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A FAMILY OF FOUR-VARIABLE EXPANDERS WITH

QUADRATIC GROWTH

MEHDI MAKHUL∗

Abstract. We prove that if g(x, y) is a polynomial of constant degree d that

y2 − y1 does not divide g(x1, y1) − g(x2, y2), then for any finite set A ⊂ R

|X| ≫d |A|2, where X :=

{

g(a1, b1)− g(a2, b2)

b2 − b1
: a1, a2, b1, b2 ∈ A

}

.

We will see this bound is also tight for some polynomial g(x, y).

1. Introduction

Throughout this paper, when we write X ≫ Y , this means that X ≥ cY , for some

absolute constant c > 0.

The sum set of a subset A ⊂ R is defined as A + A := {a + b : a, b ∈ A}. The

product set is defined in a similar way, AA := {ab : a, b ∈ A}.
The Erdős-Szemerédi [ES83] conjecture states that, for all ǫ > 0 and for any finite

set A ⊂ N,

max{|A+A|, |AA|} ≥ c(ǫ)|A|2−ǫ.

It is natural to extend this conjecture for other settings (such as R), and also

to change the polynomials F (x, y) = x + y and F (x, y) = xy defining the sum

and product sets to other polynomials or rational functions. In recent years much

research has been done in this direction.

For many such functions, the images of sets are known to always grow. For example,

the authors of [MRNS15] have studied several multivariable polynomials, including

the function

G(x1, x2, x3, x4, x5) = x1(x2 + x3 + x4 + x5).

More precisely they showed that, for any finite set A ⊂ R ,

|A(A +A+A+A)| ≫ |A|2
log |A| ,

where A(A+A+A+A) := {x1(x2 + x3 + x4 + x5) : xi ∈ A}.
In [MRNS17], the authors studied a more complicated function, namely

H(x1, x2, x3, x4, x5) = (x1 + x2 + x3 + x4)
2 + log x5.

They showed that, for any finite A ⊂ R,

|
{

(a1 + a2 + a3 + a4)
2 + log a5 : ai ∈ A

}

| ≫ |A|2
log |A| .
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In the same circle of ideas, [BRN15] investigated the rational function F (x1, x2, x3, x4) =
x1+x2

x3+x4

, showing that for any finite set A ⊂ R, we have

|F (A,A,A,A)| ≥ 2|A|2 − 1.

Our result is a generalization of the method of [MRNS15, Corollary 3.1], where

they used the Szemerédi-Trotter Theorem to prove that for any finite set A ⊂ R:
∣

∣

∣

∣

A−A

A−A

∣

∣

∣

∣

≫ |A|2.

A stronger version of this result, with a multiplicative constant 1, follows from an

earlier geometric result of Ungar [Ung82].

In this article we consider a certain class of rational functions of four variables.

Suppose that g(x, y) is a polynomial of two variables of degree d. Let

F (x1, x2, y1, y2) =
g(x1, y1)− g(x2, y2)

y2 − y1

be a four-variable rational function in terms of x1, x2, y1, y2. The main theorem of

this paper is the following result concerning the growth of F .

Theorem 1.1. Suppose that g(x, y) is a polynomial of degree d, that y2 − y1 does

not divide g(x1, y1)− g(x2, y2), and that A ⊂ R is a finite set. Then

|X | ≫d |A|2, where X :=

{

g(a1, b1)− g(a2, b2)

b2 − b1
: a1, a2, b1, b2 ∈ A

}

.

Notice that the following example shows that the condition that the denominator

cannot be a divisor of the numerator is necessary.

Example 1.2. Suppose that g(x, y) = y2 and A = {1, 2, . . . n}. Then

X =

{

b21 − b22
b2 − b1

: b1, b2 ∈ A

}

equals −{b2 + b1 : bi ∈ A} and has cardinality O(n).

Furthermore, notice that the condition rules out a degenerate case where the poly-

nomial g(x, y) does not depend on x.

On the other hand, it is known that for some polynomials g, the result of Theo-

rem 1.1 is tight. For example, if we define g(x1, y1) = x1 then Theorem 1.1 recovers

the result of [MRNS15] and [Ung82]. This is known to be tight, since for the set

A = {1, . . . , N},
∣

∣

∣

∣

A−A

A−A

∣

∣

∣

∣

= O(N2).

However, we are not aware of any other polynomials g for which the bound in

Theorem 1.1 is tight, and whether or not the bound can be improved for some

particular g is an interesting question.

Our main result has some similarities with a result of Raz, Sharir and Solymosi

[RSS15] concerning the growth of two variable polynomials. Their result states

that, if F is a two variable polynomial with bounded degree, then for any A,B ⊂ R

with |A| = |B| = n,

|F (A,B)| ≫d n4/3,
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provided that F satisfies a non-degeneracy condition. This condition states that F

cannot be of one of the following forms

(1) F (u, v) = f(g(u) + h(v)),

(2) F (u, v) = f(g(u) · h(v)).

This result gave an improvement upon an earlier result of Elekes and Ronyai [ER00].

1.1. The Szemerédi-Trotter Theorem. The essential ingredient used to prove

our result is a corollary of the Szemerédi-Trotter Theorem [ST83], which gives a

bound for the number of lines in the plane containing at least a fixed number of

points k from a given finite set, that is, the number of k-rich lines.

Theorem 1.3 (Szemerédi-Trotter). Suppose that P is a set of n points and L is a

set of m lines in R
2. Then

(1) I(P,L)≪ n
2

3m
2

3 + n+m.

Corollary 1.4. Let k, n ≥ 2 be natural numbers and fix d ∈ N such that 8d ≤
k ≤ d

√
n. Let L be a set of n lines in the plane, and let t≥k denote the number of

points in the plane contained in at least k elements of L, where each line appears

with multiplicity at most d. Then

t≥k = Od

(

n2

k3

)

.

2. Main Results

Suppose that A,B ⊂ R are finite, and g(x1, y1) is a polynomial of degree d. We

associate an element of A×B with a line via

A×B ∋ (a, b) ←→ la,b : y = bx− g(a, b).

Consider L = {ℓa,b : a, b ∈ A × B} as a multi-set. Then L is a set of |A||B| lines,
such that each line appears at most d times. We also define the quantity

n(x, y) =
∣

∣

{

(a, b) ∈ A×B : (x, y) ∈ la,b
}∣

∣,

which is interpreted geometrically as the number of lines of L that pass through (x, y).

Lemma 2.1. Suppose that d ∈ N is fixed. Suppose that A,B,X ⊂ R are finite and

satisfy |X | ≤ |A||B|
4d2 , with 0 /∈ X. Then

(2)
∑

x∈X

∑

y

n2(x, y)≪ |A| 32 |B| 32 |X | 12 .

Proof. The amount of t-rich points is given by

Rt :=
{

(x, y) ∈ R
2 : n(x, y) ≥ t

}

.

We first show that

|Rt| ≪
|A|2|B|2

t3
.

First, we bound n(x, y) for a given point (x, y). For fixed b0 ∈ B we obtain a

line with slope b0 passing through (x, y) and a one variable polynomial equation

g(a, b0). Since each line is determined uniquely, by its slope and one point on it
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(for fixed bo and (x, y) the equation g(a, b0) = 0 has at most d distinct solutions),

we have

n(x, y) ≤ d|B|.
With a similar argument for fixed a ∈ A we obtain a univariate polynomial equation.

Since each line is determined uniquely by its y-intercept and one point on it we have:

n(x, y) ≤ d|A|.

These together imply:

n(x, y) ≤ d(min{|A|, |B|}) ≤ (d|A|d|B|) 1

2 = d|L| 12 .

This implies there are no points incident to more than d
√

|L| lines in L, and by

applying Corollary 1.4 we get:

|Rt| ≪
|L|2
t3
≤ |A|

2|B|2
t3

.

Let ∆ > 2d be an integer to be specified later. We have

(3)
∑

x∈X

∑

y

n2(x, y) ≤
∑

x∈X

∑

n(x,y)≤∆

n2(x, y) +
∑

(x,y)
n(x,y)>∆

n2(x, y).

The first term is bounded by ∆|A||B||X |, in fact

(4)
∑

x∈X

∑

n(x,y)≤∆

n2(x, y) ≤ ∆
∑

x∈X

∑

y

n(x, y) = ∆|A||B|
∑

x∈X

1 = ∆|A||B||X |.

For second term we have:

(5)

∑

(x,y)
n(x,y)>∆

n2(x, y) =
∑

j≥1

∑

2j−1∆≤n(x,y)≤2j∆

n2(x, y)≪

≪
∑

j≥1

|A|2|B|2
(2j∆)3

· (2j∆)2 =
|A|2|B|2

∆

∑

j≥1

1

2j
=
|A|2|B|2

∆
.

For an optimal choice, set the parameter ∆ =
⌈

(|A‖B|)1/2

|X|1/2

⌉

> 2d. Combining the

bounds from (3) and (4) and (5), it follows that
∑

x

∑

y

n2(x, y)≪ |A| 32 |B| 32 |X | 12 . �

Proof of Theorem 1.1. Consider:

|X | =
∣

∣

∣

∣

{

(x, a1, a2, b1, b2) : x =
g(a1, b1)− g(a2, b2)

b1 − b2
, ai, bi ∈ A

}∣

∣

∣

∣

=
∣

∣

{

(x, a1, a2, b1, b2) : b1x− g(a1, b1) = b2x− g(a2, b2)
}
∣

∣ =

∑

x

∑

y

n2(x, y)≪ |A|3|X | 12 .

On the other hand, |X | ≥ |A|4. Hence we obtain:

|A|4 ≪ |A|3|X | 12 , hence |X | ≫ |A|2 . �
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Corollary 2.2. Suppose that P = A×A is a set of |A|2 points. Let l be the y-axis.

Suppose that B(P ) is the set of all bisectors determined by P . Then |B ∩ l|≫ |A|2.

Proof. By a simple calculation we can see that the equation of the bisector deter-

mined by two points (x1, y1) and (x2, y2) in the s, t plane is:

s =
2(x1 − x2)t+ (x2

2 − x2
1) + (y22 − y21)

2(y2 − y1)
.

Inserting t = 0, the hitting point has coordinate
(

0,
(x2

2 − x2
1) + (y22 − y21)

2(y2 − y1)

)

.

Setting g(x, y) = −2(x2 − y2), we obtain the result by Theorem 1.1. �

As we mentioned, this bound is tight for some polynomials, for instance g(x, y) = x.

However, we expect that if F (x1, x2, y1, y2) is a generic rational function satisfying

the condition of the Theorem 1.1 we have |X |≫ |A|3.

Acknowledgements. I would like to thank Oliver Roche-Newton for bringing

this problem to my attention and for several helpful conversations.

References

[BRN15] Antal Balog and Oliver Roche-Newton, New sum-product estimates for real and com-

plex numbers, Discrete Comput. Geom. 53 (2015), no. 4, 825–846. MR 3341581

[ER00] György Elekes and Lajos Rónyai, A combinatorial problem on polynomials and rational

functions, J. Combin. Theory Ser. A 89 (2000), no. 1, 1–20. MR 1736139
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