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COUNTING CONICS ON SEXTIC 4-FOLDS

YALONG CAO

Abstract. We study rational curves of degree two on a smooth sextic 4-fold and
their counting invariant defined using Donaldson-Thomas theory of Calabi-Yau
4-folds. By comparing it with the corresponding Gromov-Witten invariant, we
verify a conjectural relation between them proposed by the author, Maulik and
Toda.

0. Introduction

Let X be a smooth sextic 4-fold in P5 and Mβ be the moduli scheme of one
dimensional stable sheaves on X with Chern character (0, 0, 0, β, 1). We are interested
in the counting invariant of Mβ defined using Donaldson-Thomas theory of Calabi-
Yau 4-folds, introduced in [1, 2]. In particular, there exists a virtual class

[Mβ ]
vir ∈ H2(Mβ ,Z).

And we may use insertions to define counting invariants: for a class γ ∈ H4(X,Z),
let

τ(γ) := πM∗(π
∗
Xγ ∪ ch3(E)) ∈ H2(Mβ,Z),

where πX , πM are projections from X ×Mβ onto corresponding factors and ch3(E)
is the Poincaré dual to the fundamental class of the universal sheaf E .

The degree matches and we define DT4 invariants as follows

DT4(β | γ) :=
∫

[Mβ ]vir
τ(γ) ∈ Z.

Since the definition of the virtual class involves a choice of orientation on certain
(real) line bundle over Mβ, the invariant will also depend on that (see Sect. 2.1 for
more detail).

Another obvious way to enumerating curves on X is by GW theory. More specifi-
cally, for γ ∈ H4(X,Z), the genus 0 Gromov-Witten invariant of X is

GW0,β(γ) :=

∫

[M0,1(X,β)]vir
ev∗(γ) ∈ Q,

where ev : M0,1(X, β) → X is the evaluation map.

In a previous work [4], the author, Maulik and Toda proposed a conjectural relation
between DT4 invariants for one dimensional stable sheaves on X and genus zero GW
invariants of X (see Conjecture 2.3 for details). The main result of this note is to
verify this conjecture for degree two curve class on a smooth sextic 4-fold.
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Theorem 0.1. (Theorem 2.4) Conjecture 2.3 is true for degree one and two classes
of a smooth sextic 4-fold X ⊆ P5, i.e. for the line class l ∈ H2(X,Z) and any
γ ∈ H4(X), we have

GW0,l(γ) = DT4(l | γ),

GW0,2l(γ) = DT4(2l | γ) +
1

4
·DT4(l | γ),

for certain choice of orientation in defining the RHS.

The proof of the above result relies on the study of the Hilbert scheme of conics on
X . By the deformation invariance of DT4 and GW invariants, we may assumeX to be
a generic hypersurface in P5, so thatM2l is smooth of expected dimension whose closed
points are structure sheaves of smooth conics or pairs of distinct intersecting lines (i.e.
there is no double line) (ref. Proposition 1.4, 2.2). A parallel study of the moduli
space of stable maps shows that it consists of two components, one corresponding to
the embedding of smooth or ‘broken’ conics, another one corresponding to the double
cover from P1 to lines on X . From this, we can conclude the above result.

1. Geometry of moduli spaces of conics on sextic 4-folds

Let X ⊆ P5 be a smooth sextic 4-fold, i.e. smooth degree 6 hypersurface in
P5. By the adjunction formula, X is a smooth projective Calabi-Yau 4-fold [13].
We are interested in the moduli space of conics (degree two curves) in X . To be
precise, let I1(X, 2) be the moduli scheme of ideal sheaves on X with Chern character
(1, 0, 0,−2,−1), which is isomorphic to the Hilbert scheme of one dimensional closed
subschemes in X with Hilbert polynomial χ(t) = 2t+1. The inclusionX ⊆ P5 induces
a closed embedding

I1(X, 2) →֒ Hilb(P5, 2t+ 1) = {subscheme C ⊆ P5 with Hilbert polynomial 2t+ 1}
into the Hilbert scheme Hilb(P5, 2t+ 1) of conics in P5.

Lemma 1.1. Let S be the tautological rank three subbundle of the trivial bundle over
Gr(3, 6). Then there exists an isomorphism

Hilb(P5, 2t+ 1) ∼= P(Sym2(S∗)),

where P(Sym2(S∗)) is a P5-bundle over Gr(3, 6).
Let π : Hilb(P5, 2t + 1) → Gr(3, 6) be the natural projection. Then the rank 13

vector bundle E = π∗Sym6(S∗)/(T ⊗ π∗Sym4(S∗)) has a section whose zero locus is
isomorphic to the moduli space I1(X, 2) of conics in X. Here T is the tautological
line bundle over P(Sym2(S∗)).

Proof. As any conic in P5 is contained in a unique plane P2 ⊆ P5, so we have the
desired isomorphism (see e.g. [6, Lemma 2.2.6]).

The description of I1(X, 2) comes from a similar one for quintic threefold ([9,
Theorem 3.1]), which we briefly recall as follows. An equation for X induces a section
of Sym6(S∗) hence a section of π∗Sym6(S∗). At a conic C ∈ Hilb(P5, 2t + 1), the
section represents a plane sextic cut out by the plane supporting C. The conic lies
in X if and only if X factors into C and a quartic. Such quartics globalize to the
vector bundle T ⊗ π∗Sym4(S∗) which is a subbundle of π∗Sym6(S∗). We consider
the quotient bundle E = π∗Sym6(S∗)/(T ⊗ π∗Sym4(S∗)). Then I1(X, 2) is exactly
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isomorphic to the zero locus of the section of E induced by the defining equation of
X ⊆ P5. �

Let P := P(H0(P5,OP5(6))) ∼= P461 be the projective space of sextics in P5. For a
‘generic’ choice of sextic X in P (i.e. generic sextics means all sextics except those
parameterized by a proper subvariety of P ), the moduli space of conics inX is smooth.
To prove that, we need the following lemma.

Lemma 1.2. For any conic C in P5, the restriction map

H0(P5,OP5(6)) → H0(C,OC(6))

is surjective.

Proof. Given a conic C, we have an exact sequence

H0(P5,OP5(6)) → H0(C,OC(6)) → H1(P5, IC(6)) → 0,

where IC is the ideal sheaf of C in P5. We only need to prove H1(P5, IC(6)) = 0.
Let P2 ⊆ P5 be the unique plane containing C. By diagram chasing, we have a

short exact sequence
0 → IP2/P5 → IC → OP2(−2) → 0,

where IP2/P5 is the ideal sheaf of P2 in P5. By taking RΓ(P5,−) and its cohomology,
we have

H1(P5, IP2/P5(6)) → H1(P5, IC(6)) → 0.

So we are left to show H1(P5, IP2/P5(6)) = 0. Similarly, from a short exact sequence

0 → IP3/P5 → IP2/P5 → OP3(−1) → 0,

we are further reduced to show H1(P5, IP3/P5(6)) = 0. By repeating the argument,

the claim is reduced to the obvious vanishing H1(P5, IP4/P5(6)) = 0. �

Proposition 1.3. For a generic sextic X ⊆ P5, the moduli space I1(X, 2) of conics
in X is a smooth projective curve.

In particular, the Euler class of vector bundle E → Hilb(P5, 2t+ 1) in Lemma 1.1
satisfies

ι∗[I1(X, 2)] = PD(e(E)) ∈ H2(Hilb(P
5, 2t+ 1),Z),

where ι∗ : I1(X, 2) →֒ Hilb(P5, 2t+ 1) is the closed embedding.

Proof. Let I be the incidence variety

I = {(C,X) ∈ Hilb(P5, 2t+ 1)× P | C ⊆ X}
with projections π1 : I → Hilb(P5, 2t+ 1), π2 : I → P .

Given a conic [C] ∈ Hilb(P5, 2t+ 1), π−1
1 (C) is the set of all sextics containing C.

By Lemma 1.2, H0(P5,OP5(6)) → H0(C,OC(6)) is surjective, hence π1 is smooth.
Therefore, I is irreducible, smooth of dimension 462.

By the generic smoothness (ref. [7, Corollary 10.7, pp. 272]), there exists a non-
empty open subset U ⊆ P such that π2 : π−1

2 (U) → U is a smooth morphism. Hence
a generic fiber of π2 (i.e. I1(X, 2) for a generic X ⊆ P5) is smooth of dimension
one. �

Next, we show that a generic sextic 4-fold contains at most a finite number of
broken conics and no double lines.



4 YALONG CAO

Proposition 1.4. A generic sextic X ⊆ P5 contains at most a finite number of
broken conics (i.e. pairs of distinct intersecting lines), and no ‘double’ lines.

Proof. Any conic in P5 is contained in a unique plane P2 ⊆ P5. It is either a smooth
conic, a pair of distinct intersecting lines, or a ‘double’ line (see e.g. [6, Lemma 2.2.6]).
By Proposition 1.3, the moduli space of conics in a generic sextic 4-fold is a smooth
projective curve.

We first show generic sextics do not contain double lines. Let

I2 = {2l ∈ Hilb(P5, 2t+ 1) | l is line}
be the 11 dimensional variety of ‘double’ lines in P5, and

C2 = {(2l, F ) ∈ I2 × P(H0(P5,OP5(6))) | 2l ⊆ F−1(0)}.
The subspace of sextics (inside P(H0(P5,OP5(6)))) containing one such double line
2l has dimension h0(P5,OP5(6))) − 1− h0(C,OC(6)) = 448. Hence C2 has dimension
459. Thus a generic sextic can not lie in the image of π2 : C2 → P as P has dimension
461.

Let

I1 = {(l1, l2) | l1, l2 ∈ P5, l1 ∩ l2 6= ∅}
be the 13 dimensional variety of pairs of distinct intersecting lines in P5, and

C1 = {(l1, l2, F ) ∈ I1 × P(H0(P5,OP5(6))) | l1 ∪ l2 ⊆ F−1(0)}
with projections π1 : C1 → I1, π2 : C1 → P .

The subspace of sextics (inside P(H0(P5,OP5(6)))) containing one such intersecting
lines (l1, l2) has dimension h0(P5,OP5(6)))−1−h0(C,OC(6)) = 448. As in Proposition
1.3, C1 is irreducible, smooth of dimension 461. The generic smoothness theorem
implies that for a generic sextic F , π−1

2 ([F ]) is smooth of dimension zero. �

2. Counting conics on sextic 4-folds

There are many ways to count conics on a sextic 4-fold X . For instance, we can
use DT4 invariants count one dimensional stable sheaves supported on conics inside
X , as well as Gromov-Witten invariants count stable maps to conics in X . In this
section, we compare them and verify a conjectural relation [4] between GW invariants
and DT4 invariants for one dimensional stable sheaves in this setting.

2.1. Review of DT4 invariants. We first review the framework for DT4 invariants.
We fix an ample divisor ω on X and take a cohomology class v ∈ H∗(X,Q).

The coarse moduli space Mω(v) of ω-Gieseker semistable sheaves E on X with
ch(E) = v exists as a projective scheme. We always assume that Mω(v) is a fine
moduli space, i.e. any point [E] ∈ Mω(v) is stable and there is a universal family

E ∈ Coh(X ×Mω(v)).(1)

In [1, 2], under certain hypotheses, the authors construct a DT4 virtual class

[Mω(v)]
vir ∈ H2−χ(v,v)(Mω(v),Z),(2)

where χ(−,−) is the Euler pairing. Notice that this class will not necessarily be
algebraic.
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Roughly speaking, in order to construct such a class, one chooses at every point
[E] ∈ Mω(v), a half-dimensional real subspace

Ext2+(E,E) ⊂ Ext2(E,E)

of the usual obstruction space Ext2(E,E), on which the quadratic form Q defined by
Serre duality is real and positive definite. Then one glues local Kuranishi-type models
of form

κ+ = π+ ◦ κ : Ext1(E,E) → Ext2+(E,E),

where κ is a Kuranishi map of Mω(v) at E and π+ is the projection according to the
decomposition Ext2(E,E) = Ext2+(E,E)⊕

√
−1 · Ext2+(E,E).

In [2], local models are glued in three special cases:

(1) when Mω(v) consists of locally free sheaves only;
(2) when Mω(v) is smooth;
(3) when Mω(v) is a shifted cotangent bundle of a derived smooth scheme.

And the corresponding virtual classes are constructed using either gauge theory or
algebro-geometric perfect obstruction theory. The general gluing construction is due
to Borisov-Joyce [1], based on Pantev-Töen-Vaquié-Vezzosi’s theory of shifted sym-
plectic geometry [12] and Joyce’s theory of derived C∞-geometry. The corresponding
virtual class is constructed using Joyce’s D-manifold theory.

The moduli space considered in this note is smooth of expected dimension, so the
virtual class (up to sign) is simply the usual fundamental class of the moduli space
(see Prop. 2.2).

On orientations. To construct the above virtual class (2) with coefficients in Z

(instead of Z2), we need an orientability result for Mω(v), which is stated as follows.
Let

(3) L := det(RHomπM
(E , E)) ∈ Pic(Mω(v)), πM : X ×Mω(v) → Mω(v),

be the determinant line bundle of Mω(v), equipped with a symmetric pairing Q in-
duced by Serre duality. An orientation of (L, Q) is a reduction of its structure group
(from O(1,C)) to SO(1,C) = {1}; equivalently, we require a choice of square root of
the isomorphism

(4) Q : L ⊗ L → OMω(v)

to construct virtual class (2). An existence result of orientations is proved in [3,
Theorem 2.2] for CY 4-folds X such that Hol(X) = SU(4) and Hodd(X,Z) = 0 1.
Notice that, if orientations exist, their choices form a torsor for H0(Mω(v),Z2).

2.2. DT4 virtual class for stable sheaves supported on conics. Fix β ∈ H2(X,Z) ∼=
H6(X,Z) and

v = (0, 0, 0, β, 1) ∈ H0(X)⊕H2(X)⊕H4(X)⊕H6(X)⊕H8(X),

we set

Mβ = Mω(0, 0, 0, β, 1)

to be the Gieseker moduli space of semi-stable sheaves with Chern character v.

1For instance, smooth sextic 4-folds satisfy this assumption.
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Remark 2.1. Note that Mβ is the moduli space of one dimensional sheaves E’s on
X satisfying the following: for any 0 6= E′ ( E, we have χ(E′) 6 0. In particular, it
is independent of the choice of ω and is a fine moduli space.

Since χ(v, v) = 0 in this case, we have

[Mβ ]
vir ∈ H2(Mβ ,Z).

To define invariants, we need insertions: for a class γ ∈ H4(X,Z), let

(5) τ(γ) := πM∗(π
∗
Xγ ∪ ch3(E)),

DT4(β | γ) :=
∫

[Mβ ]vir
τ(γ) ∈ Z.(6)

Here πX , πM are projections from X ×Mβ onto corresponding factors, and ch3(E) is
the Poincaré dual to the fundamental class of the universal sheaf E .

For degree two class in a smooth sextic 4-fold X , the moduli space and its DT4

virtual class can be described as follows.

Proposition 2.2. Let X ⊆ P5 be a generic sextic 4-fold and β = 2l ∈ H2(X,Z) be
the degree two class. Then the moduli space M2l of one dimensional stable sheaves on
X has an isomorphism

M2l
∼= I1(X, 2)

to the Hilbert scheme of conics in X.
Furthermore, the DT4 virtual class

[M2l]
vir = [M2l] ∈ H2(M2l,Z)

is the usual fundamental class for certain choice of orientation in defining the LHS.

Proof. By Proposition 1.4, we may assume X contains smooth and broken conics
only.

For E ∈ M2l, χ(E) = 1 implies h0(E) > 1, so there exists a nontrivial section
s : OX → E. If the image Im(s) ⊆ E is a proper subsheaf, then χ(Im(s)) 6 0 by
the stability of E. Note that Im(s) is the structure sheaf of some one dimensional
subscheme whose fundamental class is l or 2l, so χ(Im(s)) 6 0 can not happen. Thus
s is surjective and E ∼= OC for some smooth or broken conic in X . Conversely, when
C is smooth, OC is obviously stable. As for a broken conic C = l1 + l2, to test the
stability of OC , we take a saturated (i.e. E2 is pure) extension

0 → E1 → OC → E2 → 0,

we may assume supp(Ei) = li (i = 1, 2) without loss of generality. Then Ei
∼= Oli(ai)

for some ai ∈ Z. From the exact sequence

0 → Ol1(−1) → OC → Ol2 → 0,

we have

0 → Hom(Ol1 ,Ol1(−1)) → Hom(Ol1 ,OC) → Hom(Ol1 ,Ol2) = 0.

Hence Hom(Ol1 ,OC) = 0. So a1 6 −1, which implies the stability of OC .
So we have a bijective morphism

θ : I1(X, 2) → M2l, IC 7→ OC .
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Next, we compare their deformation-obstruction theory. For a conic C ⊆ X , there is
a distinguished triangle

OC → IC [1] → OX [1],

which implies the diagram

RΓ(OX)[1]

��

RΓ(OX)[1]

��

RHom(IC ,OC) // RHom(IC , IC)[1] //

��

RHom(IC ,OX)[1]

��

RHom(IC , IC)0[1] RHom(OC ,OX)[2],

where the horizontal and vertical arrows are distinguished triangles. By taking cones,
we obtain a distinguished triangle

RHom(IC ,OC) → RHom(IC , IC)0[1] → RHom(OC ,OX)[2].(7)

Combining with distinguished triangle

RHom(OC ,OC) → RHom(OX ,OC) → RHom(IC ,OC),

and hi>1(OC) = 0, we obtain canonical isomorphisms

Ext1(OC ,OC) ∼= Ext1(IC , IC),

Ext2(OC ,OC) ∼= Ext2(IC , IC).

By Proposition 1.3, for a generic sextic 4-fold X , I1(X, 2) is smooth of dimension one.
So Ext1(IC , IC) ∼= C, and Ext2(IC , IC) = 0 by Riemann-Roch formula. Thus θ is an
isomorphism and M2l is smooth of expected dimension. So the DT4 virtual class of
M2l is its usual fundamental class for a choice of orientation. �

2.3. GW invariants and GW/DT4 conjecture. As the virtual dimension of the
moduli space M0,n(X, β) of genus zero, n-pointed stable maps is 1 + n, we need
insertions to define GW invariants. For γ ∈ H4(X,Z), the genus 0 Gromov-Witten
invariant of X is defined to be

GW0,β(γ) :=

∫

[M0,1(X,β)]vir
ev∗(γ) ∈ Q,

where ev : M0,1(X, β) → X is the evaluation map.
The following conjecture is proposed in [4] as an interpretation of Klemm-Pandharipande’s

Gopakumar-Vafa type invariants [10] on CY 4-folds in terms of DT4 invariants of one
dimensional stable sheaves.

Conjecture 2.3. ([4, Conjecture 1.3]) We have the identity

GW0,β(γ) =
∑

k|β

1

k2
·DT4(β/k | γ),

for certain choice of orientation in defining the RHS.

We verify this conjecture for a smooth sextic 4-fold X and degree one and two
classes in H2(X,Z) ∼= Z.
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Theorem 2.4. Conjecture 2.3 is true for degree one and two classes of a smooth
sextic 4-fold X ⊆ P5, i.e. for the line class l ∈ H2(X,Z) and any γ ∈ H4(X), we
have

GW0,l(γ) = DT4(l | γ),

GW0,2l(γ) = DT4(2l | γ) +
1

4
·DT4(l | γ),

for certain choice of orientation in defining the RHS.

Proof. We only prove for the degree two curve class as the proof for line class is
a simpler version of the same approach. As all invariants involved are deformation
invariant, we could assume the sextic 4-fold X to be generic so that the space I1(X, 2)
of conics in X is smooth of dimension one and consists of smooth conics and at most
a finite number of broken lines (as in Proposition 1.3, 1.4).

The moduli space M0,k(X, 2l) of k-pointed stable maps is the disjoint union of

two connected components M0,k(X, 2l)emb, M0,k(X, 2l)cov, which parametrizes the
embedding of smooth or broken conics into X and double cover from P1 to lines in
X respectively.

We have a forgetful map

φ : M0,1(X, 2l)emb → M0,0(X, 2l)emb
∼= I1(X, 2),

φ : (f : C → X, p ∈ C) 7→ (f : C → X) 7→ If(C),

and a natural embedding

i = (φ, ev) : M0,1(X, 2l)emb →֒ I1(X, 2)×X,

i(f : C → X, p ∈ C) = (If(C), f(P )),

whose image is the universal curve Z ⊆ I1(X, 2)×X . Note that Z is an irreducible
variety of dimension 4, so the virtual class of M0,1(X, 2l)emb is its usual fundamental
class.

For γ ∈ H4(X), we have
∫

[M0,1(X,2l)emb]vir
ev∗(γ) =

∫

[M0,1(X,2l)emb]

i∗(1 ∪ γ)

=

∫

i∗[M0,1(X,2l)emb]

γ

=

∫

[I1(X,2)×X]

(PD([Z]) ∪ γ)

= DT4(2l | γ),
where the last equality is by Proposition 2.2.

As for component M0,1(X, 2l)cov, it can be identified as M0,1(P
1, 2l)×M0,0(X, l)

by

(8) M0,1(P
1, 2l)×M0,0(X, l) ∼= M0,1(X, 2l)cov,

(t : P1 → P1, P ∈ P1; f : P1 → X) 7→ (f ◦ t : P1 → X, P ∈ P1).

Note that M0,1(P
1, 2l) is smooth of dimension 3. For a generic sextic 4-fold X , lines

in X have normal bundle OP1(−1,−1, 0) and the moduli space M0,0(X, l) ∼= I1(X, 1)
is isomorphic to the (smooth) Fano scheme of lines (see [11, Thm. 4.3, pp. 266 and
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Ex. 4.5 pp. 269]), which is one dimensional. The obstruction space of M0,1(X, 2l)cov
at g : P1 → X is

H1(P1, g∗TX) ∼= H1(P1, g∗OP1(−1,−1, 0)) ∼= H1(P1, g∗OP1(−1,−1)).

As g varies, H1(P1, g∗OP1(−1,−1)) forms a rank two bundle which is the pull-
back of an ‘obstruction’ bundle Ob → M0,1(P

1, 2l) (its fiber over f : P1 → P1 is
H1(P1, f∗OP1(−1,−1))). Hence under the isomorphism (8), the virtual class satisfies

[M0,1(X, 2l)cov]
vir = PD(e(Ob))⊗ [M0,0(X, l)] ∈ H2(M0,1(P

1, 2l))⊗H2(M0,0(X, l)).

We define

π : M0,1(P
1, 2l)×M0,0(X, l) → M0,0(P

1, 2l)×M0,0(X, l)×X,

π
(

t : P1 → P1, P ∈ P1, f : P1 → X
)

=
(

t : P1 → P1, f : P1 → X, f ◦ t(P )
)

.

By base change (e.g. [5, pp. 182]), the obstruction bundle Ob → M0,1(P
1, 2l) is

the pullback of an obstruction bundle Ob → M0,0(P
1, 2l) via the forgetful map F :

M0,1(P
1, 2l) → M0,0(P

1, 2l). Then for γ ∈ H4(X), we have
∫

[M0,1(X,2l)cov]vir
ev∗(γ) =

∫

[M0,1(P1,2l)×M0,0(X,l)]

π∗
(

e(Ob) ∪ γ
)

=

∫

π∗[M0,1(P1,2l)×M0,0(X,l)]

e(Ob) ∪ γ

=

(
∫

F∗[M0,1(P1,2l)]

e
(

Ob
)

)

·
(
∫

2[C]

γ

)

= 2

∫

[M0,0(P1,2l)]

e
(

Ob
)

·
∫

[M0,0(X,l)×X]

(

PD([C]
)

∪ γ)

= 2 · 1

23
·DT4(l | γ),

where C ⊆ M0,0(X, l)×X is the universal line under the identification M0,0(X, l) ∼=
I1(X, 1), and the last equality is by the Aspinwall-Morrison formula (e.g. [8, Lemma
27.5.3, pp. 547]) and identification of virtual classes

[Ml]
vir = [I1(X, 1)]vir = [I1(X, 1)] = [M0,0(X, l)]vir = [M0,0(X, l)],

which can be obtained by a similar argument as in Proposition 2.2.
To sum up, we obtain

GW0,2l(γ) =

∫

[M0,1(X,2l)emb]vir
ev∗(γ) +

∫

[M0,1(X,2l)cov]vir
ev∗(γ)

= DT4(2l | γ) +
1

4
·DT4(l | γ),

i.e. Conjecture 2.3 is true for degree two class. �

Corollary-Definition 2.5. Let X ⊆ P5 be a smooth sextic 4-fold and H be its
hyperplane class. Then the number of lines, conics incident to 4-cycle H2 is

DT4(l | H2) = 60480, DT4(2l | H2) = 440884080,

for certain choice of orientation in defining the LHS.
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Proof. By Theorem 2.4, for certain choice of orientation, we have DT4(kl | γ) =
n0,kl(γ) for k = 1, 2, where n0,kl(γ) are Klemm-Pandharipande’s genus zero GV type
invariants defined using multiple cover formula and GW invariants. n0,kl(γ) are com-
puted in [10, Table 2, pp. 33] by Picard-Fuchs equations and mirror principle of
Lian-Liu-Yau and Givental. �

Acknowledgement. The author is grateful to Yukinobu Toda for useful discussions.
The work is supported by The Royal Society Newton International Fellowship.

References

[1] D. Borisov and D. Joyce, Virtual fundamental classes for moduli spaces of sheaves on Calabi-

Yau four-folds, Geom. Topol. (21), (2017) 3231-3311.
[2] Y. Cao and N. C. Leung, Donaldson-Thomas theory for Calabi-Yau 4-folds, arXiv:1407.7659.
[3] Y. Cao and N. C. Leung, Orientability for gauge theories on Calabi-Yau manifolds, Adv. in

Math. (314), 2017, 48-70.
[4] Y. Cao, D. Maulik and Y. Toda, Genus zero Gopakumar-Vafa type invariants for Calabi-Yau

4-folds, Adv. in Math. 338 (2018), 41-92.
[5] D. A. Cox and S. Katz, Mirror symmetry and algebraic geometry. (English summary) Mathe-

matical Surveys and Monographs, 68. American Mathematical Society, Providence, RI, 1999.
[6] M. F. DeLand, Geometry of Rational Curves on Algebraic Varieties, Ph.D. thesis, Columbia

University, 2009.
[7] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52. Springer-Verlag,

New York-Heidelberg, 1977.
[8] K. Hori, S. Katz, A. Klemm, R. Pandharipande, R. Thomas, C. Vafa, R. Vakil and E. Za-

slow, Mirror symmetry with a preface by Vafa. Clay Mathematics Monographs, 1. American
Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2003.

[9] S. Katz, On the finiteness of rational curves on quintic threefolds, Compositio Math. 60 (1986),

no. 2, 151-162.
[10] A. Klemm and R. Pandharipande, Enumerative geometry of Calabi-Yau 4-folds, Comm. Math.

Phys. 281, 621-653 (2008).
[11] J. Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Gren-

zgebiete 32, Springer Verlag, Berlin, 1996.
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