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Abstract

We obtain closed form expressions for convolutions of scale transformations
within a certain subset of Appell polynomials. This subset contains the
Bernoulli, Apostol-Euler, and Cauchy polynomials, as well as various kinds
of their generalizations, among others. We give a unified approach mainly
based on a probabilistic generalization of the Stirling numbers of the second
kind. Different illustrative examples, including reformulations of convolution
identities already known in the literature, are discussed in detail.

Keywords: Convolution identity, Appell polynomials, binomial
convolution, generalized Stirling numbers of the second kind, Bernoulli
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1. Introduction

In recent years, a lot of attention has been devoted to obtain explicit
formulas for higher-order convolutions of the form

∑

j1+···+jm=n

(

n

j1, . . . , jm

)

C(j1, . . . , jm)A
(1)
j1
(x1) · · ·A

(m)
jm

(xm), (1)
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where A(k)(x) = (A
(k)
n (x))n≥0 is a sequence of Appell polynomials, xk ∈ R,

k = 1, . . . , m, and C(j1, . . . , jm) are appropriate constants. Such formulas
generalize the classical identity of second order for the Bernoulli polynomials
B(x) = (Bn(x))n≥0 shown by Nörlund [1], i.e.,

n
∑

k=0

(

n

k

)

Bk(x)Bn−k(y) = −n(x+ y−1)Bn−1(x+ y)− (n−1)Bn(x+ y). (2)

Since the pioneering work by Dilcher [2], many authors have provided explicit
expressions for the sums in (1) using different methodologies. We mention
the papers by Gessel [3], Wang [4], Agoh and Dilcher [5], He and Araci [6],
Wu and Pan [7], He [8], Dilcher and Vignat [9], and Komatsu and Simsek
[10], among others. As it happens in (2), a common feature of the identities
for the sums in (1) usually found in the literature is that the right-hand side
of such identities contains some of the polynomials A(k)(x) themselves.

The aim of this paper is to give a unified approach to obtain closed form
expressions for higher-order convolutions of Appell polynomials in the set R
defined below. This approach can be summarized as follows (see Section 2
for more precise definitions). Following Ta [11], we consider the set R of
Appell polynomials A(x) = (An(x))n≥0 whose generating function is given
by

G(A(x), z) =
exz

EezY
,

for a certain random variable Y , where E stands for mathematical expecta-
tion. For any w ∈ R and A(x) ∈ R, we consider the scale transformation
TwA(x) = (TwAn(x))n≥0 defined by

TwAn(x) = wnAn(x/w) =

n
∑

k=0

(

n

k

)

wkAk(0)x
n−k, n = 0, 1, . . . .

In first place, we give closed form expressions for

∑

j1+···+jm=n

(

n

j1, . . . , jm

)

Tw1A
(1)
j1
(w1x1) · · ·Twm

A
(m)
jm

(wmxm)

=
∑

j1+···+jm=n

(

n

j1, . . . , jm

)

wj1
1 · · ·wjm

m A
(1)
j1
(x1) · · ·A

(m)
jm

(xm)

(3)

in terms of the moments of the random variables Yk associated to each
A(k)(x) ∈ R, k = 1, . . . , m (see Theorem 3.4 in Section 3). In second place,

2



we replace (w1, . . . , wm) by a random vector W = (W1, . . . ,Wm) in (3) and
then take expectations, so that we obtain closed form expressions for

∑

j1+···+jm=n

(

n

j1, . . . , jm

)

E
(

W j1
1 · · ·W jm

m

)

A
(1)
j1
(x1) · · ·A

(m)
jm

(xm). (4)

This is done in Theorem 3.5 in Section 3, which is the main result of this
paper. The comparison between (1) and (4) reveals the probabilistic meaning
of the constant C(j1, . . . , jm), that is,

C(j1, . . . , jm) = E
(

W j1
1 · · ·W jm

m

)

.

The approach outlined above is general enough for two reasons. First,
because the Bernoulli, Apostol-Euler, and Cauchy polynomials, as well as
various kinds of their generalizations belong to the set R (c.f. [11] and [12]).
And second, because each choice of the random vector W in (4) leads us to
a different type of convolution identity.

The main tool to give explicit expressions for the sums in (3) is a prob-
abilistic generalization of the Stirling numbers of the second kind recently
introduced in [13] (see also Theorems 3.1 and 3.3 in Section 3). The final
section is devoted to illustrate Theorem 3.5. To keep the paper in a moderate
size, we restrict our attention to the case in which every A(j)(x) in (4) are the
Bernoulli polynomials. As a counterpart, we consider different choices of the
random vector W and make a comparison with similar results already known
in the literature. In this respect, the main difference is that the identities
obtained in Section 4 are given in terms of the classical Stirling numbers of
the second kind, instead of the Bernoulli polynomials or numbers themselves.
In other words, we obtain convolution identities easy to compute.

2. Preliminaries

In this section, we collect some definitions and properties, already shown
in [12] and [13], which are necessary to state our main results.

Let N be the set of positive integers and N0 = N∪{0}. Unless otherwise
specified, we assume from now on that n ∈ N0, m ∈ N, x ∈ R, and z ∈ C

with |z| ≤ r, where r > 0 may change from line to line. Denote by G the set
of all real sequences u = (un)n≥0 such that u0 6= 0 and

∞
∑

n=0

|un|
rn

n!
< ∞, (5)

3



for some radius r > 0. If u ∈ G, we denote its generating function by

G(u, z) =
∞
∑

n=0

un

zn

n!
.

If u, v ∈ G, the binomial convolution of u and v, denoted by u × v =
((u× v)n)n≥0, is defined as

(u× v)n =

n
∑

k=0

(

n

k

)

ukvn−k. (6)

It turns out that this definition is characterized in terms of generating func-
tions (c.f. [12, Proposition 2.1]) as

G(u× v, z) = G(u, z)G(v, z). (7)

In addition (cf. [12, Corollary 2.2]), (G,×) is an abelian group with identity
element e = (en)n≥0, where e0 = 1 and en = 0, n ∈ N. Observe that if

u
(j) = (u

(j)
n )n≥0 ∈ G, j = 1, . . . , m, then

(u(1) × · · · × u(m))n =
∑

j1+···+jm=n

(

n

j1, . . . , jm

)

u
(1)
j1

· · ·u
(m)
jm

, (8)

where
(

n

j1, . . . , jm

)

=
n!

j1! · · · jm!
, j1, . . . , jm ∈ N0, j1 + · · ·+ jm = n

is the multinomial coefficient.
On the other hand, let A(x) = (An(x))n≥0 be a sequence of polynomials

such that A(0) ∈ G. Recall that A(x) is called an Appell sequence if one of
the following equivalent conditions is satisfied

A′
n(x) = nAn−1(x), n ∈ N, (9)

An(x) =

n
∑

k=0

(

n

k

)

Ak(0)x
n−k, (10)

or
G(A(x), z) = G(A(0), z)exz. (11)
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Denote by A the set of all Appell sequences. The binomial convolution of
A(x), C(x) ∈ A, denoted by (A × C)(x) = ((A × C)n(x))n≥0, is defined as
(cf. [12, Section 3])

(A× C)(x) = A(0)× C(x) = A(x)× C(0) = A(0)× C(0)× I(x).

Equivalently, by

(A× C)n(x) =
n

∑

k=0

(

n

k

)

Ak(0)Cn−k(x) =
n

∑

k=0

(

n

k

)

Ck(0)An−k(x)

=
∑

j1+j2+j3=n

(

n

j1, j2, j3

)

Aj1(0)Cj2(0)x
j3 .

As shown in [12, Theorem 3.1], (A,×) is an abelian group with identity
element I(x) = (xn)n≥0. Also, (A× C)(x) is characterized by its generating
function

G((A× C)(x), z) = G(A(0), z)G(C(0), z)exz. (12)

For any A(j)(x) ∈ A and xj ∈ R, j = 1, . . . , m, with x1 + · · ·+ xm = x,
formula (12) implies that

A(1)(x1)× · · · × A(m)(xm) = (A(1) × · · · × A(m))(x), (13)

because both sides in (13) have the same generating function.
On the other hand, let w ∈ R and A(x) ∈ A. We define the scale

transformation TwA(x) = (TwAn(x))n≥0 as

TwAn(x) = wnAn(x/w) =

n
∑

k=0

(

n

k

)

wkAk(0)x
n−k, w 6= 0, (14)

and
T0An(x) = A0(0)x

n. (15)

As shown in [12, Proposition 4.1], TwA(x) is an Appell sequence characterized
by its generating function

G(TwA(x), z) = G(A(0), wz)exz. (16)

In addition, the map Tw : A → A is an isomorphism, whenever w 6= 0.
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From now on, we will always consider random variables Y fulfilling the
integrability condition

Eer|Y | < ∞, (17)

for some r > 0. Also, let (Yj)j≥1 be a sequence of independent copies of Y
and denote by

Sk = Y1 + · · ·+ Yk, k ∈ N (S0 = 0). (18)

In [13], we have introduced the Stirling polynomials of the second kind asso-
ciated to Y as

SY (n, r; x) =
1

r!

r
∑

k=0

(

r

k

)

(−1)r−k
E(x+ Sk)

n, r = 0, 1, . . . , n, (19)

as well as the Stirling numbers of the second kind associated to Y as

SY (n, r) = SY (n, r; 0), r = 0, 1, . . . , n. (20)

Equivalently (c.f. [13, Theorem 3.3]), the polynomials SY (n, r; x) are defined
via their generating function as

ezx

r!
(EezY − 1)r =

∞
∑

n=r

SY (n, r; x)

n!
zn, r ∈ N0. (21)

Note that if Y = 1, we have from (20) or (21)

S1(n, r) = S(n, r), r = 0, 1, . . . , n,

S(n, r) being the classical Stirling numbers of the second kind. Explicit
expressions for SY (n, r; x) for various choices of the random variable Y can
be found in [13, Section 4].

3. Main results

We consider the subset R ⊆ A of Appell sequences A(x) whose generating
function is given by

G(A(x), z) =
exz

EezY
, (22)

for a certain random variable Y fulfilling (17). Note that if X is another
random variable satisfying (22), then X and Y have the same law (see, for
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instance, Billingsley [14, p. 346]). For this reason, we say that A(x) has
associated random variable Y .

It turns out that any Appell sequence A(x) in R with associated random
variable Y can be written in terms of the Stirling polynomials of the second
kind associated to Y or in terms of the moments of the random variables Sk

defined in (18), as the following result shows.

Theorem 3.1. Let A(x) ∈ R with associated random variable Y . Then,

An(x) =
n

∑

r=0

(−1)rr!SY (n, r; x) =
n

∑

k=0

(

n+ 1

k + 1

)

(−1)kE(x+ Sk)
n

=

n
∑

r=0

(

n

r

)

xn−r

r
∑

k=0

(

r + 1

k + 1

)

(−1)kESr
k.

(23)

Proof. It follows from assumption (17) and the dominated convergence the-
orem that

|EezY − 1| < 1, |z| ≤ s,

for some s > 0. Whenever |z| ≤ s, we have from (21) and (22)

G(A(x), z) =
exz

1 + (EezY − 1)
=

∞
∑

r=0

(−1)rexz(EezY − 1)r

=

∞
∑

r=0

(−1)rr!

∞
∑

n=r

SY (n, r; x)

n!
zn =

∞
∑

n=0

zn

n!

n
∑

r=0

(−1)rr!S(n, r; x),

thus showing the first equality in (23). The second one readily follows from
(19) and the elementary combinatorial identity

n
∑

r=k

(

r

k

)

=

(

n+ 1

k + 1

)

.

Finally, using (10) and the second equality in (23), we obtain

An(x) =

n
∑

r=0

(

n

r

)

xn−rAr(0) =

n
∑

r=0

(

n

r

)

xn−r

r
∑

k=0

(

r + 1

k + 1

)

(−1)kESr
k.

This shows the third equality in (23) and completes the proof.
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Remark 3.2. Assume that A(x) ∈ R. By Theorem 3.1, we have A0(x) = 1.
This implies, by virtue of (15), that T0A(x) = I(x).

In the following result, we show that binomial convolutions of scale trans-
formations of Appell sequences in the subset R also belong to R.

Theorem 3.3. Let w = (w1, . . . , wm) ∈ R
m and let A(j)(x) ∈ R with as-

sociated random variable Y (j), j = 1, . . . , m. Suppose that the random vec-

tor Y = (Y (1), . . . , Y (m)) has mutually independent components. Then, the

Appell sequence (Tw1A
(1) × · · · × Twm

A(m))(x) belongs to R with associated

random variable w · Y = w1Y
(1) + · · ·+ wmY

(m).

Proof. By Remark 3.2, we can assume without loss of generality that wj 6= 0,
j = 1, . . . , m. By assumption,

G(A(j)(x), z) =
exz

EezY (j)
, |z| ≤ rj , (24)

for some rj > 0, j = 1, . . . , m. Denote by

r = min

(

r1
|w1|

, . . . ,
rm
|wm|

)

> 0.

For |z| ≤ r, we see from (12), (16), and (24) that

G((Tw1A
(1) × · · · × Twm

A(m))(x), z)

= G(Tw1A
(1)(0), z) · · ·G(Twm

A(m)(0), z)exz

= G(A(1)(0), zw1) · · ·G(A(m)(0), zwm)e
xz

=
exz

Eezw1Y (1) · · ·EezwmY (m)
=

exz

Eezw·Y
,

the last equality because the random vector Y has mutually independent
components. Hence, the result follows from (22).

In the setting of Theorem 3.3, we use from now on the following notations.
Denote by

w1x1 + · · ·+ wmxm = x, x1, . . . , xm ∈ R. (25)

Let (Y
(j)
l )l≥1 be a sequence of independent copies of Y (j) and assume that

the sequences (Y
(j)
l )l≥1, j = 1, . . . , m, are mutually independent. Denote by

S
(j)
k = Y

(j)
1 + · · ·+ Y

(j)
k , k ∈ N, S

(j)
0 = 0. (26)

8



Observe that for any k ∈ N0 the sums S
(j)
k , j = 1, . . . , m are mutually

independent.
With these notations, we state our first main result on higher-order con-

volution identities for scale transformations of Appell sequences.

Theorem 3.4. In the setting of Theorem 3.3, we have

∑

j1+···+jm=n

(

n

j1, . . . , jm

)

wj1
1 · · ·wjm

m A
(1)
j1
(x1) · · ·A

(m)
jm

(xm)

=
n

∑

r=0

(−1)rr!Sw·Y (n, r; x)

=
n

∑

r=0

(

n

r

)

xn−r

r
∑

k=0

(

r + 1

k + 1

)

(−1)kE
(

w1S
(1)
k + · · ·+ wmS

(m)
k

)r

.

(27)

Proof. By (13) and (25), we have the basic identity

Tw1A
(1)(w1x1)×· · ·×Twm

A(m)(wmxm) = (Tw1A
(1)×· · ·×Twm

A(m))(x). (28)

Again by Remark 3.2, we can assume without loss of generality that wj 6= 0,
j = 1, . . . , m in (28). From (8) and (14), we see that

(Tw1A
(1)(w1x1)× · · · × Twm

A(m)(wmxm))n
∑

j1+···+jm=n

(

n

j1, . . . , jm

)

Tw1A
(1)
j1
(w1x1) · · ·Twm

A
(m)
jm

(wmxm)

=
∑

j1+···+jm=n

(

n

j1, . . . , jm

)

wj1
1 · · ·wjm

m A
(1)
j1
(x1) · · ·A

(m)
jm

(xm).

(29)

By Theorem 3.3, the Appell sequence on the right-hand side in (28) belongs

to R with associated random variable w ·Y , and (w1Y
(1)
l + · · ·+wmY

(m)
l )l≥1

is a sequence of independent copies of w · Y . We therefore have from (26)
and Theorem 3.1

(Tw1A
(1) × · · · × Twm

A(m))n(x) =
n

∑

r=0

(−1)rr!Sw·Y (n, r; x)

=
n

∑

r=0

(

n

r

)

xn−r

r
∑

k=0

(

r + 1

k + 1

)

(−1)kE
(

w1S
(1)
k + · · ·+ wmS

(m)
k

)r

.

This, together with (28) and (29), completes the proof.
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The second main result, which generalizes Theorem 3.4, is the following.

Theorem 3.5. Let W = (W1, . . . ,Wm) be a random vector whose compo-

nents fulfil (17). In the setting of Theorem 3.4, we have

∑

j1+···+jm=n

(

n

j1, . . . , jm

)

E
(

W j1
1 · · ·W jm

m

)

A
(1)
j1
(x1) · · ·A

(m)
jm

(xm)

=
n

∑

r=0

(

n

r

) r
∑

k=0

(

r + 1

k + 1

)

(−1)k
∑

i1+···+im=r

(

r

i1, . . . , im

)

×

× E
(

W i1
1 · · ·W im

m (x1W1 + · · ·+ xmWm)
n−r

)

E(S
(1)
k )i1 · · ·E(S

(m)
k )im .

Proof. By assumption (17),

Eerj |Wj| < ∞, j = 1, . . . , m,

for some rj > 0. This implies that each Wj has finite moments of any order,
j = 1, . . . , m. Thus, by Hölder’s inequality, all the expectations involving
the random vector W in Theorem 3.5 are finite.

From (25) and Theorem 3.4, we have

∑

j1+···+jm=n

(

n

j1, . . . , jm

)

wj1
1 · · ·wjm

m A
(1)
j1
(x1) · · ·A

(m)
jm

(xm)

=
n

∑

r=0

(

n

r

) r
∑

k=0

(

r + 1

k + 1

)

(−1)k
∑

i1+···+im=r

(

r

i1, . . . , im

)

×

× wi1
1 · · ·wim

m (x1w1 + · · ·+ xmwm)
n−r

E(S
(1)
k )i1 · · ·E(S

(m)
k )im .

Thus, the conclusion follows by replacing (w1, . . . , wm) by the random vector
W = (W1, . . . ,Wm) and then taking expectations.

We emphasize that the random vector W in Theorem 3.5 has not neces-
sarily independent components. In fact, we will consider in Corollary 4.3 in
Section 4 a random vector W such that W1 + · · ·+Wm = 1.

4. Examples

As said in the Introduction, Theorems 3.4 and 3.5 can be applied when
A(j)(x) are the Bernoulli, Apostol-Euler, and Cauchy polynomials, among

10



many others. Here, we will restrict our attention to the case in which every
A(j)(x) are the classical Bernoulli polynomials. As a counterpart, we will
consider different choices of the random vector W .

In this section, Y is a random variable having the uniform distribution
on [0, 1], (Yj)j≥1 is a sequence of independent copies of Y and

Sk = Y1 + · · ·+ Yk, k ∈ N, S0 = 0. (30)

Recall that the Bernoulli polynomials B(x) = (Bn(x))n≥0 are defined via
their generating function as

G(B(x), z) =
zexz

ez − 1
=

exz

EezY
, (31)

where the last equality in (31) was already noticed by Ta [11]. On the other
hand, Sun [15] (see also [12, formula (38)]) showed the following probabilistic
representation for the classical Stirling numbers of the second kind S(n, k)

S(n, k) =

(

n

k

)

ESn−k
k , k = 0, 1, . . . , n. (32)

These numbers play a crucial role in any convolution identity referring to
the Bernoulli polynomials, as shown in the following result. In this respect,
for any random vector W = (W1, . . . ,Wm) whose components fulfil (17), we
denote by

C(j1, . . . , jm) = E
(

W j1
1 · · ·W jm

m

)

, j1, . . . , jm ∈ N0, (33)

as well as

D(i1, . . . , im;x) = E
(

W i1
1 . . .W im

m (x1W1 + · · ·+ xmWm)
n−r

)

, (34)

where iν ∈ N0 and xν ∈ R, ν = 1, . . . , m. With the preceding notations, we
state the following.

Corollary 4.1. We have

∑

j1+···+jm=n

(

n

j1, . . . , jm

)

C(j1, . . . , jm)
m
∏

ν=1

Bjν (xν)

=

n
∑

r=0

(

n

r

) r
∑

k=0

(

r + 1

k + 1

)

(−1)k
∑

i1+···+im=r

(

r

i1, . . . , im

)

D(i1, . . . , im;x)×

×
m
∏

ν=1

S(k + iν , k)
(

k+iν
k

) .

11



Proof. In view of (33) and (34), it suffices to apply Theorem 3.5 to the case
A(j)(x) = B(x), j = 1, . . . , m. Note that, in such a case, the random sums

S
(j)
k , j = 1, . . . , m defined in (26) have the same law as that of the random

sum Sk defined in (30), thus having from (32)

E(S
(j)
k )i =

S(k + i, k)
(

k+i

k

) , j = 1, . . . , m,

for any k, i ∈ N0. The proof is complete.

In contrast with other results found in the literature, we point out that
the right-hand side in Corollary 4.1 only depends on the random vector W
and on the Stirling numbers S(n, k), but not on the Bernoulli polynomials
themselves. Different particular cases of Corollary 4.1 are obtained for each
choice of W . The first one is the following.

Corollary 4.2. Let wj, xj ∈ R, j = 1, . . . , m, as in (25). Then, Corol-

lary 4.1 holds for

C(j1, . . . , jm) = wj1
1 · · ·wjm

m , D(i1, . . . , im;x) = wi1
1 · · ·wim

m xn−r.

Proof. Recalling (33) and (34), it is enough to choose in Corollary 4.1 the
deterministic vector W = (w1, . . . , wm).

In his classical result, Dilcher [2] considered the case w1 = · · · = wm = 1
and obtained an identity involving the products s(m, k)Bj(x), where s(m.k)
are the Stirling numbers of the first kind. Wang [4] (see also Chu and Zhou
[16]) provided identities when at most two of the numbers wj, j = 1, . . . , m
are different from 1 and the product of Bernoulli polynomials is replaced by
a product involving both the Bernoulli and Euler polynomials. In Wang’s
paper, the resulting formula also depends on such polynomials.

Denote by 〈x〉n the rising factorial, i.e.,

〈x〉n =
Γ(x+ n)

Γ(x)
,

Γ(·) being Euler’s gamma function. For any α > 0, denote by Xα a random
variable having the gamma density

ρα(θ) =
θα−1e−θ

Γ(α)
, θ > 0. (35)
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Let m = 2, 3, . . . and αj > 0, j = 1, . . . , m. Suppose that (Xαj
, j = 1, . . . , m)

are mutually independent random variables such that each Xαj
has the

gamma density ραj
(θ). We consider the random vector W = (W1, . . . ,Wm)

defined as

Wj =
Xαj

Xα1 + · · ·+Xαm

, j = 1, . . . , m. (36)

Observe that W1 + · · · + Wm = 1. It is well known (cf. Kotz et al. [17] or
Dilcher and Vignat [9]) that W has the multivariate Dirichlet distribution
and

E
(

W j1
1 · · ·W jm

m

)

=
〈α1〉j1 · · · 〈αm〉jm

〈α1 + · · ·+ αm〉j1+···+jm

, jl, . . . , jm ∈ N0. (37)

With these ingredients, we enunciate the following result.

Corollary 4.3. Let m=2,3,. . . and αj > 0, j = 1, . . . , m. Then, Corol-

lary 4.1 holds for xj = x, j = 1, . . . , m, and

C(j1, . . . , jm) =
〈α1〉j1 · · · 〈αm〉jm
〈α1 + · · ·+ αm〉n

, D(i1, . . . , im;x) =
〈α1〉i1 · · · 〈αm〉im
〈α1 + · · ·+ αm〉r

xn−r.

Proof. Choose xj = x and Wj as in (36) in Corollary 4.1. From (33) and
(37), we have

C(j1, . . . , jm) =
〈α1〉j1 · · · 〈αm〉jm
〈α1 + · · ·+ αm〉n

,

because j1 + · · ·+ jm = n. Since W1 + · · ·+Wm = 1, we have from (34) and
(37)

D(i1, . . . , im;x) = xn−r
E
(

W i1
1 · · ·W im

m

)

=
〈α1〉i1 · · · 〈αm〉im
〈α1 + · · ·+ αm〉r

xn−r,

because i1 + · · ·+ im = r. The proof is complete.

Dilcher and Vignat [9] have recently given a similar result to Corollary 4.3
in terms of products of the form Bl0(x)Bl1(0) · · ·Blk(0). This result general-
izes Miki’s identity (see Miki [18] and Gessel [3]).

To show the following result, we will need the following reformulation of
the well known Chu-Vandermonde identity (see, for instance, Chang and Xu
[19] or Vignat and Moll [20] for a probabilistic proof of this identity).
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Lemma 4.4. Let t1, . . . , tm ∈ R with t1 + · · ·+ tm = t. Then,

∑

l1+···+lm=n

(

t1 + l1
l1

)

· · ·

(

tm + lm
lm

)

=

(

t +m+ n− 1

n

)

. (38)

Proof. Use the formula

(

−β

n

)

= (−1)n
(

β + n− 1

n

)

, β ∈ R

and apply the classical Chu-Vandermonde identity.

Corollary 4.5. Corollary 4.1 holds for xj = x, j = 1, . . . , m and

C(j1, . . . , jm) =
m
∏

ν=1

jν !, D(i1, . . . , im;x) = xn−r (m+ n− 1)!

(m+ r − 1)!

m
∏

ν=1

iν !.

Proof. Choose in Corollary 4.1 a random vector W = (W1, . . . ,Wm) whose
components are independent and identically distributed random variables,
each one having the exponential density ρ1(θ) defined in (35). By (33), (35),
and the independence assumption, we see that

C(j1, . . . , jm) = EW j1
1 · · ·EW jm

m =
m
∏

ν=1

jν !. (39)

Since xj = x, j = 1, . . . , m, we have from (34), (39), and Lemma 4.4

D(i1, . . . , im;x) = xn−r
∑

l1+···+lm=n−r

(

n− r

l1, . . . , lm

)

EW i1+l1
1 · · ·EW im+lm

m

= xn−r(n− r)!
m
∏

ν=1

iν !
∑

l1+···+lm=n−r

(

i1 + l1
l1

)

· · ·

(

im + lm
lm

)

= xn−r(n− r)!

m
∏

ν=1

iν !

(

m+ n− 1

n− r

)

,

(40)

because i1 + · · ·+ im = r. The conclusion follows from (39) and (40).
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Note that Corollary 4.5 gives us, after some simple computations, the
identity

∑

j1+···+jm=n

Bj1(x) · · ·Bjm(x)

=

n
∑

r=0

(

m+ n− 1

n− r

)

xn−r

r
∑

k=0

(

r + 1

k + 1

)

(−1)k
∑

ii+···+im=r

m
∏

ν=1

S(k + iν , k)
(

k+iν
k

) .

(41)

Agoh and Dilcher [5] considered the left-hand side in (41) and showed an
identity in terms of products of the form Bl0(x)Bl1(0) · · ·Blk(0). This result
is a generalization of an identity proposed by Matiyasevich (see Agoh [21]
for a proof and further references on Matiyasevich identity).

Let H(x) = (Hn(x))n≥0 be the Hermite polynomials. Such polynomials
can be represented in probabilistic terms (cf. Withers [22], Adell and Lekuona
[23] or Ta [11]) as

Hn(x) = E(x+ iZ)n, (42)

where i is the imaginary unit and Z is a random variable having the standard
normal density. Finally, representation (42) allows us to give the following
convolution identities.

Corollary 4.6. Corollary 4.1 holds for xj = x, j = 1, . . . , m, and

C(j1, . . . , jm) = (−i)n
m
∏

ν=1

Hjν(0),

D(i1, . . . , im;x) = (−i)nxn−r
∑

l1+···+lm=n−r

(

n− r

l1, . . . , lm

) m
∏

ν=1

Hiν+lν (0).

Proof. Let W = (W1, . . . ,Wm) be a random vector with independent and
identically distributed components, each one having the standard normal
density. By (33) and (42), we have

C(j1, . . . , jm) = EW j1
1 · · ·EW jm

m = (−i)nHj1(0) · · ·Hjm(0),

since j1 + · · ·+ jm = n. Similarly, from (34) and (42) we have

D(i1, . . . , im;x) = xn−r
∑

l1+···+lm=n−r

(

n− r

l1, . . . , lm

)

EW i1+l1
1 · · ·EW im+lm

m

= (−i)nxn−r
∑

l1+···+lm=n−r

(

n− r

l1, . . . , lm

)

Hi1+l1(0) · · ·Him+lm(0),

because i1+· · ·+im = r. Hence, the conclusion follows from Corollary 4.1.
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