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Motivic volume of families of polarized

rigid-analytic tori

Dmitry Sustretov

Abstract

Let k be a non-Archimedean rational valued field. We construct the
moduli space of linearly rigidified polarized analytic tori over k that
admit rigid-analytic uniformization by an algebraic torus and observe
that it is in definable rigid subanalytic bijection with a PGLN -bundle
over a polyhedral domain in an algebraic torus. We use this observa-
tion to prove that the Hrushovski-Kazhdan motivic volume of a non-
Archimedean semi-algebraic family of Abelian varieties admitting such
a uniformization fibrewise vanishes. This question is motivated by the
conjectural geometric interpretation of tropical refined multiplicities of
Block and Goetsche proposed by Nicaise, Payne and Schroeter.
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1 Introduction

Nicaise, Payne and Schroeter propose in their paper [NPS16] an approach
to geometric interpretation of tropical refined Severi degrees of Block and
Goettsche [BG16]. They conjecture that the refined tropical multiplicity
equals the χy-genus of the non-Archimedean semi-algebraic subset of the
universal family of compactified Jacobians over the moduli space of stable
curves of fixed genus that tropicalize to the given tropical curve, and prove
the conjecture in genus 1 for curves with a single node. The χy-genus is as-
signed to a semi-algebraic set with the help morphism from the Grothendieck
ring of (non-Archimedean) semi-algebraic subsets to the K-ring of varieties
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over the residue field, constructed using the theory of Hrushovski and Kazh-
dan [HK06]. The image of a particular semi-algebraic set under this mor-
phism is called its motivic volume.

In view of conjectures proposed in [NPS16] it is natural to try to find the
contribution of the semi-algebraic families of Jacobians of smooth Mumford
curves to the tropical multiplicities. More generally, one considers semi-
algebraic family of totally degenerate Abelian varieties. In this note we
prove that the motivic volume of the total spaces of such a family is zero.

The computation of motivic volume of a family is hindered in general
due to the lack of an appropriate Fubini-type statement. In the situation of
interest, totally degenerate Abelian variety is a quotient of an algebraic torus
by a lattice, i.e. an analytic torus. It is therefore in a definable bijection with
a domain of the form trop−1(∆) where trop : Gn

m(K) → Rn is the coordinate-
wise application of the map − log|·|, and ∆ is an polyhedron in Rn with some
of its faces removed. The motivic volume of such semi-algebraic sets can be
directly computed. Unfortunately, in order to compute the motivic volume
of a family of such tori, the uniformization by an algebraic torus should be
uniform.

To this end we consider the moduli space of linearly rigidified polarized
analytic tori and show that the uniformization map is locally definable in
the expansion of the language of algebraically closed valued fields with rigid
subanalytic functions of Lipschitz and Robinson [Lip93]. We then use the
invariance of motivic volume under bijections definable in this expansion to
deduce the vanishing of the motivic volume.

The main result is Theorem 3.11. Section 2 collects the necessary aux-
iliary statements about analytic tori, polarizations, moduli of polarized
Abelian varieties and Lipshitz-Robinson rigid subanalytic functions.

Acknowledgements. I would like to express my gratitude to Johannes
Nicaise who have asked me the question that lead to the appearance of this
note, and to Max Planck Institute for Mathematics for excellent working
conditions.

2 Preliminaries

2.1 Analytic tori, Abelian varieties and polarizations

In order to establish notation we recall basic facts about polarizations on
Abelian schemes; we then survey the facts about polarizations of rigid-
analytic tori loosely following [Lüt16, Section 2.7], see also [FVdP12, Chap-
ter 6]. It is helpful to keep in mind that the theory largely parallels the one
in the complex case (see, for example, [BL13, Chapters 4 and 8]).

Definition 2.1 (Abelian scheme). A group scheme A → S is called an
Abelian scheme if it is smooth, proper, and its geometric fibres are connected.
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If A → S is an Abelian S-scheme, then Pic(A/S) is a smooth proper
group S-scheme that represents the Picard functor. Let Picτ (A/S) be its
open subscheme whose geometric points correspond to invertible sheaves
that are algebraically equivalent to zero. This scheme is smooth and projec-
tive over S and its geometric fibres are reduced and connected. The Abelian
scheme Picτ (A/S) is called the scheme dual to A and is denoted Â. A

The universal line bundle on A× Â is called Poincaré line bundle and is
denoted P

A×Â.
Let L be an arbitrary line bundle on A, and let µ : A×S A→ A be the

multiplication map. Then the line bundle

µ∗L⊗ (p∗1L)
−1 ⊗ (p∗2L)

−1

can be considered as a line bundle over X via the projection p1 : A×SA→ A,
and so by the definition of Pic gives rise to the mapping ωL : A→ Pic(A/S).
If e : S → A is an identity then ωL ◦ e is the identity of Pic(A/S). Since
the fibres of Pic(A/S) are connected, the morphism ωL factors through
Picτ (A/S).

Recall that a morphism of Abelian varieties over a field is called an
isogeny if it is surjective with finite kernel; a morphism of Abelian schemes
is a morphism that induces isogenies on geometric fibres.

Fact 2.2. The construction above induces a homomorphism Pic(A/S) →
HomZ(A, Â). The map ωL is an isogeny if and only if L is ample.

Definition 2.3 (Polarisation). A polarization of an Abelian S-variety A
is a morphism ϕ : A → Â such that for all geometric fibres the induced
morphism ϕs : As → Âs is an isogeny of the form ωLs for some ample line
bundle L on A.

Fix a non-Archimedean valued field k, let M be a free Abelian group of
rank n, denote by M ′ its dual Hom(M,Z), and let T := Speck[M ′]. Denote
by trop : T → Rn the coordinatewise valuation map:

trop(x1, . . . , xn) = (− log|x1|, . . . ,− log|xn|)

A torsion-free subgroup Λ ⊂ T is called a lattice if trop induces an iso-
morphism between Λ and a discrete subgroup trop(Λ) of the additive group
Rn.

LatticesM → T are in natural bijective correspondences with the lattices
M ′ →֒ T ′. Indeed, regarding M ′ as Hom(T,Gm) and T ′ as Hom(M,Gm)
the embedding M ′ →֒ T is given by the restriction map Hom(T,Gm) →
Hom(M,Gm).

Fact 2.4 (Proposition 2.7.5 [Lüt16], Non-Archimedean Appel-Humbert the-
orem). The set of isomorphism classes of line bundles on T/M is in bijective
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correspondence with pairs (λ, r), where λ :M →M ′ is a homomorphism and
r :M → Gm subject to the condition

λ(m1)(m2) =
r(m1 +m2)

r(m1)r(m2)

λ is trivial if and only if L(λ,r) ∈ Pic0, moreover, Pic0 consists of groups of
translation-invariant line bundles.

One observes that the function Z :M → H0(T,O×
T ) = r(m)λ(m), called

the automorphy factor is a group cohomology 1-cocycle, Z ∈ H1(M,H0(T,O×
T )).

A function f ∈ H0(T,O×
T ) is called theta function with respect to the auto-

morphy factor Z if
f(m · x) = Zmf(x)

Definition 2.5 (Polarization of an analytic torus). A polarization of the
analytic torus T/M is an injective map λ : M → M ′ such that the bilinear
map

〈·, ·〉 :M ×M → K× 〈m1,m2〉 = λ(m1)(m2)

is symmetric and positive definite, that is, for anym ∈M , − log|〈m,m〉|> 0.

Remark. Let M →֒ T be a lattice. If λ : M → M ′ is a homomorphism
of groups then it induces a morphism of tori ϕλ : T → T ′. If λ induces
a symmetric and non-degenerate map 〈·, ·〉 then ϕλ(M) ⊂ M ′ and so the
morphism ϕλ : T/M → T ′/M ′ is well-defined. If λ defines a polarization
then ϕλ = ϕL for an ample line bundle L.

Fact 2.6 (Theorem 2.7.12, [Lüt16]). A line bundle is ample if and only if
λ defines a polarization. The global sections of a line bundle L are given by
theta functions with respect to the automorphy factor Z.

Fact 2.7 (Lemma 6.5.4, [FVdP12]). If L is an ample line bundle on T/M
and θ0, . . . , θn is a basis of H0(T/M,L3) then x 7→ (θ0(x) : . . . : θn(x))
defines a closed embedding T/M →֒ P(H0(T/M,L3)).

Fact 2.8 (Propositions 6.10 and 6.13, [MFK94]). Let ω : A → Â be a
polarization of an Abelian variety, let L = (id×ω)∗PA× and let ω′ be the
polarization induced by L. Then

- ω′ = 2ω

- (dimH0(A,L))2 = degω

Denote rkλ = #(M ′/λ(M)). The following fact easily follows from the
automorphy equation.

Fact 2.9. Theta functions have the form f(x) =
∑

χ∈M ′ aχχ, and are de-
termined by coefficients aχ1

, . . . , aχn where χ1, . . . , χn are representatives of
M ′/λ(M). In particular, dimH0(T/M,L) = rkλ.
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If L is an arbitrary line bundle, define

ϕL : T/M → T ′/M ′ ϕL(a) = t∗aL⊗ L−1

where ta : T/M → T/M, ta(x) = x + a for any a ∈ T/M . Clearly, the line
bundle t∗aL ⊗ L−1 is translation-invariant, so the map is well-defined. One
can show that ϕL is an analytic homomorphism of groups.

Fact 2.10. The line bundle L is ample if and only if ϕL is surjective. The
degree of ϕL is of size d2 where d is the degree of L.

Fact 2.11 (Riemann-Roch on an Abelian variety). Let L be a positive line
bundle on an Abelian variety of dimension g, then

χ(L) = Lg/g!

χ(L)2 = degϕL

Consequently, the Hilbert polynomial of an Abelian variety endowed with
polarization ϕ of degree d with respect to L⊗3

ϕ is P (x) = xgd.

2.2 Motivic volume

Hrushovski-Kazhdan motivic integration theory [HK06] provides a way to
express non-Archimedean semi-algebraic subsets of algebraic varieties over a
valued field K as unions of semi-algebraic sets of two particular kinds. The
first one is related to the geometry of integral polhedra, and the second one
is related to algebraic varieties over the residue field.

Formally, the theory is formulated in the context of model theory of
algebraically closed valued fields. Let K be such a field, then one considers
several sorts: the valued field sort VF, the residue-value sort RV and the
value group sort Γ.

Let O ⊂ K be the value ring with the maximal ideal m. Consider the
exact sequence of groups

1 → O×/(1 +m) → K×/(1 +m) → Γ → 0

The middle term is called RV and is made into a sort with the structure of the
multiplicative group, and two inter-sort projection maps: rv : VF \{0} →
RV, and vrv : RV → Γ.

After fixing some base field K0, one associates the following categories
of definable sets to the sorts VF,RV and Γ.

Definition 2.12. The category VF[n] is defined to be the category of defin-
able subsets of of n-dimensional varietis over K0.

The category RV[n] is defined to be the category of pairs (X, f) where X
is a definable set and f : X → RVn is a definable map with finite fibres.
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The category Γ[n] is defined to be the category of Boolean combinations of
subsets of Γn defined by inequalities and equalities with integral coefficients
and with parameters in Γ(K0).

Γfin[n] is the full subcategory Γ[n] of definable finite subsets.
RES[n] is the full subcategory of RV[n] which consists of definable sets

which project to finite definable subsets of Γn via trop.

Definition 2.13. If A is a category of definable sets then we denote by
K+(A) the semi-ring generated by definable subsets in A module the relations

- [A] = [B] if there exists a definable bijection between A and B,

- [C] = [A] + [B] if C = A ⊔B.

In case K0 = k((t)) there exists a canonical isomorphism between a
quotient !K(RES) of the ring K(RES) and the equivariant Grothendieck

ring K µ̂
0 (Vark). Let θ : K0(RES) → K0Var be the composition of the

quotient map with this canonical isomorphism and the forgetful morphism
K µ̂

0 (Vark0) → K0(Vark) (see Seciton 4 of [HL15]).
Denote K+VF = ⊕nK+(VF[n]),K+ RV[≤ n] = ⊕l≤nK+RV[l], and de-

fine the morphisms

L : K+(RV[n]) → K+(VF[n]), [(X, f)] 7→ [VFn×rv,FX]
L : K+(Γ[n]) → K+(VF[n]), [∆] 7→ [trop−1(∆)]

The motivic integration theory of Hrushovski and Kazhdan [HK06] (in
the non-measured case) rests on two main statements: that the natural
morphism

⊕l+m=nK+(Γ[l]) ⊗K+Γfin K+(RES[m]) → K+(RV[n])

is an isomorphism and that the morphism

L : ⊕nK+(RV[≤ n]) → K+(VF)

is surjective. The kernel Isp of the latter can be explicitly described. The
theory is developed in an axiomatic setting that depends only on the cate-
gory RV (the corresponding notion is called V -minimality).

Consider modified Euler characteristic

χ′ : ⊕nK+(Γ[n]) → Z, χ′([∆]) = lim
n→∞

χ(∆ ∩ [−l, l]n)

where χ is the usual o-minimal Euler characteristic (which yet again coin-
cides with the usual Euler characteristic when Γ ∼= R).

Define the morphism Vol : K0(VF[n]) → K0(Vark0)

Vol(L−1([X]⊗ [∆]) = θ([X]) · χ′(∆)(L − 1)n

is well-defined because Id⊗χ′ is trivial on Isp. The destination of the mor-
phism can be identified with K+(Vark) if K is algebraically closed.
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2.3 Lipschitz-Robinson rigid subanalytic functions

Let K be an algebraically closed, complete, non-Archimedean normed field.
Let R = { x ∈ K | |x|≤ 1 }, let m = { x ∈ K | |x|< 1 }, and let k = R/m.
Define the norm on the ring K[[x, ρ]] as follows:

|
∑

aijx
iρj |= sup|aij |

Let R0 ⊂ R be a maximal discrete valuation ring contained in R with
prime π ∈ m such that 0 < |π|< 1 and R0/(π) ∼= k. For any sequence (ai)

with ai ∈ R and such that |ai|→ 0 let ̂R0[{ai, i ∈ N}] be the completion of
R0[{ai, i ∈ N}] with respect to the norm on K and define

R0{ai}〈x〉 = ̂R0[{ai, i ∈ N}]〈x〉

Let R0{ai}〈x〉[[ρ]] be the ring of formal power series over R0{ai}〈x〉. Define

S{ai}〈x〉[[ρ]] = { π−αf | f ∈ R0{ai}〈x〉[[ρ]] }

and
K〈x〉[[ρ]]s = ∪{ai}S{ai}〈x〉[[ρ]] ⊂ K[[x, ρ]]

The elements of this ring define analytic functions R × m → K which are
well-behaved. For example, these functions have finitely many zeroes on
R×m.

A rigid subanalytic function is a function definable in the expansion of K
with graphs of functions from K〈x〉[[ρ]]s (Lipschitz and Robinson [Lip93]).

Proposition 2.14. Let S ⊂ X be a semi-algebraic subset of an algebraic
variety X, and assume that S is a finite union of rational and semi-rational
domains. An analytic function on a proper semi-algebraic subset of an al-
gebraic variety is definable in the language ACVFLR.

Proof. Follows from the fact that analytifications of affine varieties can
be covered by affinoid domains, that functions analytic on rational and
semi-rational subdomains of affinoid domains are definable, and that semi-
algebraic domains are contained in finite unions of rational and semi-rational
domains.

Corollary 2.15. Let T = G
g
m be a torus, and assume that discrete group

G acts on T so that fundamental domain U ⊂ T is semi-algebraic. Let f
be a meromorphic funtion on T/G, and let p : T → T/G be the quotient
map. Then restriction of p ◦ f to the fundamental domain is definable in
ACVFLR.

As was remarked in the previous section, the motivic integration theory
of [HK06] can be carried out verbatim in any expansion of the theory of
algebraically closed valued fields as long as the structure induced on the
sort RV is unchanged. In particular the following is true.
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Fact 2.16 (Lemma 3.33, [HK06]). Let X,X ′ be semi-algebraic subsets al-
rgebraic varieties over an algebraically closed valued field. If there exists a
bijection X

∼
−→ X ′ definable in ACVFLR then [X] = [X ′] in K0(VF).

3 Motivic volume of a family of polarized analytic

tori

In this section k is a complete rational valued field, i.e. a field complete
with respect to a non-Archimedean norm and such that the image of the
map log|·|: k× → R is contained in Q, for example, k can be a discretely
valued field, or its algebraic closure, such as the field of Laurent series C((t))
or the field of Puiseux series C((t))alg. Denote the residue field k̄.

3.1 The moduli space of linearly rigidified polarized analytic

tori

Definition 3.1 (Uniformized analytic tori). By a family of uniformized
analytic tori we will understand

- flat morphism of rigid analytic spaces π : A→ S

- an action of Zg on G
g
m × S by shifts so that Zg →֒ (Gg

m)s is a lattice
for all s ∈ S, and an S-isomorphism G

g
m × S ∼= A.

Two families A1 → S and A2 → S are isomorphic if there exists an S-
isomorphism A1

∼
−→ A2 that can be lifted to a Zg-equivariant isomorphism

of respective covers by G
g
m × S.

Definition 3.2 (Linear rigidification). Let S be a scheme or an analytic
space, let p : A → S be an analytic torus or an Abelian scheme over S and
let ϕ : A→ Â be a polarization of degree d. Then for any s ∈ S

dim(p∗L
3
ϕ)s = m := 6g · d

An isomorphism P(p∗L
3
ϕ)

∼= P(Om
S ) is called a linear rigidification of (A,ϕ).

Let M,M ′ be free rank g Abelian groups, and let T = Spec k[M ′], T ′ =
Speck[M ]. Let λ : M → M ′ be an injective homomorphism and S be a
rigid analytic space. Define Au

g,λ(S) to be the set of isomorphism classes
of uniformized polarized analytic tori with polarization of type λ and de-
fine Hu

g,λ(S) to be the set of isomorphism classes of uniformized polarized
analytic tori together with a linear rigidification. This defines two functors

Au
g,λ : RigSpk → Sets Hu

g,λ : RigSpk → Sets

Pick a distinguished basis ε1, . . . , εg in M , then the space Bg of all em-
beddings M →֒ T with the distinguished basis be identified with the space
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of matrices E = (eij) where eij ∈ K× is the j-th coordinate of the image of
i-th basis vector. Define the space of lattices with a distinguished basis.

B̃g = { ι(ε1), . . . , ι(εg) | ι :M →֒ T }

The group GL(M) acts on the on Bg: if Ω = (ωij) ∈ GL(M) then

Ω · E = (
∏

i

e
ωji

ij )

and the quotient B̃g is the space of embeddings M →֒ T .
We call a domain A ⊂ Gn

m polyhedral if A = trop−1(∆) for some integral
polytope ∆.

Proposition 3.3. The fundamental domain of the monomial free action of
GL(M) on B̃g is polyhedral.

Proof. This is easily deduced from the fact that GLn(Z) is generated by
diagonal matrices which have +1 and −1 entries and matrices of the form
Id+Eij where Eij is the elementary matrix that has 1 as the ij entry and
otherwise 0.

Fix an isomorphism i :M ∼=M ′, then for any embedding M →֒ T given
by the matrix E the corresponding embedding M ′ →֒ T ′ is represented by
E∗.

Define the universal tori

Z̃g = (T × B̃g)/M Z̃ ′
g = (T ′ × B̃g)/M

′

over B̃g. Since the map ϕλ : T → T ′ is M -equivariant, it descends to the
quotients. Furthermore, the action of GL(M) naturally lifts from Bg to
T ×Bg and sends Ts to TΩs is such a way that Ω(Ms) =MΩs.

Any homomorphism λ :M →M ′ is of the form Λ◦i; if λ is a polarization
then Λ ∈ End(M) is injective.

The morphism λ induces a surjective morphism of algebraic tori ϕλ :
T → T ′ and for any embedding M →֒ T , ϕλ(M) ⊂M ′ ⊂ T ′ and ϕλ|M = λ.
It therefore descends to the quotients: ϕλ : Zg → Z ′

g.
For any matrix E ∈ Bg, E = (eij) denote by Ē the matrix (− log|eij |).

Define
Ãg,λ = { E ∈ Bg | (ΛE) = (ΛE)∗, Ē > 0 }

Put Z̃ug,λ = Zg ×B̃g
Ãug,λ.

By construction, each x ∈ Aug,λ defines a lattice and the fibre (Zug,λ)x
carries the structure of a uniformized analytic torus, and the restriction of
ϕ to it is a polarization.

Proposition 3.4. If ι : M →֒ T is represented by a matrix E ∈ Ãg,λ then
the map ϕλ : T/M → T ′/M ′ is a polarization.
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Proof. We need to check that the form 〈−,−〉 :M ×M → K×, 〈m1,m2〉 =
λ(a)(b) is symmetric and positive definite. Indeed,

〈

g
∑

i=1

aiεi,

g
∑

j=1

bjεj

〉

= λ(
∑

i

aiεi)(
∏

j

ι(εj)
bj )

=
∏

k

(
∏

j

e
bj
kj)

∑
i λikai

=
∏

i

∏

j

(
∏

k

eλikkj )
aibj

which is clearly symmetric, given
∏

k e
λik
kj =

∏

k e
λjk
ki . Further,

− log|〈
∑

aiεi,

g
∑

j=1

bjεj〉|=
∑

i

∑

j

aibj(
∑

k

λikēkj) = (ΛĒa, b)

where (−,−) is the Euclidean scalar product on Rn. Therefore, since the ma-
trix ΛĒ is strictly positive definite, the bilinear symmetric form − log|〈a, b〉|
is also positive definite.

Proposition 3.5. The space Ãug,λ is isomorphic to a union of polyhedral

domains. For any polyherdal domain S ⊂ Ãug,λ, there is a bijective morphism

from a polyhedral domain onto Z̃g,λ ×Ãu
g,λ
S.

Proof. The first statement clearly holds for Ãug,id: the symmetry condition is
intersection of some diagonal varieties, and positivity condition means that
the coefficients of ēij belong to some open subset of Rg

2

, which is a union
of integral polyherdra. Notice that

Ãug,λ = Ãg,id ×Bg,λ Bg

For any polyhedral domain trop−1(∆) ⊂ Auu,id the set trop−1(∆) ×Bg,λ Bg
is polyhedral since λ is a monomial morphism.

The second statement follows from the fact that the fundamental domain
of the action of M on each fibre (T × Ãug,λ)s, is a polyhedral domain, and
that it only depends on trop(s).

Let T/M be an analytic torus with a polarization ϕλ : T/M → T ′/M ′

and let L = (id×ϕλ)
∗P where P is the Poincaré bundle on T/M × T ′/M ′.

Then linear rigidifications of L3 are a PGLN torsor where N = 6gd and
d = rkλ (by Facts 2.8 and 2.7). Indeed, by Fact 2.9 the sections of Lλ
are determined by coefficients aw1

, . . . , awN
of theta functions

∑

χ∈M ′ aχχ,
where w1, . . . , wN are some representatives of M ′/6 · λ(M). A linear rigid-
ification is uniquely determined by a choice of basis in the space of these
coefficients, up to scalar multiplication.
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Acting by automorphism of the torus on the argument sends characters
of T to characters. Let H̃u

g,λ = Ãug,λ × PGLN and extend the action of

GLg(Z) from Ãug,λ to H̃u
g,λ via the action of GLg(Z) on the basis of theta

functions by substitution:

Ω ·
∑

χ∈M ′

aχχ(x) =
∑

χ∈M ′

aΩχχ(x)

Define

Zug,Λ = Z̃g,λ/GLg(Z) Hu
g,Λ = H̃g,λ/GLg(Z) Aug,Λ = Ãg,λ/GLg(Z)

The obvious map that forgets linearization makes Hu
g,λ into a PGLN -bundle

over Aug,λ.

Lemma 3.6. Let A ∈ Mg(R) be a real matrix, and assume that there is
a neighbourhood U of A in Mg(R) such that all matrices A′ ∈ U define
bilinear forms that are strictly positive definite on Zn ⊂ Rn. Then A is
positive definite.

Proof. First note that x 7→ (Ax, x) is positive on Zn if and only if it is
positive on Qn.

Suppose A is not positive definite. It cannot have negative eigenvalues,
so assume it has an eigenvector x with eigenvalue 0. By assumption this
vector has irrational coordinates. As A′ varies in U , the eigenspace R · x
varies too. Clearly there exists an A′ with arbitrarily close eigenspace V
with eigenvalue zero with V ∩Qn 6= {0}. For such A′ the assumption is not
true, and we have arrived at a contradiction.

Proposition 3.7. For any polarization type λ :M →M ′ and any rationally
valued field k, the set of analytic tori (Zg,λ)x as x ranges in Hu

g (k) coincides
with the set Hu

g,λ(k).

Proof. Follows from construction ofHu
g,λ,Zg,λ Propositon 3.4 and Lemma 3.6.

Recall that the functor Hg,d,n : Sch/S → Sets, defined in Section 6 of
[MFK94], associates to a scheme S the set of isomorphism classes of linearly
rigidified degree d polarized Abelian schemes over S with level n structures.
For our purposes we do not need to deal with the level structure and we will
only consider the functor Hg,d,1 which we will denote Hg,d. Let Hg,d be the
k-scheme that represents the functor Hg,d.

Proposition 3.8. For any polarisation λ of degree d there exists a rigid-
analytic embedding Hu

g,Λ →֒ (Hg,d)
an and a rigid-analytic embedding Zg,Λ →

Zang,d compatible with projection to Hg,d

11



Proof. By [Con06, Theorem 4.1.3] there exists an analytic embedding of Hu
g

into ((HilbPN /k)P (x))an, where P (X) = 6g · d · xg, and of Zug,λ into (Zg,d)
an.

For any s ∈ Hu
g the fibre (Zg,λ)s is a polarized Abelian variety and hence,

by Proposition 7.3 of [MFK94], s ∈ Han
g,d ⊂ ((HilbPN /k)P (x))an.

Corollary 3.9. Let k be rationally valued. For any k-variety S, any polar-
ized Abelian scheme A→ S and any semi-algebraic subset U ⊂ S such that
As is mulitplicatively uniformized for all s ∈ U there exists a map U → Hu

g

such that Z ×Hu
g
U ∼= A×S U .

3.2 Integration

We are going to use the tropical motivic Fubini theorem of Nicaise and
Payne which we now recall.

Theorem 3.10 ([NP17]). Let A ⊂ Y × Gn
m be a semi-algebraic subset,

and let π : Y × Gn
m → Gn

m be the projection map. Then there definable
subsets ∆1, . . . ,∆m ⊂ Rn and classes X1, . . . ,Xm ∈ K0(Vark̄) such that for
any integer i, 1 ≤ i ≤ n and for any ξ ∈ ∆i, Vol((trop ◦π)

−1(ξ)) = Xi ∈
K0(Vark̄) and

Vol(A) =

m
∑

i=1

χ′(∆i)(L − 1)n ·Xi

We finally put together all the ingredients prepared so far.

Theorem 3.11. Let T be a k-variety, let π : A→ S be a Abelian scheme of
relative dimension g over S and let U ⊂ S be a semi-algebraic set such that
As can be uniformized by a torus for any s ∈ U . Then Vol(A×S U) = 0.

Proof. By Fact 2.16 we may use maps definable in ACVFLR.
We may assume that S and T are connected. Pick some polarization on

A, then by Corollary 3.9 there exists a map T → Hg,d for some d and such
that the image of U lies in Hu

g,λ for some λ, rkλ = d.
Using Corollary 2.15 and Proposition 3.5 we will identify Zug,λ and Aug,λ

with unions of polyhedral domains. It follows from Proposition 3.3 that there
exists a decompostion U = ⊔Ui with Ui semi-algebraic such that restirictions
of A×S Ui to the fibres of the projection Hu

g,λ → Aug,λ are trivial families of
tori. Consequently, A×S U is in a definable bijection with a semi-algebraic
set Zug,λ ×Au

g,λ
,ψ U for some definable map ψ : U → Aug,λ.

Let Σ = trop(ψ(U)) ⊂ trop(Aug,λ). Then Z
u×Au

g,λ
trop−1(Σ) = trop−1(∆)

for some definable subset ∆ ⊂ Rn for some n. Let ψ′ be the definable bi-
jection A → Zug,λ × U induced by ψ. Then A×T U is in definable bijection

with the graph Γψ′ ⊂ (A×T U)× trop−1(∆) of the map ψ′.
Denote π : ∆ → Σ the natural projection, and denote

P = { x ∈ k× | |x|= 1 }

12



the unit annulus. One observes that

(trop ◦ψ′)−1(ξ) = (trop ◦ψ)−1(ξ)× P g

for ξ ∈ ∆.
Finally, by Theorem 3.10 there exists a decomposition Σ = ⊔ni=1Σi into

definable subsets such that Vol((trop ◦ψ)−1(ξ)) is constant for all ξ ∈ Σi,
for each i, and so

Vol(Γψ′) =
n
∑

i=1,ξ∈Σi

Vol(P g × (trop ◦ψ′)−1(ξ))χ′(π−1(Σi))(L − 1)dim π−1(Σi)

=

n
∑

i=1,ξ∈Σi

Vol((trop ◦ψ′)−1(ξ)))χ′(π−1(Σi))(L − 1)dim π−1(Σi)

Here, χ′(π−1(Σi)) = 0 since χ′ is multiplicative and fibres of π are funda-
mental domains of a lattice, so χ′ vanishes on them.

Corollary 3.12. Let C → T be a family of smooth projective curves. Let
S ⊂ T be a semi-algebraic subset of T such that Cs is a Mumford curve for all
s ∈ S, and let J(C/T ) → T be the relative Jacobian. Then Vol(J(C/T ) ×T

S) = 0.

Proof. The family J(C/T ) → T is a projective Abelian scheme, and its
restriction to S can be uniformized by a torus fibrewise, therefore, Theo-
rem 3.11 applies.

References

[BG16] Florian Block and Lothar Göttsche. Refined curve counting
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