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1 Introduction

Quantum spin chains serve as a prototypical example of an integrable model combining re-

markable algebraic structures with physical relevance. Their supersymmetric versions based

on su(m|n) superalgebras have also been extensively studied and appear in a wide range of

contexts from condensed matter [1, 2] to integrable AdS/CFT [3]. While the spectrum of

integrable spin chains is typically governed by a concise system of Bethe equations, it is much

more difficult to explicitly construct the eigenstates of the spin chain Hamiltonian. The con-

struction of eigenstates is relevant in particular for the calculation of correlators in N = 4

SYM which is actively being explored (see e.g. [4–9]).

For the simplest spin chains with a rank-1 symmetry algebra such as su(2) or su(1|1),

one can efficiently build the states via algebraic Bethe ansatz, by repeatedly acting on the

vacuum with a single ‘creation’ operator B(u),

|Ψ〉 = B(u1)B(u2) . . . B(uK)|0〉 (1.1)

where ui are the Bethe roots which define the excitations’ momenta in the spin chain. How-

ever, for higher rank spin chains, the standard construction of eigenstates is much more

involved. In particular, in the standard nested Bethe ansatz approach the problem is solved

recursively, by reducing it to the solution of simpler spin chains with lower rank symmetry

[10–12]. The resulting expression for the eigenstate is a complicated sum in which the number

of terms grows exponentially with the number of excitations1.

Surprisingly, it was recently realized in [20] that for rational su(n) spin chains it is possible

to completely bypass this standard recursive procedure. In fact for any su(n) one can build

an operator Bg(u) which2 generates the states just as in the simplest su(2) case, by repeated

action on the vacuum state:

|Ψ〉 = Bg(u1)B
g(u2) . . . B

g(uK)|0〉 . (1.2)

This operator Bg is an explicit polynomial in the monodromy matrix entries, and it is the

same for any spin chain length and number of excitations. The parameters ui in (1.2) are the

momentum-carrying Bethe roots fixed by standard nested Bethe equations or by the Baxter

equation. Thus, instead of a complicated nested sum the eigenstate is simply given by one

term (1.2). For spin chains in the fundamental representation of su(n) the construction was

extensively checked numerically and proven in several special cases [20]. For su(2) spin chains

it already has nontrivial aspects which were explored further in [22] (see also [23] and [24],

[25]). Very recently, and with remarkable effort, it was proven rigorously for su(3) in [21],

and was also shown there to work for any symmetric representation of su(3) on the spin chain

sites.
1Other remarkable constructions are known, but they are also rather complicated and typically suffer from

exponential complexity as well, see e.g. [13–17] and the review [18]. The eigenstates problem has also been

discussed in a pure mathematics context, see e.g. the recent works [19].
2In [20] this operator was denoted by Bgood. Here we use the shorter notation Bg, also utilized in [21].
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In this paper we show how to extend this highly compact construction of eigenstates to

the supersymmetric case. We focus on the first nontrivial example of a higher rank super

spin chain, which corresponds to the su(1|2) superalgebra [26–29]. The su(1|2) spin chains are

important from a physical point of view as they describe the supersymmetric t–J model widely

studied in the context of superconductivity [30, 31]. At the same time, they are interesting

conceptually due to their intermediate place in complexity between su(2) and su(3) models.

In particular, the challenging problem of finding compact expressions for scalar products of

su(3) Bethe states [32–38] (e.g. finding an analog of the remarkable Slavnov determinant [39])

seems to be much more tractable in the su(1|2) case [40–45].3

We propose an explicit expression for the Bg operator which allows one to build the

states simply by repeatedly acting on the vacuum, as in (1.2). In contrast to the su(n)

case studied in [20], here Bg is not even a polynomial in the monodromy matrix entries.

This makes the difference between our construction and the usual nested Bethe ansatz even

more striking. While in the bosonic su(n) case Bg is written in terms of certain determinants

(quantum minors) built from the monodromy matrix, here we find they should be replaced by

Berezinians which are known to be non-polynomial. At the same time, by a simple redefinition

of the monodromy matrix (mutiplication by an explicit scalar function) we can still render

the Bg operator a polynomial in u for the spin chain we consider, and its degree4 is 2L− 1.

The construction of [20] is directly related to Sklyanin’s separation of variables (SoV)

program [50, 51], which consists of finding special variables in which the dynamics of a many-

particle integrable system decouples into a set of non-interacting one dimensional models.

In fact eigenstates of the same operator Bg provide the basis of separated coordinates for

the su(n) spin chain (see also [50]). Factorization of the wavefunctions in this basis follows

immediately from the construction (1.2) of eigenstates [20]. However, in the supersymmetric

case it is not known how to obtain the separated variables even for the simplest su(1|1)

models. Thus it is all the more nontrivial that a direct analog of the formula for eigenstates

(1.2) exists for higher rank super spin chains.

Implementation of the SoV for supersymmetric models remains an important future goal,

especially in view of its relevance for N = 4 SYM where the symmetry algebra is psu(2, 2|4).

In the simpler su(1|1) case we managed to overcome some of the obstacles towards SoV and

we present these results in appendix A. Namely, we propose a Bg operator for su(1|1) which,

although it does not give separated variables, is diagonalizable unlike the standard B, while

having several other curious properties.

This paper is organized as follows. In section 2 we present our notation and overview

of supersymmetric spin chains, and also discuss briefly the su(1|1) case. Section 3 contains

our main results, namely the construction of eigenstates for su(1|2) spin chains using only a

single operator Bg. We also present the construction for the spin chain with the (2|1) choice

of grading, which, although similar to the (1|2) case, is technically different. We conclude in

3Related results for general su(m|n) spin chains were obtained in [45–49].
4With a more general twist the degree could likely become 2L, which is the same as for the su(3) operator

Bg once we extract a trivial factor from it [20]. See the discussion in section 3.
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section 4. In appendix A we discuss some observations on the SoV for su(1|1) spin chains, in

particular presenting the improved B operator.

Note added

When finishing the draft we learned about a work in progress [52] where related results were

obtained independently.

2 Supersymmetric spin chains overview

In this section we review the standard algebraic Bethe ansatz description of super spin chains

(see e.g. [12, 18] for a review). In the process we introduce notation used in the rest of the

paper.

We will work with graded vector spaces, however we will use only standard complex

numbers rather than Grassmann variables. A graded vector space C
m|n consists of vectors v

with components vi ∈ C with i = 1, . . . ,m+ n. We assign a parity [i] to the indices so that

[i] = 0 for i = 1, . . . ,m , [i] = 1 for i = m+ 1, . . . , n . (2.1)

This space C
m|n realizes the fundamental representation of su(m|n). The Hilbert space H of

the spin chain is a tensor product of L copies of the space C
m|n,

H = C
m|n ⊗ C

m|n ⊗ · · · ⊗ C
m|n . (2.2)

The algebraic construction of an integrable quantum spin chain is based on an R-matrix.

The standard rational R-matrix in the supersymmetric case acts on C
m|n⊗C

m|n and is given

by5

Rij
kl(u) = δikδ

j
l +

i

u
δilδ

j
k(−1)[i][j] , (2.3)

where the extra signs correspond to using a graded permutation operator. Let us also mention

that we will often use the notation

f± ≡ f(u± i/2), f [+a] ≡ f(u+ ia/2) (2.4)

for shifts of the spectral parameter.

Multiplying several R-matrices together we obtain the monodromy matrix T (u) defining

the spin chain, which acts in the tensor product of the Hilbert space H and an auxiliary space

C
m|n,

T (u) = R01(u− θ1)⊗R02(u− θ2)⊗ · · · ⊗R0L(u− θL)⊗ g . (2.5)

We have introduced an extra twist matrix g which acts in the auxiliary space only and

corresponds to twisted boundary conditions. We take it to be diagonal,

g = diag (λ1, λ2, . . . , λm+n) , (2.6)

5The R-matrix is gl(m|n) invariant, but we will speak about su(m|n) as the symmetry algebra to emphasize

that we consider a finite-dimensional representation at each site of the chain.
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and assume that the twists λi are all distinct and in generic position. They serve as regulators

in the construction, and also ensure there is a 1-to-1 correspondence between spin chain states

and solutions of the nested Bethe equations. We also introduced the parameters θL which

correspond to inhomogeneities of the spin chain6.

The definition of the tensor product of operators in (2.5) is nontrivial in the supersym-

metric case and involves extra signs reflecting the graded nature of the vector spaces C
m|n,

see e.g. [26]. Explicitly, the matrix elements of T (u) read

T a1a2...aL j

a′1a
′

2...a
′

L
j′
(u) = Ra1j

a′1j
′′
(u− θ1)R

a2j

a′2j
′′
(u− θ2) . . . R

aLj

a′
L
j′′
(u− θL) g

j′′

j′ (2.7)

× (−1)
∑L

α=2

∑α−1
β=1 [a

′

β
]([aα]+[a′α])

where the indices a1, a2, . . . and a′1, a
′
2, . . . correspond to individual Cm|n factors of the Hilbert

space (2.2) while j, j′ label the auxiliary space, and we assume summation over repeated

indices.

Although one could consider spin chains with arbitrary representations of su(m|n) in the

physical and the auxiliary spaces, we only discuss the case when both representations are

fundamental. Let us note, however, that other representations on the sites of the chain can

be obtained by fusion from the fundamental one, corresponding to a special choice of θ’s.

It is very useful to view T (u) as a matrix of size (m + n) × (m + n) whose elements T i
j

act on the physical Hilbert space H. This matrix satisfies a graded version of the celebrated

RTT relation which in components reads7

Rji
i′j′(u− v)T i′

i′′(u)T
j′

j′′(v) (−1)[j
′′][j′] = T i

i′(v)T
j
j′(u)R

j′i′

i′′j′′(u− v) (−1)[i
′][j] . (2.8)

Below we will not distinguish between T i
j and Tij , in order to write some expressions more

concisely.

Another key object is the transfer matrix, defined as the supertrace of the monodromy

matrix,

T (u) ≡ str T (u) =

m+n∑

i=1

(−1)[i] T i
i (u) . (2.9)

One can show that as a consequence of the RTT relation, the transfer matrices form a com-

mutative family,

[T (u), T (v)] = 0 , (2.10)

which in particular includes the Hamiltonian of the spin chain. Expanding T (u) as a series

in u one therefore obtains a large set of conserved charges commuting wth the Hamiltonian.

6Although most of the checks we present later in this paper have been done assuming that all θk are in

generic position, we expect our results to be valid for any choice of θ’s.
7The notation we use is slightly different compared to [45, 47], so that we have T there

ij = (−1)[j]([i]+1)T i
j .

Our notation ensures in particular that the Berezinian has the standard form given below in (3.4), while the

notation of [45, 47] would lead to an extra sign in that expression.
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The main problem we study in this paper is constructing the common eigenbasis of these

operators. A particularly simple eigenvector is given by

|0〉 =




1

0
...

0




⊗




1

0
...

0




⊗ · · · ⊗




1

0
...

0




, (2.11)

and plays the role of the ‘vacuum’ reference state in the algebraic Bethe ansatz.

As an example, let us briefly discuss the su(1|1) case which is explored in more detail in

appendix A. For su(1|1) we may write T as a 2 × 2 matrix whose entries act on the Hilbert

space,

T (u) =

(
A(u) B(u)

C(u) D(u)

)
. (2.12)

Then the transfer matrix is given by

T (u) = A(u)−D(u) . (2.13)

The B operator serves as a creation operator generating the eigenstates |Ψ〉 of the transfer

matrix,

|Ψ〉 = B(u1)B(u2) . . . B(uK)|0〉 , (2.14)

provided ui are fixed by the Bethe equations which read

λ1

λ2

L∏

k=1

uj − θk + i/2

uj − θk − i/2
= 1, j = 1, . . . ,K . (2.15)

In the next section we extend this highly compact construction of eigenstates to the

higher rank su(1|2) spin chains.

3 Eigenstates for su(1|2) spin chains

In this section we present our main result – the new compact construction of eigenstates for

su(1|2) spin chains. We first discuss the spin chain with the (1|2) grading in detail and then

present the generalization to the (2|1) grading which is similar but technically different. For

a pedagogical discussion of the su(1|2) algebra and associated spin chains see e.g. [53, 54]8.

The construction of states we propose is inspired by [20] where it was shown that one can

build an operator Bg which generates states for su(n) spin chains simply by repeated action

on the vacuum as in (1.2), like in the su(2) case. This operator is constructed from quantum

minors of the monodromy matrix, which are defined as determinants of submatrices of T (u)

8Mathematical aspects of representations of the corresponding Yangians were discussed in [55, 56].
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with extra shifts of the spectral parameter u. These quantum minors are generalizations of

the quantum determinant [57]. Explicitly, an n× n quantum minor is given by9

Tj1,...,jn| k1,...,kn(u) =
∑

σ∈Sn

(−1)sign(σ)Tjσ(1)k1(u)Tjσ(2)k2(u+ i) . . . Tjσ(n)kn(u+ ni) . (3.1)

With this notation the Bg operator for the su(3) case takes the simple form

Bg(u) = T1|3(u)T12|13(u− i) + T2|3(u)T12|23(u− i) , with Tij → T g
ij , (3.2)

where we indicated that Tij are substituted by the elements of the improved monodromy

matrix which is defined by

T g(u) = K−1T (u)K (3.3)

with K a generic 3 × 3 constant matrix. The extra similarity transformation given by K

renders the construction non-degenerate while preserving all commutation relations between

entries of T (u). It also leaves unchanged the trace of T (u) and consequently the spin chain

Hamiltonian.

Our main observation is that in the su(1|2) case one should replace the quantum minors

appearing in (3.2) by Berezinians which play the role of determinants for supermatrices [58,

59]. For a 2× 2 matrix split into four blocks A,B,C,D we define the Berezinian as

Ber

(
A(u) B(u)

C(u) D(u)

)
=
(
A(u)−B(u)D−1(u)C(u)

)
D−1(u) . (3.4)

Applying this formula to the monodromy matrix of an su(1|1) spin chain (see (A.1)) gives

the operator Ber T (u) which is a central element of the Yangian Y (gl(1|1)), i.e. it commutes

with A(v), B(v), C(v) and D(v) for all values of u and v. This shows that the Berezinian

plays the same role for su(1|1) as the quantum determinant does for the su(2) case. We recall

that the quantum determinant for an su(2) spin chain monodromy matrix reads

qdet

(
A(u) B(u)

C(u) D(u)

)
= A(u)D(u + i)− C(u)B(u+ i) (3.5)

and coincides with the 2× 2 quantum minor defined in (3.1).

Notice that there are no shifts of the spectral parameter in the 2 × 2 Berezinian (3.4),

in contrast10 to the quantum determinant (3.5). Due to this we will not make a distinction

between the quantum Berezinian and the usual Berezinian of a 2× 2 block matrix (both are

given by (3.4)).

9We note that the vertical slash appearing in the l.h.s. of (3.1) is unrelated to the graded vector space

notation such as su(m|n).
10Shifts of u do appear in quantum Berezinians of higher size T-matrices [60–64] which generate the center

of the Yangian for higher rank spin chains.
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We will denote the Berezinians similarly to the quantum minors in (3.1), namely

Beri1i2|j1j2(u) ≡ Ber

(
Ti1j1(u) Ti1j2(u)

Ti2j1(u) Ti2j2(u)

)
. (3.6)

With this notation the Bg operator for su(1|2) is obtained by simply replacing the quantum

minors in the su(3) result (3.2) by the Berezinians,

Bg(u) = T1|3(u)Ber12|13(u) + T2|3(u)Ber12|23(u) , with Tij → T g
ij , (3.7)

where again one should use elements of the improved monodromy matrix T g. It is defined by

(3.3) like in the su(3) case, with the sole difference being that K should only have nonzero

entries in its ‘even’ diagonal blocks,

K =




K11 0 0

0 K22 K23

0 K32 K33


 , (3.8)

where the lines emphasize the splitting of K into odd and even elements as an operator on

the graded vector space C1|2. The construction works as long as K is a generic matrix of this

type. Let us also note that in contrast to the su(3) case, there are no shifts of u at all in

(3.7).

The main property of this operator is that it allows one to build the transfer matrix

eigenstates just as for su(1|1) or su(2), by repeated action on the vacuum! Namely,

|Ψ〉 = Bg(u1)B
g(u2) . . . B

g(uK)|0〉 . (3.9)

The state |0〉 here is the standard reference state (2.11),

|0〉 =



1

0

0


⊗



1

0

0


⊗ · · · ⊗



1

0

0


 (3.10)

where the horizontal lines again highlight the (1|2) grading of the C1|2 space at each site. Like

for su(3), the ui in (3.9) are the momentum-carrying Bethe roots. One way to fix them is to

solve the set of usual nested Bethe ansatz equations, which also include auxiliary roots vj ,

L∏

k=1

ui − θk + i/2

ui − θk − i/2
=

λ2

λ1

N∏

j=1

ui − vj + i/2

ui − vj − i/2
, i = 1, . . . ,K (3.11)

K∏

j=1

vi − uj + i/2

vi − uj − i/2
= −

λ2

λ3

N∏

j=1

vi − vj + i

vi − vj − i
, i = 1, . . . , N . (3.12)
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The only role of the auxiliary roots is that they indirectly affect the values of the main roots

ui through the Bethe equations11. Let us also note that in terms of the Bethe roots the

eigenvalues of the transfer matrix read (as one can deduce via standard methods)

T (u) = Q−
θ

[
λ1

Q+
θ Q

−−
u

Q−
θ Qu

− λ2
Q−−

u Q+
v

QuQ
−
v

− λ3
Q−−−

v

Q−
v

]
, (3.13)

where

Qθ(u) =
L∏

k=1

(u− θk) , Qu =
K∏

j=1

(u− uj) , Qv =
N∏

j=1

(u− vj) (3.14)

and we also used the compact notation (2.4).

Our construction of the states is clearly free from the recursion inherent in the standard

nested Bethe ansatz, where the eigenstates are built in terms of the wavefunctions of an

auxiliary lower rank spin chain. Our approach involves only a single operator Bg acting

repeatedly on the vacuum. Curiously, while in the nested Bethe ansatz states are built

by polynomial combinations of monodromy matrix elements acting on the vacuum (with

complicated state-dependent coefficients), the Bg operator is not even a polynomial in the

Tij operators12. It is also not a polynomial of u in the representation we consider, but we

observed that one can make the dependence on u polynomial by multiplying the Tij matrix by

a scalar function, namely by replacing Tjk(u) → Qθ(u− i
2 )Tjk(u). After that B

g(u) becomes

a polynomial of degree 2L− 1. With a more general twist K (e.g. one involving off-diagonal

Grassmann entries) it might be possible to make the degree 2L, i.e. the same as it is for the

Bg operator in su(3) once we remove from it a trivial overall factor [20].

Let us highlight a peculiar structural feature of the Bg operator for su(1|2). Although

all the monodromy matrix entries Tij(u) are just operators acting on the Hilbert space, it

is useful to label them as either bosonic/even (B) or fermionic/odd (F) depending on their

position inside T viewed as a (1|2) supermatrix, so that schematically

T (u) =




B F F

F B B

F B B


 . (3.15)

The Berezinian is naturally defined for 2 × 2 matrices with the standard grading
(

B F

F B

)

.

While the first Berezinian in the expression (3.7) for Bg is indeed applied to a matrix with

this grading, the second one is evaluated for a matrix of the type
(

F F

B B

)

. When computing

11We consider spin chains with generic twists λi, which lift degeneracies and ensure that the states are in

1-to-1 correspondence with solutions of the Bethe equations.
12Let us note that for su(3) one can also write Bg as a non-polynomial combination of Tij , using that the

2× 2 quantum minors entering (3.2) and given by (3.5) can be equivalently written as A(u)(D(u+ i)−C(u+

i)A−1(u+ i)B(u+ i)). For su(1|2), however, our Bg operator cannot be recast as a polynomial of Tij , as it is

not polynomial in u.
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Bg we simply evaluate this Berezinian formally using the definition (3.4). It would be highly

interesting to understand the algebraic meaning of such non-conventional super determinants.

While the proposed construction of eigenstates (3.9) should be regarded as a conjecture,

we have extensively checked it numerically. We verified that it produces all the states for the

spin chain with L = 1, 2, 3 or 4 sites. We also tested it for several states with up to four

excitations for L = 5, where we already have large 243 × 243 matrices. In addition, we have

proven it analytically for the case with one excitation for any spin chain length L, with a

particular simple choice of K

K =




1 0 0

0 1 1

0 0 1


 . (3.16)

The proof is essentially by brute force and follows the one for su(3) in [20]. It is based on the

fact that the vacuum is an eigenstate for all elements of T g
ij except T g

12 and T g
13 which serve

as creation operators. Namely, we have

T g
ij(u)|0〉 = 0, i > j (3.17)

and also

T g
11(u)|0〉 = λ1Q

+
θ |0〉, T g

22(u)|0〉 = λ2Q
−
θ |0〉, T g

33(u)|0〉 = λ3Q
−
θ |0〉, (3.18)

T g
23(u)|0〉 = (λ2 − λ3)Q

−
θ |0〉, (3.19)

as one can verify similarly to the su(3) case [20]13. Then using the RTT relations to commute

all T g
ij to the right of T g

12 and T g
13 until they hit the vacuum state |0〉, we get

Bg(u)|0〉 = λ2Q
−
θ

(
T g
12(u) +

λ2Q
−
θ − λ1Q

+
θ

(λ2 − λ3)Q
−
θ

T g
13(u)

)
|0〉 . (3.20)

Acting on this expression with the transfer matrix one can similarly show that it is an eigen-

state on the solutions of Bethe equations14. We leave for the future a full general proof for

any number of excitations, and hope it can be done using the recent techniques of [21].

Let us note that the Bg(u) operators for su(1|2) do not commute at different values of

u, and thus naively are not suitable for definition of separated variables (in contrast to the

su(n) case [20]). Perhaps one may still be able to implement the SoV in some modified way,

e.g. making the separated coordinates noncommutative or Grassmannian. We leave this as

an important open question for the future. Curiously, we observed15 that in the standard

basis the matrix elements of Bg(u)Bg(v) and Bg(v)Bg(u) are either equal or are related

13For the original monodromy matrix elements Tij(u) we have the same action on the vacuum (3.17), (3.18)

but instead of (3.19) we find that T23 annihilates the vacuum.
14Extending this proof to 2 magnons is already nontrivial due to the need to commute (T g

23)
−1 appearing in

the Berezinians through other elements of T g.
15for the first few values of L
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via multiplication by −u−v−i
u−v+i

. This factor is furthermore precisely the one appearing in the

commutation relation of the standard B(u) operators in the su(1|1) case (see (A.9)). The

same observation is true for the su(1|1) Bg operator we present in appendix A. It would be

highly interesting to understand the algebraic implications of these commutation relations.

In the su(n) case one could use the same operator Bg to build the states starting from a

different reference state, using solutions of the appropriate dual Bethe equations correspond-

ing to a particle-hole transformation in the Bethe ansatz. The Bg operator we constructed

here for su(1|2) does not have the same property as it annihilates the states which could serve

as alternative pseudovacua, namely

|0′〉 =



0

1

0


⊗



0

1

0


⊗ · · · ⊗



0

1

0


 (3.21)

and

|0′′〉 =



0

0

1


⊗



0

0

1


⊗ · · · ⊗



0

0

1


 . (3.22)

This property is also related to the fact that the Bg operator is nilpotent for a general K of the

form (3.8), and thus cannot be diagonalized. This serves as another obstacle to implementing

the SoV, as for su(n) the eigenvectors of Bg play a key role since they define the basis of

separated coordinates in which the wavefunction factorizes (see the discussion in section A.1).

However, in the su(1|1) case we managed to circumvent this problem by considering a more

general K matrix which gives a diagonalizable Bg operator as discussed in appendix A. We

hope that this approach may be adapted to the higher rank case, and in addition one could

try to use a K matrix with Grassmann elements in the off-diagonal blocks (see section A.2),

though the interpretation of the resulting operator remains to be clarified. In any case, we

believe that the very existence of the construction of the states (3.9) for su(1|2) is encouraging

for the prospect of developing the SoV program in the future.

3.1 Extension to the (2|1) grading

While above we discussed the su(1|2) spin chains based on the R-matrix with (1|2) grading,

one can alternatively consider a spin chain built from the R-matrix with grading chosen as

(2|1) (corresponding to m = 2 and n = 1 in the notation of section 2). This spin chain still

realizes the su(1|2) symmetry but differs technically from the case we considered. Here we

present our construction of eigenstates for this choice of grading, which should also provide

important guidance towards its generalization to any su(m|n) model.

At the level of transfer matrix eigenvalues, the difference between two choices of the

grading can be stated explicitly using the expression for eigenvalues in terms of the Bethe
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roots, which for the (2|1) case reads16

T (u) = −Q−
θ

[
λ3

Q−−−
θ Qu

Q−
θ Q

−−
u

− λ2
QuQ

−−−
v

Q−−
u Q−

v

− λ1
Q+

v

Q−
v

]
, (3.23)

where as before we define

Qu =

K∏

j=1

(u− uj) , Qv =

N∏

j=1

(u− vj) , (3.24)

and the Bethe roots ui, vj are fixed by standard nested Bethe equations

L∏

k=1

ui − θk + i/2

ui − θk − i/2
=

λ3

λ2

N∏

j=1

ui − vj + i/2

ui − vj − i/2
, i = 1, . . . ,K (3.25)

K∏

j=1

vi − uj + i/2

vi − uj − i/2
= −

λ1

λ2

N∏

j=1

vi − vj + i

vi − vj − i
, i = 1, . . . , N . (3.26)

Notice that the only difference with the (1|2) Bethe equations (3.11), (3.12) is a reshuffling

of the twists λi. Comparing (3.23) with the eigenvalues of T for the (1|2) grading given in

(3.13), we see that the eigenvalues for the two gradings are mapped to each other if we apply

complex conjugation supplemented by a shift of u, permutation of the twists and overall

change of sign,

T (1|2)(λ1, λ2, λ3, θi, u) = −
[
T (2|1)(λ∗

3, λ
∗
2, λ

∗
1, θ

∗
i , u

∗ + i)
]∗

. (3.27)

This equality holds at the level of eigenvalues, with a suitable one-to-one identification between

eigenvectors in the two models.

Despite the simplicity of this map, there seems to be no simple relation between T (u) (or

other entries Tij(u)) as operators in the standard basis for the two choices of grading, making

the realization of our construction in the (2|1) case nontrivial. However, we found that there

still exists a Bg operator which allows one to generate the eigenstates, and it reads

Bg = T32(u+ i)Ber31|32(u+ i) + T12(u+ i)Ber31|12(u+ i) , with Tij → T g
ij , (3.28)

where now to define T g = K−1TK we should use a matrix K that is generic but has nonzero

entries only in the diagonal blocks corresponding to the (2|1) grading,

K =




K11 K12 0

K21 K22 0

0 0 K33


 . (3.29)

16We have extensively checked this result numerically and it can also be proven using the standard nested

Bethe ansatz.
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This expression should be compared with the Bg operator for the (1|2) grading given in (3.7).

We see there is an extra shift of u in the result for the (2|1) case. Up to this shift, if we replace

the Berezinians in both results by the usual quantum minors, we find that both expressions

are instances of the su(3) Bg operators, simply corresponding to different choices of K for

su(3). However, for super spin chains only block-diagonal matrices K (like (3.8) or (3.29))

are allowed, so the Bg operators cannot be mapped to each other by adjusting K. Moreover,

the Bg operator in the (2|1) case has to act on the dual vacuum of the form17

|0′′〉 =



0

0

1


⊗



0

0

1


⊗ · · · ⊗



0

0

1


 . (3.30)

That is rather natural as this is the image of the original |0〉 vacuum under the map from

C
1|2 to C

2|1. The states are built as

|Ψ〉 = Bg(u1) . . . B
g(uK)|0′′〉 (3.31)

where as usual ui are the momentum-carrying roots fixed by the nested Bethe equations given

above in (3.25), (3.26).

As for the (1|2) grading, we have checked numerically that this operator generates the full

basis of states for spin chain length L = 1, 2, 3 and 4, as well as several states for L = 5 with

up to four magnons. Its other properties also directly parallel the (1|2) case, in particular it

is nilpotent, is not suitable for generating states starting from a different vacuum, and the

entries of Bg(u)Bg(v) are related with those of Bg(v)Bg(u) via multiplication by −u−v−i
u−v+i

in

the cases when they are not equal. Lastly, let us note that the extra shift by i in the result

(3.28) is rather intriguing and is similar to the shift needed for su(1|1) when using the C

operators to build the states from the dual vacuum as discussed in appendix A.

4 Conclusions

In this paper we presented a new and highly compact construction for the eigenstates of

higher-rank supersymmetric rational spin chain, for the first nontrivial example which is

su(1|2). It is inspired by the analogous proposal in the su(n) case which in turn has its

roots in the separation of variables approach. We find it rather nontrivial that an analogous

construction of states exists for su(1|2) despite the fact that there is no known implementation

of the SoV in the supersymmetric case.

While we have checked the proposal extensively, it would be interesting to prove it rigor-

ously, which is likely to be possible in view of the recent proof in the su(3) case [21]. It would

17For completeness we note that the Tij operators in the (2|1) case act on the standard reference state

|0〉 defined in (2.11) as T11(u)|0〉 = λ1Q
+
θ |0〉, T22(u)|0〉 = λ2Q

−

θ |0〉, T33(u)|0〉 = λ3Q
−

θ |0〉, T23(u)|0〉 = 0,

and Tij(u)|0〉 = 0 for i > j. For the dual vacuum |0′′〉 we have T11(u)|0
′′〉 = λ1Q

−

θ |0
′′〉, T22(u)|0

′′〉 =

λ2Q
−

θ |0
′′〉, T33(u)|0

′′〉 = λ3Q
−−−

θ |0′′〉, T21(u)|0
′′〉 = 0, and Tij(u)|0

′′〉 = 0 for i < j.
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be also highly important, though challenging, to uncover the algebraic origins of the operator

Bg which generates the states, and to understand its interpretation within the Yangian. In

particular, it would be interesting to understand the algebraic meaning of non-conventional

super quantum minors entering our su(1|2) construction (see discussion after (3.15)). A better

algebraic understanding would be important for extending our construction to any su(m|n),

which is one of the key future directions.

While we have focused on the spin chains with a fundamental representation at each site,

we hope the construction should work directly for many other representations, as already

proven in the su(3) case [21]. It would be important to generalize both the bosonic and

supersymmetric constructions to arbitrary representations, in particular to the antisymmetric

representation of su(4) relevant for 1-point functions in N = 4 SYM with a defect [65–67]), as

well as to noncompact spin chains. Another curious direction is to look for relations with the

construction of spin chain Q-operators [68–70]. It is also interesting to explore deformations

of our construction corresponding to the trigonometric XXZ case and to the Gaudin models

(either bosonic or supersymmetric [71]). In the latter case one may expect an interplay with

the remarkable Knizhnik-Zamolodchikov equations [72, 73].

We hope that our results should help to shed light on the yet to be developed SoV program

for the supersymmetric case. We present some first steps towards the SoV for su(1|1) spin

chains in appendix A. Since in the bosonic case the SoV leads to remarkable results for

correlators (see e.g. [74–76]), one may hope for similar simplifications in supersymmetric

models. For N = 4 SYM drastic simplification of certain correlators in separated variables

was observed very recently in [8] (see also [9] and [77–82]), making further development of

the SoV program all the more important.
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A Comments on su(1|1) spin chains

In this appendix we discuss the simplest supersymmetric spin chains with su(1|1) symmetry.

We will see that despite their simplicity it is not clear how to explicitly construct the basis

of Sklyanin’s separated variables, and we will make some first steps in this direction.
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In the su(1|1) case, the monodromy matrix T (u) is a 2×2 matrix whose entries A,B,C,D

act on the physical Hilbert space,

T (u) =

(
A(u) B(u)

C(u) D(u)

)
. (A.1)

The transfer matrix is given by its supertrace,

T (u) = A(u)−D(u) , (A.2)

and defines a commutative family of operators,

[T (u),T (v)] = 0 . (A.3)

The standard way to construct its eigenstates is by using the B(u) operator as a creation

operator on top of the reference state |0〉 defined by (2.11). The eigenstates are then given

by

|Ψ〉 = B(u1)B(u2) . . . B(uK)|0〉 (A.4)

where uj are the Bethe roots satisfying the su(1|1) Bethe equations,

λ1

λ2

L∏

k=1

uj − θk + i/2

uj − θk − i/2
= 1, j = 1, . . . ,K . (A.5)

Let us note that the l.h.s. of (A.5) is the ratio of eigenvalues of A(u) and D(u) on the

vector |0〉,

A(u)|0〉 =
L∏

k=1

(uj − θk + i/2), D(u)|0〉 =
L∏

k=1

(uj − θk − i/2) . (A.6)

In order to prove that (A.4) gives an eigenstate of T one uses commutation relations between

entries of T (u) following from the RTT relation (2.8). In particular, we have

A(u)B(v) =
u− v − i

u− v
B(v)A(u) +

i

u− v
B(u)A(v) . (A.7)

Moreover D(u) satisfies exactly the same commutation relation (in contrast to the su(2) case).

This means that we have a commutation relation between B and the full T = A−D,

T (u)B(v) =
u− v − i

u− v
B(v)T (u) +

i

u− v
B(u)T (v) (A.8)

Using also that as a consequence of the RTT relation

B(u)B(v) = −
u− v − i

u− v + i
B(v)B(u) , (A.9)

one can now easily commute T (u) through all the B operators in (A.4) until it hits |0〉 which

is its eigenstate due to (A.6). It is not hard to show that all unwanted terms generated in the

process will cancel due to Bethe equations (A.5), ensuring that |Ψ〉 is indeed an eigenstate.
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Note that the r.h.s. of (A.5) does not include any interaction between the Bethe roots,

which are in this sense independent from each other, and moreover they should all be pairwise

distinct. This makes the spin chain somewhat similar to a model of free fermions. It is clear

that for a given L the complete set of possible Bethe roots is fixed from (A.5) with K = L,

and any particular state is specified by choosing a subset of these roots.

For completeness let us also discuss how to write the analog of the Baxter T−Q equations

for su(1|1). Introducing the Q-functions

Q1 =

K∏

j=1

(u− uj), Qθ =

L∏

k=1

(u− θk) , (A.10)

we can rewrite the Bethe equations (A.5) as

Q+
θ (uj)

Q−
θ (uj)

=
λ2

λ1
. (A.11)

Equivalently, we can write the QQ relation

λ1Q
+
θ − λ2Q

−
θ = (λ1 − λ2)Q1Q2 , (A.12)

where Q2 is also a polynomial. We see that the l.h.s. of this equation does not depend on

the state, and the state is specified simply by selecting K Bethe roots out of the zeros of the

l.h.s. These will be the zeros of Q1, while the other zeros of the l.h.s. will be attributed to

Q2. One can say that for any particular state Q2 contains those Bethe roots which are not

activated for this state.

In terms of the Q-functions the eigenvalue of T (u) has the simple form

T = (λ1 − λ2)Q
−−
1 Q2 , (A.13)

and combining this with the QQ relation (A.12) we get the analog of the Baxter equation,

T Q = (λ1Q
+
θ − λ2Q

−
θ )Q

−− . (A.14)

A.1 Separation of variables overview

While the construction of eigenstates (A.4) for su(1|1) directly parallels the su(2) case, a

crucial difference is that the B operators no longer commute with each other and instead

satisfy a Zamolodchikov-Faddeev type relation (A.9). This prevents immediate realization of

Sklyanin’s separation of variables program for su(1|1) and makes it a nontrivial open question.

Let us recall briefly how the SoV works for su(2) spin chains. The B operators in that case

commute,

[Bsu(2)(u), Bsu(2)(v)] = 0 , (A.15)

and therefore one can define the commuting operator roots of B denoted as operators xk,

Bsu(2)(u) = B0

L∏

k=1

(u− xk) , (A.16)
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where B0 is a constant. The xk play the role of separated coordinates, and in their common

eigenbasis labelled by their eigenvalues xk we have

〈x1, . . . , xL|B
su(2)(u) = C

L∏

k=1

(u− xk)〈x1, . . . , xL| (A.17)

The eigenstates of the transfer matrix can be again built as in (A.4) with the only difference

being in the explicit form of Bethe equations satisfied by uj . Then we see that in the common

eigenbasis of xk the wavefunction factorizes,

〈x1, . . . , xL|Ψ〉 =
L∏

k=1

(−1)KQ1(xk) , (A.18)

where the Q-function Q1(u) is defined by (A.10) and encodes the Bethe roots. The factor-

ization of the wavefunction into Q-functions in (A.18) shows that the separation of variables

has been achieved in the su(2) case.

The main problem for su(1|1) models is that the B operators do not commute, so one

cannot diagonalize their roots xk simultaneously, making it unclear how to construct the basis

〈x1, . . . , xL| of separated coordinates. For su(1|1) spin chains there is also another obstacle

– namely, the standard B operator is nilpotent and cannot be diagonalized at all.18 In the

next section we will show how to resolve at least this problem, serving as a first step towards

the construction of the SoV.

A.2 Improving the B operator

As we discussed above, one problem preventing the SoV implementation for su(1|1) spin

chains is the fact that B(u) is a nilpotent operator and cannot be diagonalized. In fact the

same problem is present also in the su(2) case where B is nilpotent as well. There it can

be circumvented by redefining the monodromy matrix via an extra similarity transformation

with a generic 2× 2 constant matrix K acting in the auxiliary space [20, 81],

T (u) → T g(u) = K−1T (u)K . (A.19)

This transformation removes degeneracy and makes the new B operator diagonalizable, more-

over it is a symmetry of the R-matrix and thus preserves all commutation relations (as well

as the trace of T ).

For supersymmetric su(m|n) spin chains the transformation (A.19) would only preserve

the commutation relations if elements of K in its off-diagonal m × n and n ×m blocks are

treated as Grassmann variables anticommuting also with elements of T (u) in the same blocks.

However, the resulting B operator for su(1|1) would contain Grassmann variables, making

18Informally speaking, the reason why B is nilpotent is that acting with it many times on the reference state

|0〉 we will eventually reach the state where all spins have been flipped, and this state is annihilated by B.
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unclear the interpretation of its eigenstates and eigenvectors. Nevertheless we can use this

approach idea as an inspiration and formally consider for su(1|1) the new monodromy matrix

T g =

(
1 β

0 1

)(
A B

C D

)(
1 α

0 1

)
=

(
A+ βC B +Aα+ βD + βCα

C D + Cα

)
(A.20)

where α and β are Grassmann variables commuting with A,D but anticommuting with B,C

as well as with each other. Requiring the supertrace of T to be preserved we find β = −α.

Then we can read off the new B-operator Bg ≡ T g
12, so explicitly

Bg = B(u) + α(A(u) −D(u)) . (A.21)

The key observation is that one can take α in this equation (A.21) to be a generic

complex number rather than a formal Grassmann parameter. The resulting operator will be

diagonalizable, and moreover it will still generate the eigenstates! That is, we can again build

the eigenstates as

|Ψ〉 = Bg(u1) . . . B
g(uK)|0〉 (A.22)

The reason for this is that Bg satisfies exactly the same commutation relation (A.8) with T

as B did,

T (u)Bg(v) =
u− v − i

u− v
Bg(v)T (u) +

i

u− v
Bg(u)T (v) , (A.23)

which one can check explicitly using (A.8). This immediately means that the Bg operator is

suitable for building eigenstates.

The advantage of using the Bg(u) operator is that unlike B(u) it can be diagonalized.

Its eigenvalues read19

(λ1 − λ2)α

L∏

k=1

(u− uk − isk), sk = {0, 1} . (A.24)

Curiously, they coincide with eigenvalues of T (u) (given in (A.13)) up to a simple and u-

independent factor. However, the meaning of this fact is not completely clear yet, especially

since the Bg(u) operators do not commute for different values of u so their eigenvectors

depend on u.

We did not find any simple commutation relation such as (A.9) for two Bg operators.

However, curiously, we observed that in the standard basis all matrix elements of Bg(u)Bg(v)

and Bg(v)Bg(u) are either equal or are related via multiplication by the same factor as in

the B commutation relation (A.9).20

19we checked this explicitly for the first few values of L
20We were also able to construct other operators that generate states and satisfy commutation relations

of the type (A.9) with different nontrivial factors in the r.h.s. (in one case we get operators that simply

anticommute).
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Let us also note that the states created by Bg do not depend on α at all. The reason for

this is that while T appears inside the expression for Bg, on Bethe roots we have

T (ui)|0〉 = 0 , (A.25)

which can be easily checked. Thus when we repeatedly act on |0〉 with Bg we can commute

all T ’s to the right of the B’s using (A.8) until the T ’s act on the reference state |0〉 which is

annihilated by them, leaving no dependence on α.

A.3 Bg and dual roots

One can alternatively try to construct the states starting from a different pseudovacuum state

where all spins have been flipped,

|0′〉 =

(
0

1

)
⊗

(
0

1

)
⊗ · · · ⊗

(
0

1

)
. (A.26)

Then in the standard approach one can build the states using the C operator instead of B,

|Ψ〉 = C(v1 + i) . . . C(vK ′ + i)|0′〉 , (A.27)

where the dual Bethe roots vi satisfy the same Bethe equations as before,

Q+
θ (vj)

Q−
θ (vj)

=
λ2

λ1
, j = 1, . . . ,K ′ . (A.28)

We shifted the arguments of C operators by i in (A.27) so as to have the Bethe equations

take the conventional form (A.28). It is not hard to prove that this gives eigenstates, by using

the RTT relations as well as

A(u)|0′〉 = Q−
θ |0

′〉, D(u)|0′〉 = Q−−−
θ |0′〉 . (A.29)

In the su(n) case one could build the states with Bg starting from any of the n dual

pseudovacuum states and using the Bethe roots that solve the corresponding dual Bethe

equations. However, we found that the operator Bg we constructed for su(1|1) can build states

only starting from the usual vacuum |0〉. The reason for this is that Bg is a linear combination

which does not include the C operator, so the dual vacuum |0′〉 is just an eigenstate of Bg(u)

for all u. It would be interesting to see if one may improve the Bg operator even further, and

we leave this question for the future.
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Math. Phys. 145 (2005) 1373, math.QA/0610433. • S. Khoroshkin, S. Pakuliak, V. Tarasov,

Of f-shell Bethe vectors and Drinfeld currents, J. Geom. Phys. 57 (2007) 1713, math/0610517. •

S. Khoroshkin, S. Pakuliak. A computation of universal weight function for quantum affine

algebra Uq(glN ). J. Math. Kyoto Univ. 48 (2008) 277, math.QA/0711.2819. • L. Frappat, S.

Khoroshkin, S. Pakuliak, E. Ragoucy, Bethe Ansatz for the Universal Weight Function, Ann.

H. Poincarre 10 (2009) 513, arXiv:0810.3135. • A. Oskin, S. Pakuliak, A. Silantyev. On the

universal weight function for the quantum affine algebra Uq(ĝlN ), St. Petersburg Math. J. 21
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