Fields Q($\frac{3}{4}$ d, ζ_3) whose 3-class group is of type $(9, 3)$ S. AOUISSI, M. C. ISMAILI, M. TALBI and A. AZIZI

Abstract: Let $k = \mathbb{Q}(\sqrt[3]{})$ d, ζ_3 , with d a cube-free positive integer. Let $C_{k,3}$ be the 3-class group of k. With the aid of genus theory, arithmetic properties of the pure cubic field
 $\mathcal{D}(\sqrt[3]{d})$ and gave nearble an the 2 class weave G and determine all integers developed $\mathbb{Q}(\sqrt[3]{d})$ and some results on the 3-class group $C_{k,3}$, we determine all integers d such that $C_{k,3} \simeq \mathbb{Z}/9\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}.$

Keywords: Pure cubic fields; 3-class groups; structure of groups. Mathematics Subject Classification 2010: 11R11, 11R16, 11R20, 11R27, 11R29, 11R37.

1 Introduction

Let *d* be a cube-free positive integer, $k = \mathbb{Q}(\sqrt[3]{x})$ d, ζ_3 , and $C_{k,3}$ be the 3-class group of k. A number of researchers have studied the 3-class group $C_{k,3}$ and the calculation of its rank. Calegari and Emerton [\[7,](#page-9-0) Lemma 5.11] proved that the rank of the 3-class group of $\mathbb{Q}(\sqrt[3]{p}, \zeta_3)$, with a prime $p \equiv 1 \pmod{9}$, is equal to two if 9 divides the class number of $\mathbb{Q}(\sqrt[3]{p})$. The converse of the Calegari-Emerton result was proved by Frank Gerth III in [\[11,](#page-10-0) Theorem 1, p. 471].

The purpose of this paper is to classify all integers d for which $C_{k,3}$ is of type $(9,3)$, i.e. $C_{k,3} \simeq \mathbb{Z}/9\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$. This investigation can be viewed as a continuation of the previous more general works [\[7,](#page-9-0) Lemma 5.11] and [\[11,](#page-10-0) Theorem 1, p. 471]. Effectively, we shall prove the following main theorem:

Theorem 1.1. Let $\Gamma = \mathbb{Q}(\sqrt[3]{d})$ be a pure cubic field, where $d \geq 2$ is a cube-free integer, and let $k = \mathbb{Q}(\sqrt[3]{d}, \zeta_3)$ be its normal closure. Denote by u the index of the subgroup generated by the units of intermediate fields of the extension k/\mathbb{Q} in the group of units of k.

- 1) If the field k has a 3-class group of type $(9,3)$, then $d = p^e$, where p is a prime number congruent to 1 (mod 9) and $e = 1$ or 2.
- 2) If p is a prime number congruent to 1 (mod 9), 9 divides the class number of Γ exactly, and $u = 1$, then the 3-class group of k is of type $(9, 3)$.

This result will be underpinned by numerical examples obtained with the computational number theory system PARI [\[17\]](#page-10-1) in § [3.](#page-8-0) In section [2,](#page-1-0) where Theorem [1.1](#page-0-0) is proved, we only state results that will be needed in this paper. More information on 3-class groups can
be found in [10] and [0]. For the prime ideal fortesimiliar in the numeralis field $\mathcal{N}^{(3/7)}$ be found in [\[10\]](#page-10-2) and [\[9\]](#page-10-3). For the prime ideal factorization in the pure cubic field $\mathbb{Q}(\sqrt[3]{d})$, we refer the reader to the papers [\[8\]](#page-10-4), [\[5\]](#page-9-1), [\[4\]](#page-9-2) and [\[16\]](#page-10-5). For the prime factorization rules of the third cyclotomic field $\mathbb{Q}(\zeta_3)$, we refer the reader to [\[13,](#page-10-6) Chap. 9, Sec. 1, Propositions 9.1.1–4, pp. 109-111].

Notations:

- The lower case letter p , respectively q , will denote a prime number congruent to 1, respectively -1 , modulo 3;
- respectively -1 , modulo 3;
 $\bullet \Gamma = \mathbb{Q}(\sqrt[3]{d})$: a pure cubic field, where $d \geq 2$ is a cube-free integer;
- $k_0 = \mathbb{Q}(\zeta_3)$: the cyclotomic field, where $\zeta_3 = e^{2i\pi/3}$;
- $k = \Gamma(\zeta_3)$: the normal closure of Γ;
- Γ' and Γ'' : the two conjugate cubic fields of Γ , contained in k;
- u : the index of the subgroup E_0 generated by the units of intermediate fields of the extension k/\mathbb{Q} in the group of units of k;
- extension κ/ψ in the group of units of κ ;
 $\bullet \langle \tau \rangle = \text{Gal}(\mathbf{k}/\Gamma)$, such that $\tau^2 = id$, $\tau(\zeta_3) = \zeta_3^2$, and $\tau(\sqrt[3]{d}) = \sqrt[3]{d}$; √3
- $\langle \sigma \rangle$ = Gal (k/k₀), such that $\sigma^3 = id$, $\sigma(\zeta_3) = \zeta_3$, and $\sigma(\zeta_3)$ $\zeta(d)=\zeta_3$;
∛d;
- $\lambda = 1 \zeta_3$ is a prime element above 3 of k₀;
- $q^* = 1$ or 0, according to whether ζ_3 is norm of an element of k or not;
- t : the number of prime ideals ramified in k/k_0 ;
- For an algebraic number field L :
	- \mathcal{O}_L , E_L : the ring of integers of L, and the group of units of L;
	- $C_{L,3}, h_L$: the 3-class group of L, and the class number of L;
	- $L_3^{(1)}$ $L_3^{(1)}$, L^* : the Hilbert 3-class field of L, and the absolute genus field of L.

2 Fields Q(√3 $d, \zeta_3)$ whose 3-Class Group is of Type $(9,3)$

2.1 Preliminary results

In [\[15,](#page-10-7) Chap. 7, pp. 87–96], Ishida has explicitly given the genus field of any pure field.
For the nume only field Γ , $\mathbb{Q}(\sqrt[3]{d})$ where d is a sube free network number, we have the For the pure cubic field $\Gamma = \mathbb{Q}(\sqrt[3]{d})$, where d is a cube-free natural number, we have the following theorem.

Theorem 2.1. Let $\Gamma = \mathbb{Q}(\sqrt[3]{d})$ be a pure cubic field, where $d \geq 2$ is a cube-free integer, and let p_1, \ldots, p_r be all prime divisors of d such that p_i is congruent to 1 (mod 3) for each $i \in \{1, 2, \ldots, r\}$. Let Γ^* be the absolute genus field of Γ , then

$$
\Gamma^* = \prod_{i=1}^r M(p_i) \cdot \Gamma,
$$

where $M(p_i)$ denotes the unique subfield of degree 3 of the cyclotomic field $\mathbb{Q}(\zeta_{p_i})$. The genus number of Γ is given by $g_{\Gamma} = 3^r$.

Remark 2.1. (1) If no prime $p \equiv 1 \pmod{3}$ divides d, i.e. $r = 0$, then $\Gamma^* = \Gamma$.

(2) For any value $r \geq 0$, Γ^* is contained in the Hilbert 3-class field $\Gamma_3^{(1)}$ $_3^{(1)}$ of Γ .

(3) The cubic field $M(p)$ is determined explicitly in [\[12,](#page-10-8) § 4, Proposition 1, p. 11].

Assuming that h_{Γ} is divisible exactly by 9, we can explicitly construct the absolute genus field Γ^* as follows:

Lemma 2.1. Let $\Gamma = \mathbb{Q}(\sqrt[3]{d})$ be a pure cubic field, where $d \geq 2$ is a cube-free integer. If h_{Γ} is exactly divisible by 9, then there are at most two primes congruent to 1 (mod 3) dividing d.

Proof. If p_1, \ldots, p_r are all prime numbers congruent to 1 (mod 3) dividing d, then $3^r | h_{\Gamma}$. Therefore, if h_{Γ} is exactly divisible by 9, then $r \leq 2$. So there are two primes p_1 and p_2 dividing d such that $p_i \equiv 1 \pmod{3}$ for $i \in \{1,2\}$, or there is only one prime $p \equiv 1$ (mod 3) with $p|d$, or there is no prime $p \equiv 1 \pmod{3}$ such that $p|d$. \Box

Lemma 2.2. Let $\Gamma = \mathbb{Q}(\sqrt[3]{d})$ be a pure cubic field, where $d \geq 2$ is a cube-free integer. If h_{Γ} is exactly divisible by 9 and if the integer d is divisible by two primes p_1 and p_2 such that $p_i \equiv 1 \pmod{3}$ for $i \in \{1,2\}$, then $\Gamma^* = \Gamma_3^{(1)}$, $(\Gamma')^* = \Gamma_3'^{(1)}$ and $(\Gamma'')^* = \Gamma_3''^{(1)}$. Furthermore, $k \cdot \Gamma_3^{(1)} = k \cdot \Gamma_3'^{(1)} = k \cdot \Gamma_3''^{(1)}$.

Proof. If h_{Γ} is exactly divisible by 9 and d is divisible by two prime numbers p_1 and p_2 which are congruent to 1 (mod 3), then $g_{\Gamma} = 9$ so $\Gamma^* = \Gamma_3^{(1)} = \Gamma \cdot M(p_1) \cdot M(p_2)$, where $M(p_1)$ (respectively $M(p_2)$) is the unique cubic subfield of $\mathbb{Q}(\zeta_{p_1})$ (respectively $\mathbb{Q}(\zeta_{p_2})$). The equations

$$
\begin{cases}\n(\Gamma')^* = \Gamma' \cdot M(p_1) \cdot M(p_2) = \Gamma'^{(1)}_3, \\
(\Gamma'')^* = \Gamma'' \cdot M(p_1) \cdot M(p_2) = \Gamma''^{(1)}_3\n\end{cases}
$$

can be deduced by the fact that in the general case we have

$$
\begin{cases}\n(\Gamma')^* = \Gamma' \prod_{i=1}^r M(p_i), \\
(\Gamma'')^* = \Gamma'' \prod_{i=1}^r M(p_i),\n\end{cases}
$$

where p_i , for each $1 \leq i \leq r$, is a prime divisor of d such that $p_i \equiv 1 \pmod{3}$. From the fact that h_{Γ} is exactly divisible by 9, we conclude that h_{Γ} is exactly divisible by 9 and h_{Γ} ⁿ is exactly divisible by 9, because Γ , Γ' and Γ'' are isomorphic. Moreover,

$$
\begin{cases}\nk \cdot \Gamma_3^{(1)} = k \cdot \Gamma \cdot M(p_1) \cdot M(p_2) = k \cdot M(p_1) \cdot M(p_2), \\
k \cdot \Gamma_3'^{(1)} = k \cdot \Gamma' \cdot M(p_1) \cdot M(p_2) = k \cdot M(p_1) \cdot M(p_2), \\
k \cdot \Gamma_3''^{(1)} = k \cdot \Gamma'' \cdot M(p_1) \cdot M(p_2) = k \cdot M(p_1) \cdot M(p_2).\n\end{cases}
$$

Hence, $k \cdot \Gamma_3^{(1)} = k \cdot \Gamma_3'^{(1)} = k \cdot \Gamma_3''^{(1)}$.

Now, let u be the index of units defined in the above notations. We assume that h_{Γ} is exactly divisible by 9 and $u = 1$. From [\[5,](#page-9-1) § 14, Theorem 14.1, p. 232], we have $h_k =$ u 3 $\cdot h_{\Gamma}^2,$ whence h_k is exactly divisible by 27. The structure of the 3-class group $C_{k,3}$ is described by the following Lemma:

Lemma 2.3. Let Γ be a pure cubic field, k its normal closure, and u be the index of units defined in the notations above, then

 $C_{k,3} \simeq \mathbb{Z}/9\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \quad \Leftrightarrow \quad [C_{\Gamma,3} \simeq \mathbb{Z}/9\mathbb{Z} \quad and \quad u = 1].$

Lemma [2.3](#page-3-0) will be underpinned in section [3](#page-8-0) by numerical examples obtained with the computational number theory system PARI [\[17\]](#page-10-1).

Proof. Assume that $C_{k,3} \simeq \mathbb{Z}/9\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$. Let $h_{\Gamma,3}$ (respectively, $h_{k,3}$) be the 3-class number of Γ (respectively, k), then $h_{k,3} = 27$. According to [\[5,](#page-9-1) § 14, Theorem 14.1, p. 232], we get $27 = \frac{u}{3} \cdot h_{\Gamma,3}^2$ with $u \in \{1,3\}$, and thus $u = 1$, because otherwise 27 would be a square in N, which is a contradiction. Thus $h_{\Gamma,3}^2 = 81$ and $h_{\Gamma,3} = 9$.

Let $C_{\mathbf{k},3}^+ = \{ \mathcal{A} \in C_{\mathbf{k},3} \mid \mathcal{A}^{\tau} = \mathcal{A} \}$ and $C_{\mathbf{k},3}^- = \{ \mathcal{A} \in C_{\mathbf{k},3} \mid \mathcal{A}^{\tau} = \mathcal{A}^{-1} \}$. According to [\[9,](#page-10-3) § 2, Lemmas 2.1 and 2.2, p. 53], we have $C_{k,3} \simeq C_{k,3}^+ \times C_{k,3}^ K_{k,3}^-$ and $C_{k,3}^+ \simeq C_{\Gamma,3}$, hence $|C_{k,3}^-|$ $\vert_{k,3}^{-} \vert = 3.$ Since $C_{k,3}$ is of type (9,3), we deduce that $C_{k}^ \overline{k}_{1,3}$ is a cyclic group of order 3 and $C_{k,4}^+$ $_{\rm k,3}^{\rm +(}$ is a cyclic group of order 9. Therefore, we have

$$
u = 1
$$
 and $C_{\Gamma,3} \simeq \mathbb{Z}/9\mathbb{Z}$.

Conversely, assume that $u = 1$ and $C_{\Gamma,3} \simeq \mathbb{Z}/9\mathbb{Z}$. By [\[5,](#page-9-1) § 14, Theorem 14.1, p. 232], we deduce that $|C_{k,3}|=\frac{1}{3}$ $\frac{1}{3} \cdot |C_{\Gamma,3}|^2$, and so $|C_{\mathbf{k},3}| = 27$. Furthermore, $|C_{\mathbf{k},\mathbf{k}}$ $|\mathbf{k},3| = 3$ and

$$
C_{k,3} \simeq C_{\Gamma,3} \times C_{k,3}^- \simeq \mathbb{Z}/9\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}.
$$

2.2 Proof of Theorem [1.1](#page-0-0)

Let $\Gamma = \mathbb{Q}(\sqrt[3]{d})$ be a pure cubic field, where $d \geq 2$ is a cube-free integer, $k = \mathbb{Q}(\sqrt[3]{d})$ $d, \zeta_3)$ be its normal closure, and $C_{k,3}$ be the 3-class group of k.

(1) Assume that the 3- class group $C_{k,3}$ is of type $(9,3)$. We first write the integer d in the form given by equation (3.2) of $[9, p. 55]$ $[9, p. 55]$:

$$
d = 3^{e} p_1^{e_1} \dots p_v^{e_v} p_{v+1}^{e_{v+1}} \dots p_w^{e_w} q_1^{f_1} \dots q_I^{f_I} q_{I+1}^{f_{I+1}} \dots q_J^{f_J}, \tag{1}
$$

where p_i and q_i are positive rational primes such that:

 $\sqrt{ }$ $\begin{array}{c} \end{array}$ $\begin{array}{c} \end{array}$ $p_i \equiv 1 \pmod{9}$, for $1 \le i \le v$, $p_i \equiv 4 \text{ or } 7 \pmod{9}$, for $v + 1 \le i \le w$, $q_i \equiv -1 \pmod{9}$, for $1 \le i \le I$, $q_i \equiv 2 \text{ or } 5 \pmod{9}, \qquad \text{for} \quad I+1 \leq i \leq J,$ $e_i = 1$ or 2, for $1 \leq i \leq w$, $f_i = 1$ or 2, for $1 \leq i \leq J$, $e = 0, 1$ or 2.

Let $C_{\rm k.3}^{(\sigma)}$ $\kappa_{k,3}^{(\sigma)}$ be the ambiguous ideal class group of k/k₀, where σ is a generator of Gal (k/k₀). It is known that $C_{k,3}^{(\sigma)}$ $\mathcal{L}_{k,3}^{(\sigma)}$ is an elementary abelian 3-group, because an ambiguous class C satisfies $\sigma(\mathcal{C}) = \mathcal{C}$, by definition, and therefore $\mathcal{C}^3 = \mathcal{C} \cdot \sigma(\mathcal{C}) \cdot \sigma^2(\mathcal{C}) = \mathcal{N}_{k/k_0}(\mathcal{C}) = 1$, since k_0 has class number 1.

The fact that the 3-class group $C_{k,3}$ is of type $(9,3)$ implies that rank $C_{k,3}^{(\sigma)} = 1$. In fact, it is clear that if $C_{k,3}$ is of type $(9,3)$, then rank $C_{k,3}^{(\sigma)} = 1$ or 2.

Let us assume that rank $C_{k,3}^{(\sigma)} = 2$. From [\[10,](#page-10-2) § 5, Theorem 5.3, pp. 97–98], we have

$$
rank C_{k,3} = 2t - s,
$$

where the integers t and s are defined in $[10, \S 5,$ $[10, \S 5,$ Theorem 5.3, pp. 97–98] as follows:

- $t := \text{rank } C_{k,3}^{(\sigma)}$ ι(σ)
k,3,
- s : the rank of the matrix $(\beta_{i,j})$ defined in [\[10,](#page-10-2) § 5, Theorem. 5.3, pp. 97–98].

Since $C_{k,3}$ is of type (9,3), then rank $C_{k,3} = 2$, and according to our hypothesis we have $t = \text{rank } C_{k,3}^{(\sigma)} = 2.$ So we get $s = 2$.

By $[10, \S 5]$ $[10, \S 5]$, Theorem 5.3, pp. 97–98, the 3-class group $C_{k,3}$ is isomorphic to the direct product of an abelian 3-group of rank $2(t - s)$ and an elementary abelian 3-group of rank s. Here $t = s = 2$. Thus $C_{k,3}$ is isomorphic to the direct product of an abelian 3-group of rank 0 and an elementary abelian 3-group of rank 2, we get

$$
C_{k,3} \simeq \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z},
$$

which contradicts the fact that $C_{k,3}$ is of type (9,3). We conclude rank $C_{k,3}^{(\sigma)} = 1$.

On the one hand, suppose that d is not divisible by any rational prime p such that $p \equiv 1$ (mod 3), i.e. $w = 0$ in Eq. [\(1\)](#page-3-1) above. According to [\[9,](#page-10-3) § 5, Theorem 5.1, p. 61], this implies that $C_{k,3} \simeq C_{\Gamma,3} \times C_{\Gamma,3}$. Since the 3-group $C_{k,3}$ is of type $(9,3)$, then $|C_{k,3}| = 3^3$, and by Lemma [2.3](#page-3-0) we have $C_{\Gamma,3} \simeq \mathbb{Z}/9\mathbb{Z}$, so we get $|C_{\Gamma,3} \times C_{\Gamma,3}| = 3^4$, which is a contradiction. Hence, the integer d is divisible by at least one rational prime p such that $p \equiv 1 \pmod{3}$.

On the other hand, the fact that the 3-class group $C_{k,3}$ is of type $(9,3)$ implies that $C_{\Gamma,3} \simeq \mathbb{Z}/9\mathbb{Z}$ according to Lemma [2.3.](#page-3-0) Since h_{Γ} is exactly divisible by 9, then according to Lemma [2.1,](#page-2-0) there are at most two primes congruent to 1 (mod 3) dividing d .

Now, assume that there are exactly two different primes p_1 and p_2 dividing d such that $p_1 \equiv p_2 \equiv 1 \pmod{3}$, then, according to Lemma [2.2,](#page-2-1) we get:

$$
\Gamma^* = \Gamma_3^{(1)} = \Gamma \cdot M(p_1) \cdot M(p_2),
$$

where $M(p_1)$ (respectively, $M(p_2)$) is the unique subfield of degree 3 of $\mathbb{Q}(\zeta_{p_1})$ (respectively, $\mathbb{Q}(\zeta_{p_2})$). If $M(p_1) \neq M(p_2)$, then $\Gamma \cdot M(p_1)$ and $\Gamma \cdot M(p_2)$ are two different subfields of $\Gamma_3^{(1)}$ 3 over Γ of degree 3. According to class field theory, we have

$$
\operatorname{Gal}(\Gamma_3^{(1)}/\Gamma) \cong C_{\Gamma,3} \simeq \mathbb{Z}/9\mathbb{Z}.
$$

Since $Gal(\Gamma_3^{(1)}/\Gamma)$ is a cyclic 3-group, there exist only one sub-group of $Gal(\Gamma_3^{(1)}/\Gamma)$ of order 3. By the Galois correspondence, there exist a unique sub-field of $\Gamma_3^{(1)}$ $_3^{(1)}$ over Γ of degree 3. We conclude that $\Gamma \cdot M(p_1) = \Gamma \cdot M(p_2)$, which is a contradiction.

Thus, $M(p_1) = M(p_2)$, and then $p_1 = p_2$, which contradicts the fact that p_1 and p_2 are two different primes. Hence, there is exactly one prime congruent to 1 (mod 3) which divides d. Thus the integer d can be written in the following form:

$$
d=3^{e}p_1^{e_1}q_1^{f_1}\ldots q_I^{f_I}q_{I+1}^{f_{I+1}}\ldots q_J^{f_J},
$$

with $p_1 \equiv -q_i \equiv 1 \pmod{3}$, where p_1, e, e_1, q_i and f_i (for $1 \leq i \leq J$) are defined in Eq. $(1).$ $(1).$

Next, since rank $C_{k,3}^{(\sigma)} = 1$, then according to [\[9,](#page-10-3) § 3, Lemma 3.1, p. 55], there are three possible cases as follows:

- Case $1: 2w + J = 1$,
- Case 2 : $2w + J = 2$,
- Case $3: 2w + J = 3$,

where w and J are the integers defined in Eq. (1) above. We will successively treat these cases as follows:

• Case 1: We have $2w + J = 1$, then $w = 0$ and $J = 1$. This case is impossible, because we have shown above that the integer d is divisible by exactly one prime number congruent to 1 (mod 3) and thus $w = 1$.

• Case 2: We have $2w + J = 2$, and as in Case 1, we necessarily have $w = 1$ and $J = 0$, which implies that $d = 3^e p_1^{e_1}$, where p_1 is a prime number such that $p_1 \equiv 1 \pmod{3}$, $e \in \{0, 1, 2\}$ and $e_1 \in \{1, 2\}$. Then,

 $-$ If $d \equiv \pm 1 \pmod{9}$, then we necessarily have $e = 0$.

Assume that $p_1 \equiv 4$ or 7 (mod 9), then $d \not\equiv \pm 1 \pmod{9}$ which is an absurd. So we necessarily have $p_1 \equiv 1 \pmod{9}$. Thus the integer d will be written in the form $d = p_1^{e_1}$, where $p_1 \equiv 1 \pmod{9}$ and $e_1 \in \{1, 2\}$.

- $-$ If $d \not\equiv \pm 1 \pmod{9}$:
	- ∗ If $e \neq 0$, the integer d is written as $d = 3^e p_1^{e_1}$, where $p_1 \equiv 1 \pmod{3}$ and $e, e_1 \in \{1, 2\}.$

∗ If $e = 0$, then d is written as $d = p_1^{e_1}$ with $p_1 \equiv 4$ or 7 (mod 9) and $e_1 \in \{1, 2\}$.

• Case 3: We have $2w + J = 3$, then we necessarily get $w = 1$ and $J = 1$, because $w \neq 0$. Thus $d = 3^e p_1^{e_1} q_1^{f_1}$, where $p_1 \equiv 1 \pmod{3}$, $q_1 \equiv -1 \pmod{3}$, $e \in \{0, 1, 2\}$ and $e_1, f_1 \in \{1, 2\}$. Then:

− If $d \equiv \pm 1 \pmod{9}$, we necessarily have $e = 0$. If p_1 or $-q_1 \not\equiv 1 \pmod{9}$, then $d \not\equiv \pm 1$ (mod 9) which is an absurd. It remain only the case where $p_1 \equiv -q_1 \equiv 1 \pmod{9}$. Then the integer d will be written in the form $d = p_1^{e_1} q_1^{f_1}$, where $p_1 \equiv -q_1 \equiv 1$ (mod 9) and $e_1, f_1 \in \{1, 2\}.$

 $-$ If $d \not\equiv \pm 1 \pmod{9}$:

According to [\[10,](#page-10-2) § 5, p. 92], the rank of $C_{k,3}^{(\sigma)}$ $\kappa^{(\sigma)}_{k,3}$ is specified as follows:

rank
$$
C_{k,3}^{(\sigma)} = t - 2 + q^*
$$
,

where t and q^* are defined in the notations.

On the one hand, the fact that rank $C_{k,3}^{(\sigma)} = 1$ imply that $t = 2$ or 3 according to whether ζ_3 is norm of an element of k or not.

On the other hand, we have $d = 3^e p_1^{e_1} q_1^{f_1}$ with $p_1 \equiv 1 \pmod{3}$ and $q_1 \equiv -1 \pmod{3}$. By [\[13,](#page-10-6) Chap. 9, Sec. 1, Proposition 9.1.4, p.110] we have q_1 is inert in k_0 , and by [\[8,](#page-10-4) Sec 4, pp. 51-54] we have q_1 is ramifed in $\Gamma = \mathbf{Q}(\sqrt[3]{d})$. Since $d \not\equiv \pm 1 \pmod{9}$, then 3 is ramifed in Γ by [\[8,](#page-10-4) Sec 4, pp. 51-54], and $3\mathcal{O}_{k_0} = (\lambda)^2$ where $\lambda = 1 - \zeta_3$. Since $p_1 \equiv 1 \pmod{3}$, then by [\[13,](#page-10-6) Chap. 9, Sec. 1, Proposition 9.1.4, p.110] we have $p_1 = \pi_1 \pi_2$ where π_1 and π_2 are two primes of k_0 such that $\pi_2 = \pi_1^{\tau}$, the prime p_1 is ramified in Γ, then π_1 and π_2 are ramified in k. Hence, the number of prime ideals which are ramified in k/k_0 is $t = 4$, which contradicts the fact that $t = 2$ or 3.

We summarize all forms of integer d in the three cases 1, 2 and 3 as follows:

$$
d = \begin{cases} p_1^{e_1} & \text{with } p_1 \equiv 1 \pmod{9}, \\ p_1^{e_1} & \text{with } p_1 \equiv 4 \text{ or } 7 \pmod{9}, \\ 3^e p_1^{e_1} \not\equiv \pm 1 \pmod{9} & \text{with } p_1 \equiv 1 \pmod{9}, \\ 3^e p_1^{e_1} \not\equiv \pm 1 \pmod{9} & \text{with } p_1 \equiv 4 \text{ or } 7 \pmod{9}, \\ p_1^{e_1} q_1^{f_1} \equiv \pm 1 \pmod{9} & \text{with } p_1 \equiv -q_1 \equiv 1 \pmod{9}, \end{cases}
$$

where $e, e_1, f_1 \in \{1, 2\}.$

Our next goal is to show that the only possible form of the integer d is the first form $d = p_1^{e_1}$, where $p_1 \equiv 1 \pmod{9}$ and $e_1 = 1$ or 2.

- Case where $d = p_1^{e_1}$, with $p_1 \equiv 4$ or 7 (mod 9):
	- $-$ If $\left(\frac{3}{n}\right)$ $\left(\frac{3}{p}\right)$ $\frac{3}{3} \neq 1$, then according to [\[3,](#page-9-3) § 1, Conjecture 1.1, p. 1], we have $C_{k,3} \simeq \mathbb{Z}/3\mathbb{Z}$, which contradict the fact that $C_{k,3}$ is of type $(9,3)$. We note that in this case, the fields Γ and k are of Type III, respectively, α , in the terminology of [\[5,](#page-9-1) § 15, Theorem 15.6, pp. 235-236], respectively, [\[1,](#page-9-4) § 2.1, Theorem 2.1, p. 4].
	- $-$ If $\left(\frac{3}{n}\right)$ $\left(\frac{3}{p}\right)$ $S_3 = 1$, then according to [\[3,](#page-9-3) § 1, Conjecture 1.1, p. 1], we have $C_{k,3} \simeq$ $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$, which is impossible. We note that in this case, the fields Γ and k are of Type I, respectively, β , in the terminology of [\[5,](#page-9-1) § 15, Theorem 15.6, pp. 235-236], respectively, $[1, § 2.1, Theorem 2.1, p. 4]$ $[1, § 2.1, Theorem 2.1, p. 4]$.

For this case, we see that in [\[5,](#page-9-1) § 17, Numerical Data, p. 238], and also in the tables of [\[6\]](#page-9-5) which give the class number of a pure cubic field, the prime numbers $p = 61, 67, 103,$ and 151, which are all congruous to 4 or 7 (mod 9), verify the following properties:

- (i) 3 is a residue cubic modulo p ;
- (ii) 3 divide exactly the class number of Γ ;
- (iii) $u=3$;
- (iv) $C_{\Gamma,3} \simeq \mathbb{Z}/3\mathbb{Z}$, and $C_{\text{k,3}} \simeq \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$.

• Case where $d = 3^e p_1^{e_1} \not\equiv \pm 1 \pmod{9}$, with $p_1 \equiv 1 \pmod{9}$:

Here $e, e_1 \in \{1, 2\}$. As $\mathbb{Q}(\sqrt[3]{ab^2}) = \mathbb{Q}(\sqrt[3]{a^2b})$, we can choose $e_1 = 1$, i.e. $d = 3^e p_1$ with $e \in \{1, 2\}$. On the one hand, the fact that $p_1 \equiv 1 \pmod{3}$ implies by [\[13,](#page-10-6) Chap. 9, Sec. 1, Proposition 9.1.4, p.110 that $p_1 = \pi_1 \pi_2$ with $\pi_1^{\tau} = \pi_2$ and $\pi_1 \equiv \pi_2 \equiv 1 \pmod{3\mathcal{O}_{k_0}}$, the prime p_1 is totally ramified in Γ, then π_1 and π_2 are totally ramified in k and we have $\pi_1 \mathcal{O}_k = \mathcal{P}_1^3$ and $\pi_2 \mathcal{O}_k = \mathcal{P}_2^3$, where $\mathcal{P}_1, \mathcal{P}_2$ are two prime ideals of k.

We know that $3\mathcal{O}_{k_0} = \lambda^2 \mathcal{O}_{k_0}$, with $\lambda = 1 - \zeta_3$ a prime element of k_0 . Since $d \not\equiv \pm 1$ (mod 9), then 3 is totally ramified in Γ, and then λ is ramified in k/k₀. Hence, the number of ideals which are ramified in k/k_0 is $t = 3$.

On the other hand, from [\[13,](#page-10-6) Chap. 9, Sec. 1, Proposition 9.1.4, p.110] we have On the other hand, from [13, Chap. 3, Sec. 1, 1 roposition 3.1.4, p.110] we have
 $3 = -\zeta_3^2 \lambda^2$, then $k = k_0(\sqrt[3]{x})$ with $x = \zeta_3^2 \lambda^2 \pi_1 \pi_2$. The primes π_1 and π_2 are congruent to 1 (mod λ^3) because $p_1 \equiv 1 \pmod{9}$, then according to [\[1,](#page-9-4) § 3, Lemma 3.3, p. 17] we have ζ_3 is a norm of an element of $k \setminus \{0\}$, so $q^* = 1$. We conclude according to [\[10,](#page-10-2) § 5, p. 92] that rank $C_{k,3}^{(\sigma)} = 2$ which is impossible.

• Case where $d = 3^e p_1^{e_1} \not\equiv \pm 1 \pmod{9}$, with $p_1 \equiv 4$ or 7 (mod 9):

Here $e, e_1 \in \{1, 2\}$. So we can choose $e = 1$, then $d = 3p_1^{e_1}$ with $e_1 \in \{1, 2\}$. As above we get π_1 and π_2 , and λ are ramified in k/k₀.

Put $p\mathcal{O}_{\Gamma} = \mathcal{P}^3$, $\pi_1\mathcal{O}_k = \mathcal{P}_1^3$, $\pi_2\mathcal{O}_k = \mathcal{P}_2^3$ and $\lambda\mathcal{O}_k = I^3$, where $\mathcal P$ is a prime ideal of Γ , and $\mathcal{P}_1,\mathcal{P}_2$ and I are prime ideals of k. According to [\[14,](#page-10-9) § 3.2, Theorem 3.5, pp 36-39] we get $C_{k,3}$ is cyclic of order 3 which contradict the fact that $C_{k,3}$ is of type $(9,3)$.

• Case where $d = p_1^{e_1} q_1^{f_1} \equiv \pm 1 \pmod{9}$, with $p_1 \equiv -q_1 \equiv 1 \pmod{9}$:

Since $d \equiv \pm 1 \pmod{9}$, then according to [\[8,](#page-10-4) Sec. 4, pp. 51-54] we have 3 is not ramified in the field Γ , so $\lambda = 1 - \zeta_3$ is not ramified in k/k₀. As $p_1 \equiv 1 \pmod{3}$, then by [\[13,](#page-10-6) Chap. 9, Sec. 1, Proposition 9.1.4, p.110] $p_1 = \pi_1 \pi_2$ with $\pi_1^{\tau} = \pi_2$ and $\pi_1 \equiv \pi_2 \equiv 1 \pmod{3\mathcal{O}_{k_0}}$, so π_1 and π_2 are totally ramified in k. Since $q_1 \equiv -1 \pmod{3}$, then q_1 is inert in k₀. Hence, the primes ramifies in k/k_0 are π_1, π_2 and q_1 . Put $x = \pi_1^{e_1} \pi_2^{e_1} \pi_1^{f_1}$, where $-q_1 = \pi$ is a prime number of k₀, then we have k = k₀($\sqrt[3]{x}$). The fact that $p_1 \equiv -q_1 \equiv 1 \pmod{9}$ imply that $\pi_1 \equiv \pi_2 \equiv \pi \equiv 1 \pmod{\lambda^3}$, then by [\[1,](#page-9-4) § 3, Lemma 3.3, p. 17], ζ_3 is a norm of an element of $k \setminus \{0\}$, so $q^* = 1$. Then by [\[10,](#page-10-2) § 5, p. 92] we get rank $C_{k,3}^{(\sigma)} = t - 2 + q^* = 2$ which is impossible.

Finally, we have shown that if the 3-class group $C_{k,3}$ is of type $(9,3)$, then $d = p^e$, where p is a prime number such that $p \equiv 1 \pmod{9}$ and $e = 1$ or 2. We can see that this result is compatible with the first form of the integer d in $\left[1, \S 1, \text{Theorem 1.1, p. 2}\right]$ $\left[1, \S 1, \text{Theorem 1.1, p. 2}\right]$ $\left[1, \S 1, \text{Theorem 1.1, p. 2}\right]$.

(2) Suppose that $d = p^e$, with p is a prime number congruent to 1 (mod 9). Here $e \in \{1, 2\}$, (2) suppose that $a = p$, with p is a prime number congruent to 1 (mod 3). Here $c \in \{1, 2\}$,
since $\mathbb{Q}(\sqrt[3]{p}) = \mathbb{Q}(\sqrt[3]{p^2})$ we can choose $e = 1$. From [\[5,](#page-9-1) § 14, Theorem 14.1, p. 232], we have $h_{k} = \frac{u}{3}$ $\frac{u}{3} \cdot h_{\Gamma}^2$, the fact that $u = 1$ and that h_{Γ} is exactly divisible by 9 implies that $h_{\mathbf{k}}$

is exactly divisible by 27. Since h_{Γ} is exactly divisible by 9, then by [\[7,](#page-9-0) Lemma 5.11] we have rank $C_{k,3} = 2$. We conclude that $C_{k,3} \simeq \mathbb{Z}/9\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$.

3 Numerical Examples

Let $\Gamma = \mathbb{Q}(\sqrt[3]{ab^2})$ be a pure cubic field, where a and b are coprime square-free integers. We point out that $\mathbb{Q}(\sqrt[3]{ab^2}) = \mathbb{Q}(\sqrt[3]{a^2b})$. Assume that $k = \mathbb{Q}(\sqrt[3]{ab^2}, \zeta_3)$ and $C_{k,3}$ is of type (9, 3). Using the system Pari [\[17\]](#page-10-1), we compute class groups for $b = 1$ and a prime $a = p \equiv 1$ (mod 9). The following table illustrates our main result Theorem [1.1](#page-0-0) and Lemma [2.3.](#page-3-0) Here we denote by:

> $C_{\Gamma,3}$ (respectively, $C_{\mathbf{k},3}$) : the 3-class group of Γ (respectively, k); $h_{\Gamma,3}$ (respectively, $h_{k,3}$) : the 3-class number of Γ (respectively, k).

Table : Some fields $\mathbb{Q}(\sqrt[3]{p}, \zeta_3)$ whose 3-class group is of type $(9, 3)$.

р	n^{ω}	9 mod	$h_{\Gamma,3}$	$n_{k,3}$	$\boldsymbol{\mathit{u}}$	Γ .3	k.3
495	24512401			27		$\left[9\right]$	3 9,
5059	25593481			27		$\left[9\right]$	\mathbf{Q} Ί9, ◡
5077	25775929		g	27		$\left[9\right]$	3 9.
5347	28590409		y	27		$\left[9\right]$	\mathbf{Q}^{\prime} 9. IJ

Remark 3.1. Let p is a prime number such that $p \equiv 1 \pmod{9}$. Let $\Gamma = \mathbb{Q}(\sqrt[3]{p})$, k = $\mathbb{Q}(\sqrt[3]{p}, \zeta_3)$ be the normal closure of the pure cubic field Γ and $C_{k,3}$ be the 3-part of the $\mathbb{Q}(\sqrt[3]{p}, \zeta_3)$ $\mathcal{L}(\sqrt{p}, \varsigma_3)$ be the normal closure of the pure cubic field 1 and $\mathcal{O}_{k,3}$ be the 3-part of the class group of k. If 9 divide exactly the class number of $\mathbb{Q}(\sqrt[n]{p})$ and $u = 1$, then according to Theorem 1.1, the 3-class group of $\mathbb{Q}(\sqrt[3]{p}, \zeta_3)$ is of type $(9, 3)$. Furthermore, if 3 is not residue cubic modulo p, then a generators of 3-class group of $\mathbb{Q}(\sqrt[3]{p}, \zeta_3)$ can be deduced by residue cubic modulo p, then a generators of 3-class group of $\mathbb{Q}(\sqrt[3]{p}, \zeta_3)$ can be deduced by [\[2,](#page-9-6) § 3, Theorem 3.2, p. 10].

4 Acknowledgements

The authors would like to thank Professors Daniel C. Mayer and Mohammed Talbi who were of a great help concerning correcting the spelling mistakes that gave more value to the work.

References

- [1] S. Aouissi, D. C. Mayer, M. C. Ismaili, M. Talbi, and A. Azizi, 3-rank of ambiguous class groups in cubic Kummer extensions, arXiv:1804.00767v4.
- [2] S. Aouissi, M. C. Ismaili, M. Talbi and A. Azizi. The generators of 3-class group of some fields of degree 6 over Q, arXiv:1804.00692.
- [3] S. Aouissi, M. Talbi, M. C. Ismaili and A. Azizi, On a conjecture of lemmermeyer, arXiv:1810.07172v3.
- [4] P. Barrucand and H. Cohn, A rational genus, class number divisibility, and unit theory for pure cubic fields, J. Number Theory 2 (1970), 7-21.
- [5] P. Barrucand and H. Cohn, Remarks on principal factors in a relative cubic field, J. Number Theory 3 (1971), 226-239.
- [6] B. D. Beach, H. C. Williams, C. R. Zarnke Some computer results on units in quadratic and cubic fields, Proceeding of the twenty-fifth summer meeting of the Canadian Mathematical Congress (Lake Head University, Thunder Bay, 1971), 609-648.
- [7] F. Calegari and M. Emerton, On the ramification of Hecke algebras at Eisenstein primes, Invent. Math. 160 (2005), 97-144.
- [8] R. Dedekind, Über die Anzahl der Idealklassen in reinen kubischen Zahlkörpern. J. Reine Angew. Math. 121 (1900), 40-123.
- [9] F. Gerth III, On 3-class groups of pure cubic fields, J. Reine Angew. Math. 278/279 (1975), 52-62.
- [10] F. Gerth III, On 3-class groups of cyclic cubic extensions of certain number fields, J. Number Theory 8 (1976), 84-94.
- [11] F. Gerth III, On 3-class groups of certain pure cubic fields, Aust. Math. Soc. 72(3) (2005) 471-476.
- [12] T. Honda, Pure cubic fields whose class numbers are multiples of three, J. Number Theory 3 (1971), 7-12.
- [13] K. Ireland and M. Rosen, A classical introduction to modern number theory, Chapter 9: Cubic and biquadratic reciprocity, 2nd edn (Springer, New Yark, 1992) 108-111.
- [14] M. C. Ismaili, Sur la capitulation des 3-classes d'idéaux de la clôture normale d'un corps cubique pur, Thèse de doctorat, University Laval, Québec (1992).
- [15] M. Ishida, The genus fields of algebraic number fields, Chapter 7: The genus fields of pure number fields, Lecture Notes in Mathematics. 555 (Springer-Verlag, 1976) 87-93.
- [16] A. Markoff, Sur les nombres entiers dépendants d'une racine cubique d'un nombre entier ordinaire, Mem. Acad. Imp. Sci. St. Petersbourg VIII 38 (1892) 1-37.
- [17] The PARI Group, PARI/GP, Version 2.9.4, Bordeaux, 2017, http://pari.math.ubordeaux.fr.

Abdelmalek AZIZI, Moulay Chrif ISMAILI and Siham AOUISSI Department of Mathematics and Computer Sciences, Mohammed first University, 60000 Oujda - Morocco, abdelmalekazizi@yahoo.fr, mcismaili@yahoo.fr, aouissi.siham@gmail.com.

Mohamed TALBI Regional Center of Professions of Education and Training, 60000 Oujda - Morocco, ksirat1971@gmail.com.