
ar
X

iv
:1

80
5.

04
68

1v
1 

 [
he

p-
th

] 
 1

2 
M

ay
 2

01
8

Spinors and Rodrigues representations

associated with orthogonal polynomials

Z. Bakhshi∗

Department of Physics, Faculty of Basic Sciences, Shahed University, Tehran, Iran.

August 22, 2021

Abstract

An effective approach is presented to produce Schrödinger-like equation for the

spinor components from Dirac equation. Considering electrostatic potential as a con-

stant value yields a second-order differential equation that is comparable with the

well-known solvable models in the non-relativistic quantum mechanics for the certain

bound state energy spectrum and the well-known potentials. By this comparison, the

gage field potential and the relativistic energy can be written by the non-relativistic

models and the spinors will be related to the orthogonal polynomials. It has also

shown that the upper spinors wave functions based on the orthogonal polynomials can

be given in terms of the Rodrigues representations. Association with the Rodrigues

representations of orthogonal polynomials have also been investigated in the lower

spinor components, since they are related to the upper spinor components according

to first-order differential equation that is attained from Dirac equation.
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1 Introduction

In recent years, there has been a developing interest in search for exactly solvable systems

in non-relativistic and relativistic quantum mechanics. Exactly solvable meaning the eigen-

values and the eigenfunctions of the Hamiltonian operator of the physical system can be

derived analytically in closed form. Solvable models are noteworthy because understanding

of physics can only be brought with such solutions. Moreover, exact solutions are valuable

tools for testing and improving numerical methods introduced to solve problems physically

more interesting [1]. Since, relativistic extensions of the exact solvable potentials are very

useful to study the relativistic effects, various methods were employed to obtain the exact

solution of the problem. Point canonical transformation [2-4], dynamical group [5,6], fac-

torization method [7], supersymetric quantum mechanics and shape invariance [8-10] are

methods among many which were used in the search for exact solutions of wave function.

Also, there are a lot of investigations that show how methods used to obtain analytical so-

lutions of the Schrödinger equation can be extended to Dirac case [11-15].

Alhaidari [11-13] applies a unitary transformation to Dirac equation such that the result-

ing second-order differential equation becomes Schrödinger-like equation so that comparison

with the well-known non-relativistic problems is transparent. If the electrostatic potential

is assumed as a constant value, the second-order differential equation can be constituted for

upper component by eliminating lower component, without applying a general local unitary

transformation that eliminates the first-order derivative such as what Alhaidary has consid-

ered.

In this method, by assuming electrostatic potential as a constant value, the second-order

differential equation can be compared with the well-known solvable Schrödinger equation in

the non-relativistic quantum models. The wave functions in Schrödinger equation for the

well-known potentials have been obtained on the orthogonal polynomials, such as Jacobi,

Generalized Lauegrre and Hermite polynomials and the energy eigenvalues spectrum can be
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accessible for each case. By comparing the second-order differential equation that has been

obtained from Dirac equation with Schrödinger equation for the well-known potential such

as Scarff-II, Pöshel-Teller, Mörse, 3D-oscillator and shift-oscillator potentials, the gage field

potential can be written based on the well-known superpotentials that are related to the

mentioned potentials. Therefore, the second-order differential is transformed to the solvable

models with the exact solutions, it means that the relativistic energy eigenvalues can be

gotten based on the non-relativistic models, also the spinors will be related to the orthogo-

nal polynomials according to the non-relativistic models. Then, Rodriguues representations

and the differential equation of them are calculated for orthogonal polynomials. Moreover,

the second-order differential equation also can be considered as a product of two first-order

differential operators and the spinor wave function related to the differential equation that

is expressed in terms of Rodrigues representations that is related to the orthogonal polyno-

mials. Therefore, the solution of second-order differential equation can be considered with

the determined relativistic energy and association with Rodriguues representations can be

gotten for each orthogonal polynomials.

This paper is organized as followed: In section 2, by using the point canonical transforma-

tions, the second-order differential equation is constituted with the gauge field potential and

the energy spectrum that will be introduced based on the non-relativistic models. Then,

the association of Rodriguues representation with orthogonal polynomials are shown in the

sections 3, 4 and 5 for Jacobi, Generalized Lauegrre and Hermite polynomials, respectively.

In each section, all of the gage field potential are considered that they can constituted the

solvable models with the certain energy eigenvalues, for each orthogonal polynomials. There-

fore, in the each section, Rodriguues representations of the orthogonal polynomials have been

calculated for some gage field potentials. In section 6, the paper ends with a brief conclusion.
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2 The three-dimensional Dirac equation for a free struc-

ture

Particle of spin 1
2
reads (ih̄γµ∂µ −mc)Φ = 0, where m is the rest mass of the particle, c is

the speed of light, and Φ is a four-component wave function. The four matrices {γµ}3µ=0 are

given the following standard representation [16]

γ0 =







I 0

0 −I





 , −→γ =







0 −→σ

−−→σ 0





 , (2.1)

where I is the 2 × 2 unit matrix and σ are the usual 2 × 2 Pauli spin matrices. In atomic

units (m = e = h̄ = 1), Dirac equation reads (iγµ∂µ − α−1)Φ = 0, where α = h̄
mc

= 1
c
is

the Compton wavelength of the particle. In the presence of the electromagnetic potential,

Aµ = (A0, c
−→
A ), gauge invariant coupling to the charged spinor is accomplished by the

minimal substitution ∂µ → ∂µ + iαAµ, which transforms free Dirac equation into

[iγµ(∂µ + iαAµ)− α−1]Φ = 0. (2.2)

For time independent potential, Eq.(2.2) gives the following matrix representation of Dirac

Hamiltonian (in units of mc2 = α2) [14]

H =







α2A0 + 1 −iα~σ.~∇+ α~σ. ~A

−iα~σ.~∇ + α~σ. ~A α2A0 − 1





 . (2.3)

Taking into consideration gauge invariance, the form of electromagnetic potential for static

charge distribution with spherical symmetry is

(A0, ~A) = (υ(r), r̂ω(r)), (2.4)

where r̂ is radial unit vector, υ(r) and ω(r) are electrostatic potential and gauge field poten-

tial, respectively. By substituting the two off-diagonal term α~σ. ~A by ±iα~σ. ~A in (2.3), the
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Hamiltonian leads to the following two component radial Dirac equation [17]







α2υ(r) + 1 α(k
r
+ ω(r)− d

dr
)

α(k
r
+ ω(r) + d

dr
) α2υ(r)− 1













ϕ(r)

θ(r)





 = ε







ϕ(r)

θ(r)





 , (2.5)

where ε is the relativistic energy eigenvalues and k is the spin-orbit coupling parameter

defined as k = ±(j + 1
2
) for l = j ± 1

2
. Eq.(2.5) gives two coupled first-order differential

equations for the radial spinor components. By eliminating lower spinor component and by

assuming that the electrostatic potential υ(r) to be a constant value η, the second-order

differential equation can be gotten for upper spinor wave function as

−
d2ϕ

dr2
+ [(ω(r) +

k

r
)2 − (

dω

dr
−
k

r2
)− (

(α2η − ε)2 − 1

α2
)]ϕ(r) = 0. (2.6)

Eq.(2.5) also gives the lower spinor component in terms of the upper component as followed

θ(r) = [αη − (
ε+ 1

α
)]−1

{

[ω(r) +
k

r
]ϕ(r) +

dϕ

dr

}

. (2.7)

By comparing Eq.(2.6) with the solvable Schrödinger equation in the non-relativistic mod-

els, the relation can be considered between the well-known potential in the non-relativistic

quantum models and the gage field potential in the relativistic system as Vm(r) = (ω(r) +

k
r
)2 − (dω

dr
− k

r2
). Also, non-relativistic energy eigenvalues can be related to the relativistic

energy eigenvalues as E = (α2η−ε)2−1
α2 . So, the gauge field potential and the relativistic energy

that due to solvability of Dirac equation based on the non relativistic quantum mechanics

are easily available.

3 Association of Rodruiges representation with Jacobi

polynomials

Let us consider the gauge field potentials where their wave functions are related to Jacobi

polynomials such as Pöschl-Teller potential ω(1)(r) = −A coth r + B
sinh r

− k
r
and Scarf-II
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potential ω(2)(r) = −A tanh r − B
cosh r

− k
r
where A and B are real parameters. For each

potential, respectively, Eq.(2.6) gives the following second-order differential equations for

upper spinor component

−
d2ϕ(1)

n,m(r)

dr2
+

[

A2 +
(B2 − A2 + A)

sinh2 r
+

(B − 2AB) cosh r

sinh2 r

]

ϕ(1)
n,m(r) =

[

(α2η − ε)2 − 1

α2

]

ϕ(1)
n,m(r),(3.1)

−
d2ϕ(2)

n,m(r)

dr2
+

[

A2 +
(B2 − A2 + A)

cosh2 r
+

(2AB − B) sinh r

cosh2 r

]

ϕ(2)
n,m(r) =

[

(α2η − ε)2 − 1

α2

]

ϕ(2)
n,m(r),(3.2)

where A = λ+γ+2m−1
2

and B = γ−λ

2
such that λ, γ > −1 in Eq.(3.1) and A = m + λ − 1

2

and B = γ

2
such that λ > −1 and −∞ > γ > +∞ in Eq.(3.2). There will be the well-

known non-relativistic energy spectrum as E(1)
n,m = (λ+ γ + n+m)(m− n− 1) and E(2)

n,m =

(2λ + n + m)(n − m + 1) for Pöschl-Teller potential and Scarf-II potential, respectively.

As mentioned before, they can be used to calculate relativistic energy spectrum of Dirac

equation as the following forms

ε(1)n = α2η ∓
[

−α2(λ+ γ + n +m)(n−m+ 1) + 1
] 1

2
, (3.3)

ε(2)n = α2η ∓
[

−α2(2λ+ n+m)(n−m+ 1) + 1
]
1

2
. (3.4)

The bound states wave functions of the non-relativistic problem [18] are mapped into the

following upper spinor components wave functions

ϕ(1)
n,m(x) ∝ (x− 1)

2λ+2m−1

4 × (x+ 1)
2γ+2m−1

4 P (λ+m−1 , γ+m−1)
n (x), (3.5)

ϕ(2)
n,m(x) ∝

(

1 + x2
)−

1

2 × exp
(

γ

2
tanh−1 x

)

P
(i γ

2
+m+λ− 1

4
,−i

γ

2
+m+λ− 1

4
)

n (x), (3.6)

where P (µ , ν)
n (x) is Jacobi polynomial with µ, ν > −1, and x = cosh r, µ = λ +m − 1 and

ν = γ +m− 1 in Eq.(3.5) and x = sinh r, µ+ iγ
2
+m+ λ− 1

4
and ν = −iγ

2
+m+ λ− 1

4
in

Eq.(3.6). By substituting upper spinor component (3.5) and (3.6) into Eq.(2.7) and using

recursion properties of Jacobi polynomials, lower spinor components are given as

θ(1)n,m(x) ∝





1

α
∓
[

1

α2
− n2 − n(λ+ γ + 2m− 1)

]

1

2





−1
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×

([

nx− (
λ− γ

2n+ 2m+ λ+ γ − 2
)

]

(x2 − 1)−
1

2 ϕ(1)
n,m(x)

−

[

2(n+m+ λ− 1)(n+m+ γ − 1)

2n+ 2m+ λ+ γ − 2

]

(x2 − 1)−
1

2ϕ
(1)
n−1,m(x)

)

, (3.7)

θ(2)n,m(x) ∝





1

α
∓
[

1

α2
+ (n−m+ 1)(m− n+ 2λ− 2)

]

1

2





−1

×

([

−(n + λ+
3

4
)x+

γ

2

(

2n− 3m− λ+ 3

−n + 2m− 2

)]

(x2 + 1)−
1

2

+
γ

2
(1− x)−1(x2 + 1)

1

2ϕ(2)
n,m(x)−





i(−n + 2m+ λ− 2)2 + γ2

8

−n + 2m+ λ+−2



 (x2 + 1)−
1

2ϕ
(2)
n−1,m(x)



 .(3.8)

Raising and lowering operatorsB±(m) = ± d
dr
+Wm(x(r)), where the superpotentialWm(x(r))

satisfies in the Riccati equation Vm =W 2
m±W ′

m, can be written as following forms according

to Pöschl-Teller and Scarf-II potentials, respectively,

B
(1)
+ =

d

dr
+ [−A coth r +

B

sinh r
], B

(1)
− = −

d

dr
+ [−A coth r +

B

sinh r
]. (3.9)

B
(2)
+ =

d

dr
+ [−A tanh r −

B

cosh r
], B

(2)
− = −

d

dr
+ [−A tanh r +

B

cosh r
]. (3.10)

It is obvious that the second-order differential equations can always be considered in a

factorization form as a product of a pair of linear differential operators (3.9) and (3.10).

Therefore,

B
(1),(2)
+ (m)B

(1),(2)
− (m)ϕ(1),(2)

n,m (r) = E(1),(2)(n,m)ϕ(1),(2)
n,m (r), (3.11)

B
(1),(2)
− (m)B

(1),(2)
+ (m)ϕ

(1),(2)
n,m−1(r) = E(1),(2)(n,m)ϕ

(1),(2)
n,m−1(r). (3.12)

In the above equations, for a given n, the operators B+(m) raises the index m while the

operator B−(m) lower it. We can also obtain the highest state ϕn,n by solving the first-order

differential equation B+(n + 1)ϕn,n(r) = 0 because the non-relativistic energy spectrum

E(n,m) vanishes for m = n + 1 [10]. Since, by introducing a new function as ϕn,m(x) =

A
1

4 (x)W
1

2 (x)ψn,m(x) and changing the variable dx
dr

=
√

A(x), Schrödinger equation (2.6) has
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been obtained from the general form of associated with second-order differential equation in

terms of master function A(x) and the wave function W (x) as follows [19-21]

A(x)ψ̈n,m(x) +
(A(x)W (x))′

W (x)
ψ̇n,m(x) +

[

−
1

2
(n2 + n−m2)Ä(x) + (m− n)

(

A(x)Ẇ (x)

W (x)

)′

−
m2

4

Ȧ(x)2

A(x)
−
m

2

Ȧ(x)Ẇ (x)

W (x)

]

ψn,m(x) = 0, (3.13)

where ψn,m(x) is Rodruiges representation of the orthogonal polynomials in Eq. (3.13). For

a positive integer n, ψn,m(x) as Rodruiges representationis is given by

ψn,m(x) = (−1)mA
m
2 (x)

(

d

dx

)m

ψn(x), m = 0, 1, 2, .., n (3.14)

where

ψn(x) =
N

W (x)

(

d

dx

)n

(An(x)W (x)), (3.15)

with N which is normalization constant. So, for each case of the gage field potentials, the

Rodruiges representations of upper and lower spinors and differential equations associated

with them are available. Furthermore, it can be shown that they are clear examples of

connection between Jocobi polynomials and Rodruiges representations in Dirac equation.

Since, the wave functions ψn,m(x) are related to the upper spinors as the following forms

ψ(1)
n,m(x) = (x− 1)−(λ

2
+ 1

4
) (x+ 1)−(γ

2
+ 1

4
)
ϕ(1)
n,m(x), (3.16)

for, A(1)(x) = x2 − 1 and W (1)(x) = (x− 1)λ(x+ 1)γ in Pöschl-Teller potential and,

ψ(2)
n,m(x) =

(

x2 + 1
)−(λ

2
+ 1

4
)
exp

(

−
γ

2
tan−1(x)

)

ϕ(2)
n,m(x), (3.17)

when, A(2)(x) = x2 + 1 and W (2)(x) = (x2 + 1)λ exp(γ tan−1(x)) in Scarf-II potential. Since

the lower spinors can be connected to the upper spinors according to the Eqs.(3.7) and

(3.8), therefore, Rodruiges representations of upper spinors also can be associated with lower

spinors. If the wave function Θn,m(x) is introduced for lower spinor θn,m(x), it can be written
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based on Rodruiges representations ψn,m(x). The wave function Θn,m(x) that is connected to

the lower spinors θn,m(x) can be written as follows for Pöschl-Teller and Scarf-II potentials,

proportionately,

Θ(1)
n,m(x) ∝





1

α
∓
[

1

α2
− n2 − n(λ+ γ + 2m− 1)

]

1

2





−1

×

([

nx− (
λ− γ

2n+ 2m+ λ+ γ − 2
)

]

(x2 − 1)−
1

2 ψ(1)
n,m(x)

−

[

2(n+m+ λ− 1)(n+m+ γ − 1)

2n + 2m+ λ+ γ − 2

]

(x2 − 1)−
1

2ψ
(1)
n−1,m(x)

)

,(3.18)

and

Θ(2)
n,m(x) ∝





1

α
∓
[

1

α2
+ (n−m+ 1)(m− n + 2λ− 2)

]

1

2





−1

×

([

−(n + λ+
3

4
)x+

γ

2

(

2n− 3m− λ+ 3

−n + 2m− 2

)]

(x2 + 1)−
1

2

+
γ

2
(1− x)−1(x2 + 1)

1

2ψ(2)
n,m(x)−





i(−n + 2m+ λ− 2)2 + γ2

8

−n + 2m+ λ +−2



 (x2 + 1)−
1

2ψ
(2)
n−1,m(x)



 .(3.19)

The wave functions ψn,m(x) can be also satisfied in the second-order differential equations

for each potential, correlatively,

(x2 − 1)ψ̈(1)
n,m(x) +

[

1

2
(1− γ − λ)x3 +

1

2
(γ − λ)x2 − 1

]

ψ̇(1)
n,m(x) +

[

(1−m)(λ+ γ +m)x2 + (m− 2)(γ − λ)x+
(λ+ γ + n+m)(m− n− 1)

x2 − 1

+
(λ+ γ + 2m− 1)2

2
−m+ 1

]

ψ(1)
n,m(x) = 0. (3.20)

and

(x2 + 1)ψ̈(2)
n,m(x) + [2(λ+ 1)x+ γ] ψ̇(2)

n,m(x) +
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[

(m2 − n2 − n) + 2λ(m− n)−
(m2 + 2mλ)x2 − γmx

x2 + 1

]

ψ(2)
n,m(x) = 0 (3.21)

Rodrigues representations of the associated polynomials ψn,m(x) are given by

ψ(1)
n,m(x) = (−1)m(x2 − 1)

m
2

(

d

dx

)m

ψ(1)
n (x), m = 0, 1, 2, .., n (3.22)

and

ψ(2)
n,m(x) = (−1)m(x2 + 1)

m
2

(

d

dx

)m

ψ(2)
n (x), m = 0, 1, 2, .., n (3.23)

where ψn(x) satisfies in Jacobi differential equation which their Rodrigues representations,

respectively, are

ψ(1)
n (x) = N(x− 1)−λ(x+ 1)−γ

(

d

dx

)n
(

(x− 1)n+λ(x+ 1)n+γ
)

, (3.24)

and

ψ(2)
n (x) = N(x2 + 1)−λ exp(−γ tan−1 x)

(

d

dx

)n
(

(x2 + 1)n+λ exp(−γ tan−1 x)
)

, (3.25)

where N is a normalization constant. Since the wave functions Θn,m(x) connected to the

lower spinor θn,m(x) that have been calculated based on upper spinors ϕn,m(x) and Rodriguies

representations of upper spinors can be generalized to the wave function Θn,m(x) as ψn,m(x)

and ψn−1,m(x). Therefore, the above Rodriguies representation can also be related to the

lower spinor components.



Spinors and Rodrigues representation associated with orthogonal polynomials 11

4 Association of Rodruiges representation with Gen-

eralized Lauegrre polynomials

When Mörse potential ω(1)(r) = −γ

2
e−r − m − λ

2
+ 1

2
− k

r
and 3D-dimensional oscillator

potential ω(2)(r) = γ

4
r − (λ +m − 1

2
)2
r
− k

r
are considered as the gauge field potentials, the

upper spinor components are associated with Generalized Lauegrre polynomials. So, the

second-order differential equations for the upper spinor components are written according to

Eq.(2.6)

−
d2ϕ(1)

n,m(r)

dr2
+

[

γ2

4
e−2r + γ(m+

λ

2
− 1)e−r

]

ϕ(1)
n,m(r) =

[

(α2η − ε)2 − 1

α2

]

ϕ(1)
n,m(r), (4.1)

−
d2ϕ(2)

n,m(r)

dr2
+

[

γ2

16
r2 + (λ+m−

1

2
)(λ+m−

3

2
)
1

r2
γ

2
(λ+m)

]

ϕ(2)
n,m(r) =

[

(α2η − ε)(2) − 1

α2

]

ϕ(2)
n,m(r).(4.2)

According to the non-relativistic energy spectrum E(1)
n,m = −(n − m + 1)(λ + n + m) and

E(2)
n,m = γ(n−m+ 1), the relativistic energy spectrums are obtained as

ε(1)n = α2η ∓
[

−α2(n−m+ 1)(λ+ n +m) + 1
] 1

2
, (4.3)

ε(2)n = α2η ∓
[

−α2γ(n−m+ 1) + 1
] 1

2
. (4.4)

The second-order differential equations(4.1) and (4.2) due to the solutions based on the

Generalized Laugerre polynomials as upper spinor wave functions

ϕ(1)
n,m(x) ∝

(

γ

x

)−(n+λ
2
+ 1

2
)

× exp
(

−
γ

2x

)

L(−2n−λ−1)
n

(

γ

x

)

, (4.5)

ϕ(2)
n,m(x) ∝ (γx)

λ+m−

1
2

2 × exp
(

−
γx

2

)

L
(λ+m−

1

4
)

n (γx) , (4.6)

where Lα
n(x) is Generalized Laugerre polynomial with α > −1. In the upper spinor (4.5),

x = er and α = −2n− λ− 1 and in the other upper spinor (4.6), x = r2

4
and α = λ+m− 1

4

. Lower spinor components can be attained Eq.(2.7) for each potential

θ(1)n,m(x) ∝





1

α
∓
[

1

α2
+ (n−m+ 1)(−m− n− λ)

]

1

2





−1

×

([

(−2m− λ+ 1)− (n−m+ 1)

γ

]

x ϕ
(1)
n−1,m(x), (4.7)
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θ(2)n,m(x) ∝





1

α
∓
[

1

α2
+ γ(n−m+ 1)

]

1

2





−1

×x−
1

2

([

(n−m+ 1)ϕ(2)
n,m(γx)− (n + λ+

3

4
)ϕ

(2)
n−1,m(γx)

]

(4.8)

As mentioned in pervious section, the raising and lowering B+ and B− operators based

on the superpotentials are given as

B
(1)
+ =

d

dr
−
γ

2
e−r −m−

λ

2
+

1

2
, B

(1)
− = −

d

dr
−
γ

2
e−r −m−

λ

2
+

1

2
, (4.9)

B
(2)
+ =

d

dr
+
γ

4
r − (λ+m−

1

2
)
2

r
, B

(2)
− = −

d

dr
+
γ

4
r − (λ+m−

1

2
)
2

r
. (4.10)

The pair of linear differential operators can factorize Schrödinger equation for each potential.

Similar to the pervious section, in Mörse potential, if A(1)(x) = x2 and W (1)(x) = xλe−
γ

x ,

the wave function ψ(1)
n,m(x) is written based on upper spinor as

ψ(1)
n,m(x) =

(

exp( γ

2x
)

x

)

ϕ(1)
n,m(x), (4.11)

and, in 3D-dimensional oscillator potential, when A(2)(x) = x and W (2)(x) = xλe−γx, the

wave function ψ(2)
n,m(x) is obtained as:

ψ(2)
n,m(x) = x−(λ

2
+ 1

4
) exp(

γx

2
)ϕ(2)

n,m(x). (4.12)

Therefore, they are also related to the Generalized Laugerre polynomials. It is clear that,

both of them are examples of associating Generalized Laugerre polynomial with Rodriguies

representation in Dirac equation. Also, Rodriguies representation of lower spinors θn,m(x)

tht are called Θn,m(x) will be the following forms based on ψn,m(x) and ψn−1,m(x), for Mörse

and 3D-dimensional oscillator potentials

Θ(1)
n,m(x) ∝





1

α
∓
[

1

α2
+ (n−m+ 1)(−m− n− λ)

]

1

2





−1

×x

[

−
(m+ n+ λ)

γ

]

ψ
(1)
n−1,m(x), (4.13)
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Θ(2)
n,m(x) ∝





1

α
∓
[

1

α2
+ γ(n−m+ 1)

]

1

2





−1

×x
λ+1

2

[

(n−m+ 1)ψ(2)
n,m(x) + (n+ λ+

3

4
)ψ

(2)
n−1,m(x)

]

. (4.14)

The wave functions ψn,m(x) can be also satisfied in second-order differential equations for

each potential, proportionately,

x2ψ̈(1)
n,m(x)+(λx+γ+2)ψ̇(1)

n,m(x)+
(

−
mγ

x
+m2 −m− 2n2 − n(λ + 1)

)

ψ(1)
n,m(x) = 0, (4.15)

and

xψ̈(2)
n,m(x) +

(

2(λ+
1

2
)− γx

)

ψ̇(2)
n,m(x) +

(

γ(n−m+
1

2
)−

γλ

2
−

(m− 1)(2λ+ 1)

4
x−

1

2

)

ψ(2)
n,m(x) = 0. (4.16)

Rodrigues representations of associated polynomials ψn,m(x) are given as

ψ(1)
n,m(x) = (−1)mxm

(

d

dx

)m

ψ(1)
n (x), m = 0, 1, 2, .., n (4.17)

and

ψ(2)
n,m(x) = (−1)mx

m
2

(

d

dx

)m

ψ(2)
n (x), m = 0, 1, 2, .., n (4.18)

where ψn(x) satisfies in Laugerre differential equation which their Rodrigues representations

are, respectively,

ψ(1)
n (x) = Nx−λ exp(

γ

x
)

(

d

dx

)n (

x2n+λ exp(−
γ

x
)
)

, (4.19)
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and

ψ(2)
n (x) = Nx−λ exp(γx)

(

d

dx

)n
(

xλ+n exp(−γx)
)

. (4.20)

The above Rodrigues representations can be also related to lower spinor components, because

of there are the wave function Θn,m(x) based on the wave function ψn,m(x) and ψn−1,m(x)

according to the lower spinor components.

5 Association of Rodruiges representation with Her-

mite polynomials

The upper spinor component will be considered as Hermite polynomials, if the gauge field

potential ω(r) = γ

2
r− λ− k

r
is written based on shift-oscillator potential. This upper spinor

component satisfies in Eq.(2.6) as:

−
d2ϕn,m(r)

dr2
+

[

(

γ

2
r − λ

)2

−
γ

2

]

ϕn,m(r) =

[

(α2η − ε)2 − 1

α2

]

ϕn,m(r). (5.1)

For this potential, the non-relativistic energy En,m = γ(n − m + 1) can be used to the

following relativistic energy spectrum

εn = α2η ∓
[

α2γ(n−m+ 1) + 1
]
1

2
. (5.2)

The upper spinor wave function based on the Hermite polynomials can be obtained from

Eq.(5.1)

ϕn,m(x) ∝ exp

(

−
γ

4
x2
)

×Hn

(

(

γ

2

) 1

2

x

)

, (5.3)

where Hn(x) is Hermite polynomial. In the wave function (5.3) x = r − 2λ
γ

and −∞ < x <

+∞. According to Eq.(2.7), the lower spinor wave function is calculated as

θn,m(x) ∝





1

α
∓
[

1

α2
+ γ(n−m+ 1)

]

1

2





−1
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×
([

(2γ)
1

2 (n−m+ 1)
]

ϕn−1,m(x). (5.4)

To factorize Schrödinger equation, there are pairs of linear differential operator as

B+ =
d

dr
+
γ

2
r − λ, B− = −

d

dr
+
γ

2
r − λ. (5.5)

As mentioned before, the wave function ψn,m(x) that is related to upper spinor is gotten by

ψn,m(x) = exp(
γ

4
x2)ϕn,m(x), (5.6)

for A(x) = 1 and W (x) = exp
(

−γ

2
x2
)

. In this potential, Hermite polynomial can be

associated with Rodrigues representation in Dirac equation. Also, similar to pervious section,

the wave function Θn,m(x) that is connected to lower spinor θn.m(x) can be written based on

Rodrigues representation

Θn,m(x) ∝





1

α
∓
[

1

α2
+ γ(n−m+ 1)

]

1

2





−1

×
[

(2γ)
1

2 (n−m+ 1)
]

ψn−1,m(x). (5.7)

The second-order differential equation for shift-oscillator potential will be

ψ̈n,m(x) + (−γx)ψ̇n,m(x)− γ(m− n)ψn,m(x) = 0, (5.8)

where Rodrigues representation of the associated polynomial ψn,m(x) is considered by

ψn,m(x) = (−1)m
(

d

dx

)m

ψn(x), m = 0, 1, 2, .., n (5.9)

and Rodrigues representation of ψn(x), will be the following form

ψn(x) = N exp(
γ

2
x2)

(

d

dx

)n (

exp(−
γ

2
x2)

)

. (5.10)
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Since Θn,m(x) has been used for lower spinor Θn,m(x) and it has been associated with

ψn−1,m(x) according (5.7), therefore, the Eqs.(5.8), (5.9) and (5.10) can be considered for

the lower spinor component in shift-oscillator potential.

6 Conclusion

It has presented a procedure for connecting the methods used in the analysis of exactly solv-

able potentials in the non-relativistic quantum mechanics with the solution of Dirac equation.

A gauge field potential and the bound states energy spectrum have been defined for the Dirac

equation with a constant electrostatic potential that can be constituted a Schrödinger-like

equation. Since orthogonal polynomials are considered as the solution of Schrödinger-like

equation that have been obtained from Dirac equation, Rodrigues representations of the

orthogonal polynomials can be associated with upper and lower spinor components.
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