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We present a higher order generalisation of the clockwork mechanism starting from an underlying
non-linear multigravity theory with a single scale and nearest neighbour ghost-free interactions.
Without introducing any hierarchies in the underlying potential, this admits a family of Minkowski
vacua around which massless graviton fluctuations couple to matter exponentially more weakly
than the heavy modes. Although multi-diffeomorphisms are broken to the diagonal subgroup in
our theory, an asymmetric distribution of conformal factors in the background vacua translates this
diagonal symmetry into an asymmetric shift of the graviton gears. In particular we present a TeV
scale multigravity model with O(10) sites that contains a massless mode whose coupling to matter
is Planckian, and a tower of massive modes starting at a TeV mass range and with TeV strength
couplings. This suggests a possible application to the hierarchy problem as well as a candidate for
dark matter.

The exponentially large hierarchy between the elec-
troweak scale and the Planck scale suggests that new
physics could be very close to the scale of current col-
lider experiments (see e.g. [1]). Generically, the Higgs
mass is quadratically unstable against radiative correc-
tions coming from any physics in this large ultra-violet
window. If we are to retain the notion of naturalness [2],
any new theory must incorporate a mechanism to ensure
cancellation between loops, as in supersymmetry [3]. Al-
ternatively, the exponential hierarchy could merely be an
illusion, with the fundamental scale lying much closer to
the electroweak scale, thanks, say, to large [4] or warped
extra dimensions [5], or the weakness of the string cou-
pling [6]. Yet another possibility is that the observed vac-
uum expectation value of the Higgs is just one of a much
larger landscape: when these values can be scanned by
the theory in some way, we can invoke anthropic con-
siderations [7, 8], or employ some sort of cosmological
relaxation procedure [9] to pick out the observed value.
This list of proposals for addressing or rephrasing the
hierarchy problem is far from exhaustive and as yet no
experimental evidence in favour of any particular model
has been forthcoming (see e.g. [10, 11]).

With this in mind it is important to continue to explore
new ideas. Recently, the clockwork mechanism [12, 13]
was proposed in order to generate a hierarchy between
the fundamental scale in the theory and the effective cou-
pling of the zero mode to external sources at low ener-
gies. It was originally applied to axions with a view to
explaining the super-Planckian decay constants required
by cosmological relaxation models [9]. The idea is to have
a modest number of fields, or gears, πi, whose masses mix
with some characteristic strength q > 1. The structure
of the mass terms are governed by an asymmetrically dis-
tributed unbroken subgroup of U(1)N in the fundamental
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theory. This is nonlinearly realised by the “pion” fields as
gear shifts, πi → πi+c/qi, that are equal up to a rescaling
with increasing powers of 1/q. The result is a zero mode
whose overlap with each of the gears also scales asym-
metrically, a0 ∝ π0 + π1/q + . . . πN/qN−1. By coupling
external sources to one end of the clockwork we are able
to engineer very little overlap with the zero mode thanks
to the high power of 1/q. At low energies, this leads to
an exponentially large hierarchy of scales from a theory
with a single mass scale, and order one parameters. See
also [14] for similar ideas applied to dark energy.

The clockwork mechanism was later generalised to a
much wider class of fields in [15], in particular to lin-
earised gravity, where it was used to explain the hierar-
chy between the electroweak scale and the Planck scale.
These generalisations were criticised in [16] who argued,
amongst other things, that one could not apply the clock-
work mechanism to non-abelian theories, including grav-
ity. The claim rested on the assumption that there is
no site (i.e. gear number) dependence in the couplings,
as one might expect from a fundamental theory free of
large parameters, and made use of elegant group theo-
retic arguments that forbid an asymmetric distribution
in the structure of the unbroken subgroup. At the level
of the low energy effective field theory, such site indepen-
dence might be viewed as a model dependent statement,
making a concrete assumption about the underlying UV
theory [17]. If we allow site dependence in the couplings,
we can again obtain interesting phenomenology but one
might worry about the origin of this hierarchy at a fun-
damental level even though we only ever couple to one
external site. The clockwork idea has seen a number of
interesting applications, especially in the context of di-
mensionally deconstructed set-ups (see e.g.[18–22]).

This is something of a linguistic debate about what is
and is not a meaningful clockwork but one that teaches
us some valuable lessons [16, 17]. It is certainly true that
the standard clockwork cannot be obtained from a dis-
crete theory with a single scale [16]. Indeed, as we will
see by investigating the corresponding non-linear ghost-
free multigravity set-up [23], to obtain the classic clock-
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work mass matrix of [13, 15] in the linearised theory one
must introduce hierarchies at the level of the underlying
non-linear theory. As in [17], we could simply introduce a
dilaton to account for these underlying hierarchies. Here
we take a very different approach, generalising the clock-
work philosophy to the four dimensional arrays that gov-
ern the metric interactions in the discrete multigravity
framework. By focusing on a sparsely populated array
with nearest neighbour interactions only, we show how
the desired asymmetric decomposition of the zero mode
can be obtained from an underlying theory with a single
scale and no large parameters. This yields a low en-
ergy effective theory of a massless graviton with expo-
nentially suppressed couplings. More specifically, if we
were to take M ∼ TeV to be unique across all sites, we
can generate a low energy effective theory of gravity with
Planckian coupling with O(10) sites and no exponentially
large parameters.
It remains the case (as it must) that the interactions

break the symmetry down to the symmetric diagonal sub-
group of diffeomorphisms [16, 23, 24]. Nevertheless, as we
will explain below, we can still obtain an asymmetric dis-
tribution in how this acts on the canonically normalised
metric perturbations if that distribution is also present in
the background value. It turns out that the form of the
zero mode, the massless graviton, is completely fixed by
the structure of the underlying vacua, and that this can
be rendered asymmetric with only very mild assumptions
on the underlying non-linear theory.
Our starting point is the general action for a ghost-free

multigravity theory described by [23, 25]

S = SK + SV , (1)

where the “kinetic” part for the N metric fields (gi)µν is

SK =

N−1
∑

i=0

M2
i

2

∫

d4x
√−giR[gi] . (2)

Here we include possible site dependence in the spectrum
of Planck scales, although we emphasize that we have in
mind that each Mi is of order a unique underlying scale,
M . It is convenient to express the potential in terms of
vielbeins, (Ei)

a
µ, such that [23]

SV = −
∑

i,j,k,l

∫

Tijklǫabcd(Ei)
a ∧ (Ej)

b ∧ (Ek)
c ∧ (El)

d,

(3)
where (Ei)

a = (Ei)
a
µ dx

µ and (gi)µν = ηab (Ei)
a
µ (Ei)

b
ν .

Here and in the following, the sums run from 0 to N − 1
(unless otherwise stated). The interaction matrix Tijkl is
required to be totally symmetric and is assumed to de-
pend on the unique underlying scale Tijkl ∼ M4. The
potential part breaks N copies of the diffeomorphism
group acting at each site, down to the diagonal sub-
group. Working in the vielbein formalism, N copies of
local Lorentz invariance are also broken down to their
diagonal subgroup by the potential.

The equivalence between the vielbein and an explicit
metric formulation is not automatic. Indeed, if we go
beyond pairwise interactions and/or allow “cycles” of in-
teractions between sites e.g 1 → 2 → 3 → 1, the equiv-
alence is broken because the field equations no longer
imply a symmetric vielbein condition [23]. Such struc-
tures, in either vielbein or explicit metric formulations
generically lead to ghosts [26–28] (see [29, 30] for recent
constructions that evade this rule). For nearest neigh-
bour interactions only, as we consider here, we have a
chain of pairwise interactions linking each of the sites
0 → 1 → . . . N − 2 → N − 1, rather than a cycle, and
this means the vielbein formulation is equivalent to a
metric one and the theory is ghost-free.
The theory admits N Minkowski vacua, (ḡi)µν =

c2i ηµν , provided the constants ci fulfil

∑

j,k,l

cjckclTijkl = 0 . (4)

Note that the ci cannot all be gauged to unity because
there is only one diagonal copy of diffeomorphisms left
intact by the potential. In this sense their values are
physical up to an overall normalisation. There does exist
a pseudo-symmetry that allows us to conformally rescale
each metric (gi)µν → λ−2

i (gi)µν at the expense of rescal-
ing the couplings Mi → λiMi, Tijkl → λjλjλkλlTijkl.
Since we want to work in a frame in which all scales in
the action correspond to the unique underlying scale M ,
without any large parameters, this pseudo-symmetry is
essentially fixed and cannot be used to remove the ci in
our background solution.
The overall normalisation of the ci is fixed by the mat-

ter Lagrangian. As we will explain below, matter is only
allowed to couple to one particular site and we normalise
all of the conformal factors relative to this site. This
ensures that any mass scales appearing in the matter
Lagrangian correspond to the physical masses for the
canonically normalised matter fields propagating on the
background geometry.
We now consider fluctuations about our vacua

(gi)µν = c2i ηµν +
ci
Mi

(hi)µν , (5)

where the normalisation ensures a canonical form of the
Fierz-Pauli kinetic term [31]. Thanks to the symmetric
vielbein condition1, ηab (Ei)

a
[µ (Ej)

b
ν] = 0, we can use the

one diagonal copy of local Lorentz invariance so that the
vielbein fluctuations are symmetric and correspond to

δµa (δEi)
a
ν =

1

2Mi
(hi)

µ
ν , (6)

1 The symmetric vielbein condition follows from the field equations
whenever there are pairwise interactions only and no cycles, as
is the case here [23]
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where Lorentz indices are raised and lowered with ηµν .
The second variation of the potential then becomes

δ2SV =

∫

d4x
∑

i,j

Mij

[

(hi)
µ
µ (hj)

ν
ν − (hi)

µ
ν (hj)

ν
µ

]

,

(7)
where the mass matrix is given by

Mij =
3

MiMj

∑

k,l

ck cl Tijkl . (8)

Let us now choose a frame for which Mi = M for all
i. We immediately see the presence of the zero mode
(a0)µν ∝ ∑

j cj(hj)µν from equation (4). To obtain the
desired asymmetric distribution, we only really require
that cj/cj+1 = O(1) > 1. However, for simplicity let
us suppose that the Tijkl are such that the cj = c q−j

exactly, for some overall normalisation constant, c, as an
example of the desired asymmetric distribution in the
overlap between the zero mode and the graviton gears.
This is a consequence of the diagonal subgroup of dif-
feomorphisms applied to fluctuations on an asymmetric
distribution of background vacua. To see this we note
that the diagonal diffs act on the metric fluctuations as
δ(gi)µν → δ(gi)µν + 2c2i∂(µξν) where ξµ = ηµνξ

ν is site
independent. In terms of the graviton gears this reads
as (hi)µν → (hi)µν + 2Mci∂(µξν), which is analogous to
the asymmetric gear shifts familiar to the original clock-
work proposal [13]. It follows that the form of the zero
mode is entirely dictated by the conformal factors in the
background vacua and the unbroken diagonal subgroup
of diffeomorphisms. If those conformal factors exhibit
the desired asymmetry then the zero mode has a clas-
sic clockwork distribution. In [16] this possibility was
not considered as it was assumed that ci = 1 for all i.
Of course, one might expect that an asymmetric and hi-
erarchical distribution in the ci is not possible without
introducing dangerously large hierarchies in the Tijkl, al-
though as we will now show, this is not the case.
To proceed, we recall that we are assuming nearest

neighbour interactions only, consistent with the ghost-
free assumption. This implies that the interaction matrix
Tijkl = τ(ijkl) where

τijkl = Aijδjkδkl +Bikδijδkl (9)

The first term above forces three identical indices while
the second forces two pairs of identical indices. Both
matrices Aij and Bij are of tri-diagonal form and can be
expressed as

Aij = λA
i δij + µA

i δi,j−1θi,N−1θj,0 + νAj δi−1,jθi,0θj,N−1

(10)

where θij = 1−δij =

{

0 i = j

1 i 6= j
and a similar expression

given for Bij in terms of λB
i , µ

B
i , ν

B
i . Basically, the diag-

onal components are given by λA,B
i , the upper diagonal

by µA,B
i and the lower diagonal by νA,B

i . In terms of Aij

and Bij , we have a mass matrix (8) proportional to

∑

k,l

ck clTijkl =
1

4
(Aijc

2
j +Ajic

2
i ) +

1

2
δijci

∑

k

Akick

+
2

3
B(ij)cicj +

1

3
δij

∑

k

B(ik)c
2
k (11)

and a vanishing vacuum condition (4) given by

∑

j,k,l

cjckclTijkl =
1

4

∑

j

(Aijc
3
j+3Ajicjc

2
i )+

∑

j

B(ij)cic
2
j

(12)

Note that the antisymmetric part of Bij drops out which
means we could identify µB

i with νBi . In any event, as-
suming vacua with ci = cq−i, the vanishing of (11) yields
a very weak condition of the form

λA
i + λB

i = −1

4

(

µA
i

θi,N−1

q3
+ 3µA

i−1qθi,0

)

− 1

4

(

νAi−1θi,0q
3 + 3νAi

θi,N−1

q

)

− 1

2
(µB

i + νBi )
θi,N−1

q2
− 1

2
(µB

i−1 + νBi−1)θi,0q
2 (13)

This implies2 that in order to obtain the desired asym-
metric distribution in background conformal factors, we
only need to tolerate hierarchies in Tijkl at order q

2. Fur-
thermore, we note that we have focused on a special case
for which cj = cq−j . Detuning this choice of the λ, µ, ν by
order one (in units of M) would simply induce a relative
correction of order one to the cj , which will generically
preserve the desired hierarchy in the conformal factors.
Perturbing the theory to include couplings that lie off
the tridiagonal will weaken the efficiency of the resulting
“clockwork”. However, recall that that such a deforma-
tion would generically introduce new, ghost-like degrees
of freedom that are not expected to be radiatively gener-
ated below the cut-off. We shall elaborate on this later.
In any event, the mass matrix for our chosen parametri-
sation is given by

Mij =
3c2q−2i

M2

[

−δij

(

θi,N−1

q
Z+
i + qθi,0Z

−
i

)

+δi,j−1θi,N−1Z
+
i + δi−1,jθi,0Z

−
i

]

(14)

where

Z+
i =

1

4

(

µA
i

q2
+ νAi

)

+
1

3q
(µB

i + νBi ) (15)

2 This is obvious in the B sector. In the A sector we can see it by
assuming µA

i
∼ q, νA

i
∼ 1/q.
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and Z−
i = q2Z+

i−1. We now see the difficulty in generat-
ing the classic clockwork mass matrix of [13, 15] in the
absence of exponentially large hierarchies in the under-
lying theory. In [13, 15], the mass matrix for the field
fluctuations depends on a single overall scale. This is not
the case in (14) unless the µi, νi are chosen to absorb
the exponential pre-factor of q−2i. Such a choice would
amount to choosing a hierarchy of scales in Tijkl. This
result could have been anticipated from the no-go claims
of [16]. Of course, the presence/absence of hierarchies in
Tijkl is only a meaningful statement up to possible con-
formal rescalings of the metric. However, we recall that
we have chosen to work in a conformal frame in which
all the Planck scales Mi = M , so there is no ambiguity
in what we are saying here.
Given that the mass matrix for gravitons is an emer-

gent object, not independent of the background, we
would argue that there is actually no compelling reason
for us to require it to depend on a single scale, as in [13].
Instead we choose to impose the single scale requirement
at the level of the fundamental theory, the Tijkl, and ask
whether or not the spectrum of fluctuations about con-
sistent vacua give rise to an emergent hierarchy, with a
zero mode that is exponentially more weakly coupled to
external states than the heavy modes. This is certainly
possible with the set-up described in this paper. Our
clockwork is really a higher order one governed by the
four-point vielbein interactions. Although there are no
large parameters in the potential, it admits an exponen-
tial distribution of conformal factors in the corresponding
vacua. This in turn yields a graviton zero mode with a
classic asymmetric clockwork decomposition in graviton
gears.
Let us now study the phenomenology of the mass eigen-

states for the graviton fluctuations that emerge from our
single scale theory. To simplify the analysis, let us as-
sume that the µi, νi are site independent, in other words,
µA
i = µA etc. The mass matrix now takes the simple form

Mij =
F (q)

M2
c2q−2i

[

δij

(

θi,N−1

q2
+ q2θi,0

)

−δi,j−1
θi,N−1

q
− δi−1,jqθi,0

]

(16)

where

F (q) = −3

4

(

µA

q
+ νAq

)

− µB − νB (17)

As anticipated earlier, we also assume that matter is min-
imally coupled to a single site, given by i = i∗.

Sm =

∫

d4x
√

−gi∗ Lm[gi∗ ] . (18)

Note that coupling the same matter to multiple sites will
generically yield a ghost [32, 34, 37], although in some
special cases its mass may exceed the scale of strong cou-
pling [28, 33–36] (see, also, [29] for novel constructions

that remain ghost-free at higher energies). In any event,
our conservative choice is a consistent one and yields an
effective interaction between the canonically normalised
i∗th graviton gear and the energy momentum tensor of
the form

δSm =

∫

d4x
1

2M
(hi∗)µν T

µν (19)

where we have used the fact that ci∗ = 1 and Mi = M .
The condition on ci∗ follows from the fact that we have
fixed the overall normalisation of the ci’s relative to the
site to which matter couples. Since ci = cq−i, this fixes
the overall conformal normalisation factor to be c = qi∗ .
The mass matrix (18) can be diagonalised by a rota-

tion in field space (suppressing indices), hi =
∑

j Oij aj .
The orthogonal matrix, Oij has its columns given by the
unit mass eigenstates. In particular, the zeroth column is
given by the unit zero mode so that Oi0 = N q−i, where

N =
(

∑N−1
k=0 q−2k

)−1/2

=
(

1−q−2N

1−q−2

)−1/2

. Numerical

investigations suggest that the jth massive eigenstate
generically has Oi,j>0 ≈ 1, for some i. The corresponding
massive eigenvalues are given by

m2
j>0 ∼ F (q)q2(1+i∗−j)

M2
, (20)

where we have again used the fact that c = qi∗ .
These results can be obtained analytically in the large
q limit, when the mass matrix approximates as Mij ≈
F (q)
M2 q2(1+i∗−i)δijθi,0.
In terms of the mass eigenstates, the coupling to mat-

ter reads

δSm =

∫

d4x



g0(a0)µν +
N−1
∑

j=1

gj(aj)µν



T µν (21)

where the zero mode coupling is

g0 =
N

2Mqi∗
=

(

1−q−2N

1−q−2

)−1/2

2Mqi∗
(22)

If we couple matter to the end of the clockwork, at site
i∗ = N − 1, then for q > 1 the zero mode coupling is
at an exponentially higher scale than the fundamental
scale, M eff

0 ∼ Mq(N−1). Taking M ∼ TeV and q = 4, we
can achieve a Planck scale effective coupling M eff

0 ∼ MPl

with N = 26 sites. Recall that the level of hierarchy in
Tijkl need not exceed q2 ∼ 16 in this case.
Turning to the heavy modes, these couple to matter

with strength gj =
Oi∗,j

2M , which is given by the funda-

mental scale, M . Taking µA,B, νA,B ∼ M4, consistent
with our single scale theory, there is a mass gap of order
M2q2 to the spectrum of heavy modes. These are then
distributed exponentially, with the heaviest mode having
a mass, M2q2(N−1). Choosing our parameters as in the
previous paragraph, this yields lightest and next to light-
est heavy modes whose masses lie beyond the TeV scale,
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with TeV strength and weaker coupling to the energy-
momentum tensor. In principle, this spectrum could in-
clude an interesting dark matter candidate (see [38–41]
for some work on spin two dark matter).

Before presenting this as a robust solution to the hier-
archy problem, we need to ask whether or not the struc-
ture of the potential is radiatively stable. For example,
do loop corrections generate large next-to-nearest neigh-
bour interactions that could weaken the efficiency of our
higher order clockwork? For the case of matter loops
the answer is obviously negative since we took matter
to only couple to a single site. For graviton loops, the
question is more subtle and the only possible statement
we can make is to ask what happens far below the cut
off (TeV) when we treat this as an EFT (if indeed that
is a reasonable thing to do). We anticipate that gauge
invariance will prevent zero mode loops from generating
any new potential interactions. Heavy mode loops could
be more dangerous although one might just assume that
they decouple at low energies since the masses start at
a TeV scale. Of course, it is possible that decoupling
is subtle, at least if the interactions between the light
and heavy modes also diverge as we send the masses to
infinity. A thorough investigation of this is obviously go-
ing to be very involved, as with any calculation involving
graviton loops. Indeed, its scope extends beyond the con-
text of this paper to a more general question regarding
the radiative stability of ghost-free multigravity theories.
This is because additional beyond nearest neighbour in-
teractions introduce a trivertex and/or a cycle in our po-
tential, which would resurrect the Boulware-Deser ghost
[28, 33]. This represents new degrees of freedom and
in analogy with higher order curvature corrections gen-
erated in a perturbative approach to quantum General
Relativity, we might expect them to have mass scales at
or above the cut-off of the theory (see [42, 43] for a similar
statement in a massive gravity and bigravity context). A
more detailed analysis will be very involved but is clearly
a priority for future work.

Another important feature of our model is the absence
of an underlying dilaton, in contrast to the original pro-
posals presented in [15, 17]. From a four-dimensional per-
spective, this allows us to have a fully non-linear multi-
gravity clockwork governed by a single (TeV) scale, rep-
resenting a completely new approach to the electroweak
hierarchy problem. The flip side of this particular struc-
ture is that it could prove to be an obstacle in obtaining it
from a dimensional deconstruction of a five dimensional
model. Of course, the ultimate goal would be to realise
this set-up as a string theory compactification.

To summarise, we have shown that a consistent single
scale multigravity model can yield a clockwork graviton
spectrum where the massless graviton couples to mat-
ter exponentially more weakly than the heavy modes.
This is achieved through a higher order generalisation
of the standard clockwork mechanism involving nearest
neighbour interactions in the ghost-free non-linear the-
ory. Although multi-diffeomorphisms are broken to the

diagonal subgroup by these interactions, this translates
into an asymmetric shift of the graviton gears thanks to
an asymmetric distribution of conformal factors in the
background vacua. This has led us to a TeV scale multi-
gravity model with O(10) sites that contains a massless
mode whose coupling to matter is Planckian, and a tower
of massive modes starting at a TeV mass range and with
TeV strength matter couplings. However, before present-
ing this as a complete resolution of the naturalness ques-
tion, we emphasise the need to compute radiative cor-
rections including those mediated by graviton loops in
an effective description below the cut-off. This will be a
priority in future investigations.
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