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ABSTRACT. The purpose of this paper is to prove the a priori esti-
mates for constant scalar curvature Kéahler metrics with conic sin-
gularities along normal crossing divisors. The zero order estimates
are proved by a reformulated version of Alexandrov’s maximum
principle. The higher order estimates follow from Chen-Cheng’s
frame work, equipped with new techniques to handle the singular-
ities. Finally, we extend these estimates to the twisted equations.

1. INTRODUCTION

Recently Chen-Cheng ([6], [7], [8]) established the a priori estimates
for the constant scalar curvature Kéhler(cscK) metrics equation, which
are fundamental towards the Yau-Tian-Donaldson conjecture on the ex-
istence of the cscK metrics. Their estimates lead to the resolution of the
properness conjecture and Donaldson’s geodesic stability conjecture.

Our goal is to prove a singular version of the Yau-Tian-Donaldson
conjecture, and this first paper aims to generalise Chen-Cheng’s a pri-
ori estimates to the log-smooth kit pair. That is to say, our metrics
develop cone like singularities along normal crossing divisors. In the
subsequent papers, we will discuss the existence problem for cscK met-
rics on singular kit pairs.

Let (X, D) be a log smooth klt pair, where D := Zizl(l — Br)Dx
is an R-divisor on the compact Kahler manifold X. Here the index
B = {Bp}{_, is a collection of angles 0 < 3, < 1. For some 0 < a <
mink{é —1, 1}, we consider a conic Holder space C%*# first introduced
by Donaldson [13].

Suppose (¢, F) € C**# is a pair satisfying the conic cscK equation
(Defintion (2.15)). Denote Hg(¢) by the entropy of a conic Kéhler
potential ¢, with respect to the background metric wg (equation (2.5)):

Hy(e) = [ oy
a(p) - Xog W

Wg

Then the following estimates are proved.
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Theorem 1.1. Let (¢, F) be a C>%F-conic cscK pair on (X, D). Sup-
pose that its entropy Hp(p) is bounded by a uniform constant C. Then
there exists another uniform constant C, such that the following holds:
(i) the C°-estimate )
[lello < C;
(ii) the non-degeneracy estimate

—C < F<C;
(iii) the gradient F-estimate and the C?-estimate

max \V F|, + Max r,,w, < C.

The C° estimate is proved in Theorem (5] and Corollary (.G,
and the non-degneracy estimate is proved in Lemma (4.8). Comparing
with Chen-Cheng’s work [6], the new difficulty is that Alexandrov’s
maximum principle(AMP) fails in the conic case. More precisely, the
constant appearing in Chen-Cheng’s estimate depends on the diameter
of the coordinate ball, on which we applied this maximum principle.
However, the diameter has to become smaller and smaller when the
ball is approaching the divisor, and then we lose the control of the
constant.

In order to overcome this difficulty, we developed a new version
of AMP, the Generalised Alexandrov’s mazimum principle(GAMP) in
Theorem (3.H). The key observation is that this maximum principle
still works for a function w if the upper contact set I'}” of this func-
tion is completely disjoint from the singular locus of u. Therefore, we
can utilise this new maximum principle in the estimates, by adding an
extra “extremely” pseudo-convex auxiliary function near the divisor.

The integral method on compact manifold (iteration without assum-
ing uniform Sobolev constant on varing metrics) from Chen-He [9] is
important in Chen-Cheng’s work. Following this basic frame work, the
gradient F-estimate and the C?-estimate in the conic setting are also
proved via the following W?2P® type estimate.

Theorem 1.2 (Theorem (5.1))). Let (¢, F) be a C**P-conic cscK pair
on (X, D). For any 1 < p < 400, there ezists a uniform constant C’
such that

/X(trwﬁww)pwg <"

Here this constant C" depends on p, ||¢|lo, ||F|lo and conic background
metrics wg,wp on (X, D).

Here wp is another conic background metric introduced by Donald-
son [13], and the constant C” depends on both wg and wp. The reason is
that we need to switch the background metrics during the proof of the
W?2P-estimate, but this does no harm to our LP-norm [|n + Ay|| o)
since wp and wg are quasi-isometric on X.
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For later purpose, we assumed that the cscK pair (i, F') lies in the
conic Hélder space C>*#. In practice, all these a priori estimates still
hold, if we only assume (¢, F) € Cé’l(Deﬁnition (#1)) in the very
beginning.

In order to investigate the existence of the conic cscK metrics, we
are further led to studying the following continuity path on Y := X\

Supp(D):

t<Rgo - Bﬁ) =(1- t)(trqﬂ'ﬁ - IB>7
for t € [0,1]. Here 7 is a closed (1,1) form varying in a fixed Kéhler
class. More precisely, we assumed 7 := 79 + dd°f > 0, for some fixed

smooth (1,1) form 7o on Y with ||, uniformly bounded, and the
function f satisfies

sup f = 0; / Gfp‘)fwg < +00, for some py > 1.
X X

With these constraints, a triple (¢, F, f) € C>*# is the solution to
the twisted conic-cscK equation if they satisfy equations (7.1) and (7.2).
Then we extend our estimates to the following.

Theorem 1.3. Let (o, F, f) € C>%P be a triple of the twisted equations.
Suppose the entropy Hg(p) is bounded by a uniform constant C. Then
there exists another uniform constant C”, such that the following holds:

(iv) the C°-estimate
lollo < €7

(V) the non-degeneracy estimate
—C" < F<(C"

(vi) there exists a constant k,, only depending on the dimension n,
such that if pg > k,, then we have

IVo(F' + |, < C".

Since the upper bound of the (1,1) form 7 is out of control in the
twisted case, we no longer expect the C?-estimate directly. However,
the C%-estimate can be actually deduced from the gradient F-estimate,
by a conic version of Chen-He’s integral estimate.

Similarly, the gradient F-estimate is proved via the following W?2P-
estimate.

Theorem 1.4 (Theorem (Z4)). Let (p, F, f) € C>*P be a triple of the
twisted equations. For any p > 1 there exists a constant C' satisfying

/X e’(pfl)f(trwﬁww)pwg < C’,

Here the constant C depends on p, po(uniform if po is bounded away
from 1), ||ello, ||F+ fllo, and background metrics wg and wp.
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More generally, our zero order estimates (the C° and non-degeneracy
estimates) can be also used on singular klt pairs. In fact, after pulling
back to a log-resolution, the metric has conic singularities along normal
crossing divisors, but it is possibly degenerate along some exceptional
divisors. Therefore, we can apply our tricks on the resolution, and then
the estimates follow from GAMP again.

Furthermore, the higher order estimates on singular klt pairs, like
the W?2P-estimate and C%-estimate, can also be realised on a compact
domain away from the divisor. These topics will be discussed in a
sequel paper.
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2. PRELIMINARY

Let (X,w) be an n-dimensional compact complex Kéhler manifold.
Suppose D := Zzzl(l — B ) Dy is an R-divisor on X with simple normal
crossing support such that the angle g € (0,1) for all k. Then (X, D)
is called as a log smooth klt pair.

Near a point p on the support of D, there exists a holomorphic
coordinate system {z;} such that the support Supp(D) is defined by
the equation {z;---z4 = 0}. Then a model conic metric Weone with
cone angle By along Dj can be written as

d

V—=1dz, A dZ, -
(21) Weone +— Z w + Z vV —1d2k VAN dik.

2—-2
o lmP k=d+1

A positive current w,, := w4+ ddp is a conic Kéhler metric with cone
angle i along Dy, if it is smooth on X \ (|J Dy) and quasi-isometric
to the model metric weene near each point p € Supp(D), i.e. it satisfies

-1
C Weone S w(p S chonm

for some constant C' > 0.

When the divisor D is a smooth hypersurface, Donaldson [13] in-
troduced the conic Holder spaces for the potential like ¢ € C%? or
¢ € C¥* for some constant a € (0,1) with a8 < 1 — 3. Moreover,
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he proved a version of the Schauder estimate([13], [1]) for the conic
Laplacian operator.

2.1. Conic Kéahler-Einstein metrics. Let (Lg, ¢x),1 < k < d be a
set of hermitian line bundles, with non-trivial sections s, € H°(X, Ly,).
Assume the divisors Dy, := {sy = 0} are smooth, and they have strictly
normal intersections. For simplicity, we write the norm of the sections
as |sg|? := |sk|?e79F. Then a simple example of conic Kihler metrics,
the Donaldson metric, can be written as

d
oy lg, |26
wWp —W-'-N;dd ‘Sk‘ k,

for some N > 0 large.

This example has been widely used as the background metric in
the study of conic geometric equations. In fact, there exists a natural
smooth approximation of wp as

d
1
Wpe =W E ;ddc(|sk|2 + £%)Pk,

for every € > 0 small. However, the holomorphic bisectional curvature
of this approximation Rj;;(wp.) grows too fast along certain direc-
tions near the divisor. Therefore, Campana-Guenancia-Paun [10] and
Guenancia-Paun [I5] introduced another smooth approximation as

d
. 1 .
Wpe i =w+ N ;dd Xk(|3k|2 + 52),

where the auxiliary function y.(e? + t) is a smooth perturbation of
the function (g2 + ¢)%. This is a “better” choice in the sense that
the bisectional curvature R;;;;(Wp,) has a slower growth rate near the
divisor.

In the work [10] and [15], they studied the regularities of the so called
conic Kihler-Finstein(KE) metrics as

(2.2) (w+dd°p)" = e/ dup,
where A = {—1,0,1}, f € C*(X), and the measure up is defined by

wn

T [sef228e

Here e/dpp is a probability measure if A = 0. They actually proved
that an L™ solution ¢ of equation (2.2)) is always in the space C>%5.

For the case A > 0, by the celebrated work of Yau [23] on Calabi’s
conjecture, there always exists a smooth approximation for the conic
KE metric as follows

(2.3) (w+ ddpe)"

dup :

erpetftes yn

TT (k]2 + e2)tme
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for some uniformly bounded constant c..

According to the expansion formula of the conic KE metric ([24],
[18]), the bisectional curvature Ry,;(w,) (R;5(w,.)) behaves even bet-
ter than R;;;(wp) (R;;;(@p,c)) near the divisor, when the divisor is
smooth. As inspired from the third author’s previous work [27], we
will use a special conic KE metric as the background metric.

2.2. Conic cscK metrics. For A = 0, there always exists a solution
wp 1= w + dd“yg for the conic Calabi- Yau equation as

2.4 (ot ddr) = —
: w ) = —————,
[Ty sel>-25
where 3 := (f1, -+, 0k) is a collection of angles. In other words, it
solves the following geometric equation
d
(2.5) Ric(wg) = © + Y (1 — B)[Dyl,
k=1
where © is a smooth closed (1,1) form on X defined by
d
© = —dd"f + Ric(w) = > (1 — By)dd .
k=1

Let w, := ws + dd°p be a conic Kahler metric with cone angle S
along each Dy. Suppose this conic metric is a solution of the following
two coupled equations

(2.6) (wg + ddp)" = e"'wp,

(2.7) A F'= —Rg +tr,0,

where R is a topological constant depending on the angle 3, and we
assume the normalisation [, e’ wi = 1. Observe that the solution w,
has constant scalar curvature (R, = Rg), outside the support of the
divisor D.

If the solution ¢ is in the space C>®#, then F is in C>*? by equation
Z86). When the divisor D is smooth, we further have F' € C>%#
by equation (2.7) and Donaldson’s Schauder estimate. Therefore, it
makes sense to assume that ¢ and F' always have the same regularities
in general.

Definition 2.1. A pair of functions (p, F) is called a C>“P-conic cscK
pair on (X, D), if the potential ¢ is in the space C>*P, and its associ-
ated Kdhler metric w, (with cone angle By, along each Dy,) satisfies the
coupled equations (Z.8), (2.74) on X \ (J D), with F € C>%F.

Since we switch the background metric to wg, the potential space
has a one-one correspondence with the previous one, i.e. ¢ = 13 +
. However, the conic Hélder space is unchanged, since 93 is also in
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the space C>*# ([15]). Therefore, we can stick to this new potential
space as the collection of all ws-plurisubharmonic functions with €%
regularities.

When the divisor is smooth, the higher regularities have been known
in [20] for 0 < 5 < %, and in ([24], [26]) for any angles. There we used
the model cone metric as our background metric. However, this is not
an issue, since both potential of wp and ws have higher regularities.

3. GENERALISED ALEXANDROV’S MAXIMUM PRINCIPLE

Let 2 be a bounded open domain in R", with smooth boundary
00 =QN(R™\ Q). Let L be a second order differential operator:

L= Zaw D,j+Zb )D; + c(z),

i,7=1

with a;; € Lis.(Q) and b;, c € L>(Q2). Moreover, we assume a;; = a;;.
The operator L is called elliptic on 2 if for every z € €2 there exists
A(x) > 0, such that

> auti&s > M)l
ij=1
for all £ € R™. Moreover, for elliptic operator L one defines
D= (det(aij))l/".

For any continuous function u on the set €, we can introduce the
upper contact set of u, which is roughly speaking the set of points in
() that have a tangent plane above the graph of w.

Definition 3.1. For any u € C(Q), the upper contact set I'* is defined
by

ti={yeQ; I p, €R" such that Vo € Q: u(z) <u(y)+p, (@ —y)}

The set I'" is relatively closed in Q. If u € C'(), then p, = Vu(y)
for any y € I'".

Moreover, if u € C?(Q2), then the Hessian matrix (D;;u) is semi-
negative on I'". In other words, the set I'" consists of all “concave
points” of u.

Then we invoke Alexandrov’s maximum principle(AMP) as follows

([16], [217).

Theorem 3.2. Let Q be bounded and L elliptic with ¢ < 0. Suppose
that u € C*(Q) N C(Q) satisfies Lu > f with

bl f
L™"(Q
o <L)
and then one has
(3.1) supu < supu* + C' - diam(Q) - Hf_ |
Q 19) D* Ln(r+)
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C:=C|n, .
Ln(D+)

When the function u is no longer C? in Q, the Alexandrov maximum
principle fails in general. However, observe that the RHS of inequality
(BJ) only concerns with integration on the set I'*! Therefore, there
is still some hope left, if the singular locus of u completely misses the
upper contact set.

with
0]
@*

Lemma 3.3. Lel g € C(R™) be a non-negative function and u €
C(Q)NC*V). Suppose that V is an open connected subset of 2, such
that the upper contact set of u satisfies

r*cv
Set d := diam($2) and

M o— Supqn U —dSUpaQ U.

Then we have

32 [ g@ave) < [ g(Vu@)ldeDyule)lav ),
B]W(O) T+

Proof. Tt is easy to see that the set I'" is also relatively closed in the

open subset V. Since the function « is C? in an open neighbourhood

of I'", we can consider the mapping:

Vu:V = R".

Let the set X be the image of I'". Since this mapping is onto and g > 0,
by change of variables, we have

(3-3) /ZQ(Z)W(Z) S/ 9(Vu(z))| det(Dyu(z))|dV (z).

T+

Then it is enough to prove By (0) C ¥. In other words, we claim
that for any a € R", |a| < M, there exists a point y € I'" such that
a = Vu(y). Moreover, only continuity of v on Q and C'-regularity of
u in V' are needed to prove this claim.

For each such a, we define a linear function L,(t) := min, g(t +a -
x —u(z)) for t € R. Let ¢, be the root of the operator L,. It follows
that t, +a -z —wu(zx) > 0forall z € Q, and t, +a-y —u(y) = 0 for
some y € 2. Therefore, we have

(3.4) u(y) = u(@) +a-(y — )
Moreover, we can always assume that the maximum of u appears in
the interior, i.e. u(xg) = supg u for some xy € 2. Then one finds

u(y) >supu+ M -d+a-(y—x) > supu.
20 B
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Therefore, the point y must be in €2, and hence it is also in the upper
contact set I'" by equation (3.4). Finally, the assumption u € C?(V)
implies that a = Vu(y).

O

For an elliptic operator L defined on V, we define ®*(z),z € V as
the geometric average of the eigenvalue of the positive matrix (a;;(z)).
By picking up g = 1, we have the following version.

Corollary 3.4. Under the condition of Lemma (3.3), we have
(3.5)

n n 1/n
d = . aii(x)Du(x
Supugsupu—l——{/ ( El,]—l ]( ) J ( )) dv<l‘)} :
Q aQ Qp, r+ no*

where a, is the volume of the unit ball in R™.

Proof. On the set I'", the matrix A = (a;;(x)) is positive, and D =
(Djju(x)) is semi-negative. Then we have the inequality
tr(—AD
9" (det(— D))" = (det(—AD)/n < HEAD)

=

n
in other words,

— Y0 ag(x) Dyu(x) \
| det(Dyju(z))] < ( > ) :

and then our result follows. O

Considering the set QF := {z € Q; u(z) > 0}, we further obtains
the following inequality

(3.6)

n n 1/n
— > . sai(x)Diu(x
Supuésupu++i {/ < El,]—l ]( ) J ( )) dV(l‘)} .
Q@ o0 an | Jrtnot no*

Up to this stage, we have seen that AMP is essentially a story of
SUpq U, Supyg u, 't and the ellipticity of L on T't! The equation is
not actually involved so far, and then we can formulate a new version,
Generalised Alezandrov’s mazimum principle (GAMP) as follows.

Theorem 3.5. Suppose that there exists an open connected subset V
of Q, such that T C V and w € C(Q)(C*(V). Let L be an elliptic
operator with ¢ < 0, and it satisfies Lu > f on V with

ol f

e L™(T).
Then one has

(3.7) supu < suput + C - diam() -
Q o0N

@*

I

Ln(0+)

I
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C:=C|n, .
Ln(I+)

Proof. In the case b; = ¢ = 0, the proof follows directly from Corollary
(B4) since f < Lu<0onI't.

For b; or ¢ non-zero, one can use Lemma (3.3)) with V' replaced by
VN QT, and pick up g(z) := (Jz|* + u™)~' for some constant p =
1f~/D*||Lnr+) as the standard proof of AMP. O

with
1o
@*

4. THE POTENTIAL ESTIMATES

Let (o, F) be a C>%P-conic cscK pair on (X, D). The coupled equa-
tions on X \ SuppD can be re-written as

(4.1) log det(g,;; + ¢;;) = F' + log det(g;;),
(4.2) AF = —R, +tr,0,

where (g;;) stands for the metric for the conic Kéhler form wg, and
we always assume the condition supy ¢ = 0. By the construction, the
function F' is smooth outside the divisor.

Then we want to persuade as in Chen-Cheng [6] to introduce an
auxiliary function, by solving the following equation:

F n
e" d(F)wy
[y eFO(F)wy’
where ®(z) := V22 + 1, under the normalization supy ¢, = 0. This

auxiliary function v, exists by a theorem of Kolodziej [19], and it is
also C'“~-Holder continuous on X.

(4.3) (wg + ddy,)" =

4.1. The auxiliary function. In fact, we can explore more regular-
ities of the function ¢4 as in [I5]. Take ¢ := g + 11, and equation

(43)) reduces to

f
(4.4 (w+ ddey = — <
[T [snl?~20
where f := F+1log(F?+1), and dV is a smooth volume form. This is
equation is very similar with the conic KE equation for A = 0, expect
that the function f may also have conic singularities.
More precisely, the derivatives of f are determined by

F.oF
8f—8F+m,
2
gr— (14— Noar— 1" _orndF
90f (*2(1?2“))aa sy ot Mo

If FF € C?>*P, then there exists a constant C' to satisfy
(4.5) OF2, < C;



CONIC CSCK METRICS 11

d
(4.6) 0<OI(F+C |z*™) < 2Cweone,
k=1

near the divisor. Moreover, the function f also satisfies the above two
equations by its construction. In fact, we have the following space.

Definition 4.1. A function f € C*(X \ Supp(D)) is said to be in

the space Cé’I(X, D), if equations (4.3) and (4-6) always hold near the
support of the divisor.

The next goal is to cook up a small smooth perturbation of the func-
tion f with complex Hessian controlled near the divisor. Let {U;}X,
be a finite collection of open coordinate balls such that the following
conditions hold:

e the manifold X is covered by UZJL Us;
e there exists an integer 1 < m < N, such that U; (| Dy # () for
some k and Vi < m, and U; (| Dy, = 0 for all k and Vi > m.

Furthermore, for each ¢ < m, we can assume that the defining equa-
tion of SuppD (U is {z1 - - - 2z = 0}, where {z;} is a coordinate system
on U;. Let {x;} be a partition of unity subordinate to the open cov-
ering {U;}, and then we can write f = Ejvzl [, where f; == x; - f is
compactly supported on each Uj;.

Let p; be the standard mollifier on the unit ball of C", and take

pe(l2) =7 p(|2]* /7).

There exists a sequence of smooth approximation as f;. = p. x f;
for 57 < m and f;. = f; for 5 > m. In fact, we can assume the
smooth function f;. is defined on X by zero extension. Therefore, the
fe = Zjvz1 fje is a smooth function on X, and converges to f in C-
norm. It is easy to see that the derivatives of f; also satisfy equations
(@) and (4], and then the growth of the complex Hessian of this
approximation can be estimated as follow.

Lemma 4.2. Let B be the unit ball of C", and Z be the zero locus of
the function {z - - - 24}. Suppose that a function G(z) is in L*(B) with
homogeneous growth near Z, i.e. there ewists real numbers {ay}¢_,
with each oy > —1, such that

d
G(2)] < CT] lal™,
k=1

in an open neighbourhood of Z. Then the regularization G, = p. x G
has the following growth near the zero locus:

(4.7) Go(2)] < C [zl + %)
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Proof. For any x € B;_., the convolution can be estimated near Z as

Go(a)] < / PN )l

/ p(2) H A e P
|z|<1 k=1

IA

(4. < emtame [ g [T Gafe) - aufd
|z|<1

k=1
up to a constant. Take a function

d
G = p1* (H |Zk|2a’“> ,
k=1

and then we observe that this positive smooth function satisfies
d
Glo) < MO+ faf*),
k=1
for all |z| < 1 and M = 2¢supy G. Then the last line of equation ()
can be re-written as

d
gzzzlzaké(l‘/E) < 52%:1 QO‘kM H(l + |:L‘k/€|2)ak
k=1
d

M + lz*)™,

k=1

(4.9)

IN

and our result follows. O

The complex Hessian of each f;. is equal to p. x 90f;. Put G(z) =
0,0;f; for some 1 < p,q < n, and then all the conditions in Lemma
([A2) are satisfied, where each oy is equal to 1 — Sy, (1 — 5x)/2 or 0.
Then Lemma (42]) shows that dd°f. is bounded by sums of terms like

dz, N\ dz, dzp Ndzg +dzg N dz,
— Or 7 K
(€% + |2p[?) (€% 4+ [2p[*) 77 (€% + [ 2]?)%
where o, € {1 — 3,0} and o}, € {3(1 — 3),0}.
Then we can solve the following perturbed equation of equation (4.4)):
B ef=dV
[T (Jsl? +£2)a-5)”
up to some uniform constant ¢.. The argument for the C''-estimate

for the conic KE equation(Proposition 1, [15]) can be applied again to
this equation. The only thing left is to check the following inequality:

(4.11) dd°f. > —(Cwp.. + dd°T.),

(4.10) (w + dd“.)"
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for some uniform constant C'. Here U, := S2%_ y,(|sx|? + £2) for some
real number p < ming min{f, 1 — Bx}. This is simply true by our
previous estimates on the growth of dd°f.. Eventually, we came up
with the following regularity theorem of our auxiliary function.

Theorem 4.3. The metric wy, = wg+dd“Y, associated to the auziliary
function 1y is a conic Kdhler metric with cone angle [ along each
divisor Dy,.

Proof. We already proved the Cé’l—estimate for the potential v, and
then the metric wy, is quasi-isometric to the model cone metric Weone
near the divisor. Moreover, on each open coordinate ball U with
U SuppD = 0, the function ¢ is in C*(U), and then it is in C**(U)
by the regularity result in the work [12]. Finally, the solution v is
smooth on U by the standard boot-strapping technique.

O

4.2. CY-estimate. Suppose w is a Kihler form on X. Let ¢ be a
w-plurisubharmonic(psh) function on the manifold. The the regular-
ization theorems ([11], [4]) of quasi-psh functions implies that there
exists a sequence of smooth w-psh function ¢; decreasing to ¢.

Lemma 4.4. There exists a real number o > 0, such that for all w-psh
function @ with supy ¢ = 0, the following estimate satisfies

(4.12) / e w" < (O,
X

for some uniform constant Cy only depending on (X,w).

Proof. The smooth version of this lemma is established in Tian [22].
Taking ¢; as the smooth decreasing approximation of ¢, we have
supy ¢; > 0, and then there exists two positive numbers o and C;

to satisfy
/ eIy < / e~ aPimsupx @) n < O
X X

for all ¢ and j, and our result follows. U

Let (i, F) be a C**F-conic cscK pair for the log smooth kit pair
(X, D). Take the normailzation supy ¢ = 0, and then the lower bound
of the potential can be first estimated in terms of F' and .

Theorem 4.5. Given any ¢ > 0 small enough, there exists a constant

Cy = Cg(e,X,w,/ FO(F)W", B, ¢, D)

X
such that the following holds:

(4.13) F+ey—2(1+ max ©))p < Cs.
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Corollary 4.6. For any real fixred number ¢ > 0, there exists a constant

C3 = C3(Q7X7w7/

X

P O(F)ur, .0, D, max [6))

such that the following holds:

(4.14) / W <Oy ello < Cs; ]| < Cs.
X

Proof. Combing with Lemma (£4]) and Theorem (4.3]), the uniform

L(w™) estimate for the function e’ follows exactly like the argument

in Chen-Cheng [6], by picking up € = a/q. However, in order to prove

the L*> bound of the potential, we need the following argument.
Re-write the Monge-Ampere equation (4.1]) as

(W + dd*(Pp + )" = pw",

F,n
EUJB

where 1 = is the density function. Taking some 1 < p < ming(1—

wn

Bk)_%, the LP-norm of p can be estimated by the Holder inequality

1/p' 1/p
/ Pt y v < ( / PP F dV) / _ av
x o Ty [sa?P0-80) X x TT0_, |s|20-50)

(4.15) < Cy(B) ( /X equV) " ,

where we choose % + 1% = 1 and ¢ := p + p/. Finally, by the work
of Kolodziej [19] and Benelkourchi-Guedj-Zeriahi [3], the L*-norm is
controlled as

1/n
0 < [l +vsllo < Csllptll ot

where the constant Cs only depends on p and w. Then our result follows
since 13 is uniformly bounded. Moreover, for the auxiliary function 9y,
we have the same L™®-estimate, since v/F?2 + 1 is controlled by et for

any small £; > 0.
O

For the proof of Theorem (H]), we first run as Chen-Cheng’s argu-
ment [6]. Take u; := e’ and A;(p, F) := F + ey — A\p. Here the
constants are determined as

)\::2(1+m)?x|@|)a § =2

2n\’
where « is the small constant appearing in Lemma (4.4]).

Let py be the maximum point of the function u. For some d > 0
small enough, we can consider a coordinate ball By(py) around py with
radius d. Take 7, be a cut-off function such that n,(p) = 1 and 7, =
1 — 0 outside the ball By (p), with the estimate |Vn,|* < 46*°d~? and
|V?n,| < 46d~2. This small positive constant § will only depend on «
and d.
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Suppose that the ball B, (d) is away from Supp(D). Then the esti-
mate (£I3]) holds for some constant, by applying AMP to the function
uny,. However, this constant will depend on the diameter d, and it
grows like d=! when the ball is closer and closer to the divisor.

Therefore, we need to introduce a new auxiliary function as

d
’Lpg = Z ‘Sk‘zyk.
k=1

, where we define

Alp, F) = F + (1 + 1) —

Let xg be the maximum point of the function u on the manifold, and
we can assume By(zo) (| Supp(D) # 0 for some fixed radius d small.
Then there exists an open coordinate system U such that Byy(z) C U,
and the defining function of Supp(D) is {z1---2z4 = 0} in U.

Put u := e*4

We re-wirte the new auxiliary function 1, on U as ZZ:1(|zk|26*¢”“)%
and its complex Hessian dd“y can be explicitly calculated as
(4.16)
i ) dz, Ndz, + 2Re {EZ=1 0(2,)dz, A dzp} + > 0= 0|2 dzg A dzl
Tpe
o p (|z ‘26 ¢p)1 Tp

Therefore, we have the following estimate near the divisor

dz A dZ =
(4.17)  Cowmue + ddy > C;) (Z \ZP T Y dy Adz]) ,

j=d+1

for some constant Cg only depending on the angle v and the hermitian
metric ¢.

The complex Hessian function of ¢, grows very fast to +o0o near the
divisor, and this gives us a chance to avoid its upper contact set.

Lemma 4.7. Let T be the upper contact set of the function un,, on
U. Then there exists an open neighbourhood Vp of Supp(D) (U, such
that TT(\Vp =0

Proof. By our construction, the function un,, is smooth outside the
divisor, and then we can compute its Laplacian with respect to the
Euclidean metric wg,. on U \ SuppD as

An) = ANy + P An 4 20e° VA -V
(4.18) = "' (SAA+ |VAP) + e An +25e""VA - V.

By the construction, we have

(4.19) AN > 240/ d?,
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and
WVA-Vy > —82|VAR -5t Vn?

462
4.2 > 42 AP — —.
(4.20) > VAP -

Moreover, since ¢, F, 15 € C**? we see
A(F + ety + ey — Ap) > tr,,, {dd(F — Ap) — cwg} + eAr)y
d d
(4.21) > (Z |2 |22 2 + 1) +eCT! <Z |z,§|2%—2> ,
k=1 k=1

for some constant C7(may not be uniform). Eventually, for chosen
g,0, A and 0, we have on U \ Supp(D)

462 40
0A SA SA
A(e’n) > e’ A(F + e+ ey — Ap) —e <m + ﬁ)
d d
(422) =2 -G <§ |2k 2% 4 1) + G5t <§ Iz;ﬁlzy’“”) :
k=1 k=1

for some constant Cy.

By picking up v < 08k, there exists an open neighbourhood Vp, of the
support of the divisor D in U such that A(un,,) > 1 on Vp \ Supp(D).
Therefore, the upper contact set I'" is disjoint from the open set Vp \
Supp(D).

Furthermore, we claim that Supp(D) (T = (). Otherwise, suppose
a point py is in Supp(D) (T'", and then there exists a vector a € R?",
such that

UMz <y> < UMy, (pO) ta- (y - p0)7
for all y € U. Define a new function on Vp as

v(Y) == une,(y) +a- (po —y)-

By our construction, this function v obtains its maximum at the point
po, and it is continuous on Vp. Moreover, the function v is strictly
subharmonic on Vp \ Supp(D) since its real Laplacian Av = A(un,,)
is positive there.

In fact, v is even subharmonic on the whole Vp by the extension
theorem of subharmonic functions. Thanks to the maximum principle,
it must be a constant in Vp, but this contradicts the fact that v is

strictly subharmonic outside the divisor.
O

Proof of Theorem ({{.5). In order to apply the maximum principle to
our function un,,, we compute the Laplacian A,(un,,) outside the
divisor. The calculation is very similar with Chen-Cheng’s work [6],
and the only difference is that our background metric is wg, a conic
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metric this time. However, observe that we have Ric(wg) = © outside
the divisor. Therefore, we obtain

AW(F—I—&M + &by — Ap) > {_Bﬁ - )\n_|_gn[;5(b%(F)}
+ Aty + (A — & — [O])tr,gg,

(4.23)

where Iy == [ x eFO(F Jwp. Here we used the following inequality

Ay =2 n (€7F€F®(F)[gl)% — tr,9s.
Moreover, for some large integer N, we have the Donaldson metric
Wpy = w + N’lddcwg > 0,
with cone angle 7, along Dj. Therefore, we see
(4.24) eA Py > —eNtr, w > —eNitr, wg.

Here the constants N and N; only depend on w,wg, X, D and the her-
mitian metric ¢. Then we may assume ¢N; < 1, and the following
inequality holds:

1
Acp (66A77$0) > 5773&066A (_Eﬁ — An + En[d:nq)%(F)>

(4.25) 49 492
A
Recall these constants are taken as A := 2(1 + maxx |©]), and 0 :=

(2nA\)"'a, and then we choose the constant § > 0 small enough to
satisfy

(1-0a 46 462
RS A a—
An 2 21-0) "~

This implies the following equation on U \ Supp(D)
_1 4
(4.26) Ay (ung,) > 577$065A(—E5 —An+enly"®n (F)).

Thanks to Lemma (A7), the upper contact set I'" of the continuous
function un,, in the ball By(x() is contained in the open subset By(z)\
Vb, which is away from the divisor. Then we are ready to apply GAMP
in the ball to have:

SUPp UMy, < SUP UMy,
Bg(zo) 0B4(z0)

1
1 1 2n
+  Chdy (/ 62Fu2"(—E5 — An+enly "@n)znw") ,
By(zo) Q™
(4.27)
where )~ denote the set
1
Q :={x € By(wo); —Rs— An+enly " < 0}.
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Then there exists a constant C'g only depending on ¢, I and the smooth
metric w such that F' < Cy on Q7. As in Chen-Cheng [6], the last term
is eventually bounded by the integral

2n ,Cy(2nd+2) —ap, n
. 1 = V10,
(4.28) (|Rs] + An)™e / e~ W < O
Ba(zo)

by Lemma (4.4). Therefore, we obtain
supu = un(zy) < (1 —0)supu + Cyd - Cy,
X X

and then supyu < 071C,d - C1y. Finally our result follows since the
function 15 is uniformly bounded on X.

0

Eventually, the C%-norm of the potential ||| is controlled by the
conic entropy Hg(p) = [ < F e’ wp, by the equivalence between the

integral [, e/ F? + 1wj and Hp as in [6].

4.3. Non-degeneracy estimate. The uniform upper bound of the

n

volume form radio F' := log :—ﬁ is easily obtained from the inequality
5
(@13). In fact, for a fixed gy small enough, we have
F < Cy — eotfy,

and the result follows from Corollary (£.6).
The last issue is the lower bound of F', but we can use GAMP again
as follows.

Lemma 4.8. There exists a constant Cyy satisfying
(4.29) F > —Ch,
where the constant depends on

Cll = Cll(H@HO;X7w767¢7D7m)?X‘@‘)'

Proof. As before, we consider a function
As(F, @) == —F — A + e91s,

and put us = €42, Assume the function u, achieves its maximum at
the point x,. Pick up
1 1
) Eo = )
oan’ 2T 2N,
where Nj is the uniform constant in equation (£24]). Then we have

A (F+Ap —eathy) = (trw@ —Rs — )\trquB) + An — e2A 1

< —trwwg + Eﬁ + An + EQNltr(pwﬁ,

A= 2(m)z(xx|@| +1); 6:=

1
(4.30) < _itrwwﬁ + Rg + An
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outside the support of the divisor. Following Chen-Cheng’s calculation,
we further see

(4.31)
1 20 462
> 6u2 _ - _ .
Ay (ugng,) > de {trwg <2577$1 T 9)) O(Rs + )\n)}

Choose 6 sufficiently small to satisfy
1—-0 20 462

e |
2 2 @21-0)

and then we have
(4.32) Ay (ugny, ) > —6e’42 (Rg + An).

Now observe that the function usmn,, is strictly subharmonic in an
open neighbourhood of the divisor, by the same argument as in Lemma
(@1). Then there exists an open subset V' of the ball B;(z1) completely
disjoint from the divisor, such that the upper contact set Fz:mm) of the
function ugn,, is contained in V. Therefore, we can apply GAMP to

this function on the ball By(x;)

"1y, (21) < sup ey,
OBg(x1)
2n
(4.33) + C,d (/ e (R, + )\n)Q"w">
X
However, this integral is bounded by the following
(4.34)
/ 62F6—2n6A2 (Eﬁ + )\n)ann < 012/ 6(2—271(5)Fwn < 012/ ern’
X X X

and our result follows.

U

Remark 4.9. During the proof of the a priori estimates, the reqularity
condition (¢, F) € C**# is more than enough. In fact, we can prove

our results by only assuming (@, F') € Cé’i.

Remark 4.10. The constant Cy and Cs3 depend on many things as
listed before, but they do not actually depend on the conic background
metric wg. In other words, if we switch our background metric to an-
other conic metric Wg which is isometric to wg, then the uniform esti-
mate also works, with maxy |0 replaced by maxx\supp(p) |Ric(@g)].

5. THE W?P ESTIMATES

In this section, we want to demonstrate the estimates on the Lapla-
cian of the potential ¢ for conic cscK equations. Taking YV := X\
Supp(D), the idea is to first prove the W2P(du,Y) estimate for ¢ for
some measure du, and then use the W?2?(du,Y’) norm to control the
L*>-norm of the Laplacian.
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Theorem 5.1. For any p > 1, there exists a constant C'4 satisfying

(51) /(trwﬁw@)pwg S C1147
Y
where this constant depends on
014 = Cl4< D, H()OH(% HF||07WD7M57X7D)'

In Chen-Cheng’s proof [8] of the WP estimate, this constant Cy4 ac-

tually is related to the lower bound of the bisectional curvature R;;; of

the background metric. However, the background metric wg in our case
is singular, and the growth of its bisectional curvature near the divisor is
not clear up to now. Therefore, we need to switch our background met-
ric back to Donaldson’s metric in this section, as in Guenancia-Paun
[15]. In fact, since the two conic metrics wg and wp are quasi-isometric
on X, it is enough to prove the following

(5.2) /(terww)pw% <C,
Y
for some uniform constant C'(may depends on p).

5.1. Conic weight function. Let V., be an auxiliary function defined
on X as

d
U, =C) skl
k=1

for some v < ming min{ S, 1 — B }. Then it is the smooth limit on Y
of the auxiliary function

d

Vo= 0 xy (e + [sil),
k=1

constructed in [I5]. Then the function V¥, is clearly Ciswp-psh for
another uniform constant C'5, i.e. we have

(53) C'15wD + ddclll,y Z 0,
on X. Let ©,(Tx) denote the Chern curvature tensor of (Tx,w). The
following inequality is proved in [15]:

V _1®WD,E (Tx) Z _(016WD,5 + ddc\lf%g) ® Id

In a normal coordinate of the metric wp ., we can re-write the above
inequality as
Rﬁj}(WD,e) > —(Chs + \Ile,ﬁ)§ and Rﬁjj(WD,a) > —(Cre + ‘I’aﬁ)-

Therefore, the following holds on Y in a normal coordinate of wp:

(5-4) Rﬁji(WD) > —(016 + \Ilﬂ)v and Rﬁjj(wl)) > _(016 + ‘I’]j),
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since everything converges smoothly outside the divisor. Moreover, if

we put
d —Br, 1
he = —log (Hk1(52 + [si?)! BkWD,a)
e

av

for some smooth volume form dV',| then the following also holds by the
calculation in [15]

CI7WD,€ + ddc\I’%e > ddche > _(CI7WD,€ + ddc\p'y,s)a

for some uniform constant C';. Taking the limit, we have the following
estimate on Y

(5.5) Cirwp + dd°U., > dd°h > —(Chrwp + dd°V.,),

where the function h := log <;u—§> is defined on Y. In fact, a direct
D
computation shows

Ok S A\ O%% Sk6_¢k

(5.6) 00|k, = 57 o — Belsk|? 00y,
|Sk|¢k
and then one obtains
(5.7)
etV =>"%" <H |si|§;25i> (H |8¢fsj|éj> A (H Iszliflaé‘cbz) 0
L I,J \icIl jeJ leL

where {I,J} is any partition of the set {1,---,d}, L is a subset of
{1,--- ,n} with possibly repeating indices, and g is a smooth function.
At a point p near the divisor, we can assume 0¢x(p) = 0 for all 1 <
k < d. Therefore, the growth of its gradient can be computed as

8kh — O(|Zk|7max{1725k,26kfl})
for 1 <k <d, and d,h = O(1) for d < p < n. Moreover, its complex
Hessian can be estimated as

0p0ph = O(|2**7);  BpOgh = O(|z|™|z4| ™),
where o, € {1 — 3, 8,} and a,, € {% — By, By — %} forall 1 < p,q <d.
5.2. Switching background metrics. In the following, we will slightly
change our notations. Let (1, G) be a C*>*P-conic cscK pair for (X, D),
i.e. they satisfy the coupled equations (4.1]) and (4.3]).
Take a new potential ¢ = 9 + 13 — 9¥p, and a new function F' :=

G + h. The the new potential ¢ is also in C>*#, and it satisfies

Wy 1= wp + ddp = wg + dd,

and the function F is uniformly bounded, but it may not be in C**#
anymore. The two coupled cscK equations (2.0), (2.7]) can be re-written
as

(5.8) (wp + ddp)" = erf);
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(5.9) AGF = tr,(0 + dd°h) — Ry,

In fact, the (1,1) closed form (© + dd°h)|y is the restriction of the
curvature Ric(wp) on Y. From now on, we will adapt to the following
conventions:

e denote g,V and A with respect to the background metric wp;
e denote g,, V, and A, with respect to the target metric w,.

In order to manipulate the integration by parts on Y, we need to
introduce a suitable cut off function. Let p : X — [—o00,400] be a
function defined by

pla) = log (— tog([ | \sk<x>|2>> ,

where we normalise the sections 7 := HZ:1 |sp(z)]? < 7! Let n. :
[0, +00) — [0, 1] be a smooth non-decreasing function, such that n(x) =
0 for x € [0,1] and n(z) = 1 for > 2. Then the following cut off
function is considered in Berndtsson’s work [2]

O:(z) :=1—n(ep(z)),

and it is equal to 1 whenever 7 > e~ and 0if 7 <e € e
Moreover, its gradient is

/

d
en 8¢k8k
1 = E .
(5-10) o0 —log 7 ( Sk )

k=1

The positive (1,1) form 96, A 9. is only supported near the divisor,
and we have its integrability with respect to the model cone metric

d I
1 8¢k8k a¢181 n—1
(511) /X m E < S ) A\ ( sy ) A\ Weone < 400.

kl=1

Then it is easy to see that the following property holds:
(5.12) / do. N\ do. N Qg_l —0, as ¢—=0
X

for any conic Kéhler metric {23 on X. Moreover, this implies the fol-
lowing

(5.13) / df. Nd°F N ngl —0, as €—0,

b
for any function F' with [OF 3 s € L?(Q3). These properties will be
crucial for our later calculation.

Proof of Theorem (51]). As discussed before, it is enough to prove the
W?2P estimate with respect to the new background metric wp (equa-
tion (B.2)). Let x > 0,C > 0 be constants to be determined later.
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According to Guenancia-Paun’s trick, the following Laplacian can be
estimated on Y as

AF
(5.14) Ay log(n + Ap) > —Clgtry,g + P AT,

where U := W is the conic weight function. Denote a function A(y, F') :=
—k(F 4+ Cp) + (k+ 1)U, and then compute

e A (e (n+ Ap)) > (n+ Ap)A, (A +log(n + Ayp))
(n+ Ap){(kC — Cig)tryg — Ktry© + k(R — Cn)

+ K- tr,(ddV — dd°h) + (n + Ap) T AF}

>

v

kC
4

where we choose the constant k > 1 and
C = 4(max ‘C"‘)‘g + 017 + CIG + 1)

Here we used equations (5.4]) and (5.5).
Let p > 1,and 0 < § < (p — 1)/10, denote v := e?(n + Ayp) as an
L function on X, and then we have

0=1) [ GV ol
= /Xﬁfvpl(—A@v)wg - Q/X(vvg,@e) o (0=V pv)oP2w]!

(5.16) < /)(vap_l(—A¢v)wZ+5/X0€2v”_2|vwv|2wz+5_115,

®

(5.15) trog(n + Ap) + AF — kCis(n + Agp),

where the last term is
L= /X |V 0. |2 0P w]) = /X vPdl- A dO AN wl
Moreover, we have
0-1-0) [ G090l
-1 2 p-1 [ KC A
(5.17) < L — [ 62° Tvtrg,g + e®AF — kCigv | .
X
We will handle the term involving AF as in Chen-Cheng [§]

_/ egvpleAAFwZ:_/ ege(lfn)anCLer(nJrl)\IfAFw?)
X X

— _/ egvp—le(l—m)F—/@C'cp-i-(K-f-l)\I/ 1
X 1—=%
_ / 92P— L p(1—R) F=rCip+(k+1)¥ KCAp — (1+ “)A\I’w%
€ 1—k '
X

A((1=r)F —rCo+ (14 k)T)wp,

(5.18)



24 LONG LI, JIAN WANG, AND KAI ZHENG

Put B(p, F,V) == (1 —k)F — kCo+ (k+ 1)U, and 0 < 6; < 1 small.
For the first term on the RHS of equation (5.18]), we use the integration
by parts

—/ vapleB%A((l — K)F — kCp + (14 K)¥)w},
X

— K

KR —

P~ 1 B
— _/ 0> ‘V((l—H)F—HC(Q+(1+/€)‘I’)|2W%
X

- /i 103 VP 2PV - V{(1 — K)F — kCo + (1 + r) ¥}
K-

_ 2/ e Bve 8.V ((1 = W)F — kC + (1 + r)0) July

I‘i_

IN

(p—l) / 2 p—3 B 2 n -1
A= o)k —1) Xeav e’ | Vol wp + 6, 11

(p— 1)2 / 2 p—2 2 1
< P " II,,
S U= s)(r=1) 020" 7|Vl wy + 6y
(5.19)

where the last term is

1
I, := — /va_leB|V0€|2w%.
Here we used the inequality
p—1cB 92 B, p—1 p—1_,B

(5.20) —2“ — V. (0 VB)<51i|VB|2 %we 2,
and

p—1 . (1—dy)v” L = )PV
521) ———P VB ——— .
(5:21) =3V Ve VB = 5 — VB 21— 0y)(r — 1)
Picking up ¢, := %, we have

—1)2
—/XﬁfvpleAAFwZ < ((];_1)) /Xﬁ%p 2|V 02wy + 211,
(5.22) + /92 1RGP — (LE AT
X R — ]_ ¥

Plugging equation (5.22) back to (5.17), we have
/X <p —-1-4—- (];_7_11)2> 020" 2|V pu| 2w
_/ ﬁ@gvp(trwg)wz + / f20P LA (/{Clg(n + Ap) + ;—Clmp) w
< _
+ /92 p-1 A’“i( AW + 67T, + 211,
X

K —

(5.23)
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Picking up x > 2, we see
KCisn + ) + Mg < K(Crs + O)(n + Ag),
and by equation (5.3))
- il 1 (—AW) < 3nC1502 < Crob2(n + Ap),

where the constant C19 depends on the uniform lower bound of F.
Eventually, we come up with

—1)?
/ <p —1-6-— (p — 1) ) «9§|V¢v|iwg +/ —Kfﬁfvp(trvg)wg
X K X

< / K@?(Clg +C+ Clg)vaz + 57115 + 2115
X

(5.24)
Take the number x := max{2, 10p/9}, and then by our choice of 9,
we have )
—1
p—1—6— (p ) > 0.
k—1

Drop the positive term in equation (5.24) involving |V, v|2, and then
one obtains

kC
(5.25) /X Tﬁfvp(trwg)wz < Oy /X Kefvag + 6L + 211,
For fixing , we let ¢ — 0, and then the two error terms converges to
zero by equation (5.12]), and we have

(5.26) /va(trwg)wz < CQO/ vPwg

Y

Moreover, since (n + Ap) < ef'(tr,g)" ! on Y, we have from the defi-
nition of v that

/6(“HP)F‘FP(R‘FD\I}pnc@(n+Agp)p+nllw%
Y

(5.27) < C’go/ 6(1_“p)F+p(“+1)q’_p“C“0(n+ Ap)Pwp
Y

Let C; be a constant such that ||¢||o, || F]]o, [|¥]|o < Ca1, and then we
have

(5.28) /(n—i—A(p)erﬁw% < nge(“p+p)021/(n+A<p)pw%,
Y

Y
where the uniform constant Cyy does not depend on p or k.
By induction, we can conclude our theorem if there exists a py > 1
such that the integral
[ o+ s
Y
is uniformly bounded, and we claim that this is true for pg = 1 + ﬁ
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In fact, take a sequence of real numbers 1 < p; < 1.5 such that
p; \¢ 1. Then for each p;, we can take k = 2, and then there exists a
constant Chy3 to satisfy

2p;+2)C
ClypePPit)0n < (s,

for all 4.
By the Holder inequality, we have

/ (n+ Ap) it < / (n+ ApPtatiug
Y Y

(5.29) < Cag / (n + Ap)P'wp,
Y

but the last term is converging to the following by the dominate con-
vergence theorem as i — +o00

(5.30) /X (n+ Al — /X (@ + dd (W + ) A (w + ddp)™" = n.

Here we used Stoke’s theorem for L>° quasi-plurisubharmonic functions.
Therefore, for all i large enough, we have

/(n + Ap)Piw] <n-+1.
Y

The claim is proved, and our result follows.

6. THE LAPLACIAN ESTIMATE

Recall our notations in the previous section. Let (¢, G) be a C>%5-
conic cscK pair on (X, D), with respect to the background metric wg,
and a new pair (¢, F') be its reformulation with respect to Donaldson’s
metric wp, i.e. they satisfy equations (5.8) and (5.9). Their relations
are ¢ =Y —Yp + Yg, F' = G + h. However, it is important that our
target metric remains the same as

Wy = wp + ddp = wg + dd.
Moreover, we adapt to the following conventions:

e denote g, V, A as the Riemnannian metric, gradient, and Lapla-
cian with respect to wp;

e denote gg, Vg, Ag with respect to the background metric wpg;

e denote g,, V,,, A, with respect to w,.

The two background metrics wp and ws are actually quasi-isometric
to each other on X, and then there exists a uniform constant Cyy to
satisfy

C’;fter%a < trpw, < Coutry,wy,
equivalently

(6.1) Coi'(n+ Ap) < (n+ Agyp) < Cos(n+ Agp).
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Before proceeding to the C?-estimate, we need a different version
of the Sobolev inequality for conic metrics. Recall the set Y := X \
Supp(D), and then we proved the following.

Lemma 6.1. Let u be any smooth function on'Y satisfying supy |u| <

+00. Forany 1 <p<2andq= Qirf’p, we have
(6.2)

()} zema{ ([ o)+ ([ )}
Y Y Y

for some uniform constant Csop p.

Proof. Tt is enough to argue in an open neighbourhood U of a point
p € Supp(D), and the general case follows in the standard way by using
a partition of unity. Suppose (z,-- -, 2,) is a holomorphic coordinate
chart on U, such that p is its origin and the defining function of the
support of the divisor is {z1 - - - zg = 0}. Recall that Donaldson’s polar
coordinate is a bijection = : B1(0) — U as

19 19
(Cla' o 7§d72d+17' o 7Zn) — (|C1|'81 gla e 7|Cd|6d gdazd-i-l)' T 7Zn)'

This map = is a bijection, diffemorphism outside of the divisor, but it
is no longer holomorphic. Moreover, the pull back of the conic Kahler
metric Z*wp is quasi-isometric to the Euclidean metric on Donaldson’s
polar coordinate. Therefore, it is enough to prove the following in-
equality

o ([ u) <c(f \wp)‘l’ o[ ).

for some uniform constant C'.

Let 6. be our previous cut-off function introduced on Donaldson’s
polar coordinate, and then apply the Sobolev inequality, with exponent
p, to the smooth function 6.u on B; to have

oo (f | \e@-u\q); ([ | |v<e€u>\p);’ vo(f | o).

The only issue is on the gradient term while taking convergence of
the above equation. Thanks to the Minkowski inequality, this gradient
term is controlled by

</ |9€vu\p)p+</ \uvee\p)p
B1 B

< </ |9€Vu\p) T HuHLoo/ Cdo. N\ dO: N wi,,.
B1 B

The last term on the RHS of equation (6.5]) converges to zero as ¢ — 0,
and equation (6.3) is proved.

(6.5)
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O
Then we can prove the following C?-estimate for conic cscK metrics.

Theorem 6.2. There exists p, > 0 only depending on the dimension
n, such that

(6.6) max IVL.GI2 + m)z(lx(n + Agyp) < Cys,

where the constant Cas depends on the following ||¢|lo, ||Gllo, ||P]]o,
1dnllo; [1sllo, [In 4+ A¢llien wy), (X,wp,ws) and (D, ¢).

Since the two background metrics are quasi-isometric, and the func-
tions G, ¢, 1 are all in C>*#_ it is enough to prove that the following
estimate holds:

(6.7) max VG2 + m}z}x(n + Ayp) < Css.

The reason to switch the two background metrics back and forth is
as follows: on the one hand, the Ricci curvature Ric(wpg) is smooth and
uniformly bounded outside the divisor, but its bisectional curvature is
not completely clear for normal crossing divisors; on the other hand,
the growth of the bisectional curvature R;;;;(wp) is clear, but its Ricci
curvature Ric(wp) is no longer bounded under the conic metric wp. In
fact, the norm |0h|2_  is not bounded if 5 > 2/3.

Since G € C*>*”, the first term |V,G|2 is an L> function on X.
Then we invoke Chen-Cheng’s C*-estimates [7], [8], and compute on Y
to obtain

e FAL(€T|V,G2) > 2V,G -, Vo (A,G) + g245°0,5G.Cy

v Yo
(6.8) 1 ) o Bo
+ §|V¥,G|¢(—Eﬁ +tr,0) + 929, GagGpp-

Here we used the fact Ric(wg) = © on Y, and then we have
(6.9) tr,© — Ry > —C(1 + tryws) > —Cag(1 + e %(n+ Agy)"h),
and also
(6.10) 97 92%0,5GaGy > —Cor| VG2 (n + Agip)" .
Then we came up with the following by equation (6.1))
G G 1 o
(611) A‘p(e 2 |V<PG|320) Z 26 2 V‘PG ‘o V‘P(ASOG) C ggopgg Ga’quB
= Cos(1+ (n+ Ap)" | V,G.
A key observation is that the positive term in equation (G.I1]) is

actually the L?-norm under the target metric w,, of the complex Hessian
of (G, and then it can be re-written in wp-normal coordinate as

|Gi5]?
(14 @z)(1+v;5)

929 GagGps = |09G2, =
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6.1. The C? estimate. From now on, we stick to the background
metric wp. Let ., be the auxiliary function used in Guenancia-Paun’s
trick, and we recall the following inequality

AW

Aglog(n + Ap) > —Cigtryg + ntAp - A,

Then we have by equations (5.5) and (B.3))

e VAL (e (n + Ap)) > —Chs(n + Ap)tr,g + AG
+ Ah+ (n+ Ap)A, ¥
(6.12) > —(Cis + Ci7)(n+ Ap)tryg + AG

1 Gﬁ 2
> —Cog(n+ Ap)" — 0—28 (1|+ J)2

Here we used the inequality
try,, (Crrwp + dd°U) < tr,,w, - (Cirtryg + AL V).
Put
u = e%|V¢G|i + (n+ Agp) + 1.
Combining with equations (6.11]) and (GI2]), we obtain
(6.13) Agt > 262V ,G -, Vo (ALG) — Cao(n + Ap)™ .

Proof of Theorem (6.3). We will do integration by parts for the first
term on the RHS of equation (6.13]) as follows. Let p > 0, and we use
the previous cut off function to have

2p/ Ggu%_l\ku@ Zz/@?uzP(—Ag,u)wZ

(6.14) X X

— 2/ (uVb,) - (Geku)u%’lwg,
X

and then we have by the Cauchy-Schwarz inequality
(6.15)
p/ O2u* |V u iwg < Cg(]/ 02(n + Agp)"’lu%ﬂwg
X X
—2 /X 023V ,G -, Vo (A,G)u?wl + p IV,

where the error term is

IV, := / u?PLde. A d6. N wZ’l.
X



30 LONG LI, JIAN WANG, AND KAI ZHENG

Then perform the integration by parts as
(6.16)
-2 /X QSG%V@G ‘o VQO(Ach)quwz = /X 4p9?u2p—1e%A@G(V¢G ‘o Vou)wg

+ /X 202ues (A, G) W + /X 2ue? |V, G2 A,Gul + V.,
where the error term is
V. =4 / B2 u®(A,G)dl. A d°G AW,
X

This error V. — 0 as ¢ — 0 by equation (5.13]). Then we further use
the Cauchy-Schwarz inequality to obtain
(6.17)

4p/X9§u2p_1e%A¢G(V¢G o Vou)wy <

N |3

/ 9€2u2p_1|vg,u\i,wz
X
G n
+ Sp/X O2ues (A,G)*wl.
Eventually we have

— 2/ Gge%Vg,G o Vo (A, G)uw < g/ 02u* |V ul 2w
(6.18) X X

+ (8p + 2) /X 9§u2pe% (ASDG)QWZ + 0§u2p+1A¢ng + V..

S

Combined with equation (6.15]), one obtains

(6.19)

p - n n— n
5/){8€2u2p 1|V¢u|iw¢ < Cgo/){@?(n+Agp) 1u2p+1w¢

+(8p+2) / B2ues (A,G)2" + / P2u A LGl + Ve 4+ p Ve
X X

For fixed p and any e small enough, the RHS of equation (6.19) is
bounded from the above by

Cso / (n+ Agp)"‘lu2p+1wz + (8p + 2) / u2pe%(A¢G)2wZ

(6.20) Y Y

+/ u2p+1|Ag,G\wZ +1
%

Therefore, the LHS is uniformly bounded from the above, and it is
monotony increasing to

p 2p—1 2 n
5 [ u |V, u ps
Y
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as ¢ — 0. Hence we can take ¢ — 0 simultaneously on the both sides
of equation (6.19) to obtain

620 p [ 0Vl < Culo 1) [ 0+ Ap g,
Y Y

and then we have

(6.22)
1
/'|v Up+ i ?) (p+ )p(p+ )/Cgl(n+A¢)2n_2u2p+1W%-
Y

Take 0 < § < 2 and v := uP*2. For P> %, we apply Holder’s inequality
as in Chen-Cheng [6] to obtain

5 5
(6.23) (/ |Vv|25w%) < p* K03 (/ vz+5wg) :
y y

where the constant is

) [
2-5 2n—2)(2 2+6
K5 :=n>s (/(n+Agp)T§ ") . </(n+Agp)( 3 +6)w$) :
Y Y

Here v is an L* function on X, and then we can invoke Lemma
(6.10), with the Sobolev exponent p = 2 — § to have

||UHL”(w$) < Csob,p {HVU\\L2—6(wg) + HU||L2—6(wg)} )
with p = ;Z(_QQ:S()S
Holder inequality

m P
m ¥
(624) (/ up+éwg> < ngzﬁ (/ u(p+é)(2+6)wg) .
Y Y

Pick ¢ small enough to satisfy

Therefore, we eventually obtain the following by the

2n(2 —9)
—= > 2+,
2n—2+96 *
and then by the standard iteration technique, we have
1 148
(6.25) [lullzee < Cgsllul|Figm ) llull 25

where the constant Css s is uniformly bounded if Csy 5 is. Therefore,
the L>-norm of u is controlled by the L!'(w)-norm of u. It is easy to

see that (n + Ayp) € LY(w?), and we claim that «3%|Vg,(}’|§J € Lin
In fact, the following integral is zero by introducing the cut off func-
tion 6. and use equation (5.13) to let ¢ — 0

1 n n n
(6.26) §/YA¢(G2)M¢:/YeG\V@G\z,wﬁ—i—/yGeG(—Bﬁ—i-tr@@)wﬁ,
and then we have

(6.27) / e%\va\iw% < 034/(1 + trpgs)wp < Caa(n + 1),
Y Y



32 LONG LI, JIAN WANG, AND KAI ZHENG

since the two background metrics wp and wg are quasi-isometric. [

Remark 6.3. According to our proof, all the a priori estimates, includ-
ing the C°-estimate, non-degeneracy estimate, WP and C? estimates,
still hold if we only assume that the cscK pair (¢, F) € Cg’l in the
beginning.

7. THE TWISTED CASE

Let (X, D) be a log smooth kit pair, and D := ZZ:1(1 — Br)D; as
before. We consider a slightly different version of the conic cscK metric
in this section.

Fix a closed (1, 1) form 7 on Y, such that ||, is an L™ function on
X. Let (¢, F, f) be a triple of function in the space C>*# (X, D) (N C*>(Y),
and we consider the following equation

(7.1) (wg + ddp)" = erg;

(7.2) A F =tr,(0 —7) — R,
and we furhter assume the following conditions:
o T:=Ty+dd°f > 0;
e supy f = 0 and e~/ is uniformly bounded in L?° (wj)-norm, for
some pg > 1;
e R is a uniformly bounded function.

For later use, we also re-write equation (7.2]) as
(7.3) A (F+f) =tr,(© — ) — R.

Now we are going to prove all the a priori estimates for this twisted
equation. However, the difficulty is that we do not have a uniform
upper bound for the (1,1) form 7. Therefore, it is not reasonable to
require the Laplacian estimate anymore.

The proofs of the following a priori estimates are very similar with
our previous arguments. Therefore, we will only sketch the proof and
emphasis the place where the twisting function f brings a change.

7.1. The CP-estimate. In this section, we do need to assume the
positivity of 7 as in Chen-Cheng [§]. Let ¢; be the Cé’l—conic auxiliary
function constructed in equation (4.3]), and we have the following.

Lemma 7.1. For any €y > 0 small enough, there exists a constant Css
to satisfy

F+f+eoth — 4(m)z(xx|@ —Tolg + 1) < Css,

where the constant depends on

Cs5 .= Cs5 (50,/ Ferg, m)z(xx|7‘0|g, ||R||0,w5,X,D,¢,B) .
X
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Proof. Let 1, := S_¢_ |s|™ be the potential of Donaldson’s metric
wp with angles v, < B along each Dj. Denote a function A(yp, F, f)
by

A(p, F, f) = F + [ + cothr + £9ha — Ao,

where \ := 4(maxy |© — gy, +1), € € (0,1) and g > 0 is an arbitrary
small number. From equation (7.3)), we compute on Y as

AyA =try,(© —79) — R+ 0Apthy + eAythy — An + Atry,gs

(7.4) > (A —eg—eNy — A\/4)trygs + eoly " @7 (F) — (R + An)
A 1 _ 1
= §tr¢g5 + EQI(I) Xorm (F) — C367
where the constant Csg only depends on ||R||o, |O], and |7],.
Let the point p be the maximum point of the function u := %4, with
§ := (2n\)"'a. Suppose 7, is a cut off function in a coordinate ball
By(p) with radius d centred at p, such that n,(p) =1 andn, =1 -6
outside By/s(p) for some 0 < 6 < 1. Taking 0 so small that it satisfies
(1-0)a 40 462

O S
w2 2a=p ="

we conclude with the following inequality on By(p) (Y
_1
(7.5) A (uny,) > 4o, (5()[@ "(ID%(F) - 036> :

Moreover, since f € C>*F the function un, is strictly subharmonic
in an open neighbourhood of the divisor, as we proved in Lemma (Z.7]).
Then the upper contact set Fz:mp) is contained in an open subset V; of
By(p), such that V; is disjoint from the divisor with a positive distance.

Therefore, we apply GAMP to the function un, on By(p) to have

e"n,(p) < S e,
a\p

1
1 2n 2n
+ Cnd (/ €2F€2n5A {(80[(;%(1)5(}7) — 036)7} w") .
Ba(p)

Since f <0, ¢; <0, and [¢)5] < 1, the integral on the RHS of equation
(CQ) is controlled by

ng / 62F+2n6F6—2n6)\<pwn
Ba(p) N{F'<Cs7}

< C§6n€(2+2n5)037 / ey < 0387
Ba(p)

for some uniform constant Cs; depending on gq, ®, I3 and Csg. Since
N, =1 — 6 on 0B4(p), our result follows.

(7.6)

(7.7)

t
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Corollary 7.2. There exists a constant Cs; such that
F+ <0 lollo < Csr; 0 o < Csr.

Here the constant C's; depends on the same things as the constant Cs5 in
Lemma (]ﬂ), and also on py and fx e’pOfwg. Moreover, it is uniformly
bounded if po > 1 + ¢ for some small e > 0.

Proof. We obtain from Lemma (7)) that
O[Eal(F + f) S —OZ’QZ)l + 55104035.

For any p, we chose &y small enough to have p := &5, and then
Proposition (83]) implies that there exists a uniform constant Css(may
depend on f3) to satisfy,

(7.8) / ep(”f)w}; < Css,
X

for every conic angle (.
Let 1 := Y20, (1 — B)log|sk|?, and then we have from Hélder’s
inequality

| |6F*¢ | |1+6 o 6(1+€)F’€¢dv _ e(1+5)(F+f)*€¢*(1+€)de

Lite — d _ o d _
X [Tomn [sePO720 e ey [seP0-%0)
1+e _14e

1
o ([m) (] ateioon o) ¥,
X X

Pickupe = pOT_l for some larger integer m, and then the second integral
on the RHS of the above inequality is equal to

et F+E) 1/
/X ( )(1—ﬁk)(1+%) ’

d
szl |sk|?
po(1+e€)

for ¢ := E2==2. Therefore, it is uniformly bounded by equation (Z3J))
po—1—¢

with a slightly smaller angle 3, where 5, = (1 + <), — -2~. Then

we conclude the potential estimates as

[@l]o, [[¥1]lo < Csr,
and the upper bound of F' + f follows from Lemma (7.I]) again. O

(7.9)

The next step is to prove the lower bound of F' + f.

Lemma 7.3. There exists a uniform constant Csg such that

F+f>—Cs,
and this constant has the same dependence as Csy, with also ||¢||o-
Proof. Take a function A3(F, f,¢) := —F — f — A + 1)y, and put
w = e, Pick up the constants as
1
A= 4(m)z(xx|@—7’0|g+1); 5= Po e=—.

2n(po — 1)’ Ny
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Then we have
(7.10) — AL A3 < —tryows + ||R]|o + An.

Assume that u achieves its maximum at the point x on the mani-
fold. We can consider the function un,, with a suitable chosen cut-off
function 7, centred at x. Following the same calculation as in Lemma

(4.8), we have
Ay (unz) > =0 (|[R|lo + An) .

Since F, f, o € C>*8 the function un, is again strictly subharmonic
near the divisor Then we can apply GAMP locally on a coordinate ball
By(z) to have

65143 5143

ne(x) < sup e
0Bq(x)

s
(7.11)

2n
+ Chd (/ e (|| R||o + )\n)Q"w")
b's
Therefore, the lower bound of F' + f is controlled by

040/ 6(2—2n6)F—2n6fwn
X

Po—2 1
po—1 po—1
< Clhp </ er"> (/ e_pOfw"> ,
X X

and the first integral in the above equation is uniformly bounded as we
can see from equation ([7.9]).

(7.12)

t

7.2. The W?? estimate. In order to consider this higher order esti-
mate, we switch the background metric to Donaldson’s metric as before.

Let (¢, G, f) € C*>*P be the tripe solution of the twisted equations
with respect to the background metric wg, i.e. they satisfy equations
(1) and (C2). Then we define a new triple (@, F, f) such that

Wy = wp + dd°p = wg + dd,

and F' := G + h, for h = log Z—E Hence they satisfy the following
D
equations:

(7.13) (wp + ddp)™ = eFwh;

(7.14) AGF = tr,(© — 7+ dd°h) — R,

where 7 = 7 + dd°f. Here ¢, f are still in C>*?  and F is in L®(X),
but may no longer be in the space C>*7.

Theorem 7.4. Assume 7 > 0. For any p > 1, there exists a constant
C, satisfying

/ e(pfl)f<n + Ag)Pwh < Gy,
X
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and this constant has the same dependence as Csz, also with ||F' + f|lo,
lllo, and p.

Since wp and wg are quasi-isometric on X, and their potentials
Yp,Yp are uniformly bounded, it is enough to prove the following in-
equality

(7.15) /Ye(p_l)f(n + Ap)Pwp < Oy,

for some uniform constant C;,.

Proof of Theorem (74). Let k > 0,C > 0,0 > 0 be constants to be
determined later, and W, be the conic weight function as before. Define
the following function:

Alp, F, f) = —k(F+6f+Cp)+ (k+ 1)V,
and choose
C:= 8(m)?x |© — 7]y + max |T0|g + Ci7 + Ci6 + 1).
Then we compute on Y to have

(7.16)
e A, (et (n+ Ay))

C
> %trwg(n + Ap) + AF + k(1 = 0)A,f(n+ Ap) — kCyo(n + Agp).

Let p > 1 and 6, := pl;ol. Denote v := e?(n + Ayp), and introduce

the previous cut off function . supported outside the divisor. Put
B(g,F, [)=(1—=r)F-rCp—rdf +(k+1)¥,

and then we can play the same tricks on the integration by parts as in

equations (5.10) - (5.22). Finally we obtain
(7.17)

(p—1)° - n
/X (p —1—6; — 1 vap 2|V¢v|iww
< [ vt [ @0 (xCot+ag) + A0 ) ol
« " k—1

1
+ / ngp_leA%(—AW)wz + 67 + 211,
X

K‘I —
)
b [ gonet k- oa, s ag) + ar
X K —=
where the error terms are

L= / vPdl. A dO- AWl
X
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and
1

/{/ —_
Moreover, we have I.,II, — 0 as ¢ — 0 from the property of .. Take
0= %1’ and then we see

II, .= / P reBdh. A doo. A w}‘)_l.
X

J
(7.18) —kr(1 = 0)A,f(n+ Ayp) + %Af < max |T0gtreg(n + Ap).

Since f < 0, the lower bound of F is controlled by —||F + f|lo,
and then (n + Ay) also has a uniform lower bound. Therefore, taking

% := max{2, ¥p}, the term on the LHS of equation (ZI7) becomes

positive. Then we obtain

kC
(7.19) /X ?vap(trwg)wg <Cy /X Kﬂfvag + 671, + 211,
Since k < kKC'/8 by our choice, we have the following by letting ¢ — 0

/e<zfnp)Fp(n1)f+p(n+1)\1/pnC@(n+A(p)p+7Lilw%

(7.20) Y

< 041/ e(lfﬁp)Ffp(nf1)f+p(li+1)\llfp/iC<p<n_'_Ago>pw?).
Y

Let Cy2 be a bound of ||¢]|o, || F + fllo, [|¥]]o, and we further obtain

/ S (0 + Ap)rTL),
(7.21) Y

< 043€(p+mp)042/ e(p_l)f(n—l—Ago)pwg,
Yy

for some uniform constant C43 not depending on p or k.

Take p:=1+ %, and we want to use induction on k£ > 1. Then it

is enough to prove that the integral
(7.22) / eﬁf(n + Agp)”ﬁw%
Y

is uniformly bounded. Let 1 < p; < 1.5 be sequence of real numbers
decreasing to 1, and then we have

/ e(pi_z_:é)f(n + A(p)p#ﬁw%
(7.23) Y
Y

for some uniform constant Cyy not depending on p; or . Since f < 0,
the LHS of equation (Z.23)) converges to to equation (Z.22]) by dominant
convergence theorem, and the RHS of equation (Z.23)) converges to

(724) C44 / (n + A@)wg = 7’1,0447
Y

and our result follows.
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U

Corollary 7.5. For any 1 < q < pyg, there exists a constant C’q satis-
fying
/ (truswe)ws < C,.
X
Here the constant C, has the same dependence as Csy, also with ||F +

fllos ll¢llo and q. Moreover, it is uniformly bounded in q if q is bounded
away from pog.

Proof. This follows from Theorem (7.4)) and Holder’s inequality. Pick

up s = %, and then we have as in Chen-Cheng [§]
/ (troswy,) Wy
(7.25) . . .

s 15
Po s5pQ Poq P0
< </ e_pofwg> (/ ePosf(trwﬁw¢)Poswg) )
X X

7.3. The gradient F-estimate. As we explained before, the C? es-
timate is not expected in the twisted case anymore. Therefore, we do
not need to switch our background metrics in the following proof of the
partial C® estimate, i.e. the gradient estimate of F + f.

Let (o, F, f) € C>%P be the tripe for the twisted equations, i.e. they
satisfy equations (1)) and (Z.2]). Then we have the following estimate
for W :=F + f.

g

Theorem 7.6. There exists a constant k,, depending only on n, such
that ¥Ypy > k,, we have

IV W2 < Cs.
Here the constant Cys has the same dependence as Csy, also with ||F +
fllo and [|¢]fo.

Proof. Since W = F + f € C>*P, we can compute on Y as in Chen-
Cheng [8] to have

EDLHTIVE) 2 VW (1,6 — ) — B)
(7.26) + 2V, W -, Vo (AW) + |00W 2 + gl g0, W, W;

— Re {gf;igi“(fo)iquWa} :
Moreover, we estimate
tr,(0 — 1) — R > —Cys(e F'(n+ Ap)" ' +1)

(7.27) —Cur((n+ Ap)" 1 +1).

AV
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Here we used the uniform lower bound of F' in terms of |[F + f|o.
In a similar way, we can estimate other terms in equation (7.26]), and
eventually have

A¢<67|V¢W|i) > 2e2 VW -y Vo (A W)
— Cuse® [V W2 {(n+ Ap)" L 41}

Put u := e%|V¢W\?p +1, and U := C{(n+ Ap)" ' +1}. We
further have

(7.29) Apu > 2TV, W -, V(A W) — ull.

(7.28)

Pick up p > 0, and introduce the previous cut off function 6., we play
the same integration by parts trick as in equations (6.15)-(6.18)), and
eventually obtain the following

g/XﬁqupﬂV@u@wg < /X«9§u2p+1(0 + (AW +1)
(7.30)

+ (8p+2) /X o2ur e’ (A W)Wl 4+ Ve +p 'V,

where the error terms are
IV, = / u?PrLde. A deo. N wg_l;
X

and

V. =4 / O u(AW)dO. N dW Awl
X

Since W € C?>*P, the two errors IV, V. — 0 as € — 0. Then we get
by taking the limit of €

p 1y2 2p—1 2
—_— V., (uPT2)2w? < p/ wPH Vo ul 2w
(p+ %)2049 /y| o )|¢ g Y Ve |¢ v

< 16(p + 1)/ uwPHUe  wy,
y

(7.31)

where U := U + (A,W)2 + (A,W)2%'s + 1. Let § > 0 be a small
number, and v := uP*z. We use Holder inequality again to have

5 KsLs(p+ 1) B
(732) (/ |Vv|2—6wg) < C50 4 5<p+ ) (/ Uﬁwg) ’
Y p Y

where the coefficients are

and
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Apply the conic version of Sobolev’s inequality (Lemma (6.1])) with
exponent 2 — § to have

(p+1)°

1 1
(7.33) w2 fuuy) < Cn (KsLs + D[] 1

9

wg)
where we assumed
2n(2 —6) 4
= > .
2n—24+90 2—96

This can be realised by choosing § = ﬁ for n > 1. Eventually, we

can use the Moser Iteration to control the L*°-norm of u, provided that
Ls, K5 is uniformly bounded. This is also true from Theorem (4] by
choosing py > 8n(2n — 1) + 1.

For the uniform control on the L'-norm of u, we see

®

1

(7.34) / 0.(Ape )W = = / ez df. Ad°W — 0,

X 2 Jx
as € — 0. Therefore, we have

/ e%|V¢W\iwg < 052/ e%\VgOW@wZ

Y Y
(7.35) < O, / 2¢ (— AW )w
Y

< Csy / (1 + try,ws)wy = Csa(n + 1)
Y

n

Remark 7.7. As before, all our estimates for the twisted equations
only require (o, F, f) € Cé’l.

8. APPENDIX

In this section, we will consider the a-invariant for plurisubhar-
monic(psh) functions integrated against conic volume form

dVv
HZ:1 |5k|2_2ﬁ'€.

Let PSH(X,w) denote the space of all w-psh functions on X, and the
first observation is that they are all L' functions with respect to the
measure /.

dp = wp =

Lemma 8.1. For any ¢ € PSH(X,w), we have

/ wdp > —o0.
X
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Proof. Fix a large integer j > 0, and take ¢; := max{yp, —j}. The
sequence of functions ¢; € PSH(X,w) is decreasing to ¢, and then it
is enough to prove the integral

/ ©iwD
b's
has a uniform lower bound.

First we compute by Stoke’s theorem

(8.1)
/ 0;j(w+ddyp)" = / QW A w?fl + / Ypddp; A w?fl
X X X

:/ <pjw/\w?)_1+/ @Z)Dw@j/\w%_l—/ Vpw Awp !
b b X

The third term is uniformly controlled, and the second term can be
estimated as

/ Ypwy, /\w}‘)_1 > inf@Z)D/ Wy, /\w}‘)_1 > infyp.
X X X X

Moreover, the first term can be written as

(8.2) / pjwAwh = / pjw? AW + / YpddSp; Aw A w2
X X X

Repeating this trick, we are able to prove

/%‘W?)Z/ pw" —C,
X X

for some uniform constant C', and our result follows.

0

Therefore, we proved that PSH(X,w) C L'(u). Thanks to Guedj-
Zeriahi’s work ( Proposition (2.7), [17]), there exists a uniform constant
C,, > 0 such that Yy € PSH(X,w),

(8.3) —Cutsupp < / @dp < sup .
X X X

Before proceeding to the a-invariant, we need to improve a theorem
by Hérmander (Theorem 4.45, [14]) to the conic case.

Lemma 8.2. Let F be the family of all plurisubharmonic function ¢
in the unit ball B C C", such that ¢(0) = 0 and ¢(z) < 1 for all z close
to the boundary OB. For any B = {B.}¢_,,0 < By < 1, there exists
two constants 0 < r < 1 and C' satisfying

€_¢d)\2n

d -

B, [Tmy [26>2P

where dAg, 1s the Lebesgue measure on C™, and the constants r and C
only depend on B and n.

<C, V¢elF,
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Proof. Assume n = 1 first, and use the Green kernel to have

1— |2
8.4 2 = 1 d d
(8.4) T e og 1_ZC V<O+/IC|1 2 — (2 a(C),

where the measures dv = A¢ > 0 and |d¢| — do > 0 on S. Since
¢(0) = 0, we obtain

(8.5) /C s md”( )+ /IC (= do(0) =2r

Therefore, it follows that

(8.6) /<<110g mdu( ) < 2m; /CZ1 |do(C)] < 4.

Hence we have for all |z] < eiﬁ,

—1 1-— |Z|2 ’
2m) /m o cpio©) =8

L
28
;

1
and forany e 7 < R<e

1 1
a = — dv((¢) <
2 IC|<R ( ) —IOgR

< 28.

Moreover, for such z and |¢] > R, we see |2¢| < ||, and then it is easy
to see the following inequality:

z—¢
1—2(

1
< —.
—[¢]

This implies that

2 — ¢ B
’/|C|>Rlog 1 —zéldy(o' <2m, |zl <e 7.

Then Jensen’s inequality shows the following:

1 2=¢l )
X S lo
ep( 27T/¢|<R \1— z(C]| dv(c)
- 1 |z — (| dv(Q)
—ow <‘% /C<R‘“k’g 1 — (| 27a )
1 2= ¢\
= 2ma <R<\1—z<\) W)

C _ rl-a
< /|< o,

for all |z| < e”7. Since a < 2, the last term is integrable with respect
to the measure |2|2°~2d)\,,. Summing up we proved our estimate for
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r:= e F whenn = 1. For the general case, we use the polar coordinate
to compute the integral
(8.8)

1
/ O dpu(z) = _/ ! dS(Q) / |22 g) (),
2l <r 27 Jici=1 [Tmy 1612285 Syl <r

where b =n —d + Eg=1 By > 0. Taking r(8) := e, the integral is
uniformly bounded.
O

Thanks to Lemma (82) and equation (83), we can follow the same
argument as in Tian [22], and prove the existence of a conic version of
the a-invariants.

Proposition 8.3. For all ¢ € PSH(X,w) with supy ¢ = 0, there
exists a constant o > 0 such that

/ e “du < C,
X

for some uniform constant C only depending on X, w, pu.

Finally, for any C**#-conic Kihler metric 25, the estimate in Propo-
sition (8.3)) still works for all p € PSH (X, )g), since the conic potential
is always uniformly bounded on X.
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