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ON THE DECOMPOSABILITY OF MOD 2

COHOMOLOGICAL INVARIANTS OF WEYL GROUPS

CHRISTIAN HIRSCH

Abstract. We compute the invariants of Weyl groups in mod 2 Milnor
K-theory and more general cycle modules, which are annihilated by
2. Over a base field of characteristic coprime to the group order, the
invariants decompose as direct sums of the coefficient module. All
basis elements are induced either by Stiefel-Whitney classes or specific
invariants in the Witt ring. The proof is based on Serre’s splitting
principle that guarantees detection of invariants on elementary abelian
2-subgroups generated by reflections.

1. Introduction

Let G be a smooth affine algebraic group over a field k0 of characteristic
not 2. Motivated from the concept of characteristic classes in topology,
the idea behind cohomological invariants as presented by J.-P. Serre in
[4] is to provide tools for detecting that two torsors are not isomorphic.
Loosely speaking, such an invariant assigns a value in an abelian group to
an algebraic object, such as a quadratic form or an étale algebra.

The formal definition of a cohomological invariant is due to J.-P. Serre
and appears in his lectures [4], where also a brief account of the history
of the subject is given. First, we identify the pointed set of isomorphism
classes of G-torsors over a field k with the first non-abelian Galois cohomol-
ogy H1(k,G). Further, letM be a functor from the category Fk0 of finitely
generated field extensions of k0, to abelian groups. Then, a cohomological
invariant of G with values in the coefficient space M is a natural transfor-
mation from H1(−, G) to M(−) considered as functors on Fk0 . Interesting
examples of the functor M include Witt groups or Milnor K-theory mod-
ulo 2, which is the same as Galois cohomology with Z/2-coefficients by
Voevodsky’s proof of the Milnor conjecture.
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2 CHRISTIAN HIRSCH

In general, the cohomological invariants of a given algebraic group with
values in some functor M are hard to compute and there are only a few
explicit computations carried out yet. One exception are the cohomological
invariants of the orthogonal group over a field of characteristic not 2 with
values in Milnor K-theory modulo 2. These invariants are generated by
Stiefel-Whitney classes

wi : H
1(−, On) → KM

i (−)/2

introduced by Delzant [2]. Now, every finite groupG embeds in a symmetric
group Sn for an appropriate n, and this group in turn embeds inOn. Pulling
back the Stiefel-Whitney classes along such homomorphismsG→ Sn → On

is a rich source of cohomological invariants of finite groups considered as
group scheme of finite type over a base field k0.

In this work, we show that most cohomological invariants of a Weyl group
G over a field k0 of characteristic coprime to |G| arise in this way if the
coefficient space is a cycle module M∗ in the sense of Rost [12], which is
annihilated by 2. More precisely, there exists a finite family of invariants
{ai}i∈I with values inKM

∗ /2, such that every invariant a over k0 with values
in M∗ decomposes uniquely as

a =
∑

i∈I

aimi,

for some constant invariants mi ∈ M∗(k0). In characteristic 0, any Weyl
group is a product of the irreducible ones mentioned above. Hence, invoking
a product formula of J.-P. Serre yields the decomposition for cohomological
invariants.

The proof of this result is constructive, in the sense that we give precise
formulas for the generators {ai}i∈I . For most Weyl groups the invariants
are induced by Stiefel-Whitney classes coming from embeddings of the Weyl
group into certain orthogonal groups. Note that these embeddings make use
of the fact that such a Weyl group can be realized as orthogonal reflection
group over every field of characteristic not 2. However, if the Weyl group
has factors of type D2n, E7 or E8, then besides Stiefel-Whitney classes also
specific Witt-type invariants appear, which induce invariants in mod 2 Mil-
nor K-theory via the Milnor isomorphism. All basis elements are invariants
derived from either the Stiefel-Whitney or the Witt-ring invariants.

Crucial for the derivation is Serre’s splitting principle for Weyl groups:
if two invariants coincide on the elementary abelian 2-subgroups generated
by reflections, then these are the same. This allows the following proof
strategy. Since Stiefel-Whitney classes and Witt invariants provide us with
a family of invariants, we only have to show that a given invariant coincides
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on the elementary abelian subgroups with a combination from this list. The
invariants are then computed case by case for the various types.

J.-P. Serre has recently computed with a different method the invariants
of Weyl groups with values in Galois cohomology, see his 2018 Oberwolfach
talk [14]. In an e-mail exchange on an earlier version of the present paper,
J.-P. Serre explains how to remove many of the restrictions on the charac-
teristic of k0. An excerpt of his letter is reproduced in Section 9. J. Ducoat
provided a proof of Serre’s splitting principle and attempted to compute
the invariants for groups of type Bn and Dn [3]. However, many proofs are
incomplete as they are “left to the reader” or “similar to previous ones”.
Moreover, Theorem 5 on page 4 about the invariants of W (Dn) is not cor-
rect as stated, because an invariant in degree n/2 is missing. Therefore, we
provide detailed computations also for the types Bn and Dn.

The content of this article is as follows. In Section 2, we state the
main result and fix notations and conventions. Next, Section 3 contains
preliminary results. The proof of the main result occupies the rest of the
paper. It also includes an appendix, elucidating how to use a GAP-program
to determine the invariants for E7 and E8.
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Part I: Results and methods.

2. Main theorem and proof strategy

2.1. Cycle modules. We consider in this work invariants with values in
a cycle module M∗ in the sense of Rost, which is annihilated by 2. Recall
that a cycle module over a field k0 is a covariant functor

k 7−→ M∗(k) :=
⊕

n∈Z

Mn(k)

on the category Fk0 with values in graded Milnor K-theory modules. For
a field extension ι : k ⊆ L, the image of z ∈M∗(k) in M∗(L) is denoted by
ι∗(z). By definition, cycle modules have further structure and we refer the
reader to [12] for details.

The main example of a cycle module is Milnor K-theory:

Fk0 → Z-graded rings

k 7→ KM

∗ (k) = ⊕n>0K
M

n (k).

For a1, . . . , an ∈ k×, we denote pure symbols inKM
n (k) by {a1, . . . , an}. The

graded abelian group M∗(k) has the structure of a graded KM
∗ (k)-module

for every field k ∈ Fk0 . Hence, if M∗ is annihilated by 2, it becomes a

KM
∗ (k)/2-module. For ease of notation, we set kM∗ (k) := KM

∗ (k)/2 and de-

note the image of a symbol {a1, . . . , an} ∈ KM
n (k) in kMn (k) by {a1, . . . , an}.

We say that M∗ has a kM∗ -structure if M∗ is annihilated by 2.

From now on cycle module means cycle module with kM∗ -structure.

2.2. Invariants with values in cycle modules. Let G and M∗ be a
linear algebraic group and a cycle module over k0, respectively. Recall
from Section 1 that a cohomological invariant of G with values in Mn is a
natural transformation from H1(−, G) to Mn(− ). We denote the set of
all invariants of degree n of G with values in M∗ by Invn(G,M∗), and set

Inv(G,M∗) := Invk0(G,M∗) :=
⊕

n∈Z

Invn(G,M∗).

For k ∈ Fk0 , any invariant a ∈ Invk0(G,M∗) restricts to a natural trans-
formation of functors H1(−, G) → M∗(− ) on the full sub-category Fk of
Fk0 . We denote this restricted invariant by resk/k0(a) or by the same sym-
bol a if the meaning is clear from the context. A particular example of
invariants are the constant invariants, which are in one-to-one correspon-
dence with elements of M∗(k0): The constant invariant c ∈ M∗(k0) maps
every x ∈ H1(k,G) onto the image of c in M∗(k) for all k ∈ Fk0 . The
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set Inv(G,M∗) is a kM∗ (k0)-module, so that if a : H1(−, G) → kM∗ (− ) is a
Milnor K-theory invariant of degree m and x ∈Mn(k0), then

a · x : H1(k,G) → Mm+n(k), T 7→ ak(T )xk

is an invariant with values in M∗ of degree m+n. We now define precisely
what it means that an invariant can be represented uniquely as a sum of
basis elements.

Definition 2.1. LetM∗ be a cycle module over the field k0, and G a linear
algebraic group over k0.

(i) A subgroup S ⊆ Inv∗k0(G,M∗) is a free M∗(k0)-module with basis

a(i) ∈ Inv
di
k0
(G, kM∗ ), i ∈ I, if

⊕

i∈I

M∗−di(k0) → S, {mi}i∈I 7→
∑

i6r

a(i) ·mi

is an isomorphism of abelian groups.

(ii) Inv(G,M∗) is completely decomposable with a finite basis ai ∈
Invdik0(G, k

M

∗ ) if Inv∗k(G,M∗) is a free M∗(k)-module with the cor-

responding basis resk/k0(ai) ∈ Inv
di
k (G, kM∗ ), i ∈ I, for all k ∈ Fk0 .

After these preparations, we now state the main result.

Theorem 2.2. Let G be an irreducible Weyl group. Let k0 be a field
of characteristic coprime to |G| and M∗ a cycle module over k0. Then,
Inv∗k0(G,M∗) is completely decomposable.

The proof of Theorem 2.2 is constructive and we describe the generators
explicitly. These depend on the type of the Weyl group and will be given
in the course of the computation later on. Now, we explain the strategy
starting with a reminder on Weyl groups.

Let E be a finite-dimensional real vector space with scalar product (−,−)
and orthogonal group O(E). Then, sv : E → E,

sv(w) := w − 2(v,w)

(v, v)
v,

defines the reflection at a vector v ∈ E with (v, v) 6= 0.

Now, the Weyl group W (Σ) associated with a crystallographic root sys-
tem Σ ⊆ E is the subgroup of O(E) generated by all reflections sα at the
roots α ∈ Σ. By definition of a root system, the scalars 2(α, β)/(α,α) are
integers for all α, β ∈ Σ and the reflections act on the root system. The
Weyl group is irreducible if the corresponding root system is irreducible.

The irreducible root systems are classified by typesAn, Bn, Cn,Dn, E6, E7,
E8, F4, G2. Let Σ be such an irreducible root system. Then, there exists
an Euclidean space E = Rn for an appropriate n, such that (i) Σ ⊆ V :=
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⊕
i6n

Z[1/2]ei, where e1, . . . , en is the standard basis of Rn, and (ii) W (Σ)

maps V into itself. This can be deduced using the realizations of these root
systems in Bourbaki [1, PLATES I-VIII]. If now k0 is a field of character-
istic not 2 then W (Σ) acts via scalar extension on Vk0 := k0 ⊗Z[1/2] V and
can so be realized as orthogonal reflection group over k0 considering Vk0 has
regular bilinear space with the scalar product induced by the restriction of
the standard scalar product of E = Rn to V .

The strategy of proof for an irreducible Weyl group G, is as follows.
We leverage different embeddings of the Weyl group G into an orthogo-
nal group On over the field k0. Now, the invariants of On with values
in kM∗ are generated by the Stiefel-Whitney classes, see [4]. Considering

embeddings W →֒ On gives rise to a family of invariants in Inv(G, kM∗ )
by composing the Stiefel-Whitney classes with the natural transformation
H1(−,W ) → H1(−, On). As we shall see in Sections 5 – 8, these already
generate Inv(G,M∗) except if G is of type D2n, E7, or E8. The ’missing’
invariants have their source in certain Witt invariants.

Having a family of invariants with values in kM∗ at our disposal, we de-
duce Theorem 2.2 for an irreducible Weyl group G by showing that this
set of invariants contains a basis of Inv(G,M∗) in the sense of Definition
2.1. The main tool is the following adaptation of Serre’s splitting principle,
which is proven in [6, Corollary 4.10]. Loosely speaking, if k0 is a field
of characteristic coprime to |G|, then Inv(G,M∗) is detected by the maxi-
mal elementary abelian 2-subgroups of G generated by reflections. We let
Ω(G) denote the set of conjugacy classes of maximal elementary 2-abelian
subgroups of G, which are generated by reflections.

Note that the proof of Theorem 2.2 for Weyl groups of type G2 in Section
3.3 is purely group theoretic, in the sense that it uses only its semi-direct
decomposition and not the geometry of the corresponding root system.

Proposition 2.3 (Serre’s splitting principle). Let M∗ be a cycle module
over k0 and G be a Weyl group. Let k0 be a field of characteristic coprime
to |G|. Then, the canonical map

(
resPG

)
[P ]

: Inv(G,M∗) →
∏

[P ]∈Ω(G)

Inv(P,M∗)
NG(P )

is injective, where NG(P ) is the normalizer of the maximal elementary 2-
abelian subgroup P of G, which is generated by reflections.

We point out that the assumption that order of the irreducible Weyl group
G and the characteristic of k0 are coprime seems to be not necessary, see
Section 9. This assumption comes from the article [6], where the splitting
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principle is proven for more general orthogonal reflection groups. This
would also remove that assumption from Theorem 2.2.

Remark 2.4. For groups of type An, Dn, E6, E7, or E8, any two roots
are conjugate [8, Rem. 4, Sect. 2.9]. Hence, an induction argument shows
that for these types, there is up to conjugacy only one maximal abelian
2-subgroup P generated by reflections. In particular, by Proposition 2.3,
the restriction map resPG is injective for simply-laced groups.

The computation of the invariants of an arbitrary Weyl group follows
from Theorem 2.2 by a product formula of Serre. To state the product
formula precisely, we first introduce the notion of a product of invariants.
Identifying H1(k,G′ × G) with H1(k,G′) × H1(k,G), for invariants a ∈
Invk0(G, k

M

∗ ) and b ∈ Invk0(G
′,M∗), we define the product ab through

(ab)k : H1(k,G ×G′) →M∗(k)

(T, T ′) 7→ ak(T )bk(T
′).

Proposition 2.5 (Product formula). Let M∗ be a cycle module and G,G′

algebraic groups over k0. If Inv∗k0(G,M∗) is completely decomposable with
finite basis {ai}i∈I , then the map

⊕

i∈I

Inv∗k(G
′,M∗) → Inv∗k(G×G′,M∗)

{bi}i∈I 7→
∑

i∈I

resk/k0(ai)bi

is an isomorphism for all k ∈ Fk0 . In particular, if the invariants of both
G and G′ are completely decomposable, then so is Inv∗k0(G×G′,M∗).

Proof. We follow the outline given in [4, Part I, Exercise 16.5]. Replacing
ai by resk/k0(ai) we can assume k = k0.

To show surjectivity, let a ∈ Inv∗k0(G×G′,M∗). Then, for every k ∈ Fk0

and T ′ ∈ H1(k,G′) we define an invariant ā ∈ Inv∗k(G,M∗) by mapping
T ∈ H1(ℓ,G) to āℓ(T ) = aℓ(T × T ′

ℓ), where, T
′
ℓ denotes the image of T ′

in H1(ℓ,G′) under the base change map. Since Inv(G,M∗) is completely
decomposable, ā can be uniquely expressed as

∑
i resk/k0(ai)bi(T

′) for suit-

able bi(T
′) ∈ M∗(k). It remains to prove that bi ∈ Inv(G′,M∗) for all

i. To achieve this goal, let ι : k ⊆ k1 be a field extension in Fk0 and
T ′ ∈ H1(k,G′). Then,

ι∗

(∑

i∈I

resk/k0(ai)(T )bi(T
′)
)
=

∑

i∈I

resk1/k0(ai)(Tk1)bi(T
′
k1).
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Since ai’s are invariants
∑

i∈I

resk1/k0(ai)ι∗(bi(T
′)) =

∑

i∈I

resk1/k0(ai)bi(T
′
k1).

As the ai’s are a basis we get bi(T
′
k1
) = ι∗(bi(T

′)), as asserted.

To show injectivity, we assume
∑
i∈I

aibi = 0 and claim that bi = 0 for all

i ∈ I. Fix a field k and T ′ ∈ H1(k,G′). Then
∑
i∈I

aibi(T
′) ∈ Inv∗k(G,M∗)

is the constant zero invariant. Since the ai’s are a basis, we get bi(T
′) = 0

for all i ∈ I. Since k and T ′ were arbitrary, this implies that the bi’s are
constant zero. �

Since every Weyl group is a product of irreducible ones, we get the fol-
lowing corollary.

Corollary 2.6. Let k0 be a field of characteristic coprime to |G| and M∗

a cycle module over k0. Then, Inv
∗
k0(G,M∗) is completely decomposable for

all Weyl groups G.

3. Preparations for the proof

In this section, we establish several key lemmas on cycle modules. We
also discuss auxiliary results used in the type-by-type proof of Theorem 2.2
for irreducible Weyl groups.

3.1. Cycle complex computations. We start with a computation of cy-
cle module cohomology which seems to be well known, but for which we
have not found an appropriate reference. To this end, we recall first the
cycle complex associated with a cycle module M∗ over k0. We refer the
reader to Rost [12] for further details.

Let X be a scheme essentially of finite type over k0. That is, X is of
finite type over k0 or the localization of such a k0-scheme. Then, the cycle
complex is given by

⊕

x∈X(0)

Mn(k0(x))
d0
X,n−−−→

⊕

x∈X(1)

Mn−1(k0(x))
d1
X,n−−−→

⊕

x∈X(2)

Mn−2(k0(x)) → · · · ,

where X(p) ⊆ X denotes the set of points of codimension p > 0 in X and
k0(x) is the residue field of x ∈ X. In general, the differentials dpX,n are
sums of composition of second residue maps and transfer maps. If X is an
integral scheme with function field k0(X) and regular in codimension 1, then
the components of d0X,n are the second residue maps ∂x : Mn(k0(X)) →
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Mn−1(k0(x)). In particular, the cohomology group in dimension 0, also
called unramified cohomology of X with values in Mn, equals

Mn,unr(X) := Ker
(
Mn(k0(X))

(∂x)
x∈X(1)−−−−−−−→

⊕

x∈X(1)

Mn−1(k0(x))
)
.

In case X = Spec(R), we use affine notations and write Mn,unr(R) instead
of Mn,unr(X).

Lemma 3.1. LetM∗ be a cycle module over k0 and R a regular and integral
k0-algebra with fraction field K, which is essentially of finite type. Let
a1, . . . , al ∈ R be such that ai − aj ∈ R× for all i 6= j. Then,

Mn,unr(R[T ]∏
i6l

(T−ai)) ≃ Mn,unr(R) ⊕
⊕

i6l

{T − ai} ·Mn−1,unr(R),

where we consider {T − ai} as an element of KM
1 (K(T )) and Mn−1,unr(R)

as a subset of Mn−1(K(T )).

Proof. Setting f(T ) :=
∏
i6l

(T − ai), we consider the following short exact

sequence of cycle complexes, where for a cohomological complex P • we
denote by P •[1] the shifted complex with P i in degree i+ 1:

C•(R[T ]/R[T ] · f(T ),Mn−1)[1] // // C•(R[T ],Mn) // // C•(R[T ]f(T ),Mn).

Using homotopy invariance, the associated long exact cohomology sequence
starts with

0 →Mn,unr(R) →Mn,unr(R[T ]f(T )) →Mn−1,unr(R[T ]/R[T ] · f(T )).

We claim that the map on the right-hand side of this exact sequence is a
split surjection. Indeed, by the Chinese remainder theorem,

R[T ]/R[T ] · f(T ) ≃
∏

i6l

R[T ]/R[T ] · (T − ai) ≃
∏

i6l

R,

so that Mn−1,unr(R[T ]/R[T ] · f(T )) ≃ Mn−1,unr(R)
⊕ l. Disentangling the

definitions of the appearing maps shows that

Mn−1,unr(R)
⊕l →Mn,unr(R[T ]f(T )), (x1, . . . , xl) 7−→

∑

i6l

{T − ai}xi

defines the asserted splitting. �

By induction and homotopy invariance, Lemma 3.1 implies the well-
known computation of the unramified cohomology of a Laurent ring.



10 CHRISTIAN HIRSCH

Corollary 3.2. Let M∗ be a cycle module over k0. Then,

Mn,unr(k0[T
±
1 , . . . , T

±
l ]) ≃

⊕

r6l
16i1<···<ir6l

{Ti1 , . . . , Tir} ·Mn−r(k0).

3.2. Invariants of (Z/2)n. Corollary 3.2 implies that the invariants of
(Z/2)n with values in a cycle module are completely decomposable. This

is shown for invariants of (Z/2)n with values in kM∗ in Serre’s lectures [4,
Part I, Sect. 16]. Writing (α) ∈ H1(k,Z/2) for the class of α ∈ k×, every
index set 1 6 i1 < · · · < il 6 n gives rise to an invariant

xi1,...,il : H
1(k, (Z/2)n) ≃ H1(k,Z/2)n → kMl (k)[

(α1), . . . , (αn)
]
7→ {αi1 , . . . , αil}.

We show that they form a basis of Inv((Z/2)n,M∗) for every cycle module

M∗ with kM∗ -structure.

Let k ∈ Fk0 , a ∈ Inv∗k((Z/2)
n,M∗) and write K := k(t1, . . . , tn) for

the rational function field in n variables over the field k. Then, T :
k(
√
t1, . . . ,

√
tn) ⊇ k(t1, . . . , tn) is a versal (Z/2)n-torsor, so that by [4,

Part I, Thm. 11.1] or [6, Thm. 3.5],

aK(T ) ∈ M∗,unr(k[t
±
1 , . . . , t

±
n ]).

By Corollary 3.2, there exist unique mi1,...,il ∈M∗(k) with

aK(T ) =
∑

l6n
16i1<···<il6n

{
ti1 , . . . , til

}
mi1,...,il .

Then, the invariant

b :=
∑

l6n
16i1<···<il6n

xi1,...,ilmi1,...,il .

agrees with a on the versal torsor T . Hence, the detection principle in the
form of [4, Part I, 12.2] or [6, Thm. 3.7] implies that a = b, as asserted.

3.3. Invariants of Weyl groups of type G2. Assume here that the base
field is of characteristic not 2 or 3.

The group W (G2) is a semi-direct product of a normal subgroup L of
order 3 and a subgroup P ≃ (Z/2)2 generated by the reflections at two
orthogonal roots, see [1, Chap. VI, §4, No 13]. Since there is up to conjugacy
only one such P , Proposition 2.3 shows that the restriction map resPW (G2)

is injective. Since the projection W (G2) ≃ P ⋉ L→ P induces a splitting,
we deduce that resPW (G2)

is in fact an isomorphism.

In view of the results for other Weyl groups it is worthwhile to note that a
basis for the invariants can also be expressed in terms of the Stiefel-Whitney
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invariants to be introduced in Section 3.6 below. As in Section 5.1 below,
we see that the restriction of the Stiefel-Whitney classes in degrees 1 and
2 to P correspond to the invariants x1 + x2 and x1,2. Finally, considering
the morphism W (G2) → O1 = {±1} sending one of the two classes of
reflections to −1 and the other to 1 yields the invariant x1 (or x2).

3.4. Torsor computations. Henceforth, we switch freely between the in-
terpretation of H1(k,On) via cocycles on the one hand and via quadratic
forms on the other hand. For this purpose, we recall how to view H1(k,On)
in terms of non-abelian Galois cohomology [13]. Let c ∈ Z1(Γ, On) be a
cocycle. That is, c is a continuous map from the absolute Galois group Γ
of a separable closure ks/k to On(ks) and satisfies the cocycle condition
cστ = cσ · σ(cτ ). To construct a quadratic form qc over k, we first define
an action ⋆ of Γ on kns via σ ⋆ v = cσ(σ(v)). Then, we let v1, . . . , vn ∈ kns
denote a k basis of the vector space

V ⋆Γ = {v ∈ kns : σ ⋆ v = v for all σ ∈ Γ}. (3.1)

Now, we let qc be the quadratic form whose associated bilinear form bqc is
determined by bqc(ei, ej) = 〈vi, vj〉, where 〈·, ·〉 denotes the standard scalar
product in kns . In other words, qc is the restriction to V ⋆Γ of the quadratic
form associated with the standard scalar product 〈·, ·〉. We will come back
frequently to the following three pivotal examples, where V = k2s .

Example 3.3. Consider the group homomorphism (Z/2)2 → O2,

e1 7→
(
0 1
1 0

)
, e2 7→

(
0 −1
−1 0

)
.

Let (α, β) ∈ (k×/k×
2
)2 be a (Z/2)2-torsor over k. Then, v1 = (

√
α,−√

α)⊤,
v2 = (

√
β,

√
β)⊤ defines a basis of V ⋆Γ and the induced bilinear form is the

diagonal form q(α,β) = 〈2α, 2β〉.

Example 3.4. Consider the group homomorphism Z/2 → O2,

e1 7→
(
0 1
1 0

)
.

Let α ∈ k×/k×2 be a Z/2-torsor. Applying the above example with β = 1,
we see that the induced bilinear form is the diagonal form q(α) = 〈2α, 2〉.

Example 3.5. Consider the group homomorphism (Z/2)2 → O2,

e1 7→
(
0 1
1 0

)
, e2 7→

(
0 1
1 0

)
.
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Let (α, β) ∈ (k×/k×
2
)2 be a (Z/2)2-torsor over k. Then, v1 = (1, 1)⊤,

v2 = (
√
αβ,−

√
αβ)⊤ defines a basis of V ⋆Γ. The induced bilinear form is

the diagonal form q(α,β) = 〈2, 2αβ〉.

3.5. An embedding of S2n into O2n. Next, we describe a specific em-
bedding (Z/2)n → O2n on the torsor level. For any l 6 2n − 1 let
b(l) ⊆ [0, n − 1] be the position of the bits in the binary representation.
That is, l =

∑
i∈b(l) 2

i. Furthermore, let fS be the flipping the bits at all

positions in S ⊆ [0, n − 1]. In other words, fS : [0, 2n − 1] → [0, 2n − 1],

fS(l) := b−1(b(l)∆S),

where R∆S = (R\S)∪(S\R) is the symmetric difference. In this notation,
the group homomorphism φ : (Z/2)n → S2n ⊆ O2n

φ
(∑

s∈S

es

)
:= fS

induces a map φ∗ : H1(k, (Z/2)n) → H1(k,O2n), which we now describe
explicitly.

Lemma 3.6. Let ǫ0, . . . , ǫn−1 ∈ k×/k×2. Then,

φ∗(ǫ0, . . . , ǫn−1) = 〈2n〉 ⊗ 〈〈−ǫ0〉〉 ⊗ 〈〈−ǫ1〉〉 ⊗ · · · ⊗ 〈〈−ǫn−1〉〉.

Since any two simply transitive actions on [0, 2n − 1] are conjugate in S2n ,
Lemma 3.6 is more useful than it may seem at first.

Proof. Consider a cocycle representation c ∈ Z1(Γ, (Z/2)n) of the torsor
(ǫ0, . . . , ǫn−1) ∈ (k×/k×2)n. That is, the ith component of cσ equals 1 if
and only if σ

(√
ǫi
)
= −√

ǫi. To determine the quadratic form defined by
the induced cocycle σ 7→ φ(cσ), we assert that a basis of the k-vector space
V ⋆Γ from (3.1) is given by {v0, . . . , v2n−1}, where vp has components

(vp)ℓ = (−1)|b(p)∩b(ℓ)|
∏

i∈b(p)

√
ǫi.

First, vp ∈ V ⋆Γ, since writing cσ =
∑

i∈S ei for some S = S(σ) ⊆ [0, n − 1]
shows that

σ
(
(−1)|b(p)∩b(ℓ)|

∏

i∈b(p)

√
ǫi

)
= (−1)|b(p)∩b(ℓ)|+|b(p)∩S|

∏

i∈b(p)

√
ǫi = (vp)fS(ℓ).

Moreover, to prove the linear independence of the {vp}p, we note that

b(vp, vp) =
∑

u62n−1

(vp)u(vp)u = 2n
∏

i∈b(p)

ǫi.
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Hence, it suffices to show that b(vp, vq) = 0, if p 6= q. By assumption, there
is at least one i ∈ b(p)∆b(q), so that pairing any L ⊆ [0, n − 1] \ {i} with
L ∪ {i} shows that

b(vp, vq) =
∏

i∈b(p)

√
ǫi ·

∏

i∈b(q)

√
ǫi ·

∑

L⊆[0,n−1]

(−1)|b(p)∩L|+|b(q)∩L|

=
∏

i∈b(p)
j∈b(q)

√
ǫiǫj

∑

L⊆[0,n−1]\{i}

(
(−1)|b(p)∩L|+|b(q)∩L| + (−1)|b(p)∩L|+|b(q)∩L|+1

)
,

vanishes as claimed. �

3.6. Stiefel-Whitney Invariants. The total Stiefel-Whitney class is de-
fined by

w∗ : H1(k,On) → kM∗ (k)

〈α1, . . . , αn〉 7→
∏

i6n

(1 + {αi}),

where 〈α1, . . . , αn〉 is the class in H1(k,On) of the diagonal form. They

generate the invariants of the orthogonal group On with values in kM∗ as
Serre shows in [4, Part I, Sect. 17].

Theorem 3.7. Let k0 be a field of characteristic not 2. Then, the Stiefel-
Whitney invariants form a basis in the sense of Definition 2.1 of Inv(On, k

M

∗ )
for all n > 1.

By [4, Rem. 17.4] the product of Stiefel-Whitney classes is given by

wrws = {−1}b−1(b(r)∩b(s))wr+s−b−1(b(r)∩b(s)), (3.2)

where b(·) denote the binary representation of Section 3.5.

Example 3.8. Later, we will meet some examples where it is easier to
do the computations with a slight variant of the Stiefel-Whitney classes.
Therefore, we introducemodified Stiefel-Whitney classes w̃d ∈ Invd(On, k

M

∗ ):
For even n, we put w̃d(q) := wd(〈2〉 ⊗ q) for all d 6 n and for odd n, we
set inductively w̃0 = 1 and w̃d+1(q) = wd+1(〈2〉 ⊗ q)− {2}w̃d(q). Then, we
obtain for even rank(q) that

w̃d(〈2〉 ⊗ q) = wd(q) = w̃d(〈1〉 + 〈2〉 ⊗ q).

Alternatively, one could also give a more direct definition of modified Stiefel-
Whitney classes not depending on the parity of q by setting w̃d(q) as wd(q)
if d is odd and as wd(q) + {2}wd−1(q) if d is even.

Finally, we recall another kind of invariants.
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Example 3.9 (Witt-ring invariants). The image of an n-dimensional qua-
dratic form in the Witt ring G yields an invariant Inv∗(On,W ). Since the
definition of invariants only makes use of the functor property, this concept
makes sense, even though G is not a cycle module. Albeit of limited use
in the setting of quadratic forms, the aforementioned invariant becomes a
refreshing source of invariants for groups G embedding into On. Indeed,
for Weyl groups G of type D2n, E7, E8, we construct embeddings such that
the restrictions become invariants with values in a suitable power of the
fundamental ideal I ⊆W . Since the Milnor morphism

fMil

n : kMn → In/In+1

{α1} · · · {αn} 7→ 〈〈α1〉〉 ⊗ · · · ⊗ 〈〈αn〉〉
with 〈〈a〉〉 := 〈1,−a〉 induces an isomorphism between mod 2 Milnor K-
theory and the graded Witt ring [11, Theorem 4.1], we obtain elements in

Inv∗(G, kM∗ ).

3.7. A technical lemma. The following technical lemma simplifies the
computations of invariants.

Lemma 3.10. Let R be a commutative ring, I a finite index set, M an
R-module and G a finite group acting on I. The operation of G on I
induces an operation of G on the R-module N := ⊕i∈IM by permutation
of coordinates. Let I = I1 ⊔ I2 ⊔ · · · ⊔ Ik be its orbit decomposition. Then,
NG ∼= ⊕i6kNi, where for i 6 k,

Ni :=
{∑

j∈Ii

ιj(m) : m ∈M
}
∼=M.

Here, ιj : M → N denotes the inclusion along the jth coordinate.

Proof. Since (
∑

j 6=iNj) ∩ Ni = {0} and ⊕i6kNi ⊆ NG hold for every i, it

remains to show that the Ni generate N
G. To prove this, note that any

x ∈ N can be written uniquely as x =
∑

i∈I ιi(mi) for certain mi ∈ M .

We prove by induction on the number of non-zero mi that any x ∈ NG lies
in the module generated by the Ni. We may suppose I = [1; |I|], m1 6= 0
and denote by I1 the orbit containing 1. Now, comparing the g(1)th entry
of x and of g.x yields that mg(1) = m1 for every g ∈ G. In particular, we
can split of a sum

∑
j∈I1

ιj(mj) =
∑

j∈I1
ιj(m1) ∈ N1 from x. Applying

induction to x−∑
j∈I1

ιj(m1) concludes the proof. �

In particular, Lemma 3.10 yields the following orbit decomposition.

Corollary 3.11. Let R∗ be a commutative, graded ring, I1, . . . , Ir be finite
index sets, M∗ be a graded R∗-module and G a finite group acting on each
of the Iℓ. The operation of G on the Iℓ induces an operation of G on the
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graded R∗-module N∗ := ⊕ℓ6r ⊕Iℓ M∗−dℓ, where the dℓ are certain non-

negative integers. Let Iℓ = Iℓ1 ⊔ Iℓ2 ⊔ · · · ⊔ Iℓnℓ
be the orbit decomposition.

Then, NG ∼= ⊕ℓ6r ⊕i6nℓ
Nℓ,i, where for ℓ 6 r, i 6 nℓ, we put

(Nℓ,i)∗ :=
{∑

j∈Iℓi

ιj(m) : m ∈M∗−dℓ

}
∼=M∗−dℓ .

Part II: Computation of the invariants of irreducible Weyl
groups

Throughout this part k0 denotes a field of characteristic not 2. When we
compute the invariants of an irreducible Weyl group W =W (Σ), where Σ
is an irreducible root system we assume also that the characteristic of k0
and the order of G are coprime.

We use in the following the description of irreducible root systems given
in Bourbaki [1, PLATES I-VIII] for irreducible root systems of type 6=
G2 (recall that for Weyl groups of type G2 we have already computed
the invariants in Section 3.3). We have Σ ⊆ ⊕

i6n
eiZ[1/2] ⊆ Rn for an

appropriate n. Taking the tensor product k0⊗Z[1/2] we get an embedding
of Σ into kn0 , such that all α ∈ Σ are anisotropic for the standard scalar
product of kn0 . Hence the associated reflections generate a finite subgroup
of On(k0) which is isomorphic to G. In the following we will identify G
with this subgroup of On(k0).

We provide a family of elements {xi}i∈I ⊆ Inv(G, kM∗ ), forming a basis
of Inv(G,M∗) for all cycle modules over k0. For this we have to show that
given k ∈ Fk0 and an invariant a ∈ Inv∗k(G,M∗), then there exist unique
ci ∈M∗(k) such that

a =
∑

i∈I

resk/k0(xi)ci.

To verify this claim, we may assume k = k0 and let e1, . . . , en denote the
standard basis elements of the k0-vector space k

n
0 .

If a1, . . . , an ∈ Σ are pairwise orthogonal, then P (a1, . . . , an) denotes the
elementary 2-abelian subgroup generated by the corresponding reflections
sa1 , . . . , san . For 1 6 i1 < · · · < il 6 n, we write xai1 ,...,ail for the invariant

H1(−, (Z/2) · sa1 × · · · × (Z/2) · san)
≃−→ H1(−, (Z/2)n)

xi1,...,il−−−−−→ kMl (− ),

see Corollary 3.2 for the definition of the invariant xi1,...,il .

4. Weyl groups of type An

The invariants of Weyl groups of type An with values in kM∗ are induced
by the Stiefel-Whitney classes {wi}i, see [4, Part I, Sect. 25]. The proof
carries over essentially verbatim to invariants with values in cycle modules
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M∗ with kM∗ -structure using the splitting principle in the form of Propo-
sition 2.3 and the computation of Inv((Z/2)n,M∗) in Corollary 3.2. The
result is as follows. Here, we identify H1(k, Sn) with the set of isomor-
phism classes of étale algebras of dimension n over k, and denote for such
an algebra E by qE its trace form.

Proposition 4.1. Let n > 1. Then, Inv(Sn,M∗) is completely decompos-
able with basis {E 7→ wi(qE)}i6⌊n/2⌋.

5. Weyl groups of type Bn/Cn.

First, we note that the Weyl group W (Cn) is isomorphic to the Weyl
group W (Bn). Hence, determining the invariants for W (Bn) will also yield
the determinants for W (Cn).

5.1. Invariants of B2. First, we consider W (B2), which is isomorphic to
the dihedral group of order 8. In particular, G := W (B2) = 〈σ, τ〉 ⊆ S4
admits the permutation representation defined by

σ =

(
1 2 3 4
2 3 4 1

)
, τ =

(
1 2 3 4
3 4 1 2

)
.

ConsideringG as orthogonal reflection group over k0 yields an embedding
φ : G ⊆ O2 of algebraic groups over k0 given by

σ 7→
(
0 −1
1 0

)
, τ 7→

(
0 1
1 0

)
.

Now, φ determines an action of G on k0[X,Y ] given by σX = Y , σY = −X,
τX = Y , τY = X. In particular, k0[X,Y ]G = k0[X

2 + Y 2,X2Y 2] ∼=
k0[A,B], where A := X2 + Y 2, B := 4X2Y 2. Fix the notation E :=
k0(X,Y ), K := k0(X

2 + Y 2,X2Y 2). Now, the group G acts freely on the
open subscheme

U := D
(
XY (X − Y )(X + Y )

)
= D(X2Y 2(X2 − Y 2)2) ⊆ A2,

where for a polynomial f , we denote by D(f) ⊆ A2 the open subset given
by f 6= 0.

By [4, Part I, Thm. 12.3] or [6, Thm. 3.7], the evaluation at the versal
torsor Spec(E) → Spec(K) yields an injection Inv(G,M∗) → M∗,unr(U/G).
To check that this map is also surjective, we first compute M∗,unr(U/G).
An explicit computation yields

U/G ∼= Spec(k0[X,Y,X
−2Y −2(X2 − Y 2)−2]G)

= Spec(k0[X
2 + Y 2,X2Y 2,X−2Y −2, (X2 − Y 2)−2])

∼= Spec
(
k0
[
A,B,B−1, (B −A2)−1

])
,
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To compute M∗,unr(U/G), note that V := D(A) ⊆ U/G is isomorphic to
the spectrum of

k0
[
A,B,B−1, A−1, (B −A2)−1

] ∼= k0
[
A,B′, (B′)−1, A−1, (B′ − 1)−1

]
,

where the isomorphism is induced by mapping B′ to B/A2. Now, by ap-
plying Lemma 3.1 twice and homotopy invariance,

M∗,unr(V ) ∼=M∗(k0)⊕ {B/A2 − 1}M∗−1(k0)⊕ {A}M∗−1(k0)⊕
⊕ {B}M∗−1(k0)⊕ {A}{B/A2 − 1}M∗−2(k0)

⊕ {A}{B}M∗−2(k0).

M∗,unr(U/G) can be computed as the kernel of the boundary ∂ = ∂A(A) :

M∗(V ) →M∗−1(Gm). Thus, for every t ∈M∗(k0),

∂(t) = 0,

∂({B/A2 − 1}t) = ∂({B −A2}t) = {B}∂(t) = 0,

∂({B}t) = {B}∂(t) = 0,

∂({A}t) = t,

∂({A}{B/A2 − 1}t) = ∂({A}{B −A2}t) = {B}∂({A}t) = {B}t.
∂({A}{B}t) = {B}∂({A}t) = {B}t.

Writing M∗ short for M∗(k0), we conclude that M∗,unr(U/G) is given by

M∗ ⊕ {B −A2}M∗−1 ⊕ {B}M∗−1 ⊕ {A}{B(B −A2)}M∗−2

∼=M∗ ⊕ {B −A2}M∗−1 ⊕ {B}M∗−1 ⊕ {A}{B −A2}M∗−2.

It remains to construct invariants mapping to the three non-constant basis
elements of M∗,unr(U/G). Pulling back w1, w2 ∈ Inv(O2, k

M

∗ ) along the

embedding φ gives invariants in Inv(G, kM∗ ) that – by abuse of notation –
we again denote by w1, w2. We first compute the value w1(E/K) of w1

at the versal torsor E/K constructed above. To do this, we note that the
determinant of φ(σiτ) is −1, while the determinant of φ(σi) is 1. Now,
XY (X2 − Y 2) ∈ E maps to its negative by each reflection and is fixed by
all the σi. Thus, w1(E/K) = {X2Y 2(X2 − Y 2)2} = {B(A2 −B)}.

Another invariant comes from the embedding G ⊆ S4. We may de-
fine v1 := resGS4

(w̃1). Again, we compute v1(E/K). We note that w̃1 ∈
Inv1(S4, k

M

∗ ) may be computed as follows. Start with an arbitrary x ∈
H1(k, S4); then w̃1(x) = sgn∗(x) ∈ H1(k,Z/2) ∼= k×/k×2 ∼= kM1 (k). The
kernel of sgn consists exactly of the elements {id, τ, σ2, σ2τ} with σ, τ as
above. Since XY is fixed by this kernel and is mapped to its negative
by σ, the value of v1 at the versal torsor is {X2Y 2} = {B}. Conse-
quently, it remains to find an invariant mapping to the basis {A}{B2 −A}
of M∗,unr(U/G).
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Finally, we compute the value of w2 ∈ Inv2(G, kM∗ ) at E/K. First con-
sider the elementary abelian 2-subgroup generated by reflections P :=
〈τ, τ ′〉, where τ ′ = σ2τ . Thus,

φ(τ) =

(
0 1
1 0

)
, φ(τ ′) =

(
0 −1
−1 0

)
.

Recalling that the action of G on E is defined via φ, we now consider
the versal P -torsor E/EP = k0(X,Y )/k0(X

2 + Y 2,XY ). Then, τ ∈ P =
Gal(E/EP ) acts via τ(X) = Y, τ(Y ) = X and τ ′ via τ ′(X) = −Y, τ ′(Y ) =
−X. Thus, this (Z/2)2-torsor over EP is equivalently described by the pair
((X − Y )2, (X + Y )2) ∈ ((EP )×/(EP )×2)2. We conclude that the value of

resPO4
w2 at this P -torsor is {(X − Y )2}{(X + Y )2} ∈ kM2 (EP ).

By the computations above, the value of resGO4
(w2) at E/K is of the form

α1 + {B −A2}α2 + {A}α3 + {B}{B(B −A2)}α4 ∈ kM2 (K)

for some α1 ∈ kM2 (k0), α2, α3 ∈ kM1 (k0), α4 ∈ kM0 (k0). Now, consider the
diagram

H1(K,G)
w2 //

res
EP

K (E)
��

kM2 (K)

��

H1(EP , G)
w2 // kM2 (EP )

H1(EP , P ).

ind
G
P

OO

The square commutes by the definition of invariants. Denote by E ∈
H1(K,G) the G-torsor E/K and by F ∈ H1(EP , P ) the P -torsor E/EP .
Interpreting the torsors as cocycles yields

indGP (F ) = resE
P

K (E) ∈ H1(EP , G).

Observing that XY is a square in EP , this means

{(X − Y )2}{(X + Y )2} = α1 + {B −A2}α2 + {A}{A2 −B}α4.

Applying the identity {β}{β′} = {β+β′}{−ββ′} to the left-hand side gives
{2A}{B − A2}, so that we may choose α1 = 0, α2 = {2} and α4 = 1. We
conclude that the injection Inv(G,M∗) → M∗,unr(U/G) is surjective. This
finishes the computation of Inv(G,M∗) and we obtain the following.

Proposition 5.1. The invariants Inv(W (B2),M∗) are completely decom-
posable with basis consisting of the invariants {1, v1, w1, w2}.

We conclude this section with a corollary of the proof.
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Corollary 5.2. Let P1 = P (e1, e2) and P2 = P (e1 − e2, e1 + e2). Then,

resP1

W (B2)
(v1) = x{e1} + x{e2},

resP1

W (B2)
(w1) = x{e1} + x{e2},

resP1

W (B2)
(w2) = x{e1,e2},

and

resP2

W (B2)
(v1) = 0,

resP2

W (B2)
(w1) = x{e1−e2} + x{e1+e2},

resP2

W (B2)
(w2) = x{e1+e2,e1−e2} + {2} · (x{e1−e2} + x{e1+e2}).

5.2. Invariants of Bn. After dealing with the case n = 2, we now compute
the invariants of Weyl groups of type Bn for general n. The root system
Bn is the disjoint union ∆1 ⊔ ∆2 ⊆ Rn, where ∆1 = {±ei : 1 6 i 6

n} are the short roots and ∆2 = {±ei ± ej : 1 6 i < j 6 n} are the
long roots. This root system induces an orthogonal reflection group over
any k0 satisfying the above requirements. Furthermore, W (Bn) ∼= Sn ⋉

(Z/2)n as abstract groups. Put m := [n/2] and for i 6 m define ai :=
e2i−1 − e2i and bi := e2i−1 + e2i. For each L 6 m the elements of XL :=
{a1, b1, . . . , aL, bL, e2L+1, e2L+2, . . . , en} are mutually orthogonal. Defining
PL := P (XL), we prove by induction on m that Ω(G) = {[P0], . . . , [Pm]}.

The claim is clear for n = 2. In the general case, let P be any maximal
elementary abelian 2-subgroup generated by reflections. First assume that
P contains a short root, say en. Now, observe that 〈en〉⊥ ∩ Bn = Bn−1

and use induction. If P contains a long root, we may assume this root to
be a1. Then, 〈a1〉⊥ ∩ Bn = {±b1} ∪ Bn−2, where we consider Bn−2 to be
embedded in Rn using the last n − 2 coordinates. In particular, we may
again use the induction hypothesis.

To determine Inv(Bn,M∗), we introduce additional pieces of notation.
We denote PL-torsors over a field k by (α1, β1, . . . , αL, βL, ǫ2L+1, . . . , ǫn) ∈
(k×/k×2)n. From the (Z/2)n-section, we know that Inv(PL,M∗) is com-
pletely decomposable with basis {xI}I⊆[1;n]. Since this parameterization is
inconvenient in the present setting, we change the index set by putting

Λd
L := {(A,B,C,E) ⊆ [1;L]3 × [2L+ 1;n] :A,B,C pw. disjoint,

|A|+ |B|+ 2|C|+ |E| = d}.
We reindex the basis of Inv(PL,M∗) by defining for every (A,B,C,E) ∈ Λd

L:

xLA,B,C,E : H1(k, PL) → kM∗ (k)

(α1, β1, . . . , αL, βL, ǫ2L+1, . . . ǫn) 7→
∏

a∈A

{αa}
∏

b∈B

{βb}
∏

c∈C

{αc}{βc}
∏

e∈E

{ǫe}.
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In the same spirit, we also write

P (A,B,C,E) := P ({ap}p∈A ∪ {bq}q∈B ∪ {ar, br}r∈C ∪ {es}s∈E).
For d 6 n, we now construct the specific W (Bn)-invariant

ud := ρ∗(w̃d) ∈ Invd(W (Bn),M∗),

where w̃d ∈ Invd(Sn, k
M

∗ ) denotes the dth modified Stiefel-Whitney class
and ρ : W (Bn) ∼= Sn⋉ (Z/2)n → Sn is the canonical projection. Then, the
map W (Bn) → Sn sends both sai , sbi to (2i − 1, 2i) and sei to the neutral
element. Let k ∈ Fk0 and (α1, β1, . . . , αL, βL, ǫ2L+1, . . . , ǫn) be a PL-torsor
over k. Using Example 3.5 and {2}{2} = 0, gives that the value of the total
modified Stiefel-Whitney class at this torsor is

∏
i6L(1 + {αiβi}). Hence,

res
PL

W (Bn)
(ud) =

∑

(A,B,∅,∅)∈Λd
L

xLA,B,∅,∅. (5.1)

Next, we construct an invariant vd such that

res
PL

W (Bn)
(vd) =

∑

(∅,∅,C,E)∈Λd
L

xL∅,∅,C,E (5.2)

To that end, we note thatW (Bn) embeds into S2n via σ
∏

i∈I sei 7→ σ · (σ+
n)

∏
i∈I(i, i+ n), where I ⊆ [1;n], σ ∈ Sn and σ + n ∈ S2n is given by

k 7→
{
k if k 6 n,

n+ σ(k − n) if k > n.

We define the modified Stiefel-Whitney invariants w̃d ∈ Invd(S2n, k
M

∗ ) as

before and put v′d := res
W (Bn)
S2n

(w̃d) ∈ Invd(W (Bn), k
M

∗ ) for d 6 n. Then, we
define vd recursively, by setting v0 := 0 and then

vd := v′d +
∑

k6d−1

ud−kvk.

To show that the so-defined invariant satisfies (5.2), we first note that
already when restricting v′d to PL, we obtain an agreement with the right-
hand side of (5.3) up to mixed lower-order expressions.

Lemma 5.3.

res
PL

W (Bn)
(v′d) =

∑

(∅,∅,C,E)∈Λd
L

xL∅,∅,C,E +
∑

k6d−1

{−1}d−k
∑

(A,B,C,E)∈Λk
L

xLA,B,C,E

(5.3)

Proof. Observe that the map W (Bn) → S2n sends sei 7→ (i, i + n) and

sai 7→ (2i− 1, 2i)(2i − 1 + n, 2i+ n), sbi 7→ (2i − 1, 2i+ n)(2i, 2i − 1 + n)
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Hence, by Lemma 3.6, the composition PL → W (Bn) → S2n → O2n maps
a PL-torsor to the quadratic form

〈〈−α1,−β1〉〉 ⊕ · · · ⊕ 〈〈−αL,−βL〉〉 ⊕ 〈2, 2ǫ2L+1, . . . , 2, 2ǫn〉.
We claim that the total modified Stiefel-Whitney class evaluated at this
quadratic form equals

∏

i6L

(1 + {−1}({αi}+ {βi}) + {αi}{βi})
∏

2L+16i6n

(1 + {ǫi}). (5.4)

To see this, we compute it suffices to check that w(〈2〉 ⊗ 〈〈α, β〉〉) = 1 +
{−1}{−1} + {α}{β}. To see this, we compute

w(〈2〉 ⊗ 〈〈−α,−β〉〉) = (1 + {2})(1 + {2α})(1 + {2β})(1 + {−2β}+ {−α})
= (1 + {α} + {2}{α})(1 + {α}+ {2β}{−α})
= 1 + {α}{α} + {2}{α} + {2β}{−α}
= 1 + {−1}{α} + {−1}{β} + {α}{β}.

Thus, translating (5.4) into the new notation, we obtain that

res
PL

W (Bn)
(v′d) =

∑

(∅,∅,C,E)∈Λd
L

xL∅,∅,C,E+
∑

k6d−1

{−1}d−k
∑

(A,B,C,E)∈Λk
L

xLA,B,C,E. �

In light of Lemma 5.3, to establish (5.2), it remains to understand the
product structure between ud−k and vk. To that end, we restrict the prod-
ucts to PL.

Lemma 5.4. We have
∑

(A,B,∅,∅)∈Λd
L

xLA,B,∅,∅

∑

(∅,∅,C,E)∈Λf
L

xL∅,∅,C,E =
∑

(A,B,C,E)∈Λd+f

2|C|+|E|=f

xLA,B,C,E.

Proof. First, since xLA,B,∅,∅x
L
∅,∅,C,E = {−1}|A∩C|+|B∩C|xLA−C,B−C,C,E,

∑

(A,B,∅,∅)∈Λd
L

xLA,B,∅,∅

∑

(∅,∅,C,E)∈Λf
L

xL∅,∅,C,E

=
∑

k>0

∑

(A,B,∅,∅)∈Λd
L

(∅,∅,C,E)∈Λf
L

|A∩C|+|B∩C|=k

{−1}kxLA−C,B−C,C,E

=
∑

(A,B,C,E)∈Λd+f
L

2|C|+|E|=f

xLA,B,C,E +
∑

k>1

∑

(A,B,∅,∅)∈Λd
L

(∅,∅,C,E)∈Λf
L

|A∩C|+|B∩C|=k

{−1}kxLA−C,B−C,C,E.
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To show that the second sum vanishes, fix k > 1 and (A′, B′, C,E) ∈
Λd+f−k
L . Then, define

S := {(A,B) : (A,B,∅,∅) ∈ Λd
L and A− C = A′ and B − C = B′}

= {(A′ ∪ U,B′ ∪ V ) : U, V ⊆ C and U ∩ V = ∅ and |U |+ |V | = k}.

Using this description, we conclude |S| = 2k
( |C|

k

)
. Since k > 1, this is

even and we obtain the desired vanishing of the second sum. �

In the rest of this section, we show that Inv(W (Bn),M∗) is completely
decomposable and that the products {ud−rvr}max(0,2d−n)6r6d

d6n

yield a basis.

Before determining the structure of Inv(W (Bn),M∗), it is helpful to know
something about the image of the restriction maps Inv(W (Bn),M∗) →
Inv(PL,M∗). Let d, k, ℓ, L be non-negative integers, L 6 m. Then, the
invariant

φdL,k,ℓ :=
∑

(A,B,C,E)∈Λd
L

|C|=k,|E|=ℓ

xLA,B,C,E

is non-trivial if and only if there exists (A,B,C,E) ∈ Λd
L with |C| = k and

|E| = ℓ.

Lemma 5.5. The image of the restriction map Inv(W (Bn),M∗) → Inv(PL,M∗)
is contained in the free submodule with basis

{
φdL,k,ℓ : 2k + ℓ 6 d 6 n, 2(d− k − ℓ) 6 2L 6 n− ℓ

}
.

Proof. Let us first show that φdL,k,ℓ 6= 0 iff 2k + ℓ 6 d 6 n and 2(d −
k − ℓ) 6 2L 6 n − ℓ. First, the conditions 2k + ℓ 6 d and 2L + ℓ 6 n
are necessary. Furthermore, from the pairwise disjointness of A,B,C, we
conclude |A| + |B| + |C| 6 L. This is equivalent to d − (2k + ℓ) + k 6 L.
Thus, d− k− ℓ 6 L is also necessary. To check sufficiency, suppose, we are
given L, k, ℓ, d satisfying the restrictions. Then, ([1; d − ℓ− 2k],∅, [d− ℓ−
2k + 1; d− ℓ− k], [2L + 1; 2L+ ℓ]) ∈ Λd

L. Thus, φ
d
L,k,ℓ 6= 0. Next, we check

that the image of the restriction map is indeed contained in the submodule
generated by the φdL,k,ℓM∗(k0).

Observe that all of the following elements normalize PL:

{se2i−1−e2j−1se2i−e2j}i,j6L, {sei−ej}i,j>2L+1 and {se2i}i6L.

Let NL ⊆ NW (Bn)(PL) be the subgroup generated by these elements. We

claim that NL permutes the xLA,B,C,E. Applying se2i−1−e2j−1se2i−e2j for
i, j 6 L to a PL-torsor

(α1, β1, . . . , αL, βL, ǫ2L+1, . . . , ǫn)
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interchanges αi ↔ αj and βi ↔ βj . Thus, xLA,B,C,E maps to xLA′,B′,C′,E

where A′/B′/C ′ is obtained from A/B/C by applying the transposition
(i, j) to the respective sets. Similarly, we see that swapping the ith and
the jth coordinate for i, j > 2L+1 maps xLA,B,C,E to xLA,B,C,E′ where E′ is

obtained from E by applying to it the transposition (i, j). Finally, changing
the (2i)th sign maps xLA,B,C,E to xLA′,B′,C,E where A′ = (A−{i})∪ (B∩{i})
and B′ = (B − {i}) ∪ (A ∩ {i}). That is, if i ∈ A we remove it from A and
put it into B and vice versa.

Iteratively applying these operations to an arbitrary (A0, B0, C0, E0) ∈
Λd
L shows that its orbit under NL equals {(A,B,C,E) ∈ Λd

L : |C| =
|C0|, |E| = |E0|}. Now, the lemma follows from Corollary 3.11. �

By Proposition 2.3, the injection Inv(W (Bn),M∗) →
∏

L6m Inv(PL,M∗)

has its image inside
∏

L6m Inv(PL,M∗)
NL and Lemma 5.5 gives a good

description of this object. However, this map is not surjective. One reason
is the following: If an element (zL)L of the right hand side comes from a
W (Bn)-invariant, then certainly the restrictions of zL and zL′ to PL ∩ PL′

must coincide. To address this, we prove the following refined lemma.

Lemma 5.6. The image of Inv(W (Bn),M∗) →
∏

L6m Inv(PL,M∗) lies in
the subgroup generated by {s ·M∗−|s|(k0) : s ∈ S}, where

S :=
{( ∑

2k+ℓ=r

φdL,k,ℓ

)
L
: max(0, 2d − n) 6 r 6 d 6 n

}
⊆

∏

L6m

Inv(PL, k
M

∗ ).

Proof. Let z̃ ∈ Inv(W (Bn),M∗) be a homogeneous invariant and z =
(zL)L ∈ ∏

L6m Inv(PL,M∗) be the image of z̃ under the restriction maps.

By Lemma 5.5, z =
(∑

d,k,ℓ φ
d
L,k,ℓmL,d,k,ℓ

)
L
for some mL,d,k,ℓ ∈ M∗−d(k0),

where the sums are over all those d, k, ℓ such that φdL,k,ℓ 6= 0.

First goal, we show that mL,d,k,ℓ is independent of L in the sense that

mL,d,k,ℓ = mL′,d,k,ℓ, if φ
d
L,k,ℓ 6= 0 and φdL′,k,ℓ 6= 0. We then denote by md,k,ℓ

the common value. Observe that (A0, B0, C0, E0) ∈ Λd
L′ ∩ Λd

L, where

(A0, B0, C0, E0) := ([1; d− ℓ−2k],∅, [d− ℓ−2k+1; d− ℓ−k], [n− ℓ+1;n]).

Hence, since z comes from an invariant of W (Bn),

res
P (A0,B0,C0,E0)
PL

(zL) = res
P (A0,B0,C0,E0)
PL′

(zL′).

Comparing coefficients of xA0,B0,C0,E0-components on both sides yields that
mL,d,k,ℓ = mL′,d,k,ℓ.

Now, let us have a look at the second obstruction. We want to prove
md,k,ℓ = md,k′,ℓ′ , if 2k + ℓ = 2k′ + ℓ′ and if there exist L,L′ such that

φdL′,k′,ℓ′ 6= 0 and φdL,k,ℓ 6= 0. It suffices to prove this in the case k′ − k = 1.



24 CHRISTIAN HIRSCH

Since there exist L,L′ satisfying φdL′,k′,ℓ′ , φ
d
L,k,ℓ 6= 0, we can choose some L

such that φdL+1,k′,ℓ′ , φ
d
L,k,ℓ 6= 0.

Let y be the restriction of z̃ to P ([1; d − ℓ− 2k],∅, [L − k + 1;L], [2L +
3; 2L + ℓ]) × W (B2), where B2 is embedded via the (2L + 1)th and the
(2L+ 2)th coordinates. By Proposition 2.5,

y =
∑

A⊆[1;d−ℓ−2k]
C⊆[L−k+1;L]
E⊆[2L+3;2L+ℓ]

xLA,∅,C,EyA,C,E

for uniquely determined yA,C,E ∈ Inv∗−|A|−2|C|−|E|(W (B2),M∗). Further-
more, by the results of Section 5.1,

yA,C,E = m
(0)
A,C,E + w1m

(1a)
A,C,E + v1m

(1b)
A,C,E + w2m

(2)
A,C,E

for uniquely determined

m
(0)
A,C,E ∈M∗−|A|−2|C|−|E|(k0), m

(1a)
A,C,E,m

(1b)
A,C,E ∈M∗−|A|−2|C|−|E|−1(k0)

and

m
(2)
A,C,E ∈M∗−|A|−2|C|−|E|−2(k0).

Restricting y further to P ([1; d− ℓ− 2k],∅, [L− k + 1;L], [2L+ 1; 2L+ ℓ])
and considering the x[1;d−2k−ℓ],∅,[L−k+1;L],[2L+1;2L+ℓ]-component, Corollary
5.2 yields that

md,k,ℓ = m
(2)
([1;d−ℓ−2k],[L−k+1;L],[2L+3;2L+ℓ]).

On the other hand, restricting y to P ([1; d − ℓ − 2k],∅, [L − k + 1;L +
1], [2L+ 3; 2L+ ℓ]) and considering the x[1;d−2k−ℓ],∅,[L−k+1;L+1],[2L+3;2L+ℓ]-
component, we obtain from Corollary 5.2 that

md,k′,ℓ′ = m
(2)
([1;d−ℓ−2k],[L−k+1;L],[2L+3;2L+ℓ]).

This proves the lemma. �

From Lemma 5.4, we deduce the following decomposition of Inv(W (Bn),M∗).

Corollary 5.7. The group Inv(W (Bn),M∗) is completely decomposable
with basis

{
ud−rvr : max(0, 2d − n) 6 r 6 d 6 n

}
.
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6. Weyl groups of type F4.

The root system F4 is the disjoint union ∆1 ⊔ ∆2 ⊔ ∆3 ⊆ R4 with short
routes ∆1 := {±ei ± ej : 1 6 i < j 6 4} and long roots

∆2 := {±ei : 1 6 i 6 4}, ∆3 := {1/2(±e1 ± e2 ± e3 ± e4)}.
Moreover, Ω(W (F4)) = {[P0], [P1], [P2]}, where
P0 := P (e1, e2, e3, e4), P1 := P (a1, b1, e3, e4), P2 := P (a1, b1, a2, b2)

Indeed, the set of long roots of F4 is the root system D4, which up to
conjugacy has a unique maximal set of pairwise orthogonal vectors, namely
a1, b1, a2, b2. On the other hand, if we have a maximal set of pairwise
orthogonal roots containing a short root, say e4, then 〈e4〉⊥ ∩F4 = B3. We
have determined before that up to conjugacy B3 contains two maximal sets
of pairwise orthogonal roots; namely {e1, e2, e3} and {a1, b1, e3}.

Furthermore, the inclusion P2 ⊆ W (B4) ⊆ W (F4) shows that the re-
striction map

Inv(W (F4),M∗) → Inv(W (B4),M∗)

is injective. Recall that Inv(W (B4),M∗) is a free M∗(k0)-module with the
basis

{1, u1, v1, u2, v1u1, v2, v2u1, v3, v4}.
Before constructing specific invariants, we first point to another restric-

tion in degree 2. Since resP2

W (F4)
(v1) = resP2

W (F4)
(v3) = 0, the image of the

restriction resP2

W (F4)
is contained in the free submodule S ⊆ Inv∗(P2,M∗)

with basis {1, y1, y2, y′2, y3, y4}, where y1 = resP2

W (B4)
(u1), y2 = resP2

W (B4)
(u2),

y′2 = resP2

W (B4)
(v2), y3 = resP2

W (B4)
(v2u1) and y4 = resP2

W (B4)
(v4).

Now, let a ∈ Inv(P2,M∗) be any invariant which is induced by an in-
variant from Inv(W (F4),M∗). Then, we can find unique md ∈ M∗−d(k0),
m2,m

′
2 ∈M∗−2(k0) such that

a =
∑

d64
d6=2

( ∑

(A,B,C)∈Λd

xA,B,C

)
md+

( ∑

(A,B,∅)∈Λ2

xA,B,∅

)
m2+

( ∑

(∅,∅,C)∈Λ2

x∅,∅,C

)
m′

2.

Now, s1/2(e1+e2+e3+e4) lies in the normalizer of P2, as it leaves a1, a2 fixed
and swaps b1 with −b2. Since a comes from Inv(W (F4),M∗), the action of
s1/2(e1+e2+e3+e4) leaves a invariant. Hence,

a =
∑

d64
d6=2

( ∑

(A,B,C)∈Λd

xA,B,C

)
md + (x{a1,a2} + x{b1,b2} + x{a1,b1} + x{a2,b2})m2

+ (x{a1,b2} + x{a2,b1})m
′
2.

Comparing coefficients yields m2 = m′
2.
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Thus, the image of the restriction Inv(W (F4),M∗) → Inv(P2,M∗) is con-
tained in the free submodule with basis {1, y1, y2 + y′2, y3, y4}. Therefore,
the image of the restriction Inv(W (F4),M∗) → Inv(W (B4),M∗) is contained
in the free M∗(k0)-module with basis {1, u1, v1, u2 + v2, v1u1, v2u1, v3, v4}.

Now, we need to construct F4-invariants which restrict to these elements.
First observe that D4 ⊆ F4 and that W (F4) stabilizes D4. Thus, any
g ∈ W (F4) maps the simple system S = {e1 − e2, e2 − e3, e3 − e4, e3 + e4}
to another simple system S′ ⊆ D4. Since all simple systems are conjugate
there exists a unique h ∈W (D4) mapping S′ to S. This procedure induces
a permutation of the 3 outer vertices {e1−e2, e3−e4, e3+e4} of the Coxeter
graph, thereby giving rise to a group homomorphism ψ : W (F4) → S3.

Then, we define v1 := ψ∗(w̃1), where w̃1 ∈ Inv(S3, k
M

∗ ) is the first mod-
ified Stiefel-Whitney class. To determine the restriction of v1 to PL note
that the map W (F4) → S3 sends W (D4) to the identity and se4 to the
transposition (2, 3). Since sei = gise4g

−1
i , where gi ∈ W (D4) denotes the

element switching the 4th and the ith coordinate (i 6 3), we conclude that

all sei are sent to (2, 3). Thus, the value of resPL

W (F4)
(v1) at the PL-torsor

(α1, β1, . . . , αL, βL, ǫ2L+1, . . . , ǫ4) is
∑

i>2L+1{ǫi}.
The embedding W (F4) ⊆ O4 as orthogonal reflection group yields in-

variants res
W (F4)
O4

(wd) ∈ Invd(W (F4), k
M

∗ ), where wd ∈ Invd(O4, k
M

∗ ) is the
dth unmodified Stiefel-Whitney class. Again, if 2 is not a square in k0,
then these invariants do not have a nice form, when restricted to the PL.
Therefore, we change them a little and define invariants ŵd. The image
of a PL-torsor (α1, . . . , αL, β1, . . . , βL, ǫ2L+1, . . . , ǫ4) in H

1(k,O4) under the
map PL ⊆ W (F4) ⊆ O4 may be computed by using Example 3.3 and is
given by 〈2α1, 2β1, . . . , 2αL, 2βL, ǫ2L+1, . . . , ǫ4〉. We would like to have

res
PL

W (F4)
(ŵd) =

∑

(A,B,C,E)∈Λd
L

xLA,B,C,E.

Since the restriction of w1 to PL is already given by
∑

(A,B,C,E)∈Λ1
L
xLA,B,C,E,

we put ŵ1 := w1. Now, for d = 2,

res
PL

O4
(w2) =

∑

(A,B,C,E)∈Λ2
L

xLA,B,C,E +
∑

(A,B,∅,∅)∈Λ1
L

{2}xLA,B,∅,∅,

so that ŵ2 := w2 − {2}(w1 − v1) has the desired property. The restriction
of w3 to PL is

res
PL

O4
(w3) =

∑

(A,B,C,E)∈Λ3
L

xLA,B,C,E +
∑

(A,B,∅,E)∈Λ2
L

|E|=1

{2}xLA,B,∅,E ,
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so that we set ŵ3 := w3 − {2}(w1 − v1)v1. Finally, the restriction of w4 to
PL is

res
PL

O4
(w4) =

∑

(A,B,C,E)∈Λ4
L

xLA,B,C,E +
∑

(A,B,C,E)∈Λ3
L

2|C|+|E|=2

{2}xLA,B,C,E

so that we set ŵ4 := w4 − {2}w2(w1 − v1). Furthermore, define u1 :=

w1 − v1 ∈ Inv1(W (F4), k
M

∗ ).

Now, we restrict the so-constructed invariants to W (B4). We claim that

(a) u1, v1 ∈ Inv1(W (F4), k
M

∗ ) restrict to u1, v1 ∈ Inv1(W (B4), k
M

∗ );

(b) u1v1, (ŵ2 − u1v1) ∈ Inv2(W (F4), k
M

∗ ) restrict to u1v1, u2 + v2 ∈
Inv2(W (B4), k

M

∗ ); and

(c) u1ŵ2, (ŵ3 − u1ŵ2) ∈ Inv3(W (F4), k
M

∗ ) restrict to u1v2, v3.

Finally, ŵ4 ∈ Inv4(W (F4), k
M

∗ ) restricts to v4 ∈ Inv4(W (B4), k
M

∗ ). To

prove these claims, we only need to consider the restrictions to Inv(PL, k
M

∗ ),
where the identities are clear by construction. Thus, Inv(W (F4),M∗) is a
free M∗(k0)-module with basis

{1, ŵ1, v1, ŵ2, ŵ1v1, ŵ3, ŵ2v1, ŵ4}.
The construction of the ŵd also yields the following result.

Proposition 6.1. Inv(W (F4),M∗) is completely decomposable with basis

{1, w1, v1, w2, v1w1, w3, v1w2, w4}.

Remark 6.2. Alternatively, to the approach above, one could also rely
on transfer-restriction arguments to characterize the invariants of W (B4),
which extend to W (F4) as those whose restriction to W (D4) is fixed under
the action of W (F4)/W (D4).

7. Weyl groups of type Dn.

The root system Dn, n > 2 consists of the elements

Dn = {±ei ± ej : 1 6 i < j 6 n}.
Let m := [n/2], ai := e2i−1 − e2i and bi := e2i−1 + e2i. By Remark
2.4, this root system defines an orthogonal reflection group over k0 with
|Ω(W (Dn))| = 1. More precisely, P := P (a1, b1, . . . , am, bm) is a maximal
elementary abelian 2-group generated by reflections. Furthermore, W (Dn)
is a subgroup of Sn ⋉ (Z/2)n ∼=W (Bn) in the precise sense that

W (Dn) = {σ ·
∏

i∈I

sei ∈ Sn ⋉ (Z/2)n : |I| even}.
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Remark 7.1. We note that for odd n the invariants of W (Dn) can be de-
duced from those of W (Bn), since W (Bn) = {±1}×W (Dn). For instance,
since W (D3) ∼=W (A3), this gives the invariants for W (B3).

Similarly to the Bn-section, we define

Λd := {(A,B,C) ⊆ [1,m]3 : A,B,C are pw. disjoint, |A|+ |B|+2|C| = d}
and xA,B,C : H1(k, P ) → kMd (k)/2

xA,B,C(α1, β1, . . . , αm, βm) =
∏

a∈A

{αa} ·
∏

b∈B

{βb} ·
∏

c∈C

{αc}{βc}.

As in the Bn-section, we now construct specific invariants. First, for d 6 m
the group homomorphism ρ : W (Dn) ⊆W (Bn) → Sn induces the invariant

ud := ρ∗(w̃d) ∈ Invd(W (Dn), k
M

∗ ) with resPW (Bn)
(ud) =

∑
(A,B,∅)∈Λd xA,B,∅.

Furthermore, from Section 5 we have an embeddingW (Dn) ⊆W (Bn) ⊆
S2n. Starting with aW (Dn)-torsor x ∈ H1(k,W (Dn)), we may consider its
image qx ∈ H1(k,O2n) induced by the mapW (Dn) → S2n → O2n. Observe
that W (Dn) → S2n sends

sai 7→ (2i − 1, 2i)(2i − 1 + n, 2i+ n), sbi 7→ (2i− 1, 2i + n)(2i, 2i − 1 + n).

Thus, starting with a P -torsor (α1, β1, . . . , αm, βm), we may apply Lemma
3.6 to see that under the composition P → W (Dn) → S2n → O2n this
torsor maps to

〈〈−α1,−β1〉〉 ⊕ · · · ⊕ 〈〈−αm,−βm〉〉 (⊕〈1, 1〉),
where the expression in parentheses appears only for odd n. We would like
to have an element v ∈ Inv(W (Dn), k

M

∗ ) such that resPW (Dn)
(v) is given by

H1(k, P ) → kM∗ (k)

(α1, β1 . . . , αm, βm) 7→ (1 + {α1}{β1}) · · · (1 + {αm}{βm}).
To achieve this goal, we proceed recursively as in Section 5. First, we
compute the value of the total Stiefel-Whitney class w ∈ Inv(O4, k

M

∗ ) at a
2-fold Pfister form:

w(〈〈−α,−β〉〉) = (1 + {α})(1 + {β})(1 + {α} + {β})
= 1 + {−1}{α} + {−1}{β} + {α}{β}.

Hence, setting v′ := res
W (Dn)
O2n

(w), we obtain as in Lemma 5.3 that

resPW (Dn)
(v′d) =

∑

(∅,∅,C)∈Λd

xL∅,∅,C +
∑

k6d−1

{−1}d−k
∑

(A,B,C)∈Λk

xA,B,C .

Hence, proceeding recursively by setting v0 := 0 and then

vd := v′d +
∑

k6d−1

ud−kvk
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yields the desired invariant. Moreover, resPW (Dn)
(vd) =

∑
(∅,∅,C)∈Λd x∅,∅,C

and, by Lemma 5.4,

resPW (Dn)
(ud)res

P
W (Dn)

(ve) =
∑

(A,B,C)∈Λd+e

2|C|=e

xA,B,C . (7.1)

Now, suppose that n = 2m is even. In this case, we need to construct one
further invariant. Since W (Dn) ∼= Sn ⋉ (Z/2)n−1, we have an embedding
Sn ⊆ W (Dn) such that |W (Dn)/Sn| = 2n−1. More precisely, |W (Dn)/Sn|
consists of the cosets gISn, where gI :=

∏
i∈I sei and where I ⊆ [1;n] has

even cardinality. The left action of W (Dn) on these cosets induces a map
W (Dn) → S2n−1 → O2n−1 . Thus, any k ∈ Fk0 and y ∈ H1(k,W (Dn))
induce a quadratic form qy ∈ H1(k,O2n−1) and thereby an invariant ω ∈
Inv(W (Dn),W ). In fact, we claim that ω ∈ Inv(W (Dn), I

m), where I(k) ⊆
W (k) is the fundamental ideal.

To prove this, we start by showing that resPW (Dn)
(ω) ∈ Inv(P, Im). It is

convenient to understand the map W (Dn) → S2n−1 on the subgroup P .

Lemma 7.2. Let L = {{2i − 1, 2i} : i 6 m} and define f : 2[1;n] → 2L,

f(I) := {{2i − 1, 2i} : either 2i− 1 ∈ I or 2i ∈ I, but not both}.
Then,

(1) The action of P on W (Dn)/Sn has the 2m−1 orbits OJ := {gISn |
f(I) = J }, J ⊆ L, |J | even.

(2) Let OJ be an arbitrary orbit from (1). Put AJ := {i 6 m :
{2i − 1, 2i} ∈ J } and BJ := {i 6 m : {2i − 1, 2i} 6∈ J }. Then,
P ({ai}i∈BJ

∪ {bj}j∈AJ
) acts trivially on OJ and the action of

PJ := P ({ai}i∈AJ
∪ {bj}j∈BJ

) on OJ is simply transitive.

Proof. (1) Let I ⊆ [1;n]. If {2i − 1, 2i} 6∈ f(I), then saigI = gIsai and
sbigI = gI∆{2i−1,2i}sai , where ∆ is the symmetric difference. On the other
hand, if {2i− 1, 2i} ∈ f(I), then saigI = gI∆{2i−1,2i}sai and sbigI = gIsai .

(2) By the proof of part (1), P ({ai}i∈BJ
∪ {bj}j∈AJ

) acts trivially on
OJ . Since |P ({ai}i∈AJ

∪ {bj}j∈BJ
)| = 2m = |OJ |, assertion (2) follows

after verifying that P ({ai}i∈AJ
∪{bj}j∈BJ

) acts freely on OJ . So suppose,
I ⊆ [1;n], M ⊆ AJ and N ⊆ BJ is such that f(I) = J and g :=

∏
i∈M sai ·∏

j∈N sbj fixes gISn. The proof of part (1) gives that ggISn = gI′Sn,

where I ′ = I∆(∪i∈M∪N{2i − 1, 2i}). Observing that I ′ = I if and only if
M = N = ∅ concludes the proof. �

Using Lemma 7.2, we conclude the following. Consider an arbitrary
y = (α1, . . . , αm, β1, . . . , βm) ∈ H1(k, P ) and let qy ∈ H1(k,O2n−1) be
the quadratic form induced by the composition P → W (Dn) → S2n−1 →
O2n−1 . The decomposition of the action of P into orbits OJ induces a
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decomposition of qy as qy ∼= ⊕J qJ . More precisely, the action of P on OJ

induces a map P → S2m and qJ is defined to be the image of y ∈ H1(k, P )
under the composition P → S2m → O2m . By Lemma 7.2, this composition
factors through the projection P → PJ . Now, by Lemma 3.6, its remark
and Lemma 7.2,

qJ ∼= 〈2m〉 ⊗
⊗

i∈AJ

〈〈−αi〉〉 ⊗
⊗

j∈BJ

〈〈−βj〉〉. (7.2)

Thus, the image of qy = ⊕J qJ inW (k) lies in Im(k), so that resPW (Dn)
(ω) ∈

Inv(P, Im).

Now, we pass from P to W (Dn). First, ω induces an invariant ω ∈
Inv0(W (Dn), I

∗/I∗+1) through the projection W → (I∗/I∗+1)0 = W/I.
Since the image of resPW (Dn)

(ω) lies in Im ⊆ I, we conclude that resPW (Dn)
(ω) =

0. As P is up to conjugation the only maximal elementary abelian 2-
subgroup of W (Dn) generated by reflections, Corollary 2.3 gives that ω =
0 ∈ Inv0(W (Dn), I

∗/I∗+1), i.e., ω ∈ Inv(W (Dn), I). Iterating this proce-
dure m times shows that ω ∈ Inv(W (Dn), I

m).

By Example 3.9, there exists an invariant em : Im(k) → kM2 (k) satisfying

em(〈〈α1〉〉 ⊗ · · · ⊗ 〈〈αm〉〉) =
∏

i6m

{αi}. (7.3)

Then,

em(y) := em(〈2m〉 ⊗ ω(y)) + {−1}
∑

k6d−1

ud−1−kvk

defines an element of Invm(W (Dn), k
M

∗ ) and, in the vein of Lemma 5.3, we
now determine its restriction to P .

Lemma 7.3.

resPW (Dn)
(em) =

∑

(A,B,∅)∈Λm

|A| even

xA,B,∅ (7.4)

Proof. First, by identity (7.1), it suffices to show that the restriction of the
invariant e′m(y) := em(〈2m〉 ⊗ ω(y)) to P is given by

∑

(A,B,∅)∈Λm

|A| even

xA,B,∅ + {−1}
∑

(A,B,C)∈Λm
d−1

xA,B,C . (7.5)
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Then, by identities (7.2) and (7.3), evaluating resPW (Dn)
(e′m) at the torsor

(α1, . . . , αm, β1, . . . , βm) ∈ H1(k, P ) gives that
∑

(A,B,∅)∈Λm

|A| even

∏

i∈A

{−αi}
∏

j∈B

{−βj} =
∑

(A,B,∅)∈Λm

|A| even

∑

U⊆A
V⊆B

{−1}m−|U |−|V |
∏

i∈U

{αi}
∏

j∈V

{βj}

=
∑

U,V⊆[1,m]
U∩V=∅

NU,V {−1}m−|U |−|V |
∏

i∈U

{αi}
∏

j∈V

{βj}.

where

NU,V := |{A ⊆ [1,m] : A ⊃ U,A ∩ V = ∅, |A| even}|.
To conclude the proof, we distinguish on the value of |U |+ |V |. First, the
contributions coming from |U | + |V | = m give precisely the leading-order
expression in (7.5). Next, suppose that |U |+|V | = m−k with k > 1. Then,
NU,V = 2k−1, so that the corresponding contribution vanishes mod 2 if and
only if k > 1. Now, we conclude the proof by noting that the contributions
for k = 1 yield precisely the summation expression in (7.5). �

Now, we derive a central set of constraints for the image of the restriction
map Inv(W (Dn),M∗) → Inv(P,M∗). For d 6 n and i 6 [d/2] put

φdi :=
∑

(A,B,C)∈Λd

|C|=i

xA,B,C ∈ Invd(P, kM∗ )

and ψ1 :=
∑

(A,B,∅)
|A| even

xA,B,∅.

Lemma 7.4. The image of the restriction map Inv(W (Dn),M∗) → Inv(P,M∗)
is contained in the free M∗(k0)-module with basis

S = {φdi : d 6 n, max(0, d−m) 6 i 6 [d/2]} ∪R,
where R = ∅, if n is odd and R = {ψ1}, if n is even.

Proof. Arguing as in the Bn-section shows that all elements of S are non-
zero. Furthermore, both se2i−1−e2j−1se2i−e2j and se2i−1se2j−1 normalize P .

Let us denote by N1, N2 ⊆ N(P ) the subgroups generated by the first,
respectively second kind of elements and let us denote by N the subgroup
generated by N1 and N2. At the torsor level, conjugation by the first
kind of elements swaps αi ↔ αj and βi ↔ βj . Thus for (A,B,C) ∈ Λd,
the invariant xA,B,C maps to xA′,B′,C′ , where A′ = (i, j)A, B′ = (i, j)B
and C ′ = (i, j)C. On the other hand, conjugation by the second kind of
elements swaps αi ↔ βi and αj ↔ βj . Thus, it maps xA,B,C to xA′,B′,C ,
where A′ = (A− {i, j}) ∪ (B ∩ {i, j}) and B′ = (B − {i, j}) ∪ (A ∩ {i, j}).
That is, if i ∈ A, we remove it from A and put it into B and vice versa;
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then we do the same for j. Thus, N acts on Inv(P, kM∗ ) by permuting the
xA,B,C and hence we can apply Corollary 3.11.

In the next step, we determine the orbit of xA0,B0,C0 under N for an arbi-

trary (A0, B0, C0) ∈ Λd. First, suppose that n is odd or that C0 6= ∅ or that
(n = 2m is even and d < m). Then, we claim that the orbit of xA0,B0,C0

under N2 is given by {xA,B,C0 : (A,B,C0) ∈ Λd, A ∪ B = A0 ∪ B0}.
It suffices to show that for any a ∈ A0, there exists an element of N2

mapping xA0,B0,C0 to xA0−{a},B0∪{a},C0
. As soon as this is proven, one

observes that the symmetric statement with b ∈ B0 also holds; iterating
these operations, we indeed get the claimed orbit. For n odd, se2a−1sen
maps xA0,B0,C0 to xA0−{a},B0∪{a},C0

. If C0 6= ∅ choose c ∈ C0; then
se2a−1se2c−1 maps xA0,B0,C0 to xA0−{a},B0∪{a},C0

. Finally, if n = 2m is
even and d < m, then there exists i ∈ [1;m] such that i 6∈ A0 ∪ B0 ∪ C0

and the element se2a−1se2i−1 does the trick. Thus, the orbit of xA0,B0,C0

under N2 equals {xA,B,C0 : (A,B,C0) ∈ Λd, A ∪ B = A0 ∪ B0}. Sim-

ilarly, for any (A1, B1, C1) ∈ Λd the orbit of xA1,B1,C1 under N1 equals

{xA,B,C : (A,B,C) ∈ Λd, |A| = |A1|, |B| = |B1|, |C| = |C1|}. Com-
bining these results, the orbit of xA0,B0,C0 under N is given by {xA,B,C :

(A,B,C) ∈ Λd, |C| = |C0|}.
Finally, let C0 = ∅, n = 2m be even and d = m. Then, the orbit

of xA0,B0,∅ under N2 equals {xA,B,∅ : (A,B,∅) ∈ Λd, A ∪ B = A0 ∪
B0, |B| − |B0| is even}. Using that for any (A1, B1, C1) ∈ Λd the orbit of
xA1,B1,C1 under N1 is given by {xA,B,C : (A,B,C) ∈ Λd, |A| = |A1|, |B| =
|B1|, |C| = |C1|}, we see that the orbit of xA0,B0,∅ under N is {xA,B,∅ :

(A,B,∅) ∈ Λd, |B| − |B0| is even}.
Hence, applying Corollary 3.11 concludes the proof. �

In particular, as Lemma 5.4 gives that resPW (Dn)
(ud−2iv2i) = φdi and as

resPW (Dn)
(em) = ψ1 and , we obtain the following result.

Corollary 7.5. Inv(W (Dn),M∗) is completely decomposable with basis

{ud−2iv2i : d 6 n,max(0, d −m) 6 i 6 [d/2]} ∪R,

where R = ∅ for odd n and R = {em} for even n.

Remark 7.6. A relation betweenW (Bn) andW (Dn) explains why in Corol-
lary 7.5, we only see vd with even d. Indeed, the kernel of the determinant
of the 2n-dimensional representation of W (Bn) contains W (Dn). Since
for odd d, all the W (Bn)-invariants vd are divisible by v1 and since v1 is
vanishing, we deduce that they all reduce to 0 on W (Dn).
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8. Weyl groups of type E6, E7, and E8.

8.1. Type E6. Up to conjugacy, P := P (a1, b1, a2, b2) is the unique max-
imal elementary abelian subgroup generated by reflections inW (E7). Since
the injection Inv(W (E6),M∗) → Inv(P,M∗) factors through Inv(W (D5),M∗),
the map Inv(W (E6),M∗) → Inv(W (D5),M∗) is injective and a basis of
Inv(W (D5),M∗) is given by {1, u1, u2, v2, v2u1, v4}.

So let a ∈ Inv(P,M∗) be an invariant which comes from a W (E6)-
invariant. Since the inclusion P ⊆ W (E6) factors through W (D5) ⊆
W (E6), a decomposes uniquely as

a =
∑

d64
d6=2

∑

(A,B,C)∈Λd

xA,B,Cmd +
∑

(A,B,∅)∈Λ2

xA,B,∅m2 +
∑

(∅,∅,C)∈Λ2

x∅,∅,Cm
′
2

for certain md ∈M∗−d(k0), m2,m
′
2 ∈M∗−2(k0). Now, the element

g := s 1
2
(e1−e2−e3−e4−e5−e6−e7+e8)

s 1
2
(−e1+e2+e3+e4−e5−e6−e7+e8)

∈W (E6)

lies in the normalizer of P , since

gsa1g
−1 = sb2 , gsb1g

−1 = sb1 , gsa2g
−1 = sa2 , gsb2g

−1 = sa1 .

The induced action of g on a P -torsor (α1, α2, β1, β2) is thus given by swap-
ping α1 ↔ β2, while leaving α2, β1 fixed. Therefore, applying g to the
invariant a yields

∑

d64
d6=2

∑

(A,B,C)∈Λd

xA,B,Cmd +
∑

i,j∈{1,2}

x{ai,bj}m2 + (x{a1,a2} + x{b1,b2})m
′
2.

Since a comes from an invariant of W (E6), it stays invariant under g
and comparing coefficients, we conclude that the image of the restriction
Inv(W (E6),M∗) → Inv(W (D5),M∗) lies in the free submodule with basis

{1, u1, u2 + v2, v2u1, v4}.

The embedding of W (E6) in O8 as orthogonal reflection group gives rise to

the invariants res
W (E6)
O8

(w̃d) ∈ Invd(O8, k
M

∗ ), which we again denote by w̃d.

For any k ∈ Fk0 and (α1, β1, α2, β2) ∈ (k×/k×2)4, the map P → W (E6) ⊆
O8 induces the quadratic form

〈2α1, 2β1, 2α2, 2β2, 1, 1, 1, 1〉.

Thus, the total modified Stiefel-Whitney class evaluated at this torsor
equals

(1 + {α1})(1 + {α2})(1 + {β1})(1 + {β2}).
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Now,

resPW (D5)
(u1) = resPW (E6)

(w̃1), resPW (D5)
(u2 + v2) = resPW (E6)

(w̃2),

resPW (D5)
(v2u1) = resPW (E6)

(w̃3), resPW (D5)
(v4) = resPW (E6)

(w̃4).

Hence, {w̃d}d64 form a basis of Inv(W (E6),M∗) as M∗(k0)-module.

8.2. Type E7. Up to conjugacy, P := P (a1, b1, a2, b2, a3, b3, a4) is the
unique maximal elementary abelian subgroup generated by reflections in
W (E7). Looking at the root systems, we see that there is an inclusion
W (D6) × 〈sa4〉 ⊆ W (E7). Invoking the same factorization argument as
before, the restriction map

Inv(W (E7),M∗) → Inv(W (D6)× 〈sa4〉,M∗)

is injective. We first recall that Inv(W (D6) × 〈sa4〉,M∗) is a free M∗(k0)-
module with basis

(0) 1

(1) u1, x{a4}
(2) u2, v2, u1x{a4}
(3) (u3 − e3), e3, u1v2, u2x{a4}, v2x{a4}
(4) u2v2, v4, (u3 − e3)x{a4}, e3x{a4}, u1v2x{a4}
(5) v4u1, u2v2x{a4}, v4x{a4}
(6) v6, v4u1x{a4}
(7) v6x{a4}.

Defining g := s 1
2
(e1−e2−e3−e4−e5−e6−e7+e8)

s 1
2
(−e1+e2+e3+e4−e5−e6−e7+e8)

∈
W (E7) as in the E6-case yields that

gsa1g
−1 = sb2 , gsb1g

−1 = sb1 , gsa2g
−1 = sa2 , gsb2g

−1 = sa1 ,

gsa3g
−1 = sa3 , gsb3g

−1 = sa4 , gsa4g
−1 = sb3 .

The action of g on a P -torsor (α1, β1, . . . , α3, β3, α4) ∈ (k×/k×2)7 is thus
given by swapping α1 ↔ β2, β3 ↔ α4 while leaving β1, α2, α3 fixed. Ar-
guing just as in the E6-case, we see that the image of Inv(W (E7),M∗) →
Inv(W (D6)× 〈sa4〉,M∗) lies in the free M∗(k0)-module with basis

(0) 1

(1) u1 + x{a4}
(2) v2 + u2 + u1x{a4}
(3) u1v2 + (u3 − e3) + u2x{a4}, e3 + v2x{a4}
(4) v4 + (u3 − e3)x{a4}, u2v2 + u1v2x{a4} + e3x{a4}
(5) v4x{a4} + u2v2x{a4} + v4u1

(6) v4u1x{a4} + v6
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(7) v6x{a4}.

Now, we provide specificW (E7)-invariants. First, the embeddingW (E7) ⊆
O8 gives us invariants res

W (E7)
O8

(w̃d) ∈ Invd(W (E7), k
M

∗ ), which we again

denote by w̃d. Then,

resPW (E7)
(w̃1) = resPW (D6)×〈sa4〉

(u1 + x{a4})

resPW (E7)
(w̃2) = resPW (D6)×〈sa4〉

(u2 + v2 + u1x{a4})

resPW (E7)
(w̃3) = resPW (D6)×〈sa4〉

(u3 + u1v2 + u2x{a4} + v2x{a4})

resPW (E7)
(w̃4) = resPW (D6)×〈sa4〉

(u2v2 + v4 + u3x{a4} + u1v2x{a4})

resPW (E7)
(w̃5) = resPW (D6)×〈sa4〉

(v4u1 + v4x{a4} + u2v2x{a4})

resPW (E7)
(w̃6) = resPW (D6)×〈sa4〉

(v6 + v4u1x{a4})

resPW (E7)
(w̃7) = resPW (D6)×〈sa4〉

(v6x{a4}).

So we still lack invariants in degree 3 and 4. To construct the missing
invariant in degree 3, we mimic the construction of the invariant em in the
Dn-section. Let U ∼= S6 × 〈sa4〉 ⊆ W (E7) be the subgroup generated by
the reflections at

{e1 + e2, e2 − e3, e3 − e4, e4 − e5, e5 − e6, e7 − e8}.
Then, |U\W (E7)| = 2016 and we obtain a map W (E7) → S2016 → O2016.
To be more precise, there is a right action of W (E7) on the right cosets
U\W (E7) given by right multiplication. This induces an anti-homomorphism
W (E7) → S2016 and precomposing this map with g 7→ g−1, we obtain the
desired homomorphism. We need the following lemma which tells us that
we are in a situation which is quite similar to the Dn-case:

Lemma 8.1. Let k ∈ Fk0 and y ∈ H1(k, P ) be a P -torsor. Let qy be the
quadratic form induced by y under the composition P → W (E7) → S2016 →
O2016. Then, the image of qy in W (k) is contained in I3(k).

Proof. This can be checked by a computational algebra system, see the
appendix. �

We now argue similarly to the Dn-case. In concrete terms, if y is a W (E7)-
torsor, and qy is the quadratic form induced by y under the composition
W (E7) → S2016 → O2016, then the image of qy in W (k) is contained in
I3(k) and we define the invariant

f ′3(y) := e3(〈23〉 ⊗ qy). (8.1)

In the Dn-case, namely in Lemma 7.3, we could compute the restriction of
the invariant em to the maximal elementary abelian 2-subgroup explicitly.
In principle, this would also be possible in the present setting. However, the
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computations would be substantially more involved. Therefore, we provide
a more conceptual level argument. To that end, we recall from Section 7
that if g ∈W (E7) is contained in the normalizer NW (E7)(P ) of P inW (E7),

then g acts both on the invariants {xA,B,C}(A,B,C)∈Λd ∈ Invd(P,M∗) as well

as on the indexing set Λd.

Lemma 8.2. Let d 6 7 and g ∈ NW (E7)(P ). Also, let a ∈ Invd(W (E7), k
M

∗ )

be an invariant and represent its restriction to Invd(P, kM∗ ) as

resPW (E7)
(a) =

∑

ℓ6d

∑

I∈Λℓ

mIxI , (8.2)

for certain coefficients mI ∈ kMd−|I|(k0). Then, mI = mg(I) for all ℓ 6 d

and I ∈ Λℓ.

Proof. First, since the restriction is invariant under the action of g,
∑

ℓ6d

∑

I∈Λd−ℓ

(mI −mg(I))xI = 0. (8.3)

Now, suppose that the assertion of the lemma was false, and choose a
counterexample I∗ ∈ Λℓ∗ with maximal ℓ∗. Then, we first evaluate both
sides of (8.2) at the function field E = k0(A1, B1, . . . , A3, B3, A4) in the
indeterminates A1, B1, . . . , A3, B3, A4 corresponding to the roots in P , and
then apply the Milnor residue maps corresponding to the indeterminates
associated with the index set I∗. Since ℓ∗ was chosen to be maximal, the
identity (8.3) reduces to mI −mg(I) = 0, which concludes the proof. �

In words, just as in Corollary 3.11, when representing the restrictions of
invariants as in (8.2), then basis elements in the same orbit share the same
coefficient.

In particular, we have seen above that in degree 1 and 2 all basis elements
are in a single orbit and are therefore the restriction of the corresponding
modified Stiefel-Whitney classes. Thus, applying Lemma 8.2 with a = f ′3,

there exist mℓ ∈ kM3−ℓ(k0), ℓ ∈ {0, 1, 2} and mA,B,C ∈ Z/2, (A,B,C) ∈ Λ3

such that

resPW (E7)
(f ′3) =

∑

(A,B,C)∈Λ3

mA,B,CxA,B,C +
∑

ℓ62

mℓres
P
W (E7)

(w̃ℓ).

Then, proceeding as in the definition of em in Section 7, we define an
invariant f3 ∈ Inv3(W (E7), k

M

∗ ) by stripping of the mixed terms from f ′3.
That is,

f3 := f ′3 −
∑

ℓ62

mℓw̃ℓ.
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In the appendix, we expound on how a computational algebra system shows
that

resPW (E7)
(f3) = resPW (D6)×〈sa4〉

(u1v2 + u3 − e3 + u2x{a4}). (8.4)

Finally, we can proceed in a similar fashion in order to remove the mixed
terms in the product expression.

(u1 + x{a4})(u1v2 + (u3 − e3) + u2x{a4}).

Thus, Inv(W (E7),M∗) is completely decomposable with basis {w̃d}d67 ∪
{f3, f3w̃1}.

8.3. Type E8. Up to conjugacy, P := P (a1, b1, a2, b2, a3, b3, a4, b4) is the
unique maximal elementary abelian subgroup generated by reflections in
W (E8). By the same arguments as in the E6/E7-case, we obtain that the
restriction map Inv(W (E8),M∗) → Inv(W (D8),M∗) is injective. We first
recall that Inv(W (D8),M∗) is a free M∗(k0)-module with the basis

{1, u1, u2, v2, u3, v2u1, e4, v4, (u4 − e4), v2u2, v2u3, v4u1, v4u2, v6, v6u1, v8}.
Again, we define g ∈ W (E8) as in the E6 or E7-case and check that it
normalizes P :

gsa1g
−1 = sb2 , gsb1g

−1 = sb1 , gsa2g
−1 = sa2 , gsb2g

−1 = sa1 ,

gsa3g
−1 = sa3 , gsb3g

−1 = sa4 , gsa4g
−1 = sb3 , gsb4g

−1 = sb4 .

The action of g on a P -torsor (α1, β1, α2, β2, α3, β3, α4, β4) is thus given by
swapping α1 ↔ β2, β3 ↔ α4 while leaving β1, α2, α3, β4 fixed. Again, ap-
plying the same kind of arguments as in the E6-case, we see that the image
of the restriction map Inv(W (E8),M∗) → Inv(W (D8),M∗) is contained in
the free submodule with basis

{1, u1, u2+v2, u3+v2u1, e4+v4, (u4−e4)+v2u2, v2u3+v4u1, v4u2+v6, v6u1, v8}.
We need to construct W (E8)-invariants mapping to these basis elements.
On the one hand, the inclusionW (E8) ⊆ O8 gives modified Stiefel-Whitney

classes w̃d ∈ Invd(W (E8), k
M

∗ ). Again,

resPW (E8)
(w̃1) = resPW (D8)

(u1), resPW (E8)
(w̃5) = resPW (D8)

(v2u3 + v4u1),

resPW (E8)
(w̃2) = resPW (D8)

(u2 + v2), resPW (E8)
(w̃6) = resPW (D8)

(v4u2 + v6),

resPW (E8)
(w̃3) = resPW (D8)

(u3 + u1v2), resPW (E8)
(w̃7) = resPW (D8)

(v6u1),

resPW (E8)
(w̃4) = resPW (D8)

(u4 + u2v2 + v4), resPW (E8)
(w̃8) = resPW (D8)

(v8).

The situation is very similar to the E7-case except that now, we miss a
basis invariant in degree 4. Let U ⊆W (E8) be the subgroup generated by
the reflections at

{e1 + e2, e2 − e3, e3 − e4, e4 − e5, e5 − e6, e6 − e7, e7 − e8}.
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By observing that U ∼= S8 or by using a computational algebra software,
we conclude |U\W (E8)| = 17280. As in the E7-case, we obtain a map
W (E8) → S17280 → O17280. Again, we need the following lemma.

Lemma 8.3. Let k ∈ Fk0 and y ∈ H1(k, P ) be a P -torsor. Let qy be
the quadratic form induced by y under the composition P → W (E8) →
S17280 → O17280. Then, the image of qy in W (k) is contained in I4(k).

Proof. Again, this can be checked by a computational algebra software, see
the appendix. �

As in the Dn-case, we obtain from this an invariant f4 ∈ Inv4(W (E8), k
M

∗ ).
More precisely, if y is a W (E8)-torsor and qy is the quadratic form induced
by y under the composition W (E8) → S17280 → O17280, then the image of
qy in W (k) is contained in I4(k) and we define f ′4(y) := e4(qy). We then
proceed as in the E7-case and set

f4 := f ′4 −
∑

ℓ63

mℓw̃ℓ

for suitable mℓ ∈ kMℓ (4 − ℓ) in order to strip off the mixed contributions
from f ′4.

The restriction of f4 to P is determined through a computational algebra
system, see the appendix. The result is resPW (D8)

(v2u2 + (u4 − e4)). Thus,

we conclude that Inv(W (E8),M∗) is completely decomposable with basis
{f4} ∪ {w̃d}d68.

9. Appendix A – Excerpts from a letter by J.-P. Serre

[...] Hence, the only technical point which remains is the “splitting prin-
ciple”: if the restrictions of an invariant to every cube is 0, the invariant is
0. In your text with Gille, you prove that result under the restrictive condi-
tion that the characteristic p does not divide the order |G| of the group G.
The proof you give (which is basically the same as in my UCLA lectures)
is based on the fact that the polynomial invariants of G (in its natural
representation) make up a polynomial algebra; in geometric language, the
quotient Affn/G is isomorphic to Affn. This is OK when p does not divide
|G|, but it is also true in many other cases. For instance, it is true for all p
(6= 2) for the classical types (provided, for type An, that we choose for lat-
tice the natural lattice for GLn+1, namely Zn+1). For types G2, F4, E6, E7,
it is true if p > 3 and for E8 it is true for p > 5: this is not easy to prove, but
it has been known to topologists since the 1950’s (because the question is
related to the determination of the mod p cohomology of the corresponding
compact Lie groups). When I started working on these questions, I found
natural to have to exclude, for instance, the characteristics 3 and 5 for E8.
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It is only a few years ago that I realized that even these small restrictions
are unnecessary: the splitting principle holds for every p > 2.

I have sketched the proof in my Oberwolfach report: take for instance
the case of E8; the group G =W (E8) containsW (D8) as a subgroup of odd
index, namely 135; moreover, the reflections ofW (D8) are also reflections of
W (E8); hence every cube of W (D8) is a cube of W (E8); if a cohomological
invariant of W (E8) gives 0 over every cube, its restriction to W (D8) has
the same property, hence is 0 because D8 is a classical type; since the index
of W (D8) is odd, then this invariant is 0. It is remarkable that a similar
proof works in every other case. [...]

10. Appendix B – Computations for E7 and E8

For the computations involving E7 and E8, we use the computational alge-
bra system GAP and the GAP-package CHEVIE [5]. The complete source code
used for the proof of Lemmas 8.1 and 8.3 together with detailed instruc-
tions on how to reproduce the results are provided on the author’s GitHub
page: https://github.com/Christian-Hirsch/orbit-e78.

10.1. Computations concerning W (E7). The proof of Lemma 8.1 re-
quires detailed information on the action of P on U\W (E7). We analyze
this action, via the procedure fullCheck(7, U, P).

First, fullCheck(7, U, P) computes the action of P on U\W (E7) and
also its orbits O1, . . . ,Or. Then, for each orbit Ok, it determines a subset
Ak ⊆ {a1, b1, a2, b2, a3, b3, a4}, such that P ({a1, b1, a2, b2, a3, b3, a4} − Ak)
acts trivially on Ok and such that P (Ak) acts simply transitively on Ok.
A priori, there is no reason that such a subset should exist; however – as
checked by the program – it exists in the case we are considering. The
return value of the procedure fullCheck is an array whose kth entry is the
set Ak. Inspecting the return value reveals that each Ak consists of at least
3 elements and that the subsets consisting of 3 elements have the desired
form.

More precisely, to call fullCheck(7, U, P), we need to determine the
indices of the roots generating U and P . In the following, the roots are
expressed as linear combinations of the simple system of roots given by
v1 =

1
2(e1 − e2 − e3 − e4 − e5 − e6 − e7 + e8), v2 = e1 + e2, vi = ei−1 − ei−2,

3 6 i 6 7. Additionally,

b2 = v2 + v3 + 2v4 + v5

b3 = v2 + v3 + 2v4 + 2v5 + 2v6 + v7

−a4 = 2v1 + 2v2 + 3v3 + 4v4 + 3v5 + 2v6 + v7
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We claim that U and P are represented by the indices [2, 4, 5, 6, 7, 63] and
[3, 2, 5, 28, 7, 49, 63], respectively. This can be checked by printing the basis
representation of the E7 roots:
gap> p: = [ 3, 2, 5, 28, 7, 49, 63 ];
gap> for u in p do Print(CoxeterGroup(”E”, 7).roots[u]);Print(”\ n”);od;
[ 0, 0, 1, 0, 0, 0, 0 ]
[ 0, 1, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 1, 0, 0 ]
[ 0, 1, 1, 2, 1, 0, 0 ]
[ 0, 0, 0, 0, 0, 0, 1 ]
[ 0, 1, 1, 2, 2, 2, 1 ]
[ 2, 2, 3, 4, 3, 2, 1 ]

We can now call the fullCheck-procedure.
gap> Aks: = fullCheck(7, [2, 4, 5, 6, 7, 63], [3, 2, 5, 28, 7, 49, 63]);

Verifying that all {Ak}k6r consist of at least 3 elements can be achieved
via the command
gap> for Ak in Aks do if Length(Ak)<3 then Print(”Fail”);fi;od;

To see that those Ak with |Ak| = 3 correspond precisely to the elements

{(A,B,C) ∈ Λ3 : |C| = 1} ∪ {(A,B,∅) ∈ Λ3 : |A| odd}
∪ {(A,B,∅, a4) : (A,B,∅) ∈ Λ2},

we use the e7Correct-procedure. It checks that the {Ak}k6r do not contain
elements which are not in the claimed set above. Since there are precisely
28 Ak with 3 elements, which is precisely the cardinality of the above set,
this reasoning yields the claimed description.
gap> Y: = Filtered(Aks, Ak-> Length(Ak)<4);
gap> e7Correct(Y);

10.2. Computations concerning W (E8). Since the arguments are very
similar to the E7-case, we only explain the most important changes. First,
we consider the maximal elementary abelian subgroup generated by reflec-
tions P = P (a1, b1, a2, b2, a3, b3, a4, b4) and the subgroup

U = 〈se1+e2 , se2−e3 , se3−e4 , se4−e5 , se5−e6 , se6−e7 , se7−e8〉.

In addition to the computations provided in Appendix 10.1, we note that

b4 = 2v1 + 3v2 + 4v3 + 6v4 + 5v5 + 4v6 + 3v7 + 2v8.

Then, P and U are represented by the indices [3, 2, 5, 32, 7, 61, 97, 120] and
[2, 4, 5, 6, 7, 8, 97]:
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gap> a: = [3, 2, 5, 32, 7, 61, 97, 120];
[ 3, 2, 5, 32, 7, 61, 97, 120 ]
gap> for u in a do Print(CoxeterGroup(”E”, 8).roots[u]); Print(”\ n”); od;
[ 0, 0, 1, 0, 0, 0, 0, 0 ]
[ 0, 1, 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 1, 0, 0, 0 ]
[ 0, 1, 1, 2, 1, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0, 1, 0 ]
[ 0, 1, 1, 2, 2, 2, 1, 0 ]
[ 2, 2, 3, 4, 3, 2, 1, 0 ]
[ 2, 3, 4, 6, 5, 4, 3, 2 ]

To understand the orbit structure, we proceed as in the E7-case:
gap> Aks: = fullCheck(8, [2, 4, 5, 6, 7, 8, 97], [3, 2, 5, 32, 7, 61, 97, 120]);
gap> for Ak in Aks do if Length(Ak)<4 then Print(”Fail”);fi;od;
gap> Y: = Filtered(Aks, Ak->Length(Ak)<5);
gap> e8Correct(Y);
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