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Testing Lorentz- and CPT-invariance with ultracold neutrons

A. Mart́ın-Ruiz1, 2, ∗ and C. A. Escobar3, †

1Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid, Spain
2Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
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In this paper we investigate, within the standard model extension framework, the influence of
Lorentz- and CPT-violating terms on gravitational quantum states of ultracold neutrons. Using a
semiclassical wave packet, we derive the effective nonrelativistic Hamiltonian which describes the
neutrons vertical motion by averaging the contributions from the perpendicular coordinates to the
free falling axis. We compute the physical implications of the Lorentz- and CPT-violating terms on
the spectra. The comparison of our results with those obtained in the GRANIT experiment leads to
an upper bound for the symmetries-violation c

n
µν coefficients. We find that ultracold neutrons are

sensitive to the a
n
i and e

n
i coefficients, which thus far are unbounded by experiments in the neutron

sector. We propose two additional problems involving ultracold neutrons which could be relevant
for improving our current bounds; namely, gravity-resonance-spectroscopy and neutron whispering
gallery wave.

I. INTRODUCTION

One of the main challenges of modern physics is the
search for a quantum theory of gravity (QTG). On the
experimental front, the major difficulty is the lack of ex-
perimentally accessible phenomena at Planck scale that
could shed light on a possible route to QTG. However,
suppressed effects emerging from the underlying theory
might be observable in sensitive experiments performed
at our presently low-energy scales. One candidate set
of Planck scale signals is relativity violations, which are
associated with the breaking of Lorentz and CPT symme-
tries, hence the considerable amount of attention it has
gained in the past two decades. Some modern approaches
to QTG, such as noncommutative field theories [1], quan-
tum gravity [2], string theory [3], brane-worlds scenarios
[4], condensed matter analogues of “emergent gravity”
[5], Hořava-Lifshitz gravity [6–8], gauge emergent bosons
[9] and others Lorentz-violating scenarios [10–12], are ex-
amples that lead to setups in which Lorentz invariance is
no longer an exact symmetry.

Studies of Lorentz violation (LV) are conducted more
easily in low-energy effective field theory frameworks,
which allow us to focus on measurable physical effects
rather than the fundamental mechanism that produces
the breakdown of Lorentz symmetry. In particular, the
Standard-Model Extension (SME) [13] was conceived
within these low-energy frameworks to encompass all pos-
sible LV effects. The Lagrangian of the minimal SME
include the standard model and general relativity terms
plus all the Lorentz-violating operators of mass dimen-
sion four or less that can be constructed from the cou-
pling of the standard fields with vector and tensor coef-
ficients that parameterize Lorentz violation. Such coeffi-
cients are motivated by a spontaneous symmetry break-
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ing in a more fundamental theory [14] and whose fixed
directions in spacetime trigger the breakdown of Lorentz
symmetry. It is worth to mention that some properties
as observer Lorentz invariance, energy-momentum con-
servation, gauge invariance, power-counting renormaliz-
ability [15, 16], causality, stability and hermiticity (see
[17] for the fermion sector and [18] for the photon sec-
tor) can be maintained in the Lagrangians of the minimal
SME.

Since Lorentz violation has not been detected yet in
experiments, it is generally assumed that LV coefficients
have small components in Earth-based laboratories, thus
leading to very tiny modifications in physically measur-
able quantities. There are also some cases where the
SME terms lead to new effects which are absent in the
Lorentz-symmetric theory, for instance, forbidden decays
[19], magnetoelectric phenomena [20] and birefringence in
vacuum [21]. High precision experiments have been used
to find tighter bounds for the LV coefficients (see Ref. [22]
for current bounds). For example, the SME causes small
shifts in the energy levels of an atomic system that could,
in principle, be detected by high-precision spectroscopy.
This idea has been used to set stringent bounds to the
electron sector of the SME, since the 2S-1S transition in
hydrogen has been measured with particularly high pre-
cision [23]. The neutron sector of the SME has received
less attention and current bounds on the Lorentz- and
CPT-violating coefficients are based mainly on nuclear
binding models and Cs interferometers.

In this paper we consider the physics of ultracold neu-
trons (UCNs) as a possible candidate to test Lorentz-
and CPT-invariance. In particular, the recently observed
gravitational quantum states of UCNs in the GRANIT
experiments [24] offer an interesting opportunity of test-
ing departures from both the neutrons quantum mechani-
cal behavior and possible modifications of the local grav-
ity field [25]. This fact motivates the investigation of
SME effects on neutron gravitational quantum states,
which is precisely the question we address here. A de-
tailed description of the GRANIT experiment at the In-
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stitute Lau-Langevin can be found in Ref. [24]. In short,
they show that an intense beam of UCNs moving in
Earth’s gravity field does not bounce smoothly but at
certain well-defined quantized heights, as predicted by
quantum theory. Since we aim to compare our theo-
retical results with the ones obtained in the GRANIT
experiments, we frame this work according to the labo-
ratory conditions under which experiments were carried
out. To this end, we start with the fermion sector of the
SME coupled to a general curved spacetime background
and we work out its spin-independent nonrelativistic ex-
pansion, which is appropriate to describe the dynamics
of an unpolarized beam of slow neutrons. Since the neu-
trons motion in the plane perpendicular to the free falling
axis is governed by classical laws, we use a Gaussian wave
packet to derive an effective Hamiltonian which describes
the SME effects on the quantum bouncer. The resulting
energy shifts can be compared with the results obtained
in the GRANIT experiments, and an upper bound can
be set for the Lorentz- and CPT-violating coefficients.
This paper is organized as follows. We begin in Section

II by introducing the nonrelativistic Hamiltonian which
describes the spin-independent effects of a nonrelativis-
tic fermion in a uniform Newtonian gravitational field.
We closely follow Ref. [26], wherefrom we take nota-
tions and conventions. In Sec. III we derive the effective
Hamiltonian which affects the neutrons motion along the
free falling axis. We have relegated the technical com-
putations to the Appendix. Comparing the energy shifts
induced by Lorentz violation and the experimental preci-
sion in the GRANIT experiments, we set bounds to the
cnµν SME coefficients in Sec. IV. Finally, in Sec. V we
briefly discuss two experiments involving UCNs which
can be used to improve our bound to the SME coeffi-
cients.

II. LORENTZ VIOLATION IN A UNIFORM

GRAVITATIONAL FIELD

In order to investigate the SME effects on nonrelativis-
tic quantum systems in a uniform Newtonian gravita-
tional field, we have to consider first the action for a
single fermion ψ of mass m in a general curved space-
time background. The appropriate SME action is given
by [27]

S =

∫

e

[

i

2
eµa

(

ψΓa∇µψ −
(

∇µψ
)

Γaψ
)

− ψMψ

]

d4x,

(1)

where e is the determinant of the vierbein eµa, and the
covariant derivative ∇µ acts on the spinors as

∇µψ = ∂µψ +
i

4
ω ab
µ σab ψ, (2)

∇µψ = ∂µψ − i

4
ω ab
µ ψ σab, (3)

being ω ab
µ the spin connection and σab = i

2

[

γa, γb
]

. The

Dirac matrices γa are taken to satisfy
{

γa, γb
}

= −2ηab,

where ηab = diag (−1, 1, 1, 1) is the tangent-space metric.
The symbols Γa andM appearing in the action (1) are

defined by

Γa ≡ γa − cµνe
νaeµbγ

b − dµνe
νaeµbγ5γ

b

− eµe
µa − ifµe

µaγ5 −
1

2
gλµνe

νaeλbe
µ
cσ

bc (4)

and

M ≡ m+ aµe
µ
aγ

a + bµe
µ
aγ5γ

a +
1

2
Hµνe

µ
ae

ν
bσ

ab, (5)

where γ5 = iγ0γ1γ2γ3. The first term in Eq. (4) leads
to the usual Lorentz-invariant kinetic term for the Dirac
field, while the first term of Eq. (5) corresponds to
the Lorentz-invariant mass. The Lorentz breaking co-
efficients, aµ, bµ, cµν , dµν , eµ, fµ, gλµν and Hµν , are
assumed to have small components in an Earth-based
laboratory (concordant frame [17]).
In any static spacetime the vierbein can be written as

eµ0 = δµ0 e
0
0(x

k) and eµj = δµi e
i
j(x

k), where e00 6= 0 [28].

The Dirac equation that results from the action (1) can
be written as

ie00Γ
0∂0ψ =− ieijΓ

j∂iψ − i

2
eµa (∂µΓ

a)ψ +Mψ

− i

2
eµaωµcd

(

ηacΓd +
i

4

{

Γa, σcd
}

)

ψ. (6)

The Hamiltonian H associated with this Dirac equation
must satisfy Hψ = i∂0ψ, and this is naively achieved by
inverting e00Γ

0. However, the resulting Hamiltonian is
not hermitian and then is physically unacceptable. As
shown in Ref. [27], this problem can be repaired by
making a spacetime-constant field redefinition ψ = Wχ,
where W is chosen to restore the usual time-derivative
coupling. In the present case, to first order in the SME
coefficients, the hermitian operator W =

(

3− γ0Γ0
)

/2
correctly works [26]. The modified Dirac equation takes
the standard form i∂0χ = Hχ, where the hermitian
Hamiltonian reads

H = −i
eij
e00

γ0Γ̃j∂i +
1

e00
γ0M̃, (7)

with W̄ = γ0W †γ0, Γ̃a = W̄ΓaW , and

M̃ = W̄MW − ieµaW̄γa (∂µW )− i

2
eµaW̄ (∂µΓ

a)W

− i

2
eµaωµcdW̄

(

ηacΓd +
i

4

{

Γa, σcd
}

)

W. (8)

To proceed further, we have to choose properly the
background spacetime in order to characterize the grav-
itational field in any experiment intended to measure
Lorentz violation effects in the fermion sector of the
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SME. This is achieved by working with the usual uni-
form Newtonian field, which is described by the vierbein
eµν = δµiδνj + δµ0δν0 (1 + Φ)

−1
, where Φ is the uniform

Newtonian potential [29]. In this case, the resulting rel-
ativistic Hamiltonian is [26]

H = −i (1 + Φ) γ0Γ̃i∂i + (1 + Φ) γ0M̃, (9)

where Γ̃i = γi + Γi +
[

γ0γi,Γ0
]

/2 and

M̃ = m+M − m

2

{

γ0,Γ0
}

− i

2
γ0γi

(

∂iΓ
0
)

− i

2

(

∂iΓ
i
)

− i

2

(∂iΦ)

1 + Φ

(

γi + Γi + γ0γiΓ0
)

. (10)

The main goal of this paper is to look for signals or possi-
ble effects of Lorentz violation in experiments with ultra-
cold neutrons in the presence of the Earth’s gravitational
field. UCNs have nonrelativistic velocities and can thus
be described by the nonrelativistic limit of the Hamil-
tonian (9), which can be obtained by using the stan-
dard Foldy-Wouthuysen (FW) procedure [30]. The FW
method consists in finding a unitary transformation S
in the Hilbert space such that the 4 × 4 Hamiltonian
H̃ = eiSHe−iS is 2 × 2 block diagonal, where the lead-
ing 2×2 block then represents the desired nonrelativistic
Hamiltonian. Performing the FW transformation for the
complete Hamiltonian of Eq. (9) is cumbersome and also
unnecessary for our purposes because the GRANIT ex-
periment, which is the one with which we want to com-
pare our results, is performed with an unpolarized beam
of slow neutrons [24]. This requires averaging the spin
states thus diminishing the effects of any spin-dependent
Lorentz-violating coefficient. This is why, in the remain-
der of this paper, we focus on general spin-independent
SME effects, which are associated with the coefficients
aµ, cµν and eµ.
The detailed derivation of the nonrelativistic Hamil-

tonian using the FW procedure is presented in Refs.
[26, 27]. The resulting Schrödinger operator valid to lin-
ear order in Φ and ∂iΦ is found to be

H =(m+ a0 −mc00 −me0) (1 + Φ)

+
ηij

2m
[aj −m (c0j + cj0)−mej ] (2p̂i +Φp̂i + p̂iΦ)

+
1

2m

[

ηij (1− c00)− 2ηilηjmc(lm)

]

p̂(i (1 + Φ) p̂j),

(11)

where p̂i = −i∂i is the momentum operator which, as
usual, acts on all objects on its right. In this expression
we have defined the coefficients a0 = (1− Φ)a0, aj = aj ,
e0 = (1−Φ)e0, ej = ej , c00 = (1−2Φ)c00, c0j = (1−Φ)c0j
and cij = cij , which acquire additional factors depending
on the gravitational potential. The indices inside paren-
theses denote symmetrization with a factor 1/2. In the
limit where Φ = 0, the Hamiltonian (11) correctly re-
duces to the one obtained in Ref. [31]. Moreover, it also
reduces to the one reported in Ref. [32] when all the SME

coefficients are set to zero. Notice that the previous anal-
ysis holds for any fermion (e.g. electron, neutron, etc.).
From now on, we focus on the neutron sector of the SME
and then we label the LV-coefficients with an additional
superfix n to indicate this fact, i.e., anµ, c

n
µν and enµ.

III. EFFECTIVE HAMILTONIAN

In this section we derive the effective Hamiltonian Heff

which describes the SME effects on the quantum free fall
of UCNs. We first note that, in any fixed frame, the term
(a0 −me0) (1 + Φ), which is second order in the gravita-
tional potential, can be absorbed into the rest mass m
and therefore is not observable; we shall henceforth ig-
nore both terms. Therefore we are left with the effective
Hamiltonian

Heff =
γ−ij
2m

[

p̂ip̂j +
1

c2
Φ,(ip̂j)

]

+
γ+ij

2mc2
Φp̂ip̂j +mα+Φ

− βi

(

p̂ic+
1

2c
Φ,i

)

+ ςip̂ic+
ςi
c

(

Φp̂i +
1

2
Φ,i

)

(12)

where we have used the commutator [p̂i,Φ] = Φ,i, with
Φ,i ≡ p̂iΦ and p̂i = −i~∂i. In Eq. (12) we have restored
the fundamental constants c and ~; and we have defined

α± ≡ 1± cn00, γ±ij ≡ δijα
± − cnij − cnji,

βi ≡ cni0 + cn0i, ςi ≡ (ani /m)− eni . (13)

In order to reduce further the Hamiltonian (12), let us
recall the experimental work performed at the Institute
Laue-Langevin by V. V. Nesvizhevsky and coworkers.
The GRANIT experiment shows that UCNs moving in
the Earth’s gravity do not move smoothly but jump from
one height to another, as predicted by quantum theory
[24]. In practice, they use an intense horizontal beam
of UCNs directed slightly upwards and allowing the neu-
trons to fall onto a horizontal mirror. By placing a neu-
tron absorber above the mirror and counting the par-
ticles as they moved the absorber up and down, they
found that neutrons are measured only at certain well-
defined heights. In this situation, the horizontal motion
of neutrons is governed by classical laws, while the verti-
cal motion is quantized. Ideally, the vertical and horizon-
tal motions of a neutron are independent; however, in a
Lorentz-violating background this statement is not longer
valid, as we can see in the Hamiltonian (12). Based on
the above, in this paper we consider that the neutron’s
motion in the tangent plane to the Earth’s surface, which
is classical, can be modeled by a Gaussian wave packet
of the form

ψ(r⊥) =
1√
πσ

e
i
~
p
⊥
·r⊥−

r
2

⊥

2σ2 , (14)

where r⊥ = (x, y) and p⊥ = (px, py) are the coordi-
nates and momentum in the plane perpendicular to the
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free fall motion, respectively. The classicality condition
requires the characteristic width σ of the wave packet
to be very small. Since the GRANIT experiment mea-
sures the neutrons vertical position, in the following we
use the ansatz (14) to derive a reduced one-dimensional
Hamiltonian describing the neutrons vertical motion in a
Lorentz-violating background as

Hz ≡ 〈Heff〉 =
∫

ψ∗(r⊥) Heff ψ(r⊥)d
2
r⊥, (15)

which indeed corresponds to the first order perturbation
in the perpendicular x-y plane. The rest of this section is
devoted to the computation of the reduced Hamiltonian
(15).
We first focus on the expectation values of the Φ-

independent terms in the Hamiltonian (12). From now
on, latin indices of the middle of the alphabet (i, j, k, l)
refer to the three spatial components x, y, z; while the
latin indices from the beginning of the alphabet (a, b, c, e)
refers to the coordinates x, y. We built up to the evalu-
ation of 〈βip̂i〉 in two steps. Firstly, we decompose βip̂i
into its vertical (z) and perpendicular (x, y) components
by writing βip̂i = βap̂a + βz p̂z; and secondly we evalu-
ate the expectation value using the Gaussian wave packet
(14). The result is

〈βip̂i〉 = βapa + βz p̂z, (16)

where we have used that 〈p̂a〉 = pa. We can now apply
the same procedure to the term γ±ij p̂ip̂j to obtain

〈

γ±ij p̂ip̂j
〉

= γ±ab 〈p̂ap̂b〉+ (γ±az + γ±za)pap̂z + γ±zz p̂
2
z, (17)

where

〈p̂ap̂b〉 = papb +
~
2

2σ2
δab. (18)

Now we consider the Φ-dependent terms. In the coordi-
nate system attached to the Earth’s surface, the Newto-
nian potential is given by

Φ(r) = −GM⊕

r
, (19)

where G is the gravitational constant, M⊕ is the Earth’s

mass, and r2 = x2+y2+(R⊕ + z)
2
, being R⊕ the Earth’s

radius. Since the potential is not isotropic but axially
symmetric, we can use polar coordinates (x = ρ cosϕ
and y = ρ sinϕ) to evaluate 〈Φ〉 in the semiclassical state
(14), i.e.

〈Φ〉 = −2GM⊕

σ2

∫ ∞

0

ρ
√

ρ2 + (R⊕ + z)2
e−

ρ2

σ2 dρ, (20)

where we have performed the trivial angular integration.
The resulting radial integral can be computed in a simple
fashion. The final result is

〈Φ〉 = −
√
πGM⊕

σ
eξ

2

erfc(ξ), (21)

where erfc(ξ) is the complementary error function [33]
and ξ ≡ (R⊕ + z) /σ. In practice, the experiments with
UCNs bouncing on a horizontal mirror are very localized
as compared with the Earth’s radius, and thus we may
approximate the effective potential (21) for R⊕ ≫ z and
R⊕ ≫ σ. Using the asymptotic expansion of the comple-
mentary error function for large real x [33]

erfc(x) ∼ e−x2

√
πx

∞
∑

n=0

(−1)n
(2n− 1)!!

(2x2)n
, (22)

we can write the effective potential (21) as an infinite
serie

〈Φ〉 = −GM⊕

σξ

∞
∑

n=0

(−1)n
(2n− 1)!!

(2ξ2)n
≡

∞
∑

n=0

〈Φ〉n . (23)

Since the n-th term behaves as (σ/R⊕)
2n, only small

values of n contribute. The leading contribution arises
from n = 0,

〈Φ〉0 = U0 + gz, (24)

and we can safely disregard the higher order contribu-
tions. In this expression, U0 = −GM⊕/R⊕ is the Newto-
nian potential on the Earth’s surface and g = GM⊕/R

2
⊕

is the gravitational acceleration. Equation (24) is the
expected classical result, and it will be useful to com-
pute the remaining Φ-dependent terms. We can per-
form an analogous analysis for the term βiΦ,i. The axial
symmetry of the problem yields to the result 〈βiΦ,i〉 =
βz 〈Φ〉,z ≡ βz p̂z 〈Φ〉. The analysis of the remaining terms,

γ+ijΦp̂ip̂j and γ−ijΦ,(ip̂j), is more cumbersome, but it is
straightforward. We left the details of the technical com-
putations to the Appendix, and here we only present the
final results. The leading order contributions are

〈

γ±ijΦp̂ip̂j
〉

= 〈Φ〉0
〈

γ±ij p̂ip̂j
〉

, (25)

〈

γ±ijΦ,(ip̂j)
〉

= −δabγ±ab
g~2

4R⊕

+
1

2

(

γ±az + γ±za
)

pa 〈Φ〉0,z
+ γ±zz 〈Φ〉0,z p̂z. (26)

Now we have the pieces to build up the reduced one-
dimensional Hamiltonian, which we conveniently write
as

Hz = H0 +H⊥ + V, (27)

where

H0 =
p̂2z
2m

+mgz (28)

is the standard one-dimensional Hamiltonian for a free
falling neutron in the absence of Lorentz violation, and

H⊥ =mc2
(

α− + α+U0

c2

)

+
1

2m

(

γ−ab + γ+ab
U0

c2

)

〈p̂ap̂b〉

− βapac+ ςapac

(

1 +
U0

c2

)

− 1

2mc2
g~2

4R⊕

γ−abδab

(29)
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collects constant terms and those depending on the neu-
tron motion in the tangent plane to the Earth’s surface.
We omit this term as from now since it does not affect
the energy eigenvalues measured in the GRANIT exper-
iment. The potential

V =mg

[

cn00 + γ+ab
〈p̂ap̂b〉
2(mc)2

]

z +

[

τ− +
(

1 + τ+
) U0

c2

]

p̂2z
2m

+

[

1 + τ−

2mc2
〈Φ〉0,z − βzc−

(

1 +
U0

c2

)

ζapa
m

]

p̂z

+
ςapa
c
gz + ςz

(

1 +
U0

c2

)

p̂zc+
ςz
c

(

gzp̂z +
1

2
〈Φ〉,z

)

− ζapa
2mc2

(

〈Φ〉0,z + 2gzp̂z

)

+
g (1 + τ+)

2mc2
zp̂2z (30)

is the one which has possibilities of affecting the neutrons
vertical motion. In this expression we have defined

ζa ≡ −(γ±az + γ±za)/2 , τ± ≡ γ±zz − 1. (31)

As we shall see in the next section, many of these terms
do not contribute to the energy shifts.

IV. ENERGY SHIFTS AND BOUNDS ON c
n
µν

SME COEFFICIENTS

In this section we will work out the energy shifts on the
neutron states due to the SME terms and we will com-
pare our theoretical results with the experimental ones
obtained in the GRANIT experiment. This comparison
will allow us to establish a simple formula for the upper
bound on the SME coefficients as a function of the max-
imal experimental uncertainty. We first describe in short
the the neutron states in the absence of the SME.
The wave function of a quantum bouncer obeys the

stationary Schrödinger equation for the vertical motion
along the z axis: H0ψ = Eψ, with the Hamiltonian
given by Eq. (28). The solution must obey the following
boundary conditions: ψ(z) must vanish asymptotically
as z → ∞, and ψ(z = 0) = 0 because of the presence of
a mirror at z = 0. The general solution of the eigenvalue
equation can be written in terms of the Airy functions
Ai and Bi [34]. Since the latter goes to infinity as its
argument grows, it is not an acceptable solution for this
problem. The appropriate normalized solution is found
to be

ψn(z) =
1√
l0

Ai(an + z/l0)

Ai′(an)
Θ(z), (32)

where an is the n-th zero of the Airy function Ai, l0 =
3

√

~2/(2m2g) is the gravitational length and Θ(z) is the
Heaviside function. The boundary condition at z = 0
defines the quantum state energies

En = −mgl0an. (33)

Within the classical description, a neutron with energy
En can rise in the gravitational field up to the height

hn = En/mg = −anl0. The heights for the two lowest
quantum states are [24]

h1 = 13.7µm , h2 = 24.0µm. (34)

Because of the weakness of the gravitational interac-
tion and the number of systematic errors in labora-
tory conditions, quantum states in a gravitational field
have been hardly detected. In spite of these difficul-
ties, the GRANIT experiment has recently confirmed
the quantum-mechanical prediction that a non coherent
beam of UCNs propagating upwards in the Earth’s grav-
ity field reach quantized heights only. The experimental
average values of the two lowest critical heights (taken
from [35]) are

hexp1 = (12.2± 1.8sys ± 0.7stat)µm,

hexp2 = (21.6± 2.2sys ± 0.7stat)µm. (35)

The theoretical values are therefore located within the
error bars. As a consequence of the good agreement be-
tween theory and experiment, this finding could be used
for bounding deviations from the standard theory due to
an eventual new physical mechanism. It has been used,
for example, to constraint short-range gravitational in-
teractions [36], axion-like interactions [37] and the funda-
mental length scale in polymer quantum mechanics [38].
In the problem at hand, the potential V given by Eq.
(30), will cause small shifts ∆En in the neutron energy
spectrum which must satisfy the constraint

|∆En| < |∆Eexp
n |, (36)

where |∆Eexp
n | is the maximal experimental error. Ex-

plicitly, the energy shifts can be worked out using the
formalism of nondegenerate perturbation theory on the
wave functions ψn(z) up to linear order in the SME co-
efficients, that is: ∆En = 〈V 〉 =

∫

ψ∗
nV ψndz. Using the

properties of the Airy functions [34], one can derive the
following results

〈pz〉 = 0, mg 〈z〉 = 2

3
En,

〈

p̂2z/2m
〉

=
1

3
En,

g

2mc2
〈

zp̂2z
〉

= − 2

15
anEn

gl0
c2
, (37)

which yields the energy shifts

∆En

En

=
1

3

(

2cn00 + τ−
)

+
1

3

(

1 + τ+
)

(

U0

c2
+

2

5

En

mc2

)

+
1

3
γ+ab

(

vavb
c2

+
~
2

2m2c2σ2
δab

)

+
2

3
ςa
va
c
, (38)

where we have used that pa = mva, being va the neutrons
velocity. For nonrelativistic neutrons in low quantum
states, we find that U0/c

2 ≈ 10−10, En/(mc
2) ≈ 10−22,

va/c ≈ 10−7 and ~
2/(m2c2σ2) ≈ 10−15, and thus we

can disregard the terms involving products of SME coef-
ficients and these quantities. Therefore we are left with

∆En

En

=
1

3

(

2cn00 + τ−
)

, (39)
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which after substitution into Eq. (36) produces

|cn00 − 2cnzz| < 3
|∆Eexp

n |
En

. (40)

For the first two lowest quantum states, we know that
|∆Eexp

1 | = 0.102peV and |∆Eexp
2 | = 0.051peV [35]. With

these values Eq. (40) yields the constraint |cn00 − 2cnzz| <
10−2. Of course, this bound is largely far from the ex-
pected values for the SME coefficients, but it can compete
with current bounds with an improvement of the exper-
imental precision in the measurement of the quantum
states of UCNs in a gravitational field, as we will discuss
in the next section. According to the current data ta-
bles for the SME coefficients [22], we observe that there
are only very few bounds involving the cn00 and cnzz coef-
ficients. Even more, the combination |cn00 − 2cnzz| which
emerges in this work has not been reported.

We point out that although the coefficients ani and eni
appear explicitly in the energy shifts (38), they are sup-
pressed by the additional factor va/c, and thus the ex-
perimental precision leads to the noncompetitive bound
ani /m− eni < 105. The suppression of the observable ef-
fects of the combination ςi = ani /m−eni by the factor vi/c
deserves some explanation. If we look at the Lagrangian
density in Eq. (1), the contributions proportional to ani
and eni are not suppressed. Nonrelativistically, however,
they correspond to a different order of approximation in
the FW transformation than that of the coefficients cnjk
and cn00, as can be seen in the Hamiltonian (11). In-
deed, the coefficients cnjk and cn00 are of the order p2/m,

while the combination ςi = ani /m − eni is of the order
pc = (p2/m)(v/c)−1, thus revealing the nature of the ad-
ditional factor of the latter. It is worth to mention that,
even though we got a large value for the bound of the
coefficients ani and eni , thus far such coefficients are un-
bounded by experiment in the neutron sector. In this
manner, the present work, beyond of theoretical impor-
tance, can provide novel bounds in the context of the
SME. To obtain a significant result it is necessary to re-
duce the value of such a bound by some orders of mag-
nitude, which indeed is possible as we will discuss later.

Bounds on the cnµν neutron sector coefficients of the
SME have been reported by using different physical sys-
tems. For example, gravimetry sets the bounds cnTJ <
10−5, with J = X,Y, Z [39]. Similarly, nuclear binding
models and Cs interferometers yield cnTT < 10−6 [40].
More stringent bounds on specific combinations of the
neutron cnµν coefficients come from pulsar timing, namely,

min (|cn11 − cn22|, |cn11 − cn33|, |cn22 − cn33|) < 1.7× 10−8 [41].
Importantly, the best current bounds on such coefficients
come from the 21Ne-Rb-K comagnetometer, which con-
strain the combinations cnY Z+c

n
ZY , c

n
XZ+c

n
ZX , cnXY +c

n
YX

and cnXX − cnY Y at a level of 10−29 [42]. It is worth to
mention that, however, none of these experiments pro-
vide bounds on the combination |cn00−2cnzz|, which is the
one obtained here. In the next section we will discuss two
sensitive experiments which also involve quantum states

of UCNs in the Earth’s gravity field and which would im-
prove by some orders of magnitude our current bound.

V. DISCUSSION AND OUTLOOK

The experimental physics of slow neutrons has under-
gone significant evolution in the last decades. Recent
high-sensitivity experiments, called GRANIT, performed
by V. V. Nesvizhevsky et al. at the Institute Laue-
Langevin, show that UCNs in the Earth’s gravitational
field move at certain well-defined (quantized) heights, in
agreement with quantum mechanical predictions. Due
to the good agreement between theory and experiment,
neutron gravitational quantum states can be used for
constraining deviations from the standard theory due to
eventual new physical mechanisms. In light of this, in
this paper we have investigated how the fermion sector
of the SME affects the gravitational quantum states of
UCNs, mainly focusing on the energy shifts.
We first consider the Dirac equation in a Newtonian

field, which is appropriate to characterize the gravita-
tional field in any terrestrial experiment. Since UCN sys-
tems are nonrelativistic, we have used the nonrelativistic
limit of the Dirac equation which can be obtained by
using the Foldy-Wouthuysen procedure. GRANIT ex-
periments use an intense horizontal beam of unpolar-
ized UCNs directed slightly upwards and allowing the
neutrons to fall onto a horizontal mirror, and then the
neutrons horizontal motion is governed by classical laws,
while the vertical motion is quantized. In order to isolate
the effects along the axis of free fall, we have considered a
semiclassical Gaussian wave packet and then obtained a
reduced Hamiltonian by computing the expectation value
on the perpendicular axes. We find a z- and p̂z-dependent
perturbative potential V , given by Eq. (30), which is pro-
portional to the SME coefficients and the (zeroth order)
Newtonian gravity field 〈Φ〉0 = U0+gz. We have worked
out the energy shifts ∆E = 〈V 〉 to first order in pertur-
bation theory, and we found it contains both SME- and
relativistic-corrections. Next we used the maximal ex-
perimental precision of the GRANIT experiment to set
bounds to the SME coefficients. The lowest quantum
states of UCNs yields |cn00−2cnzz| < 10−2, which although
is far from the current bounds obtained using other phys-
ical systems (e.g. by gravimetry, nuclear binding models,
Cs interferometry, pulsar timing and 21Ne-Rb-K comag-
netometer), it opens a new window to test Lorentz- and
CPT-violation using UCN systems. It is worth mention-
ing that the specific combination we find, cn00 − 2cnzz, has
not been constrained by any of the aforementioned ex-
periments, thus justifying the importance of the present
work in the Standard-Model Extension framework. Even
more, as we can see in the current data tables [22], there
exist no bounds on the ani and eni coefficients in the min-
imal neutron sector of the SME, so far. In the present
work, indeed, we find that the GRANIT experiment is
sensitive to these coefficients, however it does not pro-
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vide a realistic bound for them. This is so because in the
nonrelativistic Hamiltonian (11), the coefficients ani and
eni belong to a different order of approximation than that
of the cn00 and cnjk coefficients in the Foldy-Wouthuysen
procedure, thus justifying the additional suppression of
their bound by the factor v/c. An interesting improve-
ment of our bounds can be achieved with other exper-
iments involving UCNs: gravity-resonance-spectroscopy
and neutron whispering gallery wave. Although they are
beyond the scope of this paper, we will briefly discuss
how these experiments can enhance the bounds on the
SME coefficients.

An interesting feature of the quantum bouncer, in con-
trast to the harmonic oscillator, is the fact that levels
are not equidistant in energy. Therefore a combination
of any two states can be treated as a two level system.
This fact has been used by T. Jenke and colleagues to in-
duce transitions between the n = 1 and n = 3 states by
means of mechanical oscillations of the mirror [43]. This
new spectroscopic technique is called gravity-resonance-
spectroscopy. In the experiment, the statistical sensitiv-
ity of the energy difference between states |1〉 and |3〉 is
7.6×10−3, which corresponds to an uncertainty in energy
of δE = 2×10−14eV. Ignoring the nonzero transitions in-
duced by the Lorentz violating perturbation (30), a rough
estimation yields an improvement of one order of magni-
tude on the bound (40) for the cnµν coefficients. This, of
course, requires a detailed theoretical analysis which we
leave for a future investigation.

In Sec. IV we have derived an expression for the up-
per bound on the cnµν SME coefficients in terms of the
experimental precision ∆Eexp

n and the unperturbed en-
ergy levels En, from which we learn that a better bound
can be obtained by improving the experimental preci-
sion and/or by considering a system in which the unper-
turbed energy levels be considerably greater than those
of the quantum bouncer. This leads us to consider the
recently observed neutron centrifugal states [44], which
is the quantum analog of the so-called whispering gallery
wave. In this case, UCNs are scattered by a perfect cylin-
drical mirror with a radius of a few centimeters, in which
neutrons are affected by a huge centrifugal accelerations
of the order 105-107g. Most neutrons entering at a tan-
gential trajectory are deviated to small angles. However,
some neutrons are captured into long-living centrifugal
states which behaves exactly as the neutron gravitational
quantum states discussed in this paper. The fundamen-
tal difference is that in the former case the centrifugal
force plays the role of gravity, while in the latter we refer
to the well-worked Newtonian gravity field. A rough cal-
culation shows that the characteristic energy scale is of
the order of neV, which together with the considered ex-
perimental precision 10−2peV, could improves our upper
bound by 5 orders of magnitude. This is an interesting
system which deserves a rigorous investigation.
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Appendix A: Expectation values

In this section we evaluate the expectation value of the
terms γ±ijΦp̂ip̂j and γ

±
ijΦ,(ip̂j), as defined in Eq. (15). De-

composing the former into its vertical and perpendicular
components, its expectation value can be written as

〈

γ±ijΦp̂ip̂j
〉

= γ±ab 〈Φp̂ap̂b〉+ (γ±az + γ±za) 〈Φp̂a〉 p̂z
+ γ±zz 〈Φ〉 p̂2z. (A1)

Now we evaluate each term involved. We start with

〈Φp̂a〉 = −i~
∫

Φ(r)
(

i
pa
~

− xa
σ2

)

|ψ(r⊥)|2d2r⊥. (A2)

Using the axial symmetry of the gravitational potential
and that of the wave packet, we easily find

〈Φp̂a〉 = pa

∫

Φ(r)|ψ(r⊥)|2d2r⊥ = pa 〈Φ〉 , (A3)

where 〈Φ〉 was computed in the main text. The next
term to be considered is

〈Φp̂ap̂b〉 = −~
2

∫

Φ(r)ψ∗(r⊥)
∂2

∂xa∂xb
ψ(r⊥)d

2
r⊥. (A4)

Taking the derivatives of the wave packet (14) and using
the axial symmetry of the problem this expression can
be written as

〈Φp̂ap̂b〉 =
(

papb +
~
2

σ2
δab

)

〈Φ〉

− ~
2

σ4

∫

Φ(r)xaxb|ψ(r⊥)|2d2r⊥, (A5)

where 〈Φ〉 is given by Eq. (21). The second term in Eq.
(A5), to be called Qab for brevity, must be computed
explicitly. We first observe that the integral is nonzero
only for a = b. Using polar coordinates (x = ρ cosφ and
y = ρ sinφ) and performing the trivial angular integra-
tion, the function Qab becomes

Qab =
GM⊕~

2

σ6
δab

∫ ∞

0

ρ3

r
e−

ρ2

σ2 dρ. (A6)

With the simple change of variables λ = r/σ, this integral
can be brought to the simple form

Qab =
GM⊕~

2

σ3
δab e

ξ2
∫ ∞

ξ

(

λ2 − ξ2
)

e−λ2

dλ, (A7)
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which can be easily evaluated to obtain

Qab =
GM⊕~

2

4σ3
δab

[

2ξ +
√
π
(

1− 2ξ2
)

eξ
2

erfc(ξ)
]

,

(A8)

where ξ = (R⊕ + z) /σ. Since R⊕ ≫ z ≫ σ, we have to
consider the asymptotic behavior of Eq. (A8) for ξ ≫ 1.
Using Eq. (22) up to second order we finally obtain

Qab ∼
GM⊕~

2

2ξσ3
δab ≈ − ~

2

2σ2
〈Φ〉0 δab, (A9)

where 〈Φ〉0 is the leading order of the Newtonian poten-
tial given by Eq. (24). The substitution of this result
into Eq. (A5) then produces

〈Φp̂ap̂b〉 =
(

papb +
~
2

σ2
δab

)

〈Φ〉 − ~
2

2σ2
〈Φ〉0 δab, (A10)

and the leading order of this result establishes Eq. (25).
Now we evaluate

〈

γ±ijΦ,(ip̂j)
〉

. We proceed first by de-
composing one of this terms into its vertical and perpen-
dicular components:

〈

γ±ijΦ,ip̂j
〉

= γ±ab 〈Φ,ap̂b〉+ γ±az 〈Φ,a〉 p̂z + γ±za 〈Φ,z p̂a〉
+ γ±zz 〈Φ〉,z p̂z. (A11)

Some simplifications occur in this expression. First, we
observe that 〈Φ,z〉 = 〈Φ〉,z, which follows from the fact
that we can commute a z-derivative with an integral over
the perpendicular coordinates x and y. In a similar fash-
ion we obtain 〈Φ,z p̂a〉 = pa 〈Φ〉,z, where we have used

both the fact that ∂z and
∫

d2r⊥ commute, and the re-
sult of Eq. (A3). Also, since the probability density
|ψ(r⊥)|2 is axially symmetric and Φ,a ∝ xa/r

3, then the
expectation value 〈Φ,a〉 is identically zero. Thus we are
left with 〈Φ,ap̂b〉. Taking the required derivatives, this
term can be explicitly written as

〈Φ,ap̂b〉 = −GM⊕~
2

∫

xa
r3

(

i
pb
~

− xb
σ2

)

|ψ(r⊥)|2d2r⊥.
(A12)

The first integral vanishes by symmetry considerations,
while the second one is nonzero only for a = b. Using
polar coordinates and performing the angular integration
we get

〈Φ,ap̂b〉 =
GM⊕~

2

σ4
δab

∫ ∞

0

ρ3

r3
e−

ρ2

σ2 dρ, (A13)

which can be cast into a more simple form introducing
the change of variables λ = r/σ:

〈Φ,ap̂b〉 =
GM⊕~

2

σ3
δab e

ξ2
∫ ∞

ξ

λ2 − ξ2

λ2
e−λ2

dλ. (A14)

As in the previous cases, the resulting integral can be
expressed in terms of the complementary error function:

〈Φ,ap̂b〉 =
GM⊕~

2

σ3
δab

[

−ξ +
√
π

2

(

1 + 2ξ2
)

eξ
2

erfc(ξ)

]

,

(A15)

from which, with the help of Eq. (22), we extract its
asymptotic behavior for ξ ≫ 1 to finally obtain

〈Φ,ap̂b〉 ∼ −GM⊕~
2

4σ3ξ3
δab ≈ − g~2

4R⊕

δab

(

1− 3
z

R⊕

)

,

(A16)

where in the last approximation we have used that z ≪
R⊕. Note that the second term is strongly suppressed
with respect to the first one, and thus we can ignore it.
Inserting this result into Eq. (A11) and symmetrizing it
we obtain,

〈

γ±ijΦ,(ip̂j)
〉

= −δabγ±ab
g~2

2R⊕

+
1

2

(

γ±az + γ±za
)

pa 〈Φ〉,z
+ γ±zz 〈Φ〉,z p̂z. (A17)

The leading order of this result establishes Eq. (26).
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Neto and M. T. D. Orlando, Eur. Phys. J. C 62, 425
(2009); B. Charneski, M. Gomes, R. V. Maluf and A. J.
da Silva, Phys. Rev. D 86, 045003 (2012); A. F. Santos
and F. C. Khanna, Phys. Rev. D 95, 125012 (2017); J.
B. Araujo, R. Casana, M. M. Ferreira Jr., Phys. Lett. B
760, 302 (2016); J. Alfaro and L. F. Urrutia, Phys. Rev.
D 81, 025007 (2010).

[13] D. Colladay and V. A. Kostelecky, Phys. Rev. D 55, 6760
(1997); Phys. Rev. D 58, 116002 (1998).

[14] V. A. Kostelecky and S. Samuel, Phys. Rev. D 40, 1886
(1989); Phys. Rev. D 39, 683 (1989); Phys. Rev. Lett.
63, 224 (1989).

[15] V. A. Kostelecky, C. Lane, and A. Pickering, Phys. Rev.
D 65, 056006 (2002); V. A. Kostelecky and A. Pickering,
Phys. Rev. Lett. 91, 031801 (2003).

[16] D. Colladay and P. McDonald, Phys. Rev. D 75, 105002
(2007); Phys. Rev. D 77, 085006 (2008); Phys. Rev. D
79, 125019 (2009).

[17] V. A. Kostelecky and R. Lehnert, Phys. Rev. D 63,
065008 (2001).

[18] D. Colladay, P. McDonald, J. P. Noordmans and R. Pot-
ting, Phys. Rev. D 95, 025025 (2017); R. Casana, M. M.
Ferreira, Jr., and F. E. P. dos Santos, Phys. Rev. D 94,
125011 (2016).

[19] M. A. Hohensee, R. Lehnert, D. F. Phillips and R. L.
Walsworth, Phys. Rev. D 80, 036010 (2009); D. Colladay,
J. P. Noordmans, R. Potting, Phys. Rev. Lett. 93, 110402
(2004); Phys. Rev. D 96, 035034 (2017); R. Lehnert and
R. Potting, Phys. Rev. D 70, 125010 (2004).

[20] Q. G. Bailey and V. A. Kostelecky, Phys. Rev. D 70,
076006 (2004); A. Mart́ın-Ruiz and C. A. Escobar, Phys.
Rev. D 94, 076010 (2016); A. Mart́ın-Ruiz and C. A.
Escobar, Phys. Rev. D 95, 036011 (2017).

[21] V. A. Kostelecky and M. Mewes, Phys. Rev. D 66, 056005
(2002).

[22] V. A. Kostelecky and N. Russell, Rev. Mod. Phys. 83,
11 (2011); 2018 version arXiv:0801.0287v11.

[23] B. Altschul, Phys. Rev. D 81, 041701(R) (2010); T. Yo-
der and G. S. Adkins, Phys. Rev. D 86, 116005 (2012);
M. M. Ferreira Jr. and F. M. O. Moucherek, Nuclear
Physics A 790, 635 (2007); M. M. Ferreira Jr. and F. M.
O. Moucherek, Int. J. Mod. Phys. A 21, 6211 (2006);
H. Müller, S. Herrmann, A. Saenz, A. Peters and C.
Lämmerzahl, Phys. Rev. D 70, 076004 (2004).

[24] V. V. Nesvizhevsky et al., Nature (London) 415, 297
(2002); V. V. Nesvizhevsky et al., Eur. Phys. J. C 40,
479 (2005); V. V. Nesvizhevsky et al., Phys. Rev. D 67,
102002 (2003).

[25] O. Bertolami and F. M. Nunes, Class. Quantum Grav.
20, L61 (2003).

[26] Y. Bonder, Phys. Rev. D 88, 105011 (2013).
[27] V. A. Kostelecky and J. D. Tasson, Phys. Rev. D 83,

016013 (2011).
[28] R. M. Wald, General Relativity (University of Chicago,

Chicago, 1984).
[29] W. P. Schleich, D. M. Greenberger, and E. M. Rasel,

New J. Phys. 15, 013007 (2013); D. M. Greenberger, W.
P. Schleich, and E. M. Rasel, Phys. Rev. A 86, 063622
(2012).

[30] L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29
(1950).

[31] V. A. Kostelecky and C. D. Lane, J. Math. Phys. 40,
6245 (1999).

[32] F. W. Hehl and W.-T. Ni, Phys. Rev. D 42, 2045 (1990).
[33] M. Abramowitz and I. Stegun, Handbook of Mathematical

Functions: With Formulas, Graphs, and Mathematical

Tables, Dover Publications, New York, 1965.
[34] O. Vallée and M. Soares, Airy functions and applications

to physics, Imperial College Press; 2 ed. (June 17, 2010).
[35] V. V. Nesvizhevsky et al., Eur. Phys. J. C 40, 479 (2005).
[36] V. V. Nesvizhevsky, G. Pignol, and K. V. Protasov, Phys.

Rev. D 77, 034020 (2008); I.Antoniadis et al., C. R.
Physique 12, 755 (2011); S. Baeßler et al., Nuclear In-
struments and Methods in Physics Research A 611, 149
(2009).

[37] S. Baeßler et al., Phys. Rev. D 75, 075006 (2007).
[38] A. Mart́ın-Ruiz, A. Frank and L. F. Urrutia, Phys. Rev.

D 92, 045018 (2015).
[39] N. Flowers, C. Goodge, and J.D. Tasson, Phys. Rev. Lett.

119, 201101 (2017).
[40] M. A. Hohensee, H. Müller, and R.B. Wiringa, Phys.

Rev. Lett. 111, 151102 (2013); M. A. Hohensee et al.,
Phys. Rev. Lett. 106, 151102 (2011).

[41] B. Altschul, Phys. Rev. D 75, 023001 (2007).
[42] M. Smiciklas, J. M. Brown, L. W. Cheuk, S. J. Smullin

and M. V. Romalis, Phys. Rev. Lett. 107, 171604 (2011).
[43] T. Jenke et al., Phys. Rev. Lett. 112, 151105 (2014); T.

Jenke et al., Nature Physics 7, 468 (2011); H. Abele, T.

http://arxiv.org/abs/0801.0287


10

Jenke, H. Leeb and J. Schmiedmayer, Phys. Rev. D 81,
065019 (2010).

[44] V. V. Nesvizhevsky et al., Nature Physics 6, 114 (2010);
V V Nesvizhevsky et al., New J. Phys. 12, 113050 (2010);

V. V Nesvizhevsky, Phys.-Usp. 53, 645 (2010); V. V
Nesvizhevsky, Phys. Rev. A 78, 033616 (2008).


