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A Firepoint at the Black Hole Singularity
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In his original derivation, Hawking showed that a Schwarzschild black hole is unstable at quantum
level and it evolves to a final thermal mixed state violating unitarity. There are some attempts to
solve this information paradox based on a high energy surface located at the black hole event horizon:
the firewall. In the wake of these proposals, we here propose the singularity itself as a “firepoint”
capable to break the entanglement between the “int” and the “out” states created through the
Hawking process. In this paper the singularity takes active part in the information paradox in two
similar ways. In the first way, the singularity, coming in contact with the the “int” state, produces
a pure state outside the horizon, but it violates causality allowing people inside the black hole
to send signals to the outside. The second way consists of a map that breaks the entanglement
between the interior and exterior of the black hole still using the singularity yet without violating
causality. The monogamy theorem is not violated whether in the first where the “out” radiation
state is rendered pure directly or in the second way where the Page idea is made possible again to

solve the information loss problem.

I. INTRODUCTION

At classical level black holes are stable in a large class
of gravitational theories with in primis Einstein’s gravity.
However, at quantum level they turn out to be unstable
due to the Hawking evaporation process ﬂ] As long as
the black hole does not reach its last evaporation stage,
it can be proved that emitted radiation at I (future
infinity) is correlated with radiation carrying negative
energy and falling inside the black hole (see for exam-
ple [2] for an extended and detailed discussion.) This in
general is not problematic, but a paradox emerges at the
end of the evaporation process when there is no more
black hole, no singularity, but a thermal state of parti-
cles at the Hawking temperature Ty = ﬁ (where M
is the mass of the black hole and we are using natural
units.) Therefore, in the whole process of collapse and
evaporation, a pure state (in an ideal simplified circum-
stance) has evolved into a mixed one, violating unitarity.
To solve this issue, D. Page argued that the radiation
emitted later must be maximally correlated with radia-
tion emitter earlier in order to end up with a pure state
after the full black hole evaporation B] This approach
is very conservative from the general relativity point of
view because it does not consider any modification of
the black hole geometry due to possible quantum grav-
ity corrections that most likely will change the spacetime
metric at least at the Planck scale. Indeed, the whole
process turns out to be unitary, only looking at the exte-
rior of the black hole. However, many years later it was
proved that the Page argument could be incorrect be-
cause it seems to violate the monogamy of entanglement
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entropy IZI] Monogamy states that a system A which
is maximally entangled with a system B cannot be si-
multaneously entangled with another system C [ﬁ] The
proof of this principle relies on a property of entangle-
ment entropy called strong sub-additivity. Therefore, if
we want to avoid inconsistencies it is argued that we are
forced to introduce a “firewall”, which somehow destroys
the entanglement of the particle pair at the event horizon,
leaving the late and early radiation entangled in order to
save the purity of the final state [6, [7]. This last idea -
although sometimes presented as the most conservative
solution to the information paradox [6] - actually breaks
the fundamental equivalence principle on which General
Relativity is based. Moreover it necessitates introducing
an extra mechanism implementing the firewall, which is
a priori not there.

In fact, there are reasonable models in which there is
no drama at the horizon, and an infalling observer would
effectively see information ‘erased’ only at the singularity
[@, ] Attempts have been made to augment and add
mechanisms to such arguments such that information is
not erased according to outside observers Bﬁ] In these
attempts it is argued that this non-unitary evolution at
the singularity has no observable effect.

Now, we would like to recall the statement of the para-
dox as given in AMPS [i]:

[...] in brief, the purity of the Hawking radiation im-
plies that the late radiation is fully entangled with the
early radiation, and the absence of drama for the infalling
observer implies that it is fully entangled with the modes
behind the horizon.This is tantamount to cloning.

In this paper we provide a story of what possibly hap-
pens if one decides to provide a conservative solution of
the issue pointed out in [@, B] without introducing any ex-
otic large scale modification of gravity and/or the space-
time causal structure, but takes the singularity seriously.
Indeed, we show that the black hole singularity predicted
by General Relativity can play the role of a firewall, or
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actually a “firepoint”. For an infalling observer, the lat-
ter naturally resets the state falling inside the black hole
leaving the ingoing and the outgoing radiation pairs dis-
entangled. Therefore, we basically admit one kind of
firewall, but we assume that there is no need for an ex-
tra entity introduced by hand. Indeed, general relativity
already provides for us a firewall as an exact solution of
Einstein’s gravity, namely the zero radius singularity.

II. THE FATE OF A QUANTUM STATE
FALLING INTO THE BLACK HOLE

In this section we argue that the quantum entangle-
ment between the particle pair created at the event hori-
zon is actually broken when the infalling particle reaches
the singularity. Let us assume that a pair of particles
is created at the horizon, one goes inside the black hole
while the other flees away towards the future infinity. For
the sake of simplicity we here consider the Schwarzschild
black hole that shows up an essential singularity in » = 0.
Notice that when an object crosses the black hole hori-
zon, it ends up very quickly at the spacetime singularity
(e.g. 107 Cs for a solar mass black hole). The singularity
is -as is well known- a very special point in spacetime
having two main properties: (i) the spacetime is not ex-
tendible beyond r = 0 which is to say any particle is
forced to end up there, (ii) any local curvature invariant
is divergent in r = 0 |12]. Therefore, whether a particle
enters a black hole its position is shortly determined with
extremely high precision. Since our intention here is to
take the singularity seriously, we could say that the posi-
tion of the particle is known with infinite accuracy. The
“Schwarzschild time ¢4, is defined as the time needed for
a particle to reach the singularity starting from a region
nearby the event horizon and it equals (see the appendix)

ts = 2rs/3 ~ 1y, (1)

where 7 is the black hole’s Schwarzschild radius [@]
Indeed, this is the case in classical general relativity, but
one might ask whether it will still be valid for a quantum
field. It is known that the singularity requires quantum
gravitational treatment, however, as we are here taking
the singularity seriously, the spacetime inside the black
hole is in fact singular. Now we recall that quantum
field theory is relativistic, thus no propagation outside
the light cone is allowed. Moreover, we know that
after entering the black hole, the trajectories avoiding
the singularity correspond to superluminal propagation
[12], therefore the fate of any field inside the black
hole is to end up at the singularity inescapably. For
a more detailed field theoretic (holographic) treat-
ment of this issue we refer the reader to IQ] There
the time to reach the singularity slightly differs from
the classical geodesics, but qualitatively nothing changes.

Let |¥) be the Hawking state of the whole radiation
system E] namely the pairs created at the black hole

horizon,

0) = R D e 7N @ [N)™, (2)
w N

where ¢, = V1 — e~ 37wM ig 3 normalization factor, N, is
the number of particles of energy w, while “int” and “out”
label the Hilbert spaces for the particles falling inside
the black hole and the particles escaping to the future
infinity, respectively.
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Once an “int” state with negative energy is created, it
ends up at the singularity where it gets annihilated.

A. Pure states inside and outside

We shall first consider the scenario that directly ren-
ders the outgoing radiation pure but unfortunately allows
for non-local signaling. The state after the particle hits
the singularity is:

|\Ij>/ mt

=l =0)¢ (

“@e X

where (r =0| = (r =
are sure with probability one that all the | N, )™ particles
have evolved in to the point r = 0 and they are crushed
at the singularity. Indeed, by the definition of spacetime
singularity, which we are here taking very seriously from
the physical point of view, there is no dynamics beyond
r = 0 and any “int” particle must stop there without hav-
ing any chance to escape because of the causal structure
of the black hole interior. Therefore,

|N >out> ® |N >1nt
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0]™. After the time ¢, is passed we
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and the state in Eq. @) turns into
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Note that the label 4 is to indicate that we are not saying
that all ’Nfu“t> states are parallel to |r = 0), this is impos-
sible because for different N they are orthogonal to each
other. Instead, we are saying that all ’Nif‘t> states evolve
to the state |r = 0) after an amount of time ¢, has passed.
It is clear that the entangled state |¥) has evolved deter-
ministically to a product state |¥)’ because the sum over
N does not involve |N,)™ anymore as a consequence of
Eq. ([@). Therefore, the entanglement is broken and there

Nrrw |N >0ut> ® |'f' _ 0>int ) (6)
t>ts



is no monogamy problem as well as no drama at the event
horizon while the state outside is clearly pure. Since the
“Int” state evolves to |r = 0) regardless of what |[N*) is
as evident in Eq. (@). Therefore, there is no dependence
on N in the final state of the infalling Hawking particles.

Notice that the evolution to the singularity point is not
unitary because the map (B]) to the singularity state is a
“many to one correspondence”. The black hole singular-
ity seems to act as an observer making a measurement
with a deterministic outcome. However, this non-unitary
evolution at the singularity is supposed to have no ob-
servable consequences outside the black hole as argued in
E, |ﬁ|] Another issue is the quantum causality violation
due to the singularity that we will discuss in the next
section.

Causality violation

It is well known that quantum mechanics is nonlocal,
but it is impossible to send information faster than light
ensuring that we never have a causality violation. In this
section we show that in presence of a singularity, naked
or not, in the way treated above, quantum mechanics
violates causality. Here is our “thought experiment”.

Let us say Alice and Bob decide to explore the inte-
rior of a black hole to check for example whether it is
dangerous or not. They prepare a bunch of EPR states,
say

L
V2

Alice, the brave girl, jumps inside with one qubit of each
EPR pair, while Bob stands outside waiting and holding
the other bit of each pair. Having a spaceship, Alice can
choose to arrive earlier to the singularity. Before Alice
(and her qubits) reach the singularity, the outside parti-
cles with Bob are in a maximally mixed state, namely

) (10a1p) +[1405)) . (7)
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Each reduced density matrix is proportional to the iden-
tity and the outcome of Bob’s measurement is highly ran-
dom. On the other hand, after Alice throws the qubits
into the singularity, the state with Bob, as we showed in
the previous section, is pure,
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and its statistics are different than the maximally mixed
state. Therefore, Alice can inform Bob about the black
hole interior by speeding up and reaching the singularity
earlier with respect to ts. Indeed, they initially agreed on
which state corresponds to a safe black hole and which
state to a dangerous one: if Bob after an amount of time
ts observes the state () the black hole is a fine place, if
he observes (@) then the black hole is dangerous.

Proper time shorter than the thermalization time

In the context of checking whether a state that falls
into a black hole can be recovered from the radiation, in
E, @, @] the authors argued that, in case it is possible,
it takes at least a thermalization time of the order

max {rs In E, rs} . (10)
lp
This time is longer than the proper time to reach the
singularity () (Ip is the Planck length). Therefore, the
“int" and “out" pairs will be disentangled and the “out”
particles will have the chance to be entangled outside the
black hole in a Page-like scheme before the thermalization
time.

Finally, we can summarize the content of this subsec-
tion as follows. The “int” particles are all reset to the
singularity state in a very short proper time. Therefore,
the Hawking state evolves fast and non-unitarily to a
pure state. This scenario violates quantum causality be-
cause we can in principle communicate with the black
hole exterior using a bunch of EPR pairs.

B. Breaking the entanglement without causality
violation

An alternative model avoids causality violation. Look-
ing at the fact that everything ends up stuck at the singu-
larity point, this effect can be represented as an operator
e that maps any state crossing the event horizon onto
one point (the singularity itself) after a finite amount of
time ts.

Whatever initial state, represented by a reduced den-
sity matrix pint, should be mapped to the singularity at
r = 0. We shall later consider smearing around this po-
sition, but for now we treat this strictly as

P = |r=0) (r =0] (11)

for all allowed pin¢. Since it is deterministic it happens
with probability one. This fully defines the quantum map
representing the evolution, namely

&(pint) = [r = 0) (r =0[, ¥ pint , (12)

We shall refer to the above as the singularity map, which
as a many-to-one map is not unitary. Now, facing such an
unusual map, one would like to check whether it is stan-
dard in the quantum information theoretic sense, that is,
whether there is a completely positive trace-preserving
(CPTP) map that can do the same job. Indeed one can
easily check that this map is in fact equivalent to unitar-
ily swapping the input system with a system in the state
|r = 0) (r = 0|, by applying the unitary Uswap such that

Uswap 1) 4 17) p = 1) 4 li} g VB



and then tracing over the second system B. Equivalently
Uswap moves the trace from the |r = 0) (r = 0| system to
the “int” system,

5(pint) = Trsing {Uswap (pint & |T = 0> <T = 0| )Us-:vap}
= Trint{|r = 0> <T = O| & pint}
= |r=0)(r=0]. (13)

The existence of the above description, in terms of a uni-
tary interaction with another system followed by tracing
out, shows that this is a completely positive (CP) map,
in the language of quantum maps |14]. Moreover, it is
trace preserving (TP) by inspection (Tr|r = 0) (r =0| =
Tr pint = 1). Thus it is a CPTP map, a standard set
of maps. The data processing inequality Iﬂ] applies to
CPTP maps, implying here that the singularity map can-
not increase the mutual information (nor entanglement)
with the outside. More generally one sees that &(pint),
which is the state of anything crossing the event horizon,
can not be correlated with any other state because inside
it is mapped to a pure state.

To summarize, in this subsection we constructed a non-
unitary CPTP map that resets the density matrix for
the “int” state onto the singularity, breaking the entan-
glement between the “int” and “out” states, but without
violating causality.

Pure states cannot be correlated with others

Let us consider the following systems. The system A
in a pure state, an arbitrary system B and the whole
system AB = A U B that does not need to be in a pure
state.

For completeness, we are now going to show that the
mutual information of A and B, defined by

S(A: B) = S(A) + S(B) — S(AB), (14)

is identically zero.

Since A is a pure state then the entropy S(A) = 0.
Now, applying the sub-additivity rule to the systems A
and B we find

S(AB) < S(A) + S(B) < S(B). (15)

Let us consider an additional system, R, which purifies

AB (namely the whole system ABR is pure.) Therefore,

S(ABR) = 0 or equivalently it is known that
S(AR)=S5(B) and S(R)=S(AB). (16)

Applying again the sub-additivity to the system AR we
get

S(AR) < S(R) + S(A). (17)
Substituting (8] in ([I7) we obtain
S(AB) > S(B) — S(A) = S(B) (18)

because A is pure. Combining (I5) and (I8) we end up
with

S(B) = S(AB) (19)
that finally implies
S(A:B)=5(B)— S(AB) =0. (20)

So, there is no mutual information between any system A
in a pure state and any other system B. Therefore, the
“int” radiation, after being set pure by the singularity,
cannot be entangled with the outside radiation anymore.
One can go through the above argument for a finite S(A)
to find more generally that

S(A: B) < 25(A), (21)

so the argument generalizes in that sense. This then
means that as soon as the infalling states reach the
singularity their entanglement with the outside is finally
broken, thus allowing for the possibility of outgoing
radiation particles being correlated with each other
without violating monogamy.

III. THE CASE OF SPREAD SINGULARITIES

This approach to the information paradox treats the
singularity as a single point with an exactly known po-
sition. This assumption might not be very plausible in
quantum mechanics. In this paragraph we generalize the
firepoint to a singular extended region with associated
probabilistic distribution. This means the singularity is
still a singularity, but it exists in different positions with
different probability amplitudes. We should clarify that
we are not considering here any resolution of the singu-
larity problem. The singularity is still an essential one,
but it is probabilistically distributed on a discrete set of
points or on an extended manifold. For example, the sin-
gularity could be in the following state in the position
space

0) =D Nilra) - (22)
i
The generalization to the continuum case is trivial.
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Now >2.Aj (rj|N,)}™ is exactly the probability ampli-
tude of finding the state |Nw>it’;1t at the singularity after



ts passes. This probability amplitude as argued before is
nothing but a phase €. Then
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w N (

Again, we clearly ended up in a pure state for the black
hole exterior, and signaling is still possible.

Now the singularity map acts in the following way,

E(p) = Trsing {Uswap

( Z CN,N’ |Nint=Nout> <Nlint7Ncl)ut| ® |0> <0| )Us-i_)vap}
N,N’
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where Ugywap again swaps the “int” state and the “singu-
larity” state, while p,y+ is the reduced density matrix of
the “out” radiation. This is a standard map in quantum
theory, the inside is traced out and the outside might still
be in a mixed state, but what is new is that the inside
is mapped to a pure state, so now if the outside parti-
cles get entangled with each other they do not violate
monogamy

Conclusions

We affronted the information loss problem from a very
conservative point of view without completely abandon-
ing the firewall idea, which has been here identified
with the spacetime singularity in » = 0 in the exact
Schwarzschild solution of Einstein’s gravity. The singu-
larity can take active part in the information loss problem
in two similar, but slightly different ways. The first one
reads as follows. The singularity can play the role of a
firepoint (firewall of zero radius) capable of manifestly
purifying the states outside the horizon by resetting the
inner states that feel the “position” of the singularity.
However, this “purification at a distance” allows for com-
munication with the world outside the black hole, violat-
ing causality. We could in principle send a space probe
equipped with a bunch of EPR pairs inside the black hole
and get information about the interior of the black hole
from the spacetime region outside the event horizon.

Alternatively, we can model the impact of the singu-
larity in the Hawking’s evaporation process through a
CPTP map that breaks the entanglement between ingo-
ing and outgoing particles thus opening the possibility
of refuting the monogamy issue that has disproved the
Page’s argument. In this case we do not have causal-
ity violation because the singularity itself maps the “int”
density matrix to r = 0 yet keeping the density matrix
of the “out” radiation intact.

Since in both cases entanglement can be broken avoid-
ing violations of the monogamy theorem, we think that
the Page’s argument might still be a viable solution of
the information loss problem.
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Appendix

We review the radial geodesic motion of a massive test-
particle. On the base of the geodesic principle the action
reads:

Sep = —m/ds = —m/ vV =G dztdz”

o

where A is an affine parameter, and z#()\) is the trajec-
tory of the particle. Therefore, the Lagrangian is:

ch = =M/ _g,uux.'u:tyv (27)

and the translation invariance in the time-like coordinate
t implies

dxt dxv
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Since we are interested in evaluating the proper time of
the particle necessary to reach the point » = 0, we must

choose the proper time gauge, namely A = 7. In this
case, F is the energy of the test-particle and

ds? . E

S ol = Ly=-m = f=-— (29)

d_7'2 m gtt

Replacing ([28) in g,,@"&" = —1, we end up with

gttt.2 + grr";2 =-1
2M E?
r2=—(1——)+ : (30)

r m2

For a particle at rest at infinity £ = m and the above
equation simplifies to

2= (31)

For a particle traveling towards the singularity starting
from the radial coordinate ry for 7 = 0,
). o
s

where is the Schwarzschild radius ry = 2M. Therefore,
the proper time to reach the singularity (r = 0) starting
from the event horizon (r = ry) is:

3
2

o
1

re

| (S

dr T:>T3

Nj=

dr oM 2 (

2rs  AMG
Ts= 5 =35 (33)
It is well known that any particle inside the event hori-
zon is forced to reach the singularity in » = 0 because of
the causal structure of the spacetime. Therefore, we con-
clude that any massive particle (we can prove the same
for massless particles in the affine parametrization of the
geodesics) reach the singularity in very short time.
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