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CONIC SINGULARITIES METRICS

WITH PRESCRIBED SCALAR CURVATURE:

A PRIORI ESTIMATES FOR NORMAL CROSSING

DIVISORS

LONG LI, JIAN WANG, AND KAI ZHENG

Dedicated to Prof. Jean-Pierre Demailly

Abstract. The purpose of this paper is to prove the a priori esti-
mates for constant scalar curvature Kähler metrics with conic sin-
gularities along normal crossing divisors. The zero order estimates
are proved by a reformulated version of Alexandrov’s maximum
principle. The higher order estimates follow from Chen-Cheng’s
frame work, equipped with new techniques to handle the singular-
ities. Finally, we extend these estimates to the twisted equations.

1. Introduction

Recently Chen-Cheng ([6], [7], [8]) established the a priori estimates
for the constant scalar curvature Kähler(cscK) metrics equation, which
are fundamental towards the Yau-Tian-Donaldson conjecture on the ex-
istence of the cscK metrics. Their estimates lead to the resolution of the
properness conjecture and Donaldson’s geodesic stability conjecture.

Our goal is to prove a singular version of the Yau-Tian-Donaldson
conjecture, and this first paper aims to generalise Chen-Cheng’s a pri-
ori estimates to the log-smooth klt pair. That is to say, our metrics
develop cone like singularities along normal crossing divisors. In the
subsequent papers, we will discuss the existence problem for cscK met-
rics on singular klt pairs.

Let (X,D) be a log smooth klt pair, where D :=
∑d

k=1(1 − βk)Dk

is an R-divisor on the compact Kähler manifold X . Here the index
β := {βk}dk=1 is a collection of angles 0 < βk < 1. For some 0 < α <
mink{ 1

βk
−1, 1}, we consider a conic Hölder space C2,α,β first introduced

by Donaldson [13].
Suppose (ϕ, F ) ∈ C2,α,β is a pair satisfying the conic cscK equation

(Defintion (2.1)). Denote Hβ(ϕ) by the entropy of a conic Kähler
potential ϕ, with respect to the background metric ωβ (equation (2.5)):

Hβ(ϕ) :=

ˆ

X

log
ωnϕ
ωnβ
ωnϕ.

Then the following estimates are proved.
1
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Theorem 1.1. Let (ϕ, F ) be a C2,α,β-conic cscK pair on (X,D). Sup-
pose that its entropy Hβ(ϕ) is bounded by a uniform constant C. Then

there exists another uniform constant C̃, such that the following holds:

(i) the C0-estimate

||ϕ||0 < C̃;

(ii) the non-degeneracy estimate

−C̃ < F < C̃;

(iii) the gradient F -estimate and the C2-estimate

max
X

|∇ϕF |ϕ +max
X

trωβ
ωϕ < C̃.

The C0 estimate is proved in Theorem (4.5) and Corollary (4.6),
and the non-degneracy estimate is proved in Lemma (4.8). Comparing
with Chen-Cheng’s work [6], the new difficulty is that Alexandrov’s
maximum principle(AMP) fails in the conic case. More precisely, the
constant appearing in Chen-Cheng’s estimate depends on the diameter
of the coordinate ball, on which we applied this maximum principle.
However, the diameter has to become smaller and smaller when the
ball is approaching the divisor, and then we lose the control of the
constant.

In order to overcome this difficulty, we developed a new version
of AMP, the Generalised Alexandrov’s maximum principle(GAMP) in
Theorem (3.5). The key observation is that this maximum principle
still works for a function u if the upper contact set Γ+

u of this func-
tion is completely disjoint from the singular locus of u. Therefore, we
can utilise this new maximum principle in the estimates, by adding an
extra “extremely” pseudo-convex auxiliary function near the divisor.

The integral method on compact manifold (iteration without assum-
ing uniform Sobolev constant on varing metrics) from Chen-He [9] is
important in Chen-Cheng’s work. Following this basic frame work, the
gradient F -estimate and the C2-estimate in the conic setting are also
proved via the following W 2,p type estimate.

Theorem 1.2 (Theorem (5.1)). Let (ϕ, F ) be a C2,α,β-conic cscK pair
on (X,D). For any 1 < p < +∞, there exists a uniform constant C ′

such that
ˆ

X

(trωβ
ωϕ)

pωnβ < C ′.

Here this constant C ′ depends on p, ||ϕ||0, ||F ||0 and conic background
metrics ωβ, ωD on (X,D).

Here ωD is another conic background metric introduced by Donald-
son [13], and the constant C ′ depends on both ωβ and ωD. The reason is
that we need to switch the background metrics during the proof of the
W 2,p-estimate, but this does no harm to our Lp-norm ||n+∆ϕ||Lp(ωn

β )

since ωD and ωβ are quasi-isometric on X .
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For later purpose, we assumed that the cscK pair (ϕ, F ) lies in the
conic Hölder space C2,α,β. In practice, all these a priori estimates still

hold, if we only assume (ϕ, F ) ∈ C1,1̄
β (Definition (4.1)) in the very

beginning.
In order to investigate the existence of the conic cscK metrics, we

are further led to studying the following continuity path on Y := X \
Supp(D):

t(Rϕ − Rβ) = (1− t)(trϕτβ − τβ),

for t ∈ [0, 1]. Here τ is a closed (1, 1) form varying in a fixed Kähler
class. More precisely, we assumed τ := τ0 + ddcf ≥ 0, for some fixed
smooth (1, 1) form τ0 on Y with |τ0|ωβ

uniformly bounded, and the
function f satisfies

sup
X
f = 0;

ˆ

X

e−p0fωnβ < +∞, for some p0 > 1.

With these constraints, a triple (ϕ, F, f) ∈ C2,α,β is the solution to
the twisted conic-cscK equation if they satisfy equations (7.1) and (7.2).
Then we extend our estimates to the following.

Theorem 1.3. Let (ϕ, F, f) ∈ C2,α,β be a triple of the twisted equations.
Suppose the entropy Hβ(ϕ) is bounded by a uniform constant C. Then
there exists another uniform constant C ′′, such that the following holds:

(iv) the C0-estimate

||ϕ||0 < C ′′;

(v) the non-degeneracy estimate

−C ′′ < F < C ′′;

(vi) there exists a constant kn, only depending on the dimension n,
such that if p0 > kn, then we have

|∇ϕ(F + f)|ϕ < C ′′.

Since the upper bound of the (1, 1) form τ is out of control in the
twisted case, we no longer expect the C2-estimate directly. However,
the C2-estimate can be actually deduced from the gradient F -estimate,
by a conic version of Chen-He’s integral estimate.

Similarly, the gradient F -estimate is proved via the following W 2,p-
estimate.

Theorem 1.4 (Theorem (7.4)). Let (ϕ, F, f) ∈ C2,α,β be a triple of the

twisted equations. For any p ≥ 1 there exists a constant Ĉ satisfying
ˆ

X

e−(p−1)f (trωβ
ωϕ)

pωnβ ≤ Ĉ,

Here the constant Ĉ depends on p, p0(uniform if p0 is bounded away
from 1), ||ϕ||0, ||F + f ||0, and background metrics ωβ and ωD.
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More generally, our zero order estimates (the C0 and non-degeneracy
estimates) can be also used on singular klt pairs. In fact, after pulling
back to a log-resolution, the metric has conic singularities along normal
crossing divisors, but it is possibly degenerate along some exceptional
divisors. Therefore, we can apply our tricks on the resolution, and then
the estimates follow from GAMP again.

Furthermore, the higher order estimates on singular klt pairs, like
the W 2,p-estimate and C2-estimate, can also be realised on a compact
domain away from the divisor. These topics will be discussed in a
sequel paper.
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Xiuxiong Chen, for he introduced this problem to us. The first author
is grateful to Prof. Donaldson for sharing his beautiful insights on conic
Kähler geometry, and he would also like to thank Prof. Demailly, Prof.
M. Păun, Prof. Berndtsson, Prof. S. Boucksom, and Prof. Guedj for
lots of useful discussions and continuous encouragement. The second
author would like to thank Prof. Besson for his encouragement.

The first author is supported by the ERC-ALKAGE project. The
second author is supported by the ERC-GETOM and ANR-CCEM
projects. The third author has received funding from the European
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2. Preliminary

Let (X,ω) be an n-dimensional compact complex Kähler manifold.

Suppose D :=
∑d

k=1(1−βk)Dk is an R-divisor onX with simple normal
crossing support such that the angle βk ∈ (0, 1) for all k. Then (X,D)
is called as a log smooth klt pair.

Near a point p on the support of D, there exists a holomorphic
coordinate system {zi} such that the support Supp(D) is defined by
the equation {z1 · · · zd = 0}. Then a model conic metric ωcone with
cone angle βk along Dk can be written as

(2.1) ωcone :=

d
∑

k=1

√
−1dzk ∧ dz̄k
|zk|2−2βk

+

n
∑

k=d+1

√
−1dzk ∧ dz̄k.

A positive current ωϕ := ω+ddcϕ is a conic Kähler metric with cone
angle βk along Dk, if it is smooth on X \ (

⋃

Dk) and quasi-isometric
to the model metric ωcone near each point p ∈ Supp(D), i.e. it satisfies

C−1ωcone ≤ ωϕ ≤ Cωcone,

for some constant C > 0.
When the divisor D is a smooth hypersurface, Donaldson [13] in-

troduced the conic Hölder spaces for the potential like ϕ ∈ C0,α,β or
ϕ ∈ C2,α,β , for some constant α ∈ (0, 1) with αβ < 1 − β. Moreover,
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he proved a version of the Schauder estimate([13], [1]) for the conic
Laplacian operator.

2.1. Conic Kähler-Einstein metrics. Let (Lk, φk), 1 ≤ k ≤ d be a
set of hermitian line bundles, with non-trivial sections sk ∈ H0(X,Lk).
Assume the divisors Dk := {sk = 0} are smooth, and they have strictly
normal intersections. For simplicity, we write the norm of the sections
as |sk|2 := |sk|2e−φk . Then a simple example of conic Kähler metrics,
the Donaldson metric, can be written as

ωD := ω +
1

N

d
∑

k=1

ddc|sk|2βk ,

for some N > 0 large.
This example has been widely used as the background metric in

the study of conic geometric equations. In fact, there exists a natural
smooth approximation of ωD as

ωD,ε := ω +
1

N

d
∑

k=1

ddc(|sk|2 + ε2)βk ,

for every ε > 0 small. However, the holomorphic bisectional curvature
of this approximation Rīijj̄(ωD,ε) grows too fast along certain direc-
tions near the divisor. Therefore, Campana-Guenancia-Păun [10] and
Guenancia-Păun [15] introduced another smooth approximation as

ω̃D,ε := ω +
1

N

d
∑

k=1

ddcχk(|sk|2 + ε2),

where the auxiliary function χk(ε
2 + t) is a smooth perturbation of

the function (ε2 + t)βk . This is a “better” choice in the sense that
the bisectional curvature Rīijj̄(ω̃D,ε) has a slower growth rate near the
divisor.

In the work [10] and [15], they studied the regularities of the so called
conic Kähler-Einstein(KE) metrics as

(2.2) (ω + ddcϕ)n = ef+λϕdµD,

where λ = {−1, 0, 1}, f ∈ C∞(X), and the measure µD is defined by

dµD :=
ωn

∏d
k=1 |sk|2−2βk

.

Here efdµD is a probability measure if λ = 0. They actually proved
that an L∞ solution ϕ of equation (2.2) is always in the space C2,α,β.

For the case λ ≥ 0, by the celebrated work of Yau [23] on Calabi’s
conjecture, there always exists a smooth approximation for the conic
KE metric as follows

(2.3) (ω + ddcϕε)
n =

eλϕε+f+cεωn
∏d

k=1(|sk|2 + ε2)1−βk
,
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for some uniformly bounded constant cε.
According to the expansion formula of the conic KE metric ([24],

[18]), the bisectional curvature Rīijj̄(ωϕ) (Rīijj̄(ωϕε)) behaves even bet-
ter than Rīijj̄(ωD) (Rīijj̄(ω̃D,ε)) near the divisor, when the divisor is
smooth. As inspired from the third author’s previous work [27], we
will use a special conic KE metric as the background metric.

2.2. Conic cscK metrics. For λ = 0, there always exists a solution
ωβ := ω + ddcψβ for the conic Calabi-Yau equation as

(2.4) (ω + ddcψβ)
n =

efωn
∏d

k=1 |sk|2−2βk
,

where β := (β1, · · · , βk) is a collection of angles. In other words, it
solves the following geometric equation

(2.5) Ric(ωβ) = Θ +
d
∑

k=1

(1− βk)[Dk],

where Θ is a smooth closed (1, 1) form on X defined by

Θ := −ddcf +Ric(ω)−
d
∑

k=1

(1− βk)dd
cφk.

Let ωϕ := ωβ + ddcϕ be a conic Kähler metric with cone angle βk
along each Dk. Suppose this conic metric is a solution of the following
two coupled equations

(2.6) (ωβ + ddcϕ)n = eFωnβ ,

(2.7) ∆ϕF = −Rβ + trϕΘ,

where Rβ is a topological constant depending on the angle β, and we

assume the normalisation
´

X
eFωnβ = 1. Observe that the solution ωϕ

has constant scalar curvature (Rϕ = Rβ), outside the support of the
divisor D.

If the solution ϕ is in the space C2,α,β , then F is in C0,α,β by equation
(2.6). When the divisor D is smooth, we further have F ∈ C2,α,β

by equation (2.7) and Donaldson’s Schauder estimate. Therefore, it
makes sense to assume that ϕ and F always have the same regularities
in general.

Definition 2.1. A pair of functions (ϕ, F ) is called a C2,α,β-conic cscK
pair on (X,D), if the potential ϕ is in the space C2,α,β, and its associ-
ated Kähler metric ωϕ (with cone angle βk along each Dk) satisfies the
coupled equations (2.6), (2.7) on X \ (⋃Dk), with F ∈ C2,α,β.

Since we switch the background metric to ωβ, the potential space
has a one-one correspondence with the previous one, i.e. ϕ̃ := ψβ +
ϕ. However, the conic Hölder space is unchanged, since ψβ is also in
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the space C2,α,β ([15]). Therefore, we can stick to this new potential
space as the collection of all ωβ-plurisubharmonic functions with C2,α,β

regularities.
When the divisor is smooth, the higher regularities have been known

in [20] for 0 < β < 1
2
, and in ([24], [26]) for any angles. There we used

the model cone metric as our background metric. However, this is not
an issue, since both potential of ωD and ωβ have higher regularities.

3. Generalised Alexandrov’s maximum principle

Let Ω be a bounded open domain in Rn, with smooth boundary
∂Ω = Ω

⋂

(Rn \ Ω). Let L be a second order differential operator:

L =
n
∑

i,j=1

aij(x)Dij +
n
∑

i=1

bi(x)Di + c(x),

with aij ∈ L∞
loc(Ω) and bi, c ∈ L∞(Ω). Moreover, we assume aij = aji.

The operator L is called elliptic on Ω if for every x ∈ Ω there exists
λ(x) > 0, such that

n
∑

i,j=1

aijξiξj ≥ λ(x)|ξ|2,

for all ξ ∈ Rn. Moreover, for elliptic operator L one defines

D
∗ := (det(aij))

1/n.

For any continuous function u on the set Ω, we can introduce the
upper contact set of u, which is roughly speaking the set of points in
Ω that have a tangent plane above the graph of u.

Definition 3.1. For any u ∈ C(Ω), the upper contact set Γ+ is defined
by

Γ+ := {y ∈ Ω; ∃ py ∈ R
n such that ∀x ∈ Ω : u(x) ≤ u(y) + py · (x− y)}

The set Γ+ is relatively closed in Ω. If u ∈ C1(Ω), then py = ∇u(y)
for any y ∈ Γ+.

Moreover, if u ∈ C2(Ω), then the Hessian matrix (Diju) is semi-
negative on Γ+. In other words, the set Γ+ consists of all “concave
points” of u.

Then we invoke Alexandrov’s maximum principle(AMP) as follows
([16], [21]).

Theorem 3.2. Let Ω be bounded and L elliptic with c ≤ 0. Suppose
that u ∈ C2(Ω)

⋂

C(Ω) satisfies Lu ≥ f with

|b|
D∗

,
f

D∗
∈ Ln(Ω),

and then one has

(3.1) sup
Ω
u ≤ sup

∂Ω
u+ + C · diam(Ω) ·

∥

∥

∥

∥

f−

D∗

∥

∥

∥

∥

Ln(Γ+)

,
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with

C := C

(

n,

∥

∥

∥

∥

|b|
D∗

∥

∥

∥

∥

Ln(Γ+)

)

.

When the function u is no longer C2 in Ω, the Alexandrov maximum
principle fails in general. However, observe that the RHS of inequality
(3.1) only concerns with integration on the set Γ+! Therefore, there
is still some hope left, if the singular locus of u completely misses the
upper contact set.

Lemma 3.3. Let g ∈ C(Rn) be a non-negative function and u ∈
C(Ω)

⋂

C2(V ). Suppose that V is an open connected subset of Ω, such
that the upper contact set of u satisfies

Γ+ ⊂ V.

Set d := diam(Ω) and

M :=
supΩ u− sup∂Ω u

d
.

Then we have

(3.2)

ˆ

BM (0)

g(z)dV (z) ≤
ˆ

Γ+

g(∇u(x))| det(Diju(x))|dV (x).

Proof. It is easy to see that the set Γ+ is also relatively closed in the
open subset V . Since the function u is C2 in an open neighbourhood
of Γ+, we can consider the mapping:

∇u : V → R
n.

Let the set Σ be the image of Γ+. Since this mapping is onto and g ≥ 0,
by change of variables, we have

(3.3)

ˆ

Σ

g(z)dV (z) ≤
ˆ

Γ+

g(∇u(x))| det(Diju(x))|dV (x).

Then it is enough to prove BM(0) ⊂ Σ. In other words, we claim
that for any a ∈ R

n, |a| < M , there exists a point y ∈ Γ+ such that
a = ∇u(y). Moreover, only continuity of u on Ω and C1-regularity of
u in V are needed to prove this claim.

For each such a, we define a linear function La(t) := minx∈Ω(t + a ·
x − u(x)) for t ∈ R. Let ta be the root of the operator La. It follows
that ta + a · x − u(x) ≥ 0 for all x ∈ Ω, and ta + a · y − u(y) = 0 for
some y ∈ Ω. Therefore, we have

(3.4) u(y) ≥ u(x) + a · (y − x).

Moreover, we can always assume that the maximum of u appears in
the interior, i.e. u(x0) = supΩ u for some x0 ∈ Ω. Then one finds

u(y) ≥ sup
∂Ω

u+M · d+ a · (y − x0) > sup
∂Ω

u.
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Therefore, the point y must be in Ω, and hence it is also in the upper
contact set Γ+ by equation (3.4). Finally, the assumption u ∈ C2(V )
implies that a = ∇u(y).

�

For an elliptic operator L defined on V , we define D
∗(x), x ∈ V as

the geometric average of the eigenvalue of the positive matrix (aij(x)).
By picking up g ≡ 1, we have the following version.

Corollary 3.4. Under the condition of Lemma (3.3), we have
(3.5)

sup
Ω
u ≤ sup

∂Ω
u+

d

an

{

ˆ

Γ+

(

−∑n
i,j=1 aij(x)Diju(x)

nD∗

)n

dV (x)

}1/n

,

where an is the volume of the unit ball in Rn.

Proof. On the set Γ+, the matrix A = (aij(x)) is positive, and D =
(Diju(x)) is semi-negative. Then we have the inequality

D
∗(det(−D))1/n = (det(−AD))1/n ≤ tr(−AD)

n
,

in other words,

| det(Diju(x))| ≤
(

−∑n
i,j=1 aij(x)Diju(x)

nD∗

)n

,

and then our result follows. �

Considering the set Ω+ := {x ∈ Ω; u(x) > 0}, we further obtains
the following inequality
(3.6)

sup
Ω
u ≤ sup

∂Ω
u++

d

an

{

ˆ

Γ+
⋂

Ω+

(

−∑n
i,j=1 aij(x)Diju(x)

nD∗

)n

dV (x)

}1/n

.

Up to this stage, we have seen that AMP is essentially a story of
supΩ u, sup∂Ω u,Γ

+ and the ellipticity of L on Γ+! The equation is
not actually involved so far, and then we can formulate a new version,
Generalised Alexandrov’s maximum principle (GAMP) as follows.

Theorem 3.5. Suppose that there exists an open connected subset V
of Ω, such that Γ+ ⊂ V and u ∈ C(Ω)

⋂

C2(V ). Let L be an elliptic
operator with c ≤ 0, and it satisfies Lu ≥ f on V with

|b|
D∗

,
f

D∗
∈ Ln(Γ+).

Then one has

(3.7) sup
Ω
u ≤ sup

∂Ω
u+ + C · diam(Ω) ·

∥

∥

∥

∥

f−

D∗

∥

∥

∥

∥

Ln(Γ+)

,
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with

C := C

(

n,

∥

∥

∥

∥

|b|
D∗

∥

∥

∥

∥

Ln(Γ+)

)

.

Proof. In the case bi = c = 0, the proof follows directly from Corollary
(3.4) since f ≤ Lu ≤ 0 on Γ+.

For bi or c non-zero, one can use Lemma (3.3) with V replaced by
V
⋂

Ω+, and pick up g(z) := (|z|n + µn)−1 for some constant µ =
||f−/D∗||Ln(Γ+) as the standard proof of AMP. �

4. The potential estimates

Let (ϕ, F ) be a C2,α,β-conic cscK pair on (X,D). The coupled equa-
tions on X \ SuppD can be re-written as

(4.1) log det(gij̄ + ϕij̄) = F + log det(gij̄),

(4.2) ∆ϕF = −Rβ + trϕΘ,

where (gij̄) stands for the metric for the conic Kähler form ωβ, and
we always assume the condition supX ϕ = 0. By the construction, the
function F is smooth outside the divisor.

Then we want to persuade as in Chen-Cheng [6] to introduce an
auxiliary function, by solving the following equation:

(4.3) (ωβ + ddcψ1)
n =

eFΦ(F )ωnβ
´

X
eFΦ(F )ωnβ

,

where Φ(x) :=
√
x2 + 1, under the normalization supX ψ1 = 0. This

auxiliary function ψ1 exists by a theorem of Kolodziej [19], and it is
also Cα-Hölder continuous on X .

4.1. The auxiliary function. In fact, we can explore more regular-
ities of the function ψ1 as in [15]. Take ψ := ψβ + ψ1, and equation
(4.3) reduces to

(4.4) (ω + ddcψ)n =
efdV

∏d
k=1 |sk|2−2βk

,

where f := F + 1
2
log(F 2+1), and dV is a smooth volume form. This is

equation is very similar with the conic KE equation for λ = 0, expect
that the function f may also have conic singularities.

More precisely, the derivatives of f are determined by

∂f = ∂F +
F · ∂F

2(F 2 + 1)
,

∂∂̄f =

(

1 +
F

2(F 2 + 1)

)

∂∂̄F − F 2

2(F 2 + 1)2
∂F ∧ ∂̄F.

If F ∈ C2,α,β, then there exists a constant C to satisfy

(4.5) |∂F |2ωcone
≤ C;
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(4.6) 0 ≤ ∂∂̄(F + C
d
∑

k=1

|zk|2βk) ≤ 2Cωcone,

near the divisor. Moreover, the function f also satisfies the above two
equations by its construction. In fact, we have the following space.

Definition 4.1. A function f ∈ C2(X \ Supp(D)) is said to be in

the space C1,1̄
β (X,D), if equations (4.5) and (4.6) always hold near the

support of the divisor.

The next goal is to cook up a small smooth perturbation of the func-
tion f with complex Hessian controlled near the divisor. Let {Ui}Ni=1

be a finite collection of open coordinate balls such that the following
conditions hold:

• the manifold X is covered by
⋃N
i=1 Ui;

• there exists an integer 1 ≤ m < N , such that Ui
⋂

Dk 6= ∅ for
some k and ∀i ≤ m, and Ui

⋂

Dk = ∅ for all k and ∀i > m.

Furthermore, for each i ≤ m, we can assume that the defining equa-
tion of SuppD

⋂

Ui is {z1 · · · zk = 0}, where {zi} is a coordinate system
on Ui. Let {χi} be a partition of unity subordinate to the open cov-

ering {Ui}, and then we can write f =
∑N

j=1 fj, where fj := χj · f is
compactly supported on each Uj .

Let ρ1 be the standard mollifier on the unit ball of Cn, and take

ρε(|z|2) := ε−2nρ(|z|2/ε2).
There exists a sequence of smooth approximation as fj,ε := ρε ⋆ fj
for j ≤ m and fj,ε = fj for j > m. In fact, we can assume the
smooth function fj,ε is defined on X by zero extension. Therefore, the

fε :=
∑N

j=1 fj,ε is a smooth function on X , and converges to f in Cα-
norm. It is easy to see that the derivatives of fj also satisfy equations
(4.5) and (4.6), and then the growth of the complex Hessian of this
approximation can be estimated as follow.

Lemma 4.2. Let B be the unit ball of Cn, and Z be the zero locus of
the function {z1 · · · zd}. Suppose that a function G(z) is in L1(B) with
homogeneous growth near Z, i.e. there exists real numbers {αk}dk=1

with each αk > −1, such that

|G(z)| ≤ C
d
∏

k=1

|zk|2αk ,

in an open neighbourhood of Z. Then the regularization Gε = ρε ⋆ G
has the following growth near the zero locus:

(4.7) |Gε(z)| ≤ C
d
∏

k=1

(|zk|2 + ε2)αk .
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Proof. For any x ∈ B1−ε, the convolution can be estimated near Z as

|Gε(x)| ≤
ˆ

|z|≤1

ρ(z)|G(x− εz)|dz

≤
ˆ

|z|≤1

ρ(z)
d
∏

k=1

|xk − εzk|2αkdz

≤ ε
∑d

k=1 2αk

ˆ

|z|≤1

ρ(z)

d
∏

k=1

|(xk/ε)− zk|2αkdz,(4.8)

up to a constant. Take a function

G̃ := ρ1 ⋆

(

d
∏

k=1

|zk|2αk

)

,

and then we observe that this positive smooth function satisfies

G̃(x) ≤ M
d
∏

k=1

(1 + |xk|2)αk ,

for all |x| < 1 and M = 2d supB G̃. Then the last line of equation (4.8)
can be re-written as

ε
∑d

k=1 2αkG̃(x/ε) ≤ ε
∑d

k=1 2αkM
d
∏

k=1

(1 + |xk/ε|2)αk

≤ M

d
∏

k=1

(ε2 + |xk|2)αk ,(4.9)

and our result follows. �

The complex Hessian of each fj,ε is equal to ρε ⋆ ∂∂̄fj. Put G(z) =
∂p∂q̄fj for some 1 ≤ p, q ≤ n, and then all the conditions in Lemma
(4.2) are satisfied, where each αk is equal to 1 − βk, (1 − βk)/2 or 0.
Then Lemma (4.2) shows that ddcfε is bounded by sums of terms like

dzp ∧ dz̄p
(ε2 + |zp|2)αp

or
dzp ∧ dz̄q + dzq ∧ dz̄p

(ε2 + |zp|2)α′
p(ε2 + |zq|2)α′

q
,

where αp ∈ {1− βp, 0} and α′
p ∈ {1

2
(1− β), 0}.

Then we can solve the following perturbed equation of equation (4.4):

(4.10) (ω + ddcψε)
n =

efεdV
∏d

k=1(|sk|2 + ε2)(1−βk)
,

up to some uniform constant cε. The argument for the C1,1̄-estimate
for the conic KE equation(Proposition 1, [15]) can be applied again to
this equation. The only thing left is to check the following inequality:

(4.11) ddcfε ≥ −(CωD,ε + ddcΨε),
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for some uniform constant C. Here Ψε :=
∑d

k=1 χρ(|sk|2 + ε2) for some
real number ρ < minkmin{βk, 1 − βk}. This is simply true by our
previous estimates on the growth of ddcfε. Eventually, we came up
with the following regularity theorem of our auxiliary function.

Theorem 4.3. The metric ωψ1 := ωβ+dd
cψ1 associated to the auxiliary

function ψ1 is a conic Kähler metric with cone angle βk along each
divisor Dk.

Proof. We already proved the C1,1̄
β -estimate for the potential ψ, and

then the metric ωψ1 is quasi-isometric to the model cone metric ωcone
near the divisor. Moreover, on each open coordinate ball U with
U
⋂

SuppD = ∅, the function ψ is in C1,1̄(U), and then it is in C2,α(U)
by the regularity result in the work [12]. Finally, the solution ψ is
smooth on U by the standard boot-strapping technique.

�

4.2. C0-estimate. Suppose ω is a Kähler form on X . Let ϕ be a
ω-plurisubharmonic(psh) function on the manifold. The the regular-
ization theorems ([11], [4]) of quasi-psh functions implies that there
exists a sequence of smooth ω-psh function ϕj decreasing to ϕ.

Lemma 4.4. There exists a real number α > 0, such that for all ω-psh
function ϕ with supX ϕ = 0, the following estimate satisfies

(4.12)

ˆ

X

e−αϕωn ≤ C1,

for some uniform constant C1 only depending on (X,ω).

Proof. The smooth version of this lemma is established in Tian [22].
Taking ϕj as the smooth decreasing approximation of ϕ, we have
supX ϕj ≥ 0, and then there exists two positive numbers α and C1

to satisfy
ˆ

X

e−αϕjωn ≤
ˆ

X

e−α(ϕj−supX ϕj)ωn ≤ C1,

for all ϕ and j, and our result follows. �

Let (ϕ, F ) be a C2,α,β-conic cscK pair for the log smooth klt pair
(X,D). Take the normailzation supX ϕ = 0, and then the lower bound
of the potential can be first estimated in terms of F and ψ.

Theorem 4.5. Given any ε > 0 small enough, there exists a constant

C2 := C2(ε,X, ω,

ˆ

X

eFΦ(F )ωn, β, φ,D)

such that the following holds:

(4.13) F + εψ1 − 2(1 + max
X

|Θ|)ϕ ≤ C2.
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Corollary 4.6. For any real fixed number q > 0, there exists a constant

C3 := C3(q,X, ω,

ˆ

X

eFΦ(F )ωn, β, φ,D,max
X

|Θ|)

such that the following holds:

(4.14)

ˆ

X

eqFωn ≤ C3; ||ϕ||0 ≤ C3; ||ψ1|| ≤ C3.

Proof. Combing with Lemma (4.4) and Theorem (4.5), the uniform
Lq(ωn) estimate for the function eF follows exactly like the argument
in Chen-Cheng [6], by picking up ε = α/q. However, in order to prove
the L∞ bound of the potential, we need the following argument.

Re-write the Monge-Ampère equation (4.1) as

(ω + ddc(ψβ + ϕ))n = µωn,

where µ :=
eFωn

β

ωn is the density function. Taking some 1 < p < mink(1−
βk)

− 1
2 , the Lp-norm of µ can be estimated by the Hölder inequality

ˆ

X

epF
dV

∏d
k=1 |sk|2p(1−βk)

≤
(
ˆ

X

e(p+p
′)FdV

)1/p′
(

ˆ

X

dV
∏d

k=1 |sk|2p
2(1−βk)

)1/p

≤ C4(β)

(
ˆ

X

eqFdV

)1/p′

,(4.15)

where we choose 1
p
+ 1

p′
= 1 and q := p + p′. Finally, by the work

of Kolodziej [19] and Benelkourchi-Guedj-Zeriahi [3], the L∞-norm is
controlled as

0 ≤ ||ϕ+ ψβ||0 ≤ C5||µ||1/nLp(ωn),

where the constant C5 only depends on p and ω. Then our result follows
since ψβ is uniformly bounded. Moreover, for the auxiliary function ψ1,

we have the same L∞-estimate, since
√
F 2 + 1 is controlled by eε1F for

any small ε1 > 0.
�

For the proof of Theorem (4.5), we first run as Chen-Cheng’s argu-
ment [6]. Take u1 := eδA1 and A1(ϕ, F ) := F + εψ1 − λϕ. Here the
constants are determined as

λ := 2(1 + max
X

|Θ|), δ :=
α

2nλ
,

where α is the small constant appearing in Lemma (4.4).
Let p0 be the maximum point of the function u. For some d > 0

small enough, we can consider a coordinate ball Bd(p0) around p0 with
radius d. Take ηp be a cut-off function such that ηp(p) = 1 and ηp =
1 − θ outside the ball Bd/2(p), with the estimate |∇ηp|2 ≤ 4θ2d−2 and
|∇2ηp| ≤ 4θd−2. This small positive constant θ will only depend on α
and d.
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Suppose that the ball Bp0(d) is away from Supp(D). Then the esti-
mate (4.13) holds for some constant, by applying AMP to the function
uηp0. However, this constant will depend on the diameter d, and it
grows like d−1 when the ball is closer and closer to the divisor.

Therefore, we need to introduce a new auxiliary function as

ψ2 :=

d
∑

k=1

|sk|2γk .

Put u := eδA, where we define

A(ϕ, F ) := F + ε(ψ1 + ψ2)− λϕ.

Let x0 be the maximum point of the function u on the manifold, and
we can assume Bd(x0)

⋂

Supp(D) 6= ∅ for some fixed radius d small.
Then there exists an open coordinate system U such that B2d(x0) ⊂ U ,
and the defining function of Supp(D) is {z1 · · · zd = 0} in U .

We re-wirte the new auxiliary function ψ2 on U as
∑d

k=1(|zk|2e−φk)γk ,
and its complex Hessian ddcψ2 can be explicitly calculated as
(4.16)

d
∑

p=1

γ2pe
−φp

dzp ∧ dz̄p + 2Re
{

∑n
q=1 o(zp)dzq ∧ dz̄p

}

+
∑n

q,l=1 o(|zp|2)dzq ∧ dz̄l
(|zp|2e−φp)1−γp

.

Therefore, we have the following estimate near the divisor

(4.17) C6ωEuc + ddcψ2 ≥ C−1
6

(

d
∑

k=1

dzk ∧ dz̄k
|zk|2−2γk

+

n
∑

j=d+1

dzj ∧ dz̄j
)

,

for some constant C6 only depending on the angle γ and the hermitian
metric φ.

The complex Hessian function of ψ2 grows very fast to +∞ near the
divisor, and this gives us a chance to avoid its upper contact set.

Lemma 4.7. Let Γ+ be the upper contact set of the function uηx0 on
U . Then there exists an open neighbourhood VD of Supp(D)

⋂

U , such
that Γ+

⋂

VD = ∅.

Proof. By our construction, the function uηp0 is smooth outside the
divisor, and then we can compute its Laplacian with respect to the
Euclidean metric ωEuc on U \ SuppD as

∆(eδAη) = ∆(eδA)η + eδA∆η + 2δeδA∇A · ∇η
= eδAη

(

δ∆A+ δ2|∇A|2
)

+ eδA∆η + 2δeδA∇A · ∇η.(4.18)

By the construction, we have

(4.19) eδA∆η ≥ −eδA4θ/d2,
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and

2δ∇A · ∇η ≥ −δ2η|∇A|2 − η−1|∇η|2

≥ −δ2η|∇A|2 − 4θ2

d2(1− θ)
.(4.20)

Moreover, since ϕ, F, ψβ ∈ C2,α,β, we see

∆(F + εψ1 + εψ2 − λϕ) ≥ trωEuc
{ddc(F − λϕ)− εωβ}+ ε∆ψ2

≥ −C7

(

d
∑

k=1

|zk|2βk−2 + 1

)

+ εC−1
7

(

d
∑

k=1

|zk|2γk−2

)

,(4.21)

for some constant C7(may not be uniform). Eventually, for chosen
ε, δ, λ and θ, we have on U \ Supp(D)

∆(eδAη) ≥ δηeδA∆(F + εψ1 + εψ2 − λϕ)− eδA
(

4θ2

d2(1− θ)
+

4θ

d2

)

≥ −C8

(

d
∑

k=1

|zk|2βk−2 + 1

)

+ C−1
8

(

d
∑

k=1

|zk|2γk−2

)

,(4.22)

for some constant C8.
By picking up γk < βk, there exists an open neighbourhood VD of the

support of the divisor D in U such that ∆(uηx0) > 1 on VD \Supp(D).
Therefore, the upper contact set Γ+ is disjoint from the open set VD \
Supp(D).

Furthermore, we claim that Supp(D)
⋂

Γ+ = ∅. Otherwise, suppose
a point p0 is in Supp(D)

⋂

Γ+, and then there exists a vector a ∈ R2n,
such that

uηx0(y) ≤ uηx0(p0) + a · (y − p0),

for all y ∈ U . Define a new function on VD as

v(y) := uηx0(y) + a · (p0 − y).

By our construction, this function v obtains its maximum at the point
p0, and it is continuous on VD. Moreover, the function v is strictly
subharmonic on VD \ Supp(D) since its real Laplacian ∆v = ∆(uηx0)
is positive there.

In fact, v is even subharmonic on the whole VD by the extension
theorem of subharmonic functions. Thanks to the maximum principle,
it must be a constant in VD, but this contradicts the fact that v is
strictly subharmonic outside the divisor.

�

Proof of Theorem (4.5). In order to apply the maximum principle to
our function uηx0, we compute the Laplacian ∆ϕ(uηx0) outside the
divisor. The calculation is very similar with Chen-Cheng’s work [6],
and the only difference is that our background metric is ωβ, a conic
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metric this time. However, observe that we have Ric(ωβ) = Θ outside
the divisor. Therefore, we obtain

∆ϕ(F + εψ1 + εψ2 − λϕ) ≥
{

−Rβ − λn+ εnI
− 1

n
Φ Φ

1
n (F )

}

+ ε∆ψ2 + (λ− ε− |Θ|)trϕgβ,
(4.23)

where IΦ :=
´

X
eFΦ(F )ωnβ . Here we used the following inequality

∆ϕψ1 ≥ n
(

e−F eFΦ(F )I−1
Φ

)
1
n − trϕgβ.

Moreover, for some large integer N , we have the Donaldson metric

ωD,γ = ω +N−1ddcψ2 > 0,

with cone angle γk along Dk. Therefore, we see

(4.24) ε∆ϕψ2 ≥ −εNtrωϕω ≥ −εN1trωϕωβ.

Here the constants N and N1 only depend on ω, ωβ, X,D and the her-
mitian metric φ. Then we may assume εN1 < 1, and the following
inequality holds:

∆ϕ

(

eδAηx0
)

≥ δηx0e
δA
(

−Rβ − λn+ εnI
− 1

n
Φ Φ

1
n (F )

)

+ eδA
(

δηx0(λ− ε− |Θ| − 1)− 4θ

d2
− 4θ2

d2(1− θ)

)

trϕgβ.
(4.25)

Recall these constants are taken as λ := 2(1 + maxX |Θ|), and δ :=
(2nλ)−1α, and then we choose the constant θ > 0 small enough to
satisfy

(1− θ)α

4n
− 4θ

d2
− 4θ2

d2(1− θ)
≥ 0.

This implies the following equation on U \ Supp(D)

(4.26) ∆ϕ(uηx0) ≥ δηx0e
δA(−Rβ − λn+ εnI

− 1
n

Φ Φ
1
n (F )).

Thanks to Lemma (4.7), the upper contact set Γ+ of the continuous
function uηx0 in the ball Bd(x0) is contained in the open subset Bd(x0)\
VD, which is away from the divisor. Then we are ready to apply GAMP
in the ball to have:

sup
Bd(x0)

uηx0 ≤ sup
∂Bd(x0)

uηx0

+ Cnd0

(
ˆ

Bd(x0)
⋂

Ω−

e2Fu2n(−Rβ − λn+ εnI
− 1

n
Φ Φ

1
n )2nωn

)
1
2n

,

(4.27)

where Ω− denote the set

Ω− := {x ∈ Bd(x0); −Rβ − λn+ εnI
− 1

n
Φ Φ

1
n < 0}.
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Then there exists a constant C9 only depending on ε, IΦ and the smooth
metric ω such that F < C9 on Ω−. As in Chen-Cheng [6], the last term
is eventually bounded by the integral

(|Rβ|+ λn)2neC9(2nδ+2)

ˆ

Bd(x0)

e−αϕωn ≤ C10,(4.28)

by Lemma (4.4). Therefore, we obtain

sup
X
u = uη(x0) ≤ (1− θ) sup

X
u+ Cnd · C10,

and then supX u ≤ θ−1Cnd · C10. Finally our result follows since the
function ψ2 is uniformly bounded on X .

�

Eventually, the C0-norm of the potential ||ϕ||0 is controlled by the
conic entropy Hβ(ϕ) :=

´

X
FeFωnβ , by the equivalence between the

integral
´

X
eF

√
F 2 + 1ωnβ and Hβ as in [6].

4.3. Non-degeneracy estimate. The uniform upper bound of the

volume form radio F := log
ωn
ϕ

ωn
β
is easily obtained from the inequality

(4.13). In fact, for a fixed ε0 small enough, we have

F ≤ C2 − ε0ψ1,

and the result follows from Corollary (4.6).
The last issue is the lower bound of F , but we can use GAMP again

as follows.

Lemma 4.8. There exists a constant C11 satisfying

(4.29) F ≥ −C11,

where the constant depends on

C11 := C11(||ϕ||0, X, ω, β, φ,D,max
X

|Θ|).

Proof. As before, we consider a function

A2(F, ϕ) := −F − λϕ+ ε2ψ2,

and put u2 = eδA2 . Assume the function u2 achieves its maximum at
the point x1. Pick up

λ := 2(max
X

|Θ|+ 1); δ :=
1

2n
; ε2 =

1

2N1

,

where N1 is the uniform constant in equation (4.24). Then we have

∆ϕ(F + λϕ− ε2ψ2) =
(

trϕΘ− Rβ − λtrϕωβ
)

+ λn− ε2∆ϕψ2

≤ −trϕωβ +Rβ + λn + ε2N1trϕωβ,

≤ −1

2
trϕωβ +Rβ + λn(4.30)
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outside the support of the divisor. Following Chen-Cheng’s calculation,
we further see
(4.31)

∆ϕ(u2ηx1) ≥ δeδu2
{

trϕg

(

1

2
δηx1 −

2θ

d2
− 4θ2

d2(1− θ)

)

− δ(Rβ + λn)

}

.

Choose θ sufficiently small to satisfy

1− θ

2
δ − 2θ

d2
− 4θ2

d2(1− θ)
≥ 0,

and then we have

(4.32) ∆ϕ(u2ηx1) ≥ −δeδA2(Rβ + λn).

Now observe that the function u2ηx1 is strictly subharmonic in an
open neighbourhood of the divisor, by the same argument as in Lemma
(4.7). Then there exists an open subset V of the ball Bd(x1) completely
disjoint from the divisor, such that the upper contact set Γ+

(u2ηx1 )
of the

function u2ηx1 is contained in V . Therefore, we can apply GAMP to
this function on the ball Bd(x1)

eδA2ηx1(x1) ≤ sup
∂Bd(x1)

eδA2ηx1

+ Cnd

(
ˆ

X

e2F e−2nδA2(Rβ + λn)2nωn
)

1
2n

.(4.33)

However, this integral is bounded by the following
(4.34)
ˆ

X

e2F e−2nδA2(Rβ + λn)2nωn ≤ C12

ˆ

X

e(2−2nδ)Fωn ≤ C12

ˆ

X

eFωn,

and our result follows.
�

Remark 4.9. During the proof of the a priori estimates, the regularity
condition (ϕ, F ) ∈ C2,α,β is more than enough. In fact, we can prove

our results by only assuming (ϕ, F ) ∈ C1,1̄
β .

Remark 4.10. The constant C2 and C3 depend on many things as
listed before, but they do not actually depend on the conic background
metric ωβ. In other words, if we switch our background metric to an-
other conic metric ω̃β which is isometric to ωβ, then the uniform esti-
mate also works, with maxX |Θ| replaced by maxX\Supp(D) |Ric(ω̃β)|.

5. The W 2,p estimates

In this section, we want to demonstrate the estimates on the Lapla-
cian of the potential ϕ for conic cscK equations. Taking Y := X \
Supp(D), the idea is to first prove the W 2,p(dµ, Y ) estimate for ϕ for
some measure dµ, and then use the W 2,p(dµ, Y ) norm to control the
L∞-norm of the Laplacian.



20 LONG LI, JIAN WANG, AND KAI ZHENG

Theorem 5.1. For any p ≥ 1, there exists a constant C14 satisfying

(5.1)

ˆ

Y

(trωβ
ωϕ)

pωnβ ≤ C14,

where this constant depends on

C14 := C14( p, ||ϕ||0, ||F ||0, ωD, ωβ, X,D).

In Chen-Cheng’s proof [8] of theW 2,p estimate, this constant C14 ac-
tually is related to the lower bound of the bisectional curvature Rīijj̄ of
the background metric. However, the background metric ωβ in our case
is singular, and the growth of its bisectional curvature near the divisor is
not clear up to now. Therefore, we need to switch our background met-
ric back to Donaldson’s metric in this section, as in Guenancia-Păun
[15]. In fact, since the two conic metrics ωβ and ωD are quasi-isometric
on X , it is enough to prove the following

(5.2)

ˆ

Y

(trωD
ωϕ)

pωnD ≤ C,

for some uniform constant C(may depends on p).

5.1. Conic weight function. Let Ψγ be an auxiliary function defined
on X as

Ψγ := C

d
∑

k=1

|sk|2γ,

for some γ < minkmin{βk, 1 − βk}. Then it is the smooth limit on Y
of the auxiliary function

Ψγ,ε := C

d
∑

k=1

χγ(ε
2 + |sk|2),

constructed in [15]. Then the function Ψγ is clearly C15ωD-psh for
another uniform constant C15, i.e. we have

(5.3) C15ωD + ddcΨγ ≥ 0,

on X . Let Θω(TX) denote the Chern curvature tensor of (TX , ω). The
following inequality is proved in [15]:

√
−1ΘωD,ε

(TX) ≥ −(C16ωD,ε + ddcΨγ,ε)⊗ Id.

In a normal coordinate of the metric ωD,ε, we can re-write the above
inequality as

Rīijj̄(ωD,ε) ≥ −(C16 +Ψε,īi); and Rīijj̄(ωD,ε) ≥ −(C16 +Ψε,jj̄).

Therefore, the following holds on Y in a normal coordinate of ωD:

(5.4) Rīijj̄(ωD) ≥ −(C16 +Ψīi); and Rīijj̄(ωD) ≥ −(C16 +Ψjj̄),
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since everything converges smoothly outside the divisor. Moreover, if
we put

hε := − log

(

∏d
k=1(ε

2 + |sk|2)1−βkωnD,ε
dV

)

for some smooth volume form dV , then the following also holds by the
calculation in [15]

C17ωD,ε + ddcΨγ,ε ≥ ddchε ≥ −(C17ωD,ε + ddcΨγ,ε),

for some uniform constant C17. Taking the limit, we have the following
estimate on Y

(5.5) C17ωD + ddcΨγ ≥ ddch ≥ −(C17ωD + ddcΨγ),

where the function h := log
(

ωn
β

ωn
D

)

is defined on Y . In fact, a direct

computation shows

(5.6) ∂∂̄|sk|2−2βk
φk

= β2
k

∂φksk ∧ ∂φkske−φk
|sk|2−2βk

φk

− βk|sk|2βk∂∂̄φk,

and then one obtains
(5.7)

e−hdV =
∑

L

∑

I,J

(

∏

i∈I

|si|2−2βi
φj

)(

∏

j∈J

|∂φjsj |2φj

)

∧
(

∏

l∈L

|sl|2βlφl
∂∂̄φl

)

̺,

where {I, J} is any partition of the set {1, · · · , d}, L is a subset of
{1, · · · , n} with possibly repeating indices, and ̺ is a smooth function.
At a point p near the divisor, we can assume ∂φk(p) = 0 for all 1 ≤
k ≤ d. Therefore, the growth of its gradient can be computed as

∂kh = O(|zk|−max{1−2βk,2βk−1})

for 1 ≤ k ≤ d, and ∂ph = O(1) for d < p ≤ n. Moreover, its complex
Hessian can be estimated as

∂p∂p̄h = O(|zp|2αp); ∂p∂q̄h = O(|zp|α
′

p|zq|α
′

q),

where αp ∈ {1− βp, βp} and α′
p ∈ {1

2
− βp, βp − 1

2
} for all 1 ≤ p, q ≤ d.

5.2. Switching background metrics. In the following, we will slightly
change our notations. Let (ψ,G) be a C2,α,β-conic cscK pair for (X,D),
i.e. they satisfy the coupled equations (4.1) and (4.3).

Take a new potential ϕ := ψ + ψβ − ψD, and a new function F :=
G+ h. The the new potential ϕ is also in C2,α,β, and it satisfies

ωϕ := ωD + ddcϕ = ωβ + ddcψ,

and the function F is uniformly bounded, but it may not be in C2,α,β

anymore. The two coupled cscK equations (2.6), (2.7) can be re-written
as

(5.8) (ωD + ddcϕ)n = eFωnD;



22 LONG LI, JIAN WANG, AND KAI ZHENG

(5.9) ∆ϕF = trϕ(Θ + ddch)−Rβ .

In fact, the (1, 1) closed form (Θ + ddch)|Y is the restriction of the
curvature Ric(ωD) on Y . From now on, we will adapt to the following
conventions:

• denote g,∇ and ∆ with respect to the background metric ωD;
• denote gϕ,∇ϕ and ∆ϕ with respect to the target metric ωϕ.

In order to manipulate the integration by parts on Y , we need to
introduce a suitable cut off function. Let ρ : X → [−∞,+∞] be a
function defined by

ρ(x) := log

(

− log(
d
∏

k=1

|sk(x)|2)
)

,

where we normalise the sections τ :=
∏d

k=1 |sk(x)|2 < e−1. Let ηε :
[0,+∞) → [0, 1] be a smooth non-decreasing function, such that η(x) =
0 for x ∈ [0, 1] and η(x) = 1 for x ≥ 2. Then the following cut off
function is considered in Berndtsson’s work [2]

θε(x) := 1− η(ερ(x)),

and it is equal to 1 whenever τ ≥ e−e
1/ε

and 0 if τ ≤ e−e
2/ε
.

Moreover, its gradient is

(5.10) ∂θε =
εη′

− log τ

d
∑

k=1

(

∂φksk
sk

)

.

The positive (1, 1) form ∂θε ∧ ∂̄θε is only supported near the divisor,
and we have its integrability with respect to the model cone metric

(5.11)

ˆ

X

1

(log τ)2

d
∑

k,l=1

(

∂φksk
sk

)

∧
(

∂φlsl
sl

)

∧ ωn−1
cone < +∞.

Then it is easy to see that the following property holds:

(5.12)

ˆ

X

dθε ∧ dcθε ∧ Ωn−1
β → 0, as ε→ 0

for any conic Kähler metric Ωβ on X . Moreover, this implies the fol-
lowing

(5.13)

ˆ

X

dθε ∧ dcF ∧ Ωn−1
β → 0, as ε→ 0,

for any function F with |∂F |2Ωβ
∈ L2(Ωnβ). These properties will be

crucial for our later calculation.

Proof of Theorem (5.1). As discussed before, it is enough to prove the
W 2,p estimate with respect to the new background metric ωD (equa-
tion (5.2)). Let κ > 0, C > 0 be constants to be determined later.
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According to Guenancia-Păun’s trick, the following Laplacian can be
estimated on Y as

(5.14) ∆ϕ log(n+∆ϕ) ≥ −C16trϕg +
∆F

n +∆ϕ
−∆ϕΨ,

where Ψ := Ψγ is the conic weight function. Denote a functionA(ϕ, F ) :=
−κ(F + Cϕ) + (κ + 1)Ψ, and then compute

e−A∆ϕ(e
A(n+∆ϕ)) ≥ (n+∆ϕ)∆ϕ(A+ log(n+∆ϕ))

≥ (n+∆ϕ)
{

(κC − C16)trϕg − κtrϕΘ+ κ(Rβ − Cn)

+ κ · trϕ(ddcΨ− ddch) + (n+∆ϕ)−1∆F
}

≥ κC

4
trϕg(n+∆ϕ) + ∆F − κC18(n +∆ϕ),(5.15)

where we choose the constant κ ≥ 1 and

C := 4(max |Θ|g + C17 + C16 + 1).

Here we used equations (5.4) and (5.5).
Let p > 1, and 0 < δ < (p − 1)/10, denote v := eA(n + ∆ϕ) as an

L∞ function on X , and then we have

(p− 1)

ˆ

X

θ2εv
p−2|∇ϕv|2ϕωnϕ

=

ˆ

X

θ2εv
p−1(−∆ϕv)ω

n
ϕ − 2

ˆ

X

(v∇ϕθε) ·ϕ (θε∇ϕv)v
p−2ωnϕ

≤
ˆ

X

θ2εv
p−1(−∆ϕv)ω

n
ϕ + δ

ˆ

X

θ2εv
p−2|∇ϕv|2ϕωnϕ + δ−1Iε,(5.16)

where the last term is

Iε :=

ˆ

X

|∇ϕθε|2ϕvpωnϕ =

ˆ

X

vpdθε ∧ dcθε ∧ ωn−1
ϕ .

Moreover, we have

(p− 1− δ)

ˆ

X

θ2εv
p−2|∇ϕv|2ϕωnϕ

≤ δ−1Iε −
ˆ

X

θ2εv
p−1

(

κC

4
vtrϕg + eA∆F − κC18v

)

.(5.17)

We will handle the term involving ∆F as in Chen-Cheng [8]

−
ˆ

X

θ2εv
p−1eA∆Fωnϕ = −

ˆ

X

θ2εe
(1−κ)F−κCϕ+(κ+1)Ψ∆FωnD

= −
ˆ

X

θ2εv
p−1e(1−κ)F−κCϕ+(κ+1)Ψ 1

1− κ
∆
(

(1− κ)F − κCϕ+ (1 + κ)Ψ
)

ωnD

−
ˆ

X

θ2εv
p−1e(1−κ)F−κCϕ+(κ+1)ΨκC∆ϕ− (1 + κ)∆Ψ

1− κ
ωnD.

(5.18)
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Put B(ϕ, F,Ψ) := (1 − κ)F − κCϕ + (κ + 1)Ψ, and 0 < δ1 < 1 small.
For the first term on the RHS of equation (5.18), we use the integration
by parts

−
ˆ

X

θ2εv
p−1eB

1

1− κ
∆
(

(1− κ)F − κCϕ+ (1 + κ)Ψ
)

ωnD

= −
ˆ

X

θ2ε
vp−1eB

κ− 1
|∇ ((1− κ)F − κCϕ+ (1 + κ)Ψ) |2ωnD

−
ˆ

X

p− 1

κ− 1
θ2εv

p−2eB∇v · ∇{(1− κ)F − κCϕ+ (1 + κ)Ψ}ωnD

− 2

ˆ

X

vp−1eB

κ− 1
∇θε · {θε∇

(

(1− κ)F − κCϕ+ (1 + κ)Ψ
)

}ωnD

≤ (p− 1)2

2(1− δ1)(κ− 1)

ˆ

X

θ2εv
p−3eB|∇v|2ωnD + δ−1

1 IIε

≤ (p− 1)2

2(1− δ1)(κ− 1)

ˆ

X

θ2εv
p−2|∇ϕv|2ϕωnϕ + δ−1

1 IIε,

(5.19)

where the last term is

IIε :=
1

κ− 1

ˆ

X

vp−1eB|∇θε|2ωnD.

Here we used the inequality

(5.20) −2
vp−1eB

κ− 1
∇θε ·(θε∇B) ≤ δ1

θ2εe
Bvp−1

κ− 1
|∇B|2+ vp−1eB

δ1(κ− 1)
|∇θε|2,

and

(5.21) − p− 1

κ− 1
vp−2∇v·∇B ≤ (1− δ1)v

p−1

2(κ− 1)
|∇B|2+(p− 1)2vp−3|∇v|2

2(1− δ1)(κ− 1)
.

Picking up δ1 :=
1
2
, we have

−
ˆ

X

θ2εv
p−1eA∆Fωnϕ ≤ (p− 1)2

(κ− 1)

ˆ

X

θ2εv
p−2|∇ϕv|2ϕωnϕ + 2IIε

+

ˆ

X

θ2εv
p−1eA

κC∆ϕ− (1 + κ)∆Ψ

κ− 1
ωnϕ.(5.22)

Plugging equation (5.22) back to (5.17), we have
ˆ

X

(

p− 1− δ − (p− 1)2

κ− 1

)

θ2εv
p−2|∇ϕv|2ϕωnϕ

≤ −
ˆ

X

κC

4
θ2εv

p(trϕg)ω
n
ϕ +

ˆ

X

θ2εv
p−1eA

(

κC18(n+∆ϕ) +
κC

κ− 1
∆ϕ

)

ωnϕ

+

ˆ

X

θ2εv
p−1eA

κ+ 1

κ− 1
(−∆Ψ)ωnϕ + δ−1Iε + 2IIε.

(5.23)
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Picking up κ ≥ 2, we see

κC18(n +∆ϕ) +
κC

κ− 1
∆ϕ ≤ κ(C18 + C)(n +∆ϕ),

and by equation (5.3)

θ2ε
κ+ 1

κ− 1
(−∆Ψ) ≤ 3nC15θ

2
ε ≤ C19θ

2
ε(n+∆ϕ),

where the constant C19 depends on the uniform lower bound of F .
Eventually, we come up with

ˆ

X

(

p− 1− δ − (p− 1)2

κ− 1

)

θ2ε |∇ϕv|2ϕωnϕ +
ˆ

X

κC

4
θ2εv

p(trϕg)ω
n
ϕ

≤
ˆ

X

κθ2ε(C18 + C + C19)v
pωnϕ + δ−1Iε + 2IIε.

(5.24)

Take the number κ := max{2, 10p/9}, and then by our choice of δ,
we have

p− 1− δ − (p− 1)2

κ− 1
≥ 0.

Drop the positive term in equation (5.24) involving |∇ϕv|2ϕ, and then
one obtains

(5.25)

ˆ

X

κC

4
θ2εv

p(trϕg)ω
n
ϕ ≤ C20

ˆ

X

κθ2εv
pωnϕ + δ−1Iε + 2IIε.

For fixing δ, we let ε → 0, and then the two error terms converges to
zero by equation (5.12), and we have

(5.26)

ˆ

Y

vp(trϕg)ω
n
ϕ ≤ C20

ˆ

Y

vpωnϕ

Moreover, since (n +∆ϕ) ≤ eF (trϕg)
n−1 on Y , we have from the defi-

nition of v that
ˆ

Y

e(
n−2
n−1

−κp)F+p(κ+1)Ψ−pκCϕ(n+∆ϕ)p+
1

n−1ωnD

≤ C20

ˆ

Y

e(1−κp)F+p(κ+1)Ψ−pκCϕ(n+∆ϕ)pωnD(5.27)

Let C21 be a constant such that ||ϕ||0, ||F ||0, ||Ψ||0 < C21, and then we
have

(5.28)

ˆ

Y

(n+∆ϕ)p+
1

n−1ωnD ≤ C22e
(κp+p)C21

ˆ

Y

(n+∆ϕ)pωnD,

where the uniform constant C22 does not depend on p or κ.
By induction, we can conclude our theorem if there exists a p0 > 1

such that the integral
ˆ

Y

(n+∆ϕ)p0ωnD

is uniformly bounded, and we claim that this is true for p0 = 1 + 1
n−1

.
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In fact, take a sequence of real numbers 1 < pi < 1.5 such that
pi ց 1. Then for each pi, we can take κ = 2, and then there exists a
constant C23 to satisfy

C22e
(2pi+2)C21 ≤ C23,

for all i.
By the Hölder inequality, we have

ˆ

Y

(n+∆ϕ)1+
1

n−1ωnD ≤
ˆ

Y

(n+∆ϕ)pi+
1

n−1ωnD

≤ C23

ˆ

Y

(n+∆ϕ)piωnD,(5.29)

but the last term is converging to the following by the dominate con-
vergence theorem as i→ +∞

(5.30)

ˆ

X

(n+∆ϕ)ωnD =

ˆ

X

(ω+ ddc(ψD +ϕ))∧ (ω+ ddcψD)
n−1 = n.

Here we used Stoke’s theorem for L∞ quasi-plurisubharmonic functions.
Therefore, for all i large enough, we have

ˆ

Y

(n+∆ϕ)piωnD ≤ n+ 1.

The claim is proved, and our result follows.
�

6. The Laplacian estimate

Recall our notations in the previous section. Let (ψ,G) be a C2,α,β-
conic cscK pair on (X,D), with respect to the background metric ωβ,
and a new pair (ϕ, F ) be its reformulation with respect to Donaldson’s
metric ωD, i.e. they satisfy equations (5.8) and (5.9). Their relations
are ϕ = ψ − ψD + ψβ , F = G + h. However, it is important that our
target metric remains the same as

ωϕ := ωD + ddcϕ = ωβ + ddcψ.

Moreover, we adapt to the following conventions:

• denote g,∇,∆ as the Riemnannian metric, gradient, and Lapla-
cian with respect to ωD;

• denote gβ,∇β,∆β with respect to the background metric ωβ;
• denote gϕ,∇ϕ,∆ϕ with respect to ωϕ.

The two background metrics ωD and ωβ are actually quasi-isometric
to each other on X , and then there exists a uniform constant C24 to
satisfy

C−1
24 trωD

ωϕ ≤ trωβ
ωϕ ≤ C24trωD

ωϕ,

equivalently

(6.1) C−1
24 (n+∆ϕ) ≤ (n +∆βψ) ≤ C24(n +∆ϕ).
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Before proceeding to the C2-estimate, we need a different version
of the Sobolev inequality for conic metrics. Recall the set Y := X \
Supp(D), and then we proved the following.

Lemma 6.1. Let u be any smooth function on Y satisfying supY |u| <
+∞. For any 1 < p ≤ 2 and q = 2np

2n−p
, we have

(6.2)
(
ˆ

Y

|u|qωnD
)

1
q

≤ Csob,D

{

(
ˆ

Y

|∇gu|pgωnD
)

1
p

+

(
ˆ

Y

|u|pωnD
)

1
p

}

,

for some uniform constant Csob,D.

Proof. It is enough to argue in an open neighbourhood U of a point
p ∈ Supp(D), and the general case follows in the standard way by using
a partition of unity. Suppose (z1, · · · , zn) is a holomorphic coordinate
chart on U , such that p is its origin and the defining function of the
support of the divisor is {z1 · · · zd = 0}. Recall that Donaldson’s polar
coordinate is a bijection Ξ : B1(0) → U as

(ζ1, · · · , ζd, zd+1, · · · , zn) → (|ζ1|
1
β1

−1
ζ1, · · · , |ζd|

1
βd

−1
ζd, zd+1, · · · , zn).

This map Ξ is a bijection, diffemorphism outside of the divisor, but it
is no longer holomorphic. Moreover, the pull back of the conic Kähler
metric Ξ∗ωD is quasi-isometric to the Euclidean metric on Donaldson’s
polar coordinate. Therefore, it is enough to prove the following in-
equality

(6.3)

(
ˆ

B1\D

uq
)

1
q

≤ C

(
ˆ

B1\D

|∇u|p
)

1
p

+ C

(
ˆ

B1\D

|u|p
)

,

for some uniform constant C.
Let θε be our previous cut-off function introduced on Donaldson’s

polar coordinate, and then apply the Sobolev inequality, with exponent
p, to the smooth function θεu on B1 to have

(6.4)

(
ˆ

B1

|θεu|q
)

1
q

≤ C

(
ˆ

B1

|∇(θεu)|p
)

1
p

+ C

(
ˆ

B1

|θεu|p
)

.

The only issue is on the gradient term while taking convergence of
the above equation. Thanks to the Minkowski inequality, this gradient
term is controlled by

(
ˆ

B1

|θε∇u|p
)

1
p

+

(
ˆ

B1

|u∇θε|p
)

1
p

≤
(
ˆ

B1

|θε∇u|p
)

1
p

+ ||u||L∞

ˆ

B1

Cdθε ∧ dcθε ∧ ωnEuc.
(6.5)

The last term on the RHS of equation (6.5) converges to zero as ε → 0,
and equation (6.3) is proved.
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�

Then we can prove the following C2-estimate for conic cscK metrics.

Theorem 6.2. There exists pn > 0 only depending on the dimension
n, such that

(6.6) max
X

|∇ϕG|2ϕ +max
X

(n +∆βψ) ≤ C25,

where the constant C25 depends on the following ||ϕ||0, ||G||0, ||h||0,
||ψD||0, ||ψβ||0, ||n+∆ϕ||Lpn (ωn

D), (X,ωD, ωβ) and (D, φ).

Since the two background metrics are quasi-isometric, and the func-
tions G,ϕ, ψ are all in C2,α,β, it is enough to prove that the following
estimate holds:

(6.7) max
Y

|∇ϕG|2ϕ +max
Y

(n +∆ϕ) ≤ C25.

The reason to switch the two background metrics back and forth is
as follows: on the one hand, the Ricci curvature Ric(ωβ) is smooth and
uniformly bounded outside the divisor, but its bisectional curvature is
not completely clear for normal crossing divisors; on the other hand,
the growth of the bisectional curvature Rīijj̄(ωD) is clear, but its Ricci
curvature Ric(ωD) is no longer bounded under the conic metric ωD. In
fact, the norm |∂h|2ωcone

is not bounded if β > 2/3.
Since G ∈ C2,α,β, the first term |∇ϕG|2ϕ is an L∞ function on X .

Then we invoke Chen-Cheng’s C2-estimates [7], [8], and compute on Y
to obtain

e−
G
2 ∆ϕ(e

G
2 |∇ϕG|2ϕ) ≥ 2∇ϕG ·ϕ ∇ϕ(∆ϕG) + gq̄pϕ g

β̄α
ϕ Θpβ̄GαGq̄

+
1

2
|∇ϕG|2ϕ(−Rβ + trϕΘ) + gq̄pϕ g

β̄α
ϕ Gαq̄Gpβ̄.

(6.8)

Here we used the fact Ric(ωβ) = Θ on Y , and then we have

(6.9) trϕΘ− Rβ ≥ −C26(1 + trϕωβ) ≥ −C26(1 + e−G(n+∆βψ)
n−1),

and also

(6.10) gq̄pϕ g
β̄α
ϕ Θpβ̄GαGq̄ ≥ −C27|∇ϕG|2ϕ(n+∆βψ)

n−1.

Then we came up with the following by equation (6.1)

∆ϕ(e
G
2 |∇ϕG|2ϕ) ≥ 2e

G
2 ∇ϕG ·ϕ ∇ϕ(∆ϕG) +

1

C28
gq̄pϕ g

β̄α
ϕ Gαq̄Gpβ̄

− C28(1 + (n +∆ϕ)n−1)|∇ϕG|2ϕ.
(6.11)

A key observation is that the positive term in equation (6.11) is
actually the L2-norm under the target metric ωϕ of the complex Hessian
of G, and then it can be re-written in ωD-normal coordinate as

gq̄pϕ g
β̄α
ϕ Gαq̄Gpβ̄ = |∂∂̄G|2gϕ =

|Gij̄ |2
(1 + ϕīi)(1 + ϕjj̄)

.
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6.1. The C2 estimate. From now on, we stick to the background
metric ωD. Let Ψγ be the auxiliary function used in Guenancia-Păun’s
trick, and we recall the following inequality

∆ϕ log(n+∆ϕ) ≥ −C16trϕg +
∆F

n+∆ϕ
−∆ϕΨ.

Then we have by equations (5.5) and (5.3)

e−2Ψ∆ϕ(e
2Ψ(n+∆ϕ)) ≥ −C16(n +∆ϕ)trϕg +∆G

+∆h+ (n +∆ϕ)∆ϕΨ

≥ −(C16 + C17)(n+∆ϕ)trϕg +∆G

≥ −C29(n +∆ϕ)n − 1

C28

|Gīi|2
(1 + ϕīi)2

(6.12)

Here we used the inequality

trωD
(C17ωD + ddcΨ) ≤ trωD

ωϕ · (C17trϕg +∆ϕΨ).

Put

u := e
G
2 |∇ϕG|2ϕ + (n+∆ϕ) + 1.

Combining with equations (6.11) and (6.12), we obtain

(6.13) ∆ϕu ≥ 2e
G
2 ∇ϕG ·ϕ ∇ϕ(∆ϕG)− C30(n+∆ϕ)n−1u.

Proof of Theorem (6.2). We will do integration by parts for the first
term on the RHS of equation (6.13) as follows. Let p > 0, and we use
the previous cut off function to have

2p

ˆ

X

θ2εu
2p−1|∇ϕu|2ϕωnϕ =

ˆ

X

θ2εu
2p(−∆ϕu)ω

n
ϕ

− 2

ˆ

X

(u∇ϕθε) ·ϕ (θε∇ϕu)u
2p−1ωnϕ,

(6.14)

and then we have by the Cauchy-Schwarz inequality

p

ˆ

X

θ2εu
2p−1|∇ϕu|2ϕωnϕ ≤ C30

ˆ

X

θ2ε(n+∆ϕ)n−1u2p+1ωnϕ

− 2

ˆ

X

θ2εe
G
2 ∇ϕG ·ϕ ∇ϕ(∆ϕG)u

2pωnϕ + p−1IVε

(6.15)

where the error term is

IVε :=

ˆ

X

u2p+1dθε ∧ dcθε ∧ ωn−1
ϕ .
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Then perform the integration by parts as

− 2

ˆ

X

θ2εe
G
2 ∇ϕG ·ϕ ∇ϕ(∆ϕG)u

2pωnϕ =

ˆ

X

4pθ2εu
2p−1e

G
2 ∆ϕG(∇ϕG ·ϕ ∇ϕu)ω

n
ϕ

+

ˆ

X

2θ2εu
2pe

G
2 (∆ϕG)

2ωnϕ +

ˆ

X

θ2εu
2pe

G
2 |∇ϕG|2ϕ∆ϕGω

n
ϕ +Vε,

(6.16)

where the error term is

Vε := 4

ˆ

X

θεe
G
2 u2p(∆ϕG)dθε ∧ dcG ∧ ωn−1

ϕ .

This error Vε → 0 as ε → 0 by equation (5.13). Then we further use
the Cauchy-Schwarz inequality to obtain

4p

ˆ

X

θ2εu
2p−1e

G
2 ∆ϕG(∇ϕG ·ϕ ∇ϕu)ω

n
ϕ ≤ p

2

ˆ

X

θ2εu
2p−1|∇ϕu|2ϕωnϕ

+ 8p

ˆ

X

θ2εu
2pe

G
2 (∆ϕG)

2ωnϕ.

(6.17)

Eventually we have

− 2

ˆ

X

θ2εe
G
2 ∇ϕG ·ϕ ∇ϕ(∆ϕG)u

2pωnϕ ≤ p

2

ˆ

X

θ2εu
2p−1|∇ϕu|2ϕωnϕ

+ (8p+ 2)

ˆ

X

θ2εu
2pe

G
2 (∆ϕG)

2ωnϕ +

ˆ

X

θ2εu
2p+1∆ϕGω

n
ϕ +Vε.

(6.18)

Combined with equation (6.15), one obtains

p

2

ˆ

X

θ2εu
2p−1|∇ϕu|2ϕωnϕ ≤ C30

ˆ

X

θ2ε(n+∆ϕ)n−1u2p+1ωnϕ

+ (8p+ 2)

ˆ

X

θ2εu
2pe

G
2 (∆ϕG)

2ωnϕ +

ˆ

X

θ2εu
2p+1∆ϕGω

n
ϕ +Vε + p−1IVε

(6.19)

For fixed p and any ε small enough, the RHS of equation (6.19) is
bounded from the above by

C30

ˆ

Y

(n +∆ϕ)n−1u2p+1ωnϕ + (8p+ 2)

ˆ

Y

u2pe
G
2 (∆ϕG)

2ωnϕ

+

ˆ

Y

u2p+1|∆ϕG|ωnϕ + 1

(6.20)

Therefore, the LHS is uniformly bounded from the above, and it is
monotony increasing to

p

2

ˆ

Y

u2p−1|∇ϕu|2ϕωnϕ,
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as ε → 0. Hence we can take ε → 0 simultaneously on the both sides
of equation (6.19) to obtain

(6.21) p

ˆ

Y

u2p−1|∇ϕu|2ϕωnD ≤ C31(p+ 1)

ˆ

Y

(n+∆ϕ)2n−2u2p+1ωnD,

and then we have
(6.22)
ˆ

Y

|∇ϕ(u
p+ 1

2 )|2ϕωnD ≤ (p+ 1
2
)2(p+ 1)

p

ˆ

Y

C31(n+∆ϕ)2n−2u2p+1ωnD.

Take 0 < δ < 2 and v := up+
1
2 . For p ≥ 1

2
, we apply Hölder’s inequality

as in Chen-Cheng [6] to obtain

(6.23)

(
ˆ

Y

|∇v|2−δωnD
)

2
2−δ

≤ p2KδC32

(
ˆ

Y

v2+δωnD

)
2

2+δ

,

where the constant is

Kδ := n
δ

2−δ

(
ˆ

Y

(n+∆ϕ)
2−δ
δ ωnD

)
δ

2−δ

·
(
ˆ

Y

(n+∆ϕ)
(2n−2)(2+δ)

δ ωnD

)
δ

2+δ

.

Here v is an L∞ function on X , and then we can invoke Lemma
(6.1), with the Sobolev exponent p = 2− δ to have

||v||Lµ(ωn
D) ≤ Csob,D

{

||∇v||L2−δ(ωn
D) + ||v||L2−δ(ωn

D)

}

,

with µ := 2n(2−δ)
2n−2+δ

. Therefore, we eventually obtain the following by the
Hölder inequality

(6.24)

(
ˆ

Y

up+
1
2ωnD

)
2
µ

≤ pC32,δ

(
ˆ

Y

u(p+
1
2
)(2+δ)ωnD

)
2

2+δ

.

Pick δ small enough to satisfy

2n(2− δ)

2n− 2 + δ
> 2 + δ,

and then by the standard iteration technique, we have

(6.25) ||u||L∞ ≤ C33,δ||u||
1

2+δ

L1(ωn
D)||u||

1+δ
2+δ

L∞ ,

where the constant C33,δ is uniformly bounded if C32,δ is. Therefore,
the L∞-norm of u is controlled by the L1(ωnD)-norm of u. It is easy to

see that (n+∆ϕ) ∈ L1(ωnD), and we claim that e
G
2 |∇ϕG|2ϕ ∈ L1

ωn
D
.

In fact, the following integral is zero by introducing the cut off func-
tion θε and use equation (5.13) to let ε→ 0

(6.26)
1

2

ˆ

Y

∆ϕ(G
2)ωnϕ =

ˆ

Y

eG|∇ϕG|2ϕωnβ +
ˆ

Y

GeG(−Rβ + trϕΘ)ωnβ ,

and then we have

(6.27)

ˆ

Y

e
G
2 |∇ϕG|2ϕωnD ≤ C34

ˆ

Y

(1 + trϕgβ)ω
n
β ≤ C34(n+ 1),
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since the two background metrics ωD and ωβ are quasi-isometric. �

Remark 6.3. According to our proof, all the a priori estimates, includ-
ing the C0-estimate, non-degeneracy estimate, W 2,p and C2 estimates,

still hold if we only assume that the cscK pair (ϕ, F ) ∈ C1,1̄
β in the

beginning.

7. The twisted case

Let (X,D) be a log smooth klt pair, and D :=
∑d

k=1(1 − βk)Di as
before. We consider a slightly different version of the conic cscK metric
in this section.

Fix a closed (1, 1) form τ0 on Y , such that |τ0|ωD
is an L∞ function on

X . Let (ϕ, F, f) be a triple of function in the space C2,α,β(X,D)
⋂

C∞(Y ),
and we consider the following equation

(7.1) (ωβ + ddcϕ)n = eFωnβ ;

(7.2) ∆ϕF = trϕ(Θ− τ)−R,

and we furhter assume the following conditions:

• τ := τ0 + ddcf ≥ 0;
• supX f = 0 and e−f is uniformly bounded in Lp0(ωnβ)-norm, for
some p0 > 1;

• R is a uniformly bounded function.

For later use, we also re-write equation (7.2) as

(7.3) ∆ϕ(F + f) = trϕ(Θ− τ0)− R.

Now we are going to prove all the a priori estimates for this twisted
equation. However, the difficulty is that we do not have a uniform
upper bound for the (1, 1) form τ . Therefore, it is not reasonable to
require the Laplacian estimate anymore.

The proofs of the following a priori estimates are very similar with
our previous arguments. Therefore, we will only sketch the proof and
emphasis the place where the twisting function f brings a change.

7.1. The C0-estimate. In this section, we do need to assume the

positivity of τ as in Chen-Cheng [8]. Let ψ1 be the C1,1̄
β -conic auxiliary

function constructed in equation (4.3), and we have the following.

Lemma 7.1. For any ε0 > 0 small enough, there exists a constant C35

to satisfy

F + f + ε0ψ1 − 4(max
X

|Θ− τ0|g + 1)ϕ ≤ C35,

where the constant depends on

C35 := C35

(

ε0,

ˆ

X

FeFωnβ , max
X

|τ0|g, ||R||0, ωβ, X,D, φ, β
)

.
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Proof. Let ψ2 :=
∑d

k=1 |sk|γk be the potential of Donaldson’s metric
ωD,γ with angles γk < βk along each Dk. Denote a function A(ϕ, F, f)
by

A(ϕ, F, f) := F + f + ε0ψ1 + εψ2 − λϕ,

where λ := 4(maxX |Θ− τ0|gβ +1), ε ∈ (0, 1) and ε0 > 0 is an arbitrary
small number. From equation (7.3), we compute on Y as

∆ϕA = trϕ(Θ− τ0)− R + ε0∆ϕψ1 + ε∆ϕψ2 − λn + λtrϕgβ

≥ (λ− ε0 − εN1 − λ/4)trϕgβ + ε0I
− 1

n
Φ Φ

1
n (F )− (R + λn)

≥ λ

2
trϕgβ + ε0I

− 1
n

Φ Φ
1
n (F )− C36,

(7.4)

where the constant C36 only depends on ||R||0, |Θ|g and |τ0|g.
Let the point p be the maximum point of the function u := eδA, with

δ := (2nλ)−1α. Suppose ηp is a cut off function in a coordinate ball
Bd(p) with radius d centred at p, such that ηp(p) = 1 and ηp = 1 − θ
outside Bd/2(p) for some 0 < θ < 1. Taking θ so small that it satisfies

(1− θ)α

4n
− 4θ

d2
− 4θ2

d2(1− θ)
≥ 0,

we conclude with the following inequality on Bd(p)
⋂

Y

(7.5) ∆ϕ(uηp) ≥ eδAδηp

(

ε0I
− 1

n
Φ Φ

1
n (F )− C36

)

.

Moreover, since f ∈ C2,α,β, the function uηp is strictly subharmonic
in an open neighbourhood of the divisor, as we proved in Lemma (4.7).
Then the upper contact set Γ+

(uηp)
is contained in an open subset V1 of

Bd(p), such that V1 is disjoint from the divisor with a positive distance.
Therefore, we apply GAMP to the function uηp on Bd(p) to have

eδAηp(p) ≤ sup
∂Bd(p)

eδAηp

+ Cnd

(
ˆ

Bd(p)

e2F e2nδA
{

(ε0I
− 1

n
Φ Φ

1
n (F )− C36)

−
}2n

ωn
)

1
2n

.

(7.6)

Since f ≤ 0, ψ1 ≤ 0, and |ψ2| ≤ 1, the integral on the RHS of equation
(7.6) is controlled by

C2n
36

ˆ

Bd(p)
⋂
{F≤C37}

e2F+2nδF e−2nδλϕωn

≤ C2n
36 e

(2+2nδ)C37

ˆ

Bd(p)

e−αϕωn ≤ C38,

(7.7)

for some uniform constant C37 depending on ε0, Φ, IΦ and C36. Since
ηp = 1− θ on ∂Bd(p), our result follows.

�
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Corollary 7.2. There exists a constant C37 such that

F + f ≤ C37; ||ϕ||0 ≤ C37; ||ψ1||0 ≤ C37.

Here the constant C37 depends on the same things as the constant C35 in
Lemma (7.1), and also on p0 and

´

X
e−p0fωnβ . Moreover, it is uniformly

bounded if p0 ≥ 1 + ε for some small ε > 0.

Proof. We obtain from Lemma (7.1) that

αε−1
0 (F + f) ≤ −αψ1 + ε−1

0 αC35.

For any p, we chose ε0 small enough to have p := ε−1
0 α, and then

Proposition (8.3) implies that there exists a uniform constant C38(may
depend on β) to satisfy,

(7.8)

ˆ

X

ep(F+f)ωnβ ≤ C38,

for every conic angle β.
Let ψ :=

∑d
k=1(1 − βk) log |sk|2, and then we have from Hölder’s

inequality

||eF−ψ||1+εL1+ε =

ˆ

X

e(1+ε)F−εψdV
∏d

k=1 |sk|2(1−βk)
=

ˆ

X

e(1+ε)(F+f)−εψ−(1+ε)fdV
∏d

k=1 |sk|2(1−βk)

≤
(
ˆ

X

e−p0fωnβ

)
1+ε
p0

(
ˆ

X

e
p0(1+ε)
p0−1−ε

(F+f)
e
−

p0ε
p0−1−ε

ψ
ωnβ

)1− 1+ε
p0

.

(7.9)

Pick up ε = p0−1
m

for some larger integerm, and then the second integral
on the RHS of the above inequality is equal to

ˆ

X

eq(F+f)dV
(

∏d
k=1 |sk|2

)(1−βk)(1+
p0

m−1
)
,

for q := p0(1+ε)
p0−1−ε

. Therefore, it is uniformly bounded by equation (7.8)

with a slightly smaller angle β ′, where β ′
k = (1 + p0

m−1
)βk − p0

m−1
. Then

we conclude the potential estimates as

||φ||0, ||ψ1||0 ≤ C37,

and the upper bound of F + f follows from Lemma (7.1) again. �

The next step is to prove the lower bound of F + f .

Lemma 7.3. There exists a uniform constant C39 such that

F + f ≥ −C39,

and this constant has the same dependence as C37, with also ||ϕ||0.
Proof. Take a function A3(F, f, ϕ) := −F − f − λϕ + εψ2, and put
u := eδA3 . Pick up the constants as

λ := 4(max
X

|Θ− τ0|g + 1); δ =
p0

2n(p0 − 1)
; ε =

1

N1
.
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Then we have

(7.10) −∆ϕA3 ≤ −trϕωβ + ||R||0 + λn.

Assume that u achieves its maximum at the point x on the mani-
fold. We can consider the function uηx, with a suitable chosen cut-off
function ηx centred at x. Following the same calculation as in Lemma
(4.8), we have

∆ϕ(uηx) ≥ −δeδA3 (||R||0 + λn) .

Since F, f, ϕ ∈ C2,α,β, the function uηx is again strictly subharmonic
near the divisor Then we can apply GAMP locally on a coordinate ball
Bd(x) to have

eδA3ηx(x) ≤ sup
∂Bd(x)

eδA3ηx

+ Cnd

(
ˆ

X

e2F e−2nδA3(||R||0 + λn)2nωn
)

1
2n

.

(7.11)

Therefore, the lower bound of F + f is controlled by

C40

ˆ

X

e(2−2nδ)F−2nδfωn

≤ C40

(
ˆ

X

eFωn
)

p0−2
p0−1

(
ˆ

X

e−p0fωn
)

1
p0−1

,

(7.12)

and the first integral in the above equation is uniformly bounded as we
can see from equation (7.9).

�

7.2. The W 2,p estimate. In order to consider this higher order esti-
mate, we switch the background metric to Donaldson’s metric as before.

Let (ψ,G, f) ∈ C2,α,β be the tripe solution of the twisted equations
with respect to the background metric ωβ, i.e. they satisfy equations
(7.1) and (7.2). Then we define a new triple (ϕ, F, f) such that

ωϕ = ωD + ddcϕ = ωβ + ddcψ,

and F := G + h, for h = log
ωn
β

ωn
D
. Hence they satisfy the following

equations:

(7.13) (ωD + ddcϕ)n = eFωnD;

(7.14) ∆ϕF = trϕ(Θ− τ + ddch)−R,

where τ = τ0 + ddcf . Here ϕ, f are still in C2,α,β, and F is in L∞(X),
but may no longer be in the space C2,α,β.

Theorem 7.4. Assume τ ≥ 0. For any p ≥ 1, there exists a constant
Cp satisfying

ˆ

X

e(p−1)f (n+∆βψ)
pωnβ ≤ Cp,
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and this constant has the same dependence as C37, also with ||F + f ||0,
||ϕ||0, and p.

Since ωD and ωβ are quasi-isometric on X , and their potentials
ψD, ψβ are uniformly bounded, it is enough to prove the following in-
equality

(7.15)

ˆ

Y

e(p−1)f (n+∆ϕ)pωnD ≤ C ′
p,

for some uniform constant C ′
p.

Proof of Theorem (7.4). Let κ > 0, C > 0, δ > 0 be constants to be
determined later, and Ψγ be the conic weight function as before. Define
the following function:

A(ϕ, F, f) := −κ(F + δf + Cϕ) + (κ+ 1)Ψ,

and choose

C := 8(max
X

|Θ− τ0|g +max
X

|τ0|g + C17 + C16 + 1).

Then we compute on Y to have

e−A∆ϕ

(

eA(n +∆ϕ)
)

≥ κC

4
trϕg(n+∆ϕ) + ∆F + κ(1− δ)∆ϕf(n+∆ϕ)− κC40(n+∆ϕ).

(7.16)

Let p > 1 and δ1 := p−1
10

. Denote v := eA(n + ∆ϕ), and introduce
the previous cut off function θε supported outside the divisor. Put

B(ϕ, F, f) := (1− κ)F − κCϕ− κδf + (κ+ 1)Ψ,

and then we can play the same tricks on the integration by parts as in
equations (5.16) - (5.22). Finally we obtain

ˆ

X

(

p− 1− δ1 −
(p− 1)2

κ− 1

)

θ2εv
p−2|∇ϕv|2ϕωnϕ

≤ −
ˆ

X

κC

4
θ2εv

p(trϕg)ω
n
ϕ +

ˆ

X

θ2εv
p−1eA

(

κC40(n+∆ϕ) +
κC

κ− 1
∆ϕ

)

ωnϕ

+

ˆ

X

θ2εv
p−1eA

κ+ 1

κ− 1
(−∆Ψ)ωnϕ + δ−1

1 Iε + 2IIε

+

ˆ

X

θ2εv
p−1eA

{

−κ(1 − δ)∆ϕf(n+∆ϕ) +
κδ

κ− 1
∆f

}

ωnϕ,

(7.17)

where the error terms are

Iε :=

ˆ

X

vpdθε ∧ dcθε ∧ ωn−1
ϕ ,
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and

IIε :=
1

κ− 1

ˆ

X

vp−1eBdθε ∧ dcθε ∧ ωn−1
D .

Moreover, we have Iε, IIε → 0 as ε → 0 from the property of θε. Take
δ := κ−1

κ
, and then we see

−κ(1− δ)∆ϕf(n+∆ϕ) +
κδ

κ− 1
∆f ≤ max

X
|τ0|gtrϕg(n+∆ϕ).(7.18)

Since f ≤ 0, the lower bound of F is controlled by −||F + f ||0,
and then (n+∆ϕ) also has a uniform lower bound. Therefore, taking
κ := max{2, 10

9
p}, the term on the LHS of equation (7.17) becomes

positive. Then we obtain

(7.19)

ˆ

X

κC

8
θ2εv

p(trϕg)ω
n
ϕ ≤ C41

ˆ

X

κθ2εv
pωnϕ + δ−1

1 Iε + 2IIε,

Since κ < κC/8 by our choice, we have the following by letting ε → 0
ˆ

Y

e(
n−2
n−1

−κp)F−p(κ−1)f+p(κ+1)Ψ−pκCϕ(n+∆ϕ)p+
1

n−1ωnD

≤ C41

ˆ

Y

e(1−κp)F−p(κ−1)f+p(κ+1)Ψ−pκCϕ(n+∆ϕ)pωnD.

(7.20)

Let C42 be a bound of ||ϕ||0, ||F + f ||0, ||Ψ||0, and we further obtain
ˆ

Y

e(p−
n−1
n−2)f (n+∆ϕ)p+

1
n−1ωnD

≤ C43e
(p+κp)C42

ˆ

Y

e(p−1)f (n+∆ϕ)pωnD,

(7.21)

for some uniform constant C43 not depending on p or κ.
Take p := 1 + k

n−1
, and we want to use induction on k ≥ 1. Then it

is enough to prove that the integral

(7.22)

ˆ

Y

e
1

n−1
f(n+∆ϕ)1+

1
n−1ωnD

is uniformly bounded. Let 1 < pi < 1.5 be sequence of real numbers
decreasing to 1, and then we have

ˆ

Y

e(pi−
n−1
n−2)f(n+∆ϕ)pi+

1
n−1ωnD

≤ C44

ˆ

Y

e(pi−1)f (n+∆ϕ)piωnD,

(7.23)

for some uniform constant C44 not depending on pi or κ. Since f ≤ 0,
the LHS of equation (7.23) converges to to equation (7.22) by dominant
convergence theorem, and the RHS of equation (7.23) converges to

(7.24) C44

ˆ

Y

(n +∆ϕ)ωnD = nC44,

and our result follows.
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�

Corollary 7.5. For any 1 < q < p0, there exists a constant C̃q satis-
fying

ˆ

X

(trωβ
ωϕ)

qωnβ ≤ C̃q.

Here the constant C̃q has the same dependence as C37, also with ||F +
f ||0, ||ϕ||0 and q. Moreover, it is uniformly bounded in q if q is bounded
away from p0.

Proof. This follows from Theorem (7.4) and Hölder’s inequality. Pick

up s := p0(q−1)
p0−1

, and then we have as in Chen-Cheng [8]
ˆ

X

(trωβ
ωϕ)

qωnβ

≤
(
ˆ

X

e−p0fωnβ

)
s
p0

(
ˆ

X

e
sp0
p0−s

f
(trωβ

ωϕ)
p0q
p0−sωnβ

)1− s
p0

.

(7.25)

�

7.3. The gradient F -estimate. As we explained before, the C2 es-
timate is not expected in the twisted case anymore. Therefore, we do
not need to switch our background metrics in the following proof of the
partial C3 estimate, i.e. the gradient estimate of F + f .

Let (ϕ, F, f) ∈ C2,α,β be the tripe for the twisted equations, i.e. they
satisfy equations (7.1) and (7.2). Then we have the following estimate
for W := F + f .

Theorem 7.6. There exists a constant kn, depending only on n, such
that ∀p0 > kn, we have

|∇ϕW |2ϕ ≤ C45.

Here the constant C45 has the same dependence as C37, also with ||F +
f ||0 and ||ϕ||0.
Proof. Since W = F + f ∈ C2,α,β , we can compute on Y as in Chen-
Cheng [8] to have

e−
W
2 ∆ϕ(e

W
2 |∇ϕW |2ϕ) ≥

1

2
|∇ϕW |2ϕ (trϕ(Θ− τ0)− R)

+ 2∇ϕW ·ϕ ∇ϕ(∆ϕW ) + |∂∂̄W |2ϕ + g j̄iϕ g
λ̄µ
ϕ Θiλ̄WµWj̄

− Re
{

g j̄iϕ g
λ̄µ
ϕ (τ0)iλ̄WµWj̄

}

.

(7.26)

Moreover, we estimate

trϕ(Θ− τ0)− R ≥ −C46(e
−F (n +∆ϕ)n−1 + 1)

≥ −C47((n+∆ϕ)n−1 + 1).
(7.27)
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Here we used the uniform lower bound of F in terms of ||F + f ||0.
In a similar way, we can estimate other terms in equation (7.26), and
eventually have

∆ϕ(e
W
2 |∇ϕW |2ϕ) ≥ 2e

W
2 ∇ϕW ·ϕ ∇ϕ(∆ϕW )

− C48e
W
2 |∇ϕW |2ϕ

{

(n+∆ϕ)n−1 + 1
}

.
(7.28)

Put u := e
W
2 |∇ϕW |2ϕ + 1, and Ũ := C48 {(n+∆ϕ)n−1 + 1}. We

further have

(7.29) ∆ϕu ≥ 2e
W
2 ∇ϕW ·ϕ ∇ϕ(∆ϕW )− uŨ.

Pick up p > 0, and introduce the previous cut off function θε, we play
the same integration by parts trick as in equations (6.15)-(6.18), and
eventually obtain the following

p

2

ˆ

X

θ2εu
2p−1|∇ϕu|2ϕωnϕ ≤

ˆ

X

θ2εu
2p+1(Ũ + (∆ϕW )2 + 1)

+ (8p+ 2)

ˆ

X

θ2εu
2p+1e

W
2 (∆ϕW )2ωnϕ +Vε + p−1IVε,

(7.30)

where the error terms are

IVε :=

ˆ

X

u2p+1dθε ∧ dcθε ∧ ωn−1
ϕ ;

and

Vε := 4

ˆ

X

θεe
W
2 u2p(∆ϕW )dθε ∧ dcW ∧ ωn−1

ϕ .

Since W ∈ C2,α,β , the two errors IVε,Vε → 0 as ε → 0. Then we get
by taking the limit of ε

p

(p+ 1
2
)2C49

ˆ

Y

|∇ϕ(u
p+ 1

2 )|2ϕωnβ ≤ p

ˆ

Y

u2p−1|∇ϕu|2ϕωnϕ

≤ 16(p+ 1)

ˆ

Y

u2p+1UeFωnβ ,

(7.31)

where U := Ũ + (∆ϕW )2 + (∆ϕW )2e
W
2 + 1. Let δ > 0 be a small

number, and v := up+
1
2 . We use Hölder inequality again to have

(7.32)

(
ˆ

Y

|∇v|2−δωnβ
)

2
2−δ

≤ C50KδLδ(p+ 1)3

p

(
ˆ

Y

v
4

2−δωnβ

)
2−δ
2

,

where the coefficients are

Kδ :=

(
ˆ

Y

(n+∆ϕ)
2
δ
−1ωnβ

)
δ

2−δ

,

and

Lδ :=

(
ˆ

Y

U
2
δ e

2F
δ ωnβ

)
δ
2

.
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Apply the conic version of Sobolev’s inequality (Lemma (6.1)) with
exponent 2− δ to have

(7.33) ||up+ 1
2 ||2Lµ(ωn

β )
≤ C51

(p+ 1)3

p
(KδLδ + 1)||up+ 1

2 ||
L

4
2−δ (ωn

β )
,

where we assumed

µ :=
2n(2− δ)

2n− 2 + δ
>

4

2− δ
.

This can be realised by choosing δ = 1
2n

for n > 1. Eventually, we
can use the Moser Iteration to control the L∞-norm of u, provided that
Lδ, Kδ is uniformly bounded. This is also true from Theorem (7.4) by
choosing p0 ≥ 8n(2n− 1) + 1.

For the uniform control on the L1-norm of u, we see

(7.34)

ˆ

X

θε(∆ϕe
W
2 )ωnϕ =

1

2

ˆ

X

e
W
2 dθε ∧ dcW → 0,

as ε→ 0. Therefore, we have
ˆ

Y

e
W
2 |∇ϕW |2ϕωnβ ≤ C52

ˆ

Y

e
W
2 |∇ϕW |2ϕωnϕ

≤ C52

ˆ

Y

2e
W
2 (−∆ϕW )ωnϕ

≤ C52

ˆ

Y

(1 + trωϕωβ)ω
n
ϕ = C52(n + 1)

(7.35)

�

Remark 7.7. As before, all our estimates for the twisted equations

only require (ϕ, F, f) ∈ C1,1̄
β .

8. Appendix

In this section, we will consider the α-invariant for plurisubhar-
monic(psh) functions integrated against conic volume form

dµ := ωnD =
dV

∏d
k=1 |sk|2−2βk

.

Let PSH(X,ω) denote the space of all ω-psh functions on X , and the
first observation is that they are all L1 functions with respect to the
measure µ.

Lemma 8.1. For any ϕ ∈ PSH(X,ω), we have
ˆ

X

ϕdµ > −∞.



CONIC CSCK METRICS 41

Proof. Fix a large integer j > 0, and take ϕj := max{ϕ,−j}. The
sequence of functions ϕj ∈ PSH(X,ω) is decreasing to ϕ, and then it
is enough to prove the integral

ˆ

X

ϕjω
n
D

has a uniform lower bound.
First we compute by Stoke’s theorem

ˆ

X

ϕj(ω + ddcψD)
n =

ˆ

X

ϕjω ∧ ωn−1
D +

ˆ

X

ψDdd
cϕj ∧ ωn−1

D

=

ˆ

X

ϕjω ∧ ωn−1
D +

ˆ

X

ψDωϕj
∧ ωn−1

D −
ˆ

X

ψDω ∧ ωn−1
D

(8.1)

The third term is uniformly controlled, and the second term can be
estimated as

ˆ

X

ψDωϕj
∧ ωn−1

D ≥ inf
X
ψD

ˆ

X

ωϕj
∧ ωn−1

D ≥ inf
X
ψD.

Moreover, the first term can be written as

(8.2)

ˆ

X

ϕjω ∧ ωn−1
D =

ˆ

X

ϕjω
2 ∧ ωn−2

D +

ˆ

X

ψDdd
cφj ∧ ω ∧ ωn−2

D .

Repeating this trick, we are able to prove
ˆ

X

ϕjω
n
D ≥
ˆ

X

ϕjω
n − C,

for some uniform constant C, and our result follows.
�

Therefore, we proved that PSH(X,ω) ⊂ L1(µ). Thanks to Guedj-
Zeriahi’s work ( Proposition (2.7), [17]), there exists a uniform constant
Cµ > 0 such that ∀ϕ ∈ PSH(X,ω),

(8.3) − Cµ + sup
X
ϕ ≤
ˆ

X

ϕdµ ≤ sup
X
ϕ.

Before proceeding to the α-invariant, we need to improve a theorem
by Hörmander (Theorem 4.45, [14]) to the conic case.

Lemma 8.2. Let F be the family of all plurisubharmonic function φ
in the unit ball B ⊂ Cn, such that φ(0) = 0 and φ(z) ≤ 1 for all z close
to the boundary ∂B. For any β := {βk}dk=1, 0 < βk < 1, there exists
two constants 0 < r < 1 and C satisfying

ˆ

Br

e−φdλ2n
∏d

k=1 |zk|2−2βk
≤ C, ∀φ ∈ F ,

where dλ2n is the Lebesgue measure on Cn, and the constants r and C
only depend on β and n.
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Proof. Assume n = 1 first, and use the Green kernel to have

(8.4) 2πφ =

ˆ

|ζ|<1

log

∣

∣

∣

∣

z − ζ

1− zζ̄

∣

∣

∣

∣

dν(ζ) +

ˆ

|ζ|=1

1− |z|2
|z − ζ |2dσ(ζ),

where the measures dν = ∆φ ≥ 0 and |dζ | − dσ ≥ 0 on S1. Since
φ(0) = 0, we obtain

(8.5)

ˆ

|ζ|<1

log
1

|ζ |dν(ζ) +
ˆ

|ζ|=1

(|dζ | − dσ(ζ)) = 2π.

Therefore, it follows that

(8.6)

ˆ

|ζ|<1

log
1

|ζ |dν(ζ) ≤ 2π;

ˆ

|ζ|=1

|dσ(ζ)| ≤ 4π.

Hence we have for all |z| < e−
1
β ,

∣

∣

∣

∣

(2π)−1

ˆ

|ζ|=1

1− |z|2
|z − ζ |2dσ(ζ)

∣

∣

∣

∣

≤ 6

and for any e−
1
β < R < e−

1
2β ,

a :=
1

2π

ˆ

|ζ|<R

dν(ζ) ≤ 1

− logR
< 2β.

Moreover, for such z and |ζ | > R, we see |zζ̄| < |ζ |2, and then it is easy
to see the following inequality:

∣

∣

∣

∣

z − ζ

1− zζ̄

∣

∣

∣

∣

≤ 1

|ζ | .

This implies that
∣

∣

∣

∣

ˆ

|ζ|>R

log
|z − ζ |
|1− zζ̄ |dν(ζ)

∣

∣

∣

∣

< 2π, |z| < e−
1
β .

Then Jensen’s inequality shows the following:

exp

(

− 1

2π

ˆ

|ζ|<R

log
|z − ζ |
|1− zζ̄ |dν(ζ)

)

= exp

(

− 1

2π

ˆ

|ζ|<R

−a log |z − ζ |
|1− zζ̄ |

dν(ζ)

2πa

)

≤ 1

2πa

ˆ

|ζ|<R

( |z − ζ |
|1− zζ̄ |

)−a

dν(ζ)

< C

ˆ

|ζ|<R

|z − ζ |−adν(ζ),

(8.7)

for all |z| < e−
1
β . Since a < 2β, the last term is integrable with respect

to the measure |z|2β−2dλ2n. Summing up we proved our estimate for
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r := e−
1
β when n = 1. For the general case, we use the polar coordinate

to compute the integral
(8.8)
ˆ

|z|<r

e−φ(z)dµ(z) =
1

2π

ˆ

|ζ|=1

dS(ζ)
∏d

k=1 |ζk|2−2βk

ˆ

|w|<r

|w|2b−2e−φ(wζ)dλ(w),

where b = n − d +
∑d

k=1 βk > 0. Taking r(β) := e−
1
b , the integral is

uniformly bounded.
�

Thanks to Lemma (8.2) and equation (8.3), we can follow the same
argument as in Tian [22], and prove the existence of a conic version of
the α-invariants.

Proposition 8.3. For all ϕ ∈ PSH(X,ω) with supX ϕ = 0, there
exists a constant α > 0 such that

ˆ

X

e−αϕdµ < C,

for some uniform constant C only depending on X, ω, µ.

Finally, for any C2,α,β-conic Kähler metric Ωβ , the estimate in Propo-
sition (8.3) still works for all ϕ ∈ PSH(X,Ωβ), since the conic potential
is always uniformly bounded on X .
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