjecture[1.7})

A good source for the conjectural Bloch-Beilinson filtration is [Jal], which agrees with the
filtration in [JL], under the assumptions of the aforementioned Hodge and Bloch-Beilinson
conjectures.

The motivation for the above dual Chow-Lefschetz conjectures, for us, arose while study-

ing the following theorem by A. Collino.
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Suppose C'is a smooth projective curve of genus g over complex numbers. The symmetric
power Sym" (C') (r > 0) is a smooth projective variety of dimension r and fix a point p € C'.
The inclusion

Sym"(C) — Sym"(C), (v1 + a9+ ... + 2o 1) +p> (11 + 22+ ... + 71 + D)
is a smooth ample divisor [ACGH].

Theorem 1.6. [Col Theorem 1| The pushforward map on the Chow groups:
CH(Sym"™(C); Q) — CHi(Sym"(C); Q)

15 injective, k > 0.

This provides a prime example verifying Conjectures [[3], [L4] and the bounds in Theorem
1.0

The next example is closely related to the above example on symmetric power.

In §3], our aim is to verify the bounds given in Theorem [[L3 when D is the Theta divisor,
on the Jacobian of a smooth projective curve. It is well-known that © is an ample divisor
on J(C). We state it here, as follows.

Let C' be a smooth projective curve of genus g and let © denote a Theta divisor inside
the Jacobian J(C) of C. Denote the inclusion j : © — J(C).

Theorem 1.7. Assume C' is a non-hyperelliptic smooth projective curve of genus g > 3,
over C. The pushforward morphisms

j. s F'CH,5(0;Q) — F'CHy»(J(C); Q)

and
j. 1 F?CH, 3(0;Q) — F*CH, 3(J(C); Q)

are injective.

See §5l Theorem [5.11

In general, the Theta divisor is a singular variety with singular locus B, of dimension at
least g — 4. Equality holds if C' is non-hyperelliptic. Hence if ¢ < 3 then © is smooth,
and fulfils the above conjectural bound in Theorem [[.Al Furthermore, when ¢ = 4 and
C' is non-hyperelliptic (this is the generic situation), then © is singular and B is a finite
set of points. The Chow groups of © are taken as the usual Chow groups CH;(0© — B).
The reader should be aware of the fact that the Bloch-Beilinson filtration only applies
to smooth projective varieties. However, for our purposes, there is the Abel-Jacobi map
defined on the cycles homologous to zero on this group, and we define F2CH;(0;Q) as
the kernel of this map. When g > 4, the same convention is used for F2CH,_3(0;Q), i.e.,

cmHg_g(@; Q) := F2CHg—3(@ - B;Q)

Here the right term is the kernel of Abel-Jacobi map, see §4.6
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1.8. Comments on Theorem [I.7. We felt it important to incorporate some interesting
comments from the referee regarding the above theorem. The assertion preceding Theorem
[L.7 viz., to prove Theorem [[.Alin the case of Jacobians, can be construed as not as optimal
as one would like. What is meant by this is the following:

(i) There are two parameters, k and v in Theorem [[5] and once one has proven the result
for a given pair (k,v), one has it for all pairs (k,7’) with / > v. So in particular, for a
fixed k, the most interesting value of v is the minimum value, v = max{0, dim D —2k+1}.

(ii) At the same time, since conjecturally F*CH,(D;Q) = F*CHY™P~*(D. Q) = 0 for
v > dim D — k (see Theorem 2.4), the case v = dim D — k is the smallest term of the
filtration for which the statement is conjecturally non-trivial.

(iii) More succintly, in the case of a Jacobian and its Theta divisor, when one takes
k = g — 2, the case of most interest in then ¥ = max{0,(g — 1) — 2(g — 2) + 1} =
max{0,4 — g}. Note that if the curve is not hyperelliptic, then g > 3, so that the case of
most interest is v = 1 for ¢ = 3, and v = 0 for ¢ > 4. When k = g — 3, then one wants
to look at ¥ = max{0,6 — g}. Therefore, for non-hyperelliptic curves of genus 3, the case
v = 3 is the case of most interest, for genus 4 the case v = 2 is of most interest, for g =5
the case v = 1 is of most interest, and for higher genus, v = 0.

(iv) Consequently, for the first assertion of Theorem [T regarding F'CH, 5, for g = 3
the statement is sharp with respect to Theorem [[L3] but for g > 3 one should point out
that from Theorem [[LH, one would really like to have the statement for F°CH,_. And for
the second assertion, regarding F?CH,_3, in the case g = 3 this choice v = 2 is stronger
than what Theorem predicts, sharp for g = 4, that for g = 5, one would want v = 1,
and for g > 6 one would want ¥ = 0. At the same time, one can say that both assertions
of Theorem [[L7 are made for the smallest term of the filtration on Chow for which the
statement is conjecturally non-trivial.

Acknowledgements: The first named author is grateful to Department of Atomic Energy,
India for funding this project. The third named author is partially supported by a grant from
the Natural Sciences and Engineering Research Council of Canada. The authors owe a debt
of gratitude to the referee for going through our paper meticulously, and for the many helpful

comiments.

Notation: Here k£ is an uncountable, algebraically closed field and all the varieties are
defined over k. Denote

CHy(X; Q) = CH,(X) 2 Q.
Here X is a variety of pure dimension n, defined over k£ and CH,4(X) denotes the Chow
group of d-dimensional cycles modulo rational equivalence.
We write
CHy(X, 5;Q) := CH"™ X ~(X,5) ® Q,
the Bloch’s higher Chow groups ([Bl]) with Q-coefficients.
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2. MOTIVIC INTERPRETATIONS

We wish to provide a motivic interpretation of Conjecture[l.4l But first some terminology,
and background material, which is specific to this section only. Let Q(r) be the Tate twist
and consider the category of mixed Hodge structures over Q (MHS). For a Q-MHS V, we
put

F(V) = hOmMHs(Q(O), V),

J(V) = Ethl\/IHs(@(O)v V).
For instance, if X = X/C is smooth and projective, then I'(H?*"(X,Q(r))) can be iden-
tified with Q-betti cohomology classes of Hodge type (r,7), and J(H%‘I(X, @(r))) can
be identified (via J. Carlson) with the Griffiths jacobian (tensored with Q). There is the
cycle class map CH"(X; Q) —» I’ (H (X, @(r))), conjecturally surjective under the classi-
cal Hodge conjecture (HC), with kernel CH}__ (X;Q). Accordingly there is the Griffiths

hom

Abel-Jacobi map AJ ® Q : CHj,,.(X;Q) — J(H**(X,Q(r))). Beilinson and Bloch

hom
have independently conjectured the following;:

Conjecture 2.1 (BBC). Let W/Q be smooth and projective, and assume given an integer
r > 0. Then the Abel-Jacobi map

AJ®Q:CH] . (W/Q;Q) — J(H%_l(W(C), Q(r))),
1S 1njective.
Remark 2.2. If one assumes the HC + BBC, then W/Q can be replaced by a smooth
quasi-projective variety.

Next, we need to inform the reader of the conjectured Bloch-Beilinson (BB) filtration.
First conceived by Bloch and later fortified by Beilinson in terms of motivic extension
datum, the idea is to measure the complexity of CH"(X;Q) in terms of a conjectural
descending filtration. Rather than defining it here, we provide an explicit candidate
which will define a Bloch-Beilinson filtration in the event that the HC and BBC hold.

2.3. A candidate BB filtration. We begin with the following result, by recalling:
Theorem 2.4 ([JL]). Let X/C be smooth and projective, of dimension d. Then for all

r >0, there is a descending filtration,
CH'(X;Q=F'>F'>--.OF'OF" . ..OF DF T =F2 =...
which satisfies the following:

(i) F' = CHI,.(X;Q).

hom

(ii) F? C ker AJ @ Q : CHj,.(X; Q) — J(H*~(X(C),Q(r))).

hom

(iii) F*"CH™(X;Q) e F2CH™(X;Q) C F2CH™ (X ; Q), where o is the intersection

product.
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(iv) F" is preserved under the action of correspondences between smooth projective vari-
eties over C.

(v) Let Gr¥, := F¥/F"*' and assume that the Kiinneth components of the diagonal class
[Ax] = ®prg=2a|Ax(p,q)] € H*(X x X,Q(d))) are algebraic. Then

Ax(2d —2r +£,2r — (),

Gr CHP (X:0) = ¢, - Identity.

[If we assume the conjecture that homological and numerical equivalence coincide, then
(v) says that GrY. factors through the Grothendieck motive.]

(vi) Let D"(X) =, F”. If the HC, and the Bloch-Beilinson conjecture (BBC) on the
injectivity of the Abel-Jacobi map (®Q) holds for smooth projective varieties defined over
Q, then D"(X) = 0.

It is essential to briefly explain how this filtration comes about. Consider a Q-spread
p: X — 8§, where p is smooth and proper. Let n be the generic point of S, and put K :=
Q(n). Write Xx := X,. We introduced a decreasing filtration F*CH"(X;Q), with the
property that Gr-CH" (X; Q) — E%*“(p), (no conjectures used here!), where E%* " (p)
is the v-th graded piece of the Leray filtration on the lowest weight part H3, (X, Q(r)) of
Beilinson’s absolute Hodge cohomology Hz/ (X, Q(r)) associated to p. That lowest weight
part H3; (X, Q(r)) € H¥(X,Q(r)) is given by the image HZ (X, Q(r)) — HZ (X, Q(r)),
where X is a smooth compactification of X. There is a cycle class map CH"(X;Q) :=
CH"(X/Q; Q) — H3;(X,Q(r)), which is conjecturally injective under the BBC + HC
conjectures, using the fact that there is a short exact sequence:

0— J(H"NX,Q(r))) = H;/ (X,Q(r)) — T'(H*(X,Q(r))) — 0.

(Injectivity would imply D"(X) = 0.) Regardless of whether or not injectivity holds, the
filtration F*CH"(X;Q) is given by the pullback of the Leray filtration on H3/ (X, Q(r))
to CH"(X; Q). The term E%*~"(p) fits in a short exact sequence:

0 = B2 ¥(p) = BX2(p) > B2 (p) = 0,
where
72 (p) = T(H"(S, R p.Q(r))),
EV,2r—u( ) _ J(W—lHV_l(Sv R2T_VP*Q(T)))
S0 VT DGl HL(S, R p,Q(n)))
[Here the latter inclusion is a result of the short exact sequence:
W H' (S, B p,Q(r) = WoH' (8, B p.Q(r) — Griy H'™'(S, B p.Q(r)) ]
One then has (by definition)
F'CH(Xg;Q) = lim F'CH'(Xy;Q), Ay :=p '(U)
Ucs/Q
FYCH"(X¢; Q) = lim FYCH" (Xk; Q)

KcC
6
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Further, since direct limits preserve exactness,

GrCH (Xx; Q) = lim GriCH"(Ay; Q),
Ucs/Q

Gri.CH"(X¢; Q) = lim GryCH" (Xk; Q)
KcC

2.5. Now let j : D < X be an inclusion of smooth irreducible projective varieties, with

D ample and of codimension 1. The weak Lefschetz theorem implies that j* : H (X, Z) —

H'(D,Z) is an isomorphism if 4 < dim D and injective for i = dim D. If we set ¢ = 2r — v,

then the statement 2r < dim D implies that 2r — v < dim D — 1 for 0 < v <r. Then by
Theorem 2.4, and under the assumption of the HC and BBC:

{dim D -1

r< |

5 ] = j*: Gri,CH"(X;Q) = Gr.CH"(D;Q), Vv =0, ...,r

=" CH'(X;Q) = CH'(D; Q)
by downward induction. This incidentally, provides the motivic interpretation of Conjec-
ture 2N

Let (5%)7': CH"(D; Q) = CH"(X;Q) be the inverse map. It is clearly cycle induced by
the HC applied to the isomorphism of Hodge structures:

[j*]—l : @H%"—V(D’@) o~ @H%‘—V(X’ @)
v=0 v=0

[Explicit: Apply the Hodge conjecture to

T (@ 2 dim D—27”+I/(D’ Q) ® H2T—I/(X’ @) ( dim D)) }

v=0

One clearly has a commutative diagram;

CH"(D; Q) . CH"(X;Q)
%
(1) ‘ o
Jx N v Jiog*
CHr—l—l(X)

'We also remark in passing that under the same conjectural assumptions and argument, we have

< [dlmD;l—i—u

} = j*: Gri.CH"(X;Q) = Gri.CH"(D;Q), YVl = v, ...,
= j*: FYCH"(X;Q) = FYCH"(D;Q).
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moreover j, o j* = U{D}. Since j : D — X is ample, it follows that for 2r < dim X,
Jeoj s H7V(X,Q) — H*"D=(X Q) is injective. Now working with the diagram:

0 - FTICH'(X;Q) — FCH'(X;Q) — GrvCH(X;Q) — 0

(2) J'*Oj*l j*Oj*l j*Oj*l

0 — F7CH'Y(X;Q) — F'CHM(X;Q) — GriCH™™'X;Q) — 0

it follows that if the left and right vertical arrows in diagram (2]) are injective, then so is
the middle. By downward induction on v, we deduce from the BB filtration that j, o j* in
diagram () is injective, a fortiori j, is injective in ([Il). Now let k =d—1—r =dim D —r.
Then we have j, : CHi(D; Q) — CHg(X;Q) injective, provided k& > dim D/2. Quite
generally, one can show the following:

Theorem 2.6. Assume the Hodge (HC) and Bloch-Beilinson (BBC) conjectures. Then:

k> % = ju t FYCH(D; Q) — F"CH(X; Q).

Recall that under the assumptions, the BB-filtration is the same as Lewis’ filtration.

Now if we allow the injective statement j* : H1(X, Q) — H? (D, Q), then in diagram
(@), j* is injective with left inverse (j*)~'. Then 2k = 2dim D —2r > dim D > dim D — 1,
ie. k> %, but a caveat is in order here as (5*)~! is not injective. We can get around

this by restricting to null-homologous cycles, via the above theorem for v = 1.
The next 3 examples illustrate what can happen if
dimD —1 dim D
— < k< ,
2 2
thus indicating that the inequality in Conjecture [[L4] is effective.

Example 2.7. Let j : D — X be a finite set of points defining an ample divisor on a
smooth curve X. We assume that D supports a zero cycle that is rationally equivalent to
zero on X. Obuviously j, : CHo(D; Q) — CHy(X;Q) is not injective, and yet k = 0 =
(dim D) /2.

Example 2.8. Let j: D < X := P2 be a smooth surface with Picard rank p > 1, such as
a Fermat surface of degree > 2. Note that CHy(D; Q) ~ Q° and CHy(X;Q) ~ Q. Thus
J« : CH{(D;Q) = F°CH,(D;Q) — F'CH,(X;Q) = CH,(X;Q) is not injective. Here
k=1=(dimD)/2 andv=0. If k =1=v, then j, : F'CH;(D;Q) = CHy pom(D; Q) —
CH1 pom(X; Q) = F'CH,(X; Q) is trivially injective since CHj pom(D; Q) = 0. Here k =
1> (dimD —1)/2.

Example 2.9. Let D = Fermat quintic in P° =: X. Let £ = L; — Ly, € CHy(D;Q), a

difference of two nonhomologous planes in D. Then j.(§) = 0. Here k = 2 = (dim D)/2.
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Regarding Conjecture 1.1, if n = dim X then we require p < n — 1 for an isomorphism
and p = n— 1 for an injection. [Consider the fact that CH"(D) = 0, and yet CH" (X)) can
be highly nontrivial.|

2.10. Higher Chow analogues. From the works of M. Saito and M. Asakura (see [AS]),
Theorem 2.4 naturally extends to the higher Chow groups. In particular, if one assumes
the HC, together with a generalized version of the BBC, viz.,

Conjecture 2.11. Let W/Q be a smooth projective variety. Then the Abel-Jacobi map
CHiom (W/Q,m; Q) — J(H* "1 (W, Q(1))),
1S 1njective;
then for X/C smooth projective of dimension d, there is a (unique) BB filtration
{F"CH (X, m; Q) })=o,
for which the v-th graded piece
GrpCH"(X,m;Q) ~ Ax(2d —2r + m +v,2r —m —v),CH" (X, m; Q).
Theorem 2.12. Let us assume Conjecture [2.11] and the HC. Then
j*: CH"(X,m; Q) = CH"(D,m; Q),

for
dim D +m —1
r< : : moreover,
dim D —
R M . FYCHY(D, m; Q) < FYCH, (X, m; Q).

Proof. (Sketch.) Using the theory of mixed Hodge modules [AS], the idea of proof is
virtually the same as when m = 0, with a modification of indices. For instance, one is
now dealing with a short exact sequence

0 _)ngr—u—m(p) N EOV<7>2T_V_m(p) - gz;fr—u—m(p) N 0’

where

B2 (p) = T(HY(S, R~ p.Q(r))),

EV,2r—u—m( ) — J(W_lHV_l(S> R2T_V_mp*@(r)))
Lo P F(GT?,VH”_l(S, R2r—u—mp*@(r)))
The statement j* : H>~"™(X Q) = H*~v~™(D, Q) holds for all v = 0,...,r provided
that 2r —m < dimD — 1, ie. r < %. Quite generally
dim D — 1 ~
r< m+1/+21m = j*: FYCH"(X,m; Q) — FYCH"(D,m;Q).

For the latter part of the theorem, observe that CH"(D, m) = CHy(D,m), where k =
dim D +m — r. Then

m+v+dmD —1 dmD+m—v+1 dmD+m—v
< k> k> .

- 2 TR 2 2
9
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One then argues, as in the case m = 0, that

dim D —
b S _gm % = it FYCHy(D,m; Q) = F*CHy(X,m; Q).

U

Example 2.13. Let X = P?2 and j : D < X an elliptic curve. We consider the map
J«  CHy(D,2;Q) — CHy(P?2;Q). In this case k = 1 is almost, but not quite in
the range of the above theorem, even in the event that v = 1, where it is well-known
that for m > 1 that F°CH"(X,m;Q) = F'CH"(X,m;Q), as TH*™(W,Q(r)) = 0,
for any projective algebraic manifold W. Note that CH,(D,2;Q) = CH*(D,2; Q) and
CH,(P?,2;Q) = CH?*(P?%,2;Q). We need the following terminology. Given a variety
Y/C, we denote by my : Y — Spec(C) the structure map, and where appropriate,
Ly s the operation of taking the intersection product with a hyperplane section of Y.
Note that by a slight generalization of the Bloch-Quillen formula, CH (Y,2) = 0 for
smooth Y, and for dimension reasons, CH?*(Spec(C),2) = 0. Thus by the projective
bundle formula, CH*(P?,2) = Lp2 U 75, CH?(Spec(C), 2) ~ CH?(Spec(C),2). Note that
75 : CH*(Spec(C),2; Q) — CH*(D,2;Q) is injective. This is because, up to multipli-
cation by some N € N, the left inverse is given by mp .o Lp. There is a commutative
diagram:

0

T

cok
T .

CH*(D,2; Q) EAN CH?(P?,2;Q)
T T I
CH?*(Spec(C),2;Q) = CH?*(Spec(C),2;Q)
)
0

It is obvious that cok # 0 is the obstruction to j. being injective, and yet that is the
case if D is an elliptic curve. Note that if we accommodate the situation where k = 2,
then we are looking at j, : 0 = CH'(D,2) = CHy(D,2) — CHy(PP?,2) = CH*(P?,2) ~
CH?*(Spec(C),2) = K5(C), which is clearly injective, albeit not surjective.

Example 2.14. Let X = P3, and j : D — P? a general K3 surface. The map j, :
CH*(D,1;Q) = CH{(D,1;Q) — CH*(P3,1;Q) i4s not injective, due to the presence of
“indecomposables” in CH*(D,1;Q) [C-L]. Notice that k = 1 < dmBordm — 3=v  fop
v =0,1. If we conside a k = 2 example, then we are looking at j, : CH (D, 1) = C* =

C* ~ CH?(IP?, 1), which is an isomorphism in this case, a fortiori j, is injective.

3. INCLUSION OF THETA DIVISOR INTO THE JACOBIAN

In this section we investigate the kernel of the push-forward homomorphism, induced by

the closed embedding j of the Theta divisor inside the Jacobian of a smooth projective
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curve C' of genus g. Recall that © is an ample divisor on J(C'). Consider the induced
pushforward map on the rational Chow groups:

Jx : CHR(0; Q) — CH4(J(C); Q)
for kK > 0.

To investigate the map j., we use a similar comparison theorem ([Co]) on symmetric
products of the curve C.

Fix a point P in C. Consider the following map jo from Sym? 'C to Sym?C defined by
P1+"'+Pg_1|—>P1—|—"'—|—Pg_1—|—P.
Here the sum denotes the unordered set of points of lengths (¢ — 1) and (g).

With this definition of jo the following diagram is commutative.

Symd~'C —2% . Sym9(C)

q9e q

&) d Pic?(C)
We recall the structure of the birational morphisms ge and q.

Lemma 3.1. Suppose C' is a smooth projective curve over the complex numbers.
1) The morphism q is a blow-up along the subvariety
1. : . 1,0
W, = {l € Pic?(C) : h°(I) > 2}.
Furthermore, the singular locus of ng is
2 _ : . 1,0
Wy ={l € Pic?(C) : h'(l) > 3}.
This is a Cohen-Macaulay and a normal variety. Hence codimension of I/Vg2 n ng s at
least two.
Denote B = Sing(©), the singular locus of ©.
2) Then dim B = g — 4, when C' is non-hyperelliptic and is equal to g — 3 if C' is hyperel-
liptic.
3) We have the equality:
B=W, , ={lePic? (C): h’(l) > 2)}

Furthermore, B is a Cohen-Maculay, and a normal variety.

In particular codim(Sing(B)) > 2, i.e., the singular locus of B has codimension at least
2.

4) The morphism q is an isomorphisms on Sym?(C) — ¢ *(W}) onto J(C) — W1L. The
)

g g
fibres over ng are projective spaces.
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5) The morphism qe is an isomorphism on Sym?*(C) —qél(W;_l). The fibres over Wg1_1

are projective spaces.

Proof. See [ACGH], p.190, Proposition 4.4, Corollary 4.5] and [Mul Theorem 2.3 and
Lemma 1.2]. O

We identify Pic"(C) with Pic’(C) via the map [ — I®@O¢(—r.p). Apply thistor = g—1, g,
and we obtain the commutative diagram on the rational Chow groups:

CH,,(Sym?~'C; Q) — 2%~ CH,,(Sym?; Q)

CH4(0; Q) - CH,(J(C); Q)

3.2. k=0. We start by looking at the case when k = 0.

Proposition 3.3. Let C' be a smooth projective curve of genus g. Let © be a Theta
divisor embedded inside J(C) and let j denote the embedding. Then the push-forward
homomorphism

Js : CHo(©; Q) — CHo(J(C); Q)
1S 1njective.
Proof. Refer to the commutative diagram (B]). Consider the pushforward map:

j« : CHo(©; Q) — CHo(J(C); Q).

By Collino’s theorem [Cdl, Theorem 1], the map (jc). is injective. Since the morphisms ¢
and gc are birational morphisms (see [Mu]), and CHj is a birational invariant for smooth
varieties, we have the equality:

CHo(J(C); Q) = CHy(Sym?(C); Q).

We refer to Lemma B and consider B := Sing(©), the singular locus of © and U :=
© — B. Now ¢e is an isomorphism outside B. Consider the localization maps:

CHy(gg' B) — CHy(Sym?(C); Q) — CHy(U; Q) — 0

and

There is a stratification of B, on which the restriction of gg is given by projective bundles.

By the projective bundle formula, we conlcude that
CHo(ge'(B): Q) = CHy(B; Q).

Hence we conclude the injectivity of j,. 0
12



3.4. Case g = 3, k = 1. Suppose genus(C) = 3 and C' is non-hyperelliptic. Here Sym?*(C)
is the blow-up of J(C') along the curve C| i.e.

C ={L € Pic*(C) : h°(L) > 2}.

Furthermore, © = Sym?(C). See Lemma 31l Here C' < J(C) ~ Pic*(C), via O(z) +
Ko ® O¢(—x), where K¢ is the canonical line bundle of C'.

Hence we can write
q: Sym*(C) = Bla(J(C)) — J(C).
Let E¢ denote the exceptional surface inside Sym®(C).

By the blow-up formula:
CH, (Sym*(C); Q) = CH,(J(C); Q) @ CH,(Ec; Q).
Proposition 3.5. Assume g = 3 and C' is non-hyperelliptic. The pushforward map
j« : FICHy(6©;Q) — F'CH,(J(C); Q)
1S injective.
Proof. Let © be denoted by H := [0] € CH'(J(C)). Consider the maps given by inter-
section with the ©, in J(C):
CH'(J(C); @) ™ CH'(6:Q) — CH*(J(C): Q).

This map restricts on the F'l-piece, and is compatible with the Abel-Jacobi maps. Hence
we get a commutative diagram:

FICH'(J(C); Q) -2 FICH'(0; Q) —~ FICH2(J(C); Q)
AT} ATh AJ?

LJ(H'(J(C);Q) = 1J(H'(6;Q)) —= IJ(H*(J(C); Q)

Now AJ} and AJ} are isomorphisms. Since H is an ample divisor, ho (NH) is injective by
the hard Lefschetz theorem, and NH on I.J(H'(J(C); Q) is an isomorphism, by Lefschetz
hyperplane theorem. This implies that h is injective. Hence j, is injective. U

4. ABEL-JACOBI MAPS ON Fchr(@;Q)

When g > 4, the theta divisor is singular and the singular locus B has dimension at least
g — 4. When C' is non-hyperelliptic the dimension is equal to g — 4. See Lemma 3.1l We
will consider a non-hyperelliptic curve C', which is the generic situation.

Consider the localization sequence:

13



We would like to know how F'* behaves with localization and associate Abel-Jacobi maps
to the Fl-terms.

4.1. General Abel-Jacobi maps. Suppose X is a smooth quasi-projective variety de-
fined over the complex numbers. Let X C X be a smooth compactification of X. Let
MHS denote the category of Q-mixed Hodge structures. There is an Abel-Jacobi map:

CHiom (X5Q) = Extypys(Q(0), H* (X, Q(m)))
= Ethl\/IHS(@(O)> W0H2m_l(X> @(m)))

We are interested in the Abel-Jacobi map restricted to the image:

CHy! . (X;Q)° := Im(CH}! . (X; Q) — CHJL . (X;Q)).

hom hom hom

The conjectured equality
CHp . (X;Q)° = CHL: . (X;Q),

hom

is a consequence of the Hodge conjecture. In fact, we have:

Proposition 4.2. Let Y C X be a subvariety, where X is smooth projective of dimension
n, and let X = X\Y. Form < 2 and m > n — 1 (and more generally for all m if one
assumes the Hodge conjecture), there is an exact sequence:

CHY(X;Q)° — CHp,, (X5Q) — CHi, (X;Q) — 0,
where
CHY(X;Q) = CH,—(Y: Q),
and
CHY(X;Q)° := {¢ € CHY(X; Q) | j(§) € CHy (X3Q) )
Here j is the map

CHP(X; Q) & CH™(X; Q) — CH™(X; Q) — 0.

Proof. Let ¢ € CH (X;Q), and choose £ € CH™(X;Q) which maps to &. By con-

hom

struction, the fundamental class [£] € H*™(X,Q(m)) lies in the image HZ™(X,Q(m)) —
H*™(X,Q(m)). Let ¢ = codimyY, and let ¢ : ¥ — Y be a desingularization. By
a weight argument and mixed Hodge theory, [€] lies in the image H™ 4"~ %(Y Q(m —
q)) — H?™(X,Q(m)), which will come from the fundamental class of an algebraic cycle
v € CH™ (Y;Q), provided that the Hodge conjecture holds for Y. Assuming this, then

£ —j(o.(v)) € CH .(X; Q) maps to & € CH” . (X; Q). The rest is clear, O

hom hom

Thus we get a map CH™(X; Q)},,, —
(1) T (Exths(Q(0), W HZ (X, Q(m)) — Extlys(Q(0), WoH"1(X, Q(m))).
where we use the fact that

WL H (X, @Om) = Tmage(H?" (X, Q(m)) — 2" (X, Q(m)).



together with the Abel-Jacobi image of a class in CH}! (X;Q) being in the Abel-Jacobi

hom

image of a class in CH}" (X;Q). Note that the term in (@) above can be identified with

hom

Extys (Q(0), W_ H2™~1(X, Q(m))
¢ homyps (Q(0), Grg” H*™=1(X,Q(m)))’

where ¢ is the connecting homomorphism in the long exact sequence associated to

0— W_ H*™ X, Q(m)) = WoH*" 1 (X,Q(m)) — Gry H*"1(X,Q(m)) — 0.
In case, GrlY H*"~1(X,Q(m)) = 0 then the target of the Abel-Jacobi map is the group
Extyps (Q(0), W H*™ (X, Q(m)).

4.3. F'-term of CH,(Sym? *; Q) and CH,(6;Q). In this subsection, we consider the
situation B C ©. Denote the complement U := © — B.

Recall from Lemma B.I], that the morphism ¢g : Sym? 'C' — © is a birational morphism
and is a smooth resolution of © ([Mul).

Denote Uy = qo ' (U) and Y := Sym? *(C) — Ugym. Note Uy =~ U.
Lemma 4.4. The restriction map
F'CH,(Sym?™(C); Q) — F'CHi(Usym; Q)

s surjective, when k=g —2, g — 3.

Proof. Apply the localization sequence and Proposition 2], to the triple
(Y € Sym? H(C) D Usym)-
This gives a surjective map, when £k =g — 2, g — 3:

(5) FlCHk(Symg_l(C); Q) - FlCHk(Usym; Q) — 0.

Consider the pushforward ge, : CHg(Sym?~!(C); Q) — CH.(O; Q).

Lemma 4.5. For k =g — 2,9 — 3, the restriction map in (Bl) induces a map

F'CH(Sym’ '(C); Q)
F'nker(gos)

— F'CHy(Ugym; Q)
which is an isomorphism.

Proof. Since C' is a non-hyperelliptic curve, dim(B) = g — 4. Hence if kK > g — 4, the
restriction

h, : CHL(0;Q) — CH,(U; Q)

is an isomorphism. Consider the commutative diagram:
15



CH,(Sym?~'C; Q) Ju CHy(Ugym; Q)

s

CH.(©;Q) CH.(U; Q)
This induces a corresponding diagram on the F''-terms. Note that g, is an isomorphism,
since gg is an isomorphism outside B. Hence, we obtain an isomorphism:
" FICH (Sym ™ (€):Q)
F'Nker(qox)

— F'CHy(Uym; Q) = F'CHL(O; Q)
O

4.6. Abel-Jacobi maps on F'-terms. When & = g — 2, g — 3, denote | = 1,2 the
corresponding codimension. Using §4.1] and purity of Hodge structures (here dim B =
g —4), there is an Abel-Jacobi map:

(7) AlJo : F'CHi(6;Q) = F'CH,(U;Q) — IJ(H'(U); Q),
where we recall that:
F?CH(X;Q) = F?*CH.(U; Q) = kernel(Alg).
We recall the following, which will be used in the next section.
Lemma 4.7. The Abel-Jacobi map
AJ: F'CHY(U,Q) — IJ(HY(U,Q))

s an 1somorphism.

Proof. See [JLI Proposition 2.5]. O

5. MAIN THEOREM

Now we can state our main theorem.

Theorem 5.1. Assume C' is a non-hyperelliptic smooth projective curve of genus g > 3,
over C. The pushforward morphisms

je : FICH, 5(0;Q) — F'CH, »(J(C); Q)
and

js : F?CH,_3(0;Q) — F*CH, _3(J(C); Q)
are injective.

Note that the first injectivity statement generalizes Proposition 3.5
16



Proof. Consider the birational morphisms
go : Sym?~*(C) — ©
and
q: Sym?(C) — J(C).
These maps induce the commutative diagram on the F'-terms of the rational Chow
groups:

FICH,(Sym?~}(0); Q) — 2%~ FICH,(Sym?(C); Q)

qox qx

F'CH4(0; Q) - F'CH(J(C); Q)

Denote [ = g — 1 — k. The above diagram is compatible via Abel-Jacobi maps to the
corresponding commutative digram of intermediate Jacobians:

LI(H! (Sym?}(C); Q) — & 1J(H2((Sym?(C); Q)

h

1J(H'(©;Q)) LI(H™*((J(C); Q)
In the above diagram, [ = 1, 2. Since codim(B) > 2 in O, without any confusion, we write
LI(H(©:Q)) = LJ(H!(U;Q)).
Case 1) | = 1.

Denote H the ample divisor © on J(C'), Consider the diagram obtained by intersecting
with H in CH*(J(C)) (resp. in H*(J(C),Q)).

FICH'(J(C); Q) -~ F'CH!(©; Q) —2~ F'CH2(.J(C); Q)
AJY Ale AJ?

LJ(HY(J(C); Q) M- 1J(HY(©; Q) — = 1T(H3(J(C); Q)

Now AJ} and AJg are isomorphisms. In particular AJg is defined in terms of U := © — B
(see Lemma (7). Since H is an ample class, h o (NH) is injective by the hard Lefschetz
theorem, and NH on IJ(H(J(C);Q) is an isomorphism, by the Lefschetz hyperplane
theorem. This implies that h is injective. Hence j, is injective.

Case 2): [ =2.
17



Now ¢ : Sym?(C) — J(C) is a blow-up morphism along a codimension two subvariety
— 1 _ ; . 1,0
W =W, = {LePic?(C): h*(L) > 2}.

(See Lemma [3.1]). Denote Ey, C Sym?(C') the exceptional locus of the blow-up morphism
q. In particular, we can write a decomposition:

(8) CH,,(Sym?(C); Q) = CH,(J(C); Q) ® CHy(Ew; Q)

Denote H the ample divisor Sym?~*(C) on Sym?(C), in CH*(Sym?(C); Q) (resp. in
H*(Sym?(C), Q)).

Consider the Abel-Jacobi maps on the F'-terms of the Chow groups of the symmetric
products, which are compatible with the intersection NH:

FICH2(Sym?(C); Q) - FICH?(Sym?!(C); Q) —2~ F'CH?(Sym?(C); Q)

AJ}L

sym

Aszm AJ?

sym

LJ(H?(Sym?(C); Q) = LI (H(Sym?™(C); Q) —— [J(H(Sym?(C); Q).

By [Cdl, Theorem 1], the Chow restriction map NH is surjective and j, is injective. This
implies that using the decomposition in (§]), we can write the above commutative diagram
as

FICH2(J(C); Q) & F'CH' (Eyw; Q) -2 H.F'CH?(Sym?(C); Q) & H.F'CH! (Ey; Q) —~ FLCH?(Sym?(C); Q)

AJ?! AJsym AJ?

sym sym

IJ(H3Sym?(C); Q) nH TJ(H3(Sym?~(C); Q) —— L~ TJ(H5(Sym?(C); Q)

A similar decomposition exists for the intermediate Jacobians. This implies that we have
the equality
Kernel(AJgym) = Kernel(AJZ, ) @ Kernel(AJY ).

sym sym
Here AJZ,, is the restriction of AJym, on the first summand and AJY, is the restriction
of AJsym on the second summand.

However,

AJY,  HF'CH (Ew; Q) — H.IJ(H' (Ew))
has no kernel.
Hence,

Kernel(AJgm) = Kernel(AJ ;]ym)

In other words, if we consider the composed map

F'CH*(Sym?™(C); Q) — F'CH*(Sym?(C); Q) — F'CH*(J(C); Q)
18



(the second map is the projection to its first summand), then it induces an injective map
F2CH*(Sym?™'(C); Q) — F?*CH’(J(C); Q)
Now observe that

F?CH?*(Sym?'(C); Q) = F2(

CH*(Sym’™'(C); Q)
ker(qox) )
This is because ker(ge.) is supported on © — B, and
o : CH*(Sym?~*(C); Q) — CH?*(0;Q)
is injective on the first summand H.F'CH?*(Sym?(C); Q).
It now suffices to show that F?(H.CH'(Ew;Q)) = 0, to conclude

F*CH?(©;Q) — F2CH*(J(C); Q)

is injective, for ¢ > 4 and C' non-hyperelliptic.

Lemma 5.2.
F?CH, 2(Ew;Q) =0

Proof. Now dim(Fy ) = g — 1, which is a bundle of projective spaces over .

Using Lemma Bl and codim(W) = 2 in J(C'), (for a hyperplane class h on Ey/) we can
write:

CH,_2(Ew;Q) = CH,_o(W;Q).h & CH,_5(W;Q) (modulo theimage CHg_g(Ewé; Q)).
Since dim(Ewz) < g — 2, FlCHg_Q(EWgz; Q) =0.
Restricting to F''-terms gives:
F'CH, o(FEw;Q) = F'CH, 3(W) = FICH'(W; Q).
Furthermore, codim(Sing(W)) > 2 (see Lemma B.111)).

Now we are reduced to the case 1) situation when [ = 1. Namely, there is an Abel-Jacobi
map W — Sing(W), which is an isomorphism onto I.J(HY(W — Sing(W))) (see Lemma
[LT). This shows the kernel of the Abel-Jacobi map is trivial, and F? C ker AJ, one has
that F'2 = 0. This suffices to conclude the proof. O
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