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1 Introduction

Let d be a cube-free positive integer, k = Q(\S’/E, (3), and Cy 3 be the 3-class group of
k. A number of researchers have studied the 3-class group Cy 3 and the calculation of its
rank. Calegari and Emerton [7, Lemma 5.11| proved that the rank of the 3-class group
of Q(¥/p,(3), with a prime p = 1 (mod 9), is equal to two if 9 divides the class number
of Q(/p). The converse of the Calegari-Emerton result was proved by Frank Gerth III in
[11, Theorem 1, p. 471].

The purpose of this paper is to classify all integers d for which Cy 3 is of type (9, 3), i.e.
Cys ~ Z/9Z x 7Z/3Z. This investigation can be viewed as a continuation of the previous
more general works |7, Lemma 5.11] and [11, Theorem 1, p. 471]. Effectively, we shall
prove the following main theorem:

Theorem 1.1. LetI' = Q(v/d) be a pure cubic field, where d > 2 is a cube-free integer, and
let k = Q(\?’/a, (3) be its normal closure. Denote by u the index of the subgroup generated
by the units of intermediate fields of the extension k/Q in the group of units of k.

1) If the field k has a 3-class group of type (9,3), then d = p°, where p is a prime number
congruent to 1 (mod 9) and e =1 or 2.

2) If p is a prime number congruent to 1 (mod 9), 9 divides the class number of T
exactly, and u = 1, then the 3-class group of k is of type (9, 3).



This result will be underpinned by numerical examples obtained with the computational
number theory system PARI [17] in § 3. In section 2, where Theorem 1.1 is proved, we only
state results that will be needed in this paper. More information on 3-class groups can
be found in [10] and [9]. For the prime ideal factorization in the pure cubic field Q(+/d),
we refer the reader to the papers [8], [5], [4] and [16]. For the prime factorization rules of
the third cyclotomic field Q((3), we refer the reader to [13, Chap. 9, Sec. 1, Propositions
9.1.1-4, pp. 109-111].

Notations:

e The lower case letter p, respectively ¢, will denote a prime number congruent to 1,
respectively —1, modulo 3;

o= Q(\S/E) . a pure cubic field, where d > 2 is a cube-free integer;

e ky = Q((3) : the cyclotomic field, where (3 = e¥7/3;

e k =T'((3) : the normal closure of T’;

e [V and I' : the two conjugate cubic fields of I", contained in k;

e y : the index of the subgroup Fy generated by the units of intermediate fields of the
extension k/Q in the group of units of k;

e (1) = Gal (k/T), such that 72 = id, 7(¢3) = (2, and 7(v/d) = V/d;

e (o) = Gal (k/ko), such that o® = id, o((3) = (3, and o(V/d) = 3V/d;

e \ =1 — (3 is a prime element above 3 of kg;

e ¢* =1 or 0, according to whether (5 is norm of an element of k or not;

e ¢ : the number of prime ideals ramified in k/ko;

e For an algebraic number field L:

— Oy, EL : the ring of integers of L, and the group of units of L;

— Cp3, hy : the 3-class group of L, and the class number of L;

— Lgl), L* : the Hilbert 3-class field of L, and the absolute genus field of L.

2  Fields Q(v/d,(3) whose 3-Class Group is of Type (9, 3)

2.1 Preliminary results

In [15, Chap. 7, pp. 87-96], Ishida has explicitly given the genus field of any pure field.
For the pure cubic field I' = Q(\J/E), where d is a cube-free natural number, we have the
following theorem.

Theorem 2.1. Let I' = @(\‘/E) be a pure cubic field, where d > 2 is a cube-free integer,
and let p1, ..., p, be all prime divisors of d such that p; is congruent to 1 (mod 3) for each
ie{1,2,...,r}. Let I'* be the absolute genus field of I', then

I =l M(pi) - T,



where M (p;) denotes the unique subfield of degree 3 of the cyclotomic field Q((,,). The
genus number of I is given by gr = 3".

Remark 2.1. (1) If no prime p =1 (mod 3) divides d, i.e. r =0, then ['* =T.
(2) For any value r > 0, I'* is contained in the Hilbert 3-class field I’gl) of I'.
(3) The cubic field M(p) is determined explicitly in [12, § 4, Proposition 1, p. 11].

Assuming that hrp is divisible exactly by 9, we can explicitly construct the absolute
genus field I'* as follows:

Lemma 2.1. Let I' = Q(\SS/E) be a pure cubic field, where d > 2 s a cube-free integer.
If hr is exactly divisible by 9, then there are at most two primes congruent to 1 (mod 3)
dividing d.

Proof. 1f py,...,p, are all prime numbers congruent to 1 (mod 3) dividing d, then 3"|Ar.
Therefore, if hr is exactly divisible by 9, then r < 2. So there are two primes p; and
po dividing d such that p; = 1 (mod 3) for i € {1,2}, or there is only one prime p = 1
(mod 3) with p|d, or there is no prime p =1 (mod 3) such that p|d. ]

Lemma 2.2. Let I' = Q(v/d) be a pure cubic field, where d > 2 is a cube-free integer.
If hr is exactly divisible by 9 and if the integer d is divisible by two primes p1 and py
such that p; = 1 (mod 3) for i € {1,2}, then I'" = Fél), (M* = F'él) and (I')* = F"gl).
Furthermore, k - Fél) =k- F’gl) =k- F"gl).

Proof. 1f hr is exactly divisible by 9 and d is divisible by two prime numbers p; and po
which are congruent to 1 (mod 3), then gr = 9 so I'* = T'{") = T'- M(py) - M(p,), where
M(p1) (respectively M(ps)) is the unique cubic subfield of Q((,,) (respectively Q((,,)).
The equations

(I) =T M(py) - M(p2) =T5",

() =T M(p1) - M(po) =T"5"

can be deduced by the fact that in the general case we have

() =T 11 M(p),

=1
(IV/)* — IV/ H M(pz)’
i=1
where p;, for each 1 < i < r, is a prime divisor of d such that p; = 1 (mod 3). From the
fact that hr is exactly divisible by 9, we conclude that hp is exactly divisible by 9 and hp»
is exactly divisible by 9, because I', [" and I'” are isomorphic.

Moreover,
kT =k T M(py) - M(ps) = k- M(p1) - M(ps),
k- T8 = kT M(p1) - M(p2) = k- M(p1) - M(p2),
k170 = k17 M(py) - M(ps) = k- M(py) - M(ps).
Hence, k- T{) = k- T"{) = k. T"{". [



Now, let u be the index of units defined in the above notations. We assume that hr is
exactly divisible by 9 and u = 1. From [5, § 14, Theorem 14.1, p. 232|, we have hy = %h%,
whence hy is exactly divisible by 27. The structure of the 3-class group Cy 3 is described
by the following Lemma:

Lemma 2.3. Let I' be a pure cubic field, k its normal closure, and u be the index of units
defined in the notations above, then

Cis ~Z/9Z X LJ3Z < [Crs~Z/9Z and u=1].

Lemma 2.3 will be underpinned in section 3 by numerical examples obtained with the
computational number theory system PARI [17].

Proof. Assume that Cy 3 ~ Z/9Z x Z/3Z. Let hr s(respectively, hy 3) be the 3-class number
of I' (respectively, k), then hy 3 = 27. According to [5, § 14, Theorem 14.1, p. 232], we get
27 =3 - h%73 with v € {1,3}, and thus u = 1, because otherwise 27 would be a square in
N, which is a contradiction. Thus hf 5 = 81 and hps = 9.

Let Cls ={A € Cs| A" = A} and C 3 ={A € C3| A" = A"}, According to [9, § 2,
Lemmas 2.1 and 2.2, p. 53], we have Cj 3 ~ 0;73 x Cy g and C\/3 ~ Cr 3, hence |Cy | = 3.
Since Cy 3 is of type (9,3), we deduce that Cy3 1s a cyclic group of order 3 and C’I:f 5 is a
cyclic group of order 9. Therefore, we have

u=1 and Crz~Z/9ZL.

Conversely, assume that u = 1 and Cr3 ~ Z/9Z. By [5, § 14, Theorem 14.1, p. 232|, we
deduce that |Cys| = 5 - [Crs|?, and so |Cy 3| = 27. Furthermore, |Cys] = 3 and

ijg ~ ijg X 01:73 ~ Z/QZ X Z/SZ

2.2 Proof of Theorem 1.1

Let I' = Q(~3/d) be a pure cubic field, where d > 2 is a cube-free integer, k = Q(+/d, (3) be
its normal closure, and Cx 3 be the 3-class group of k.

(1) Assume that the 3- class group Cy 3 is of type (9, 3). We first write the integer d in the
form given by equation (3.2) of |9, p. 55]:

d = 3%p{ . pipy . .pf;j”q{l . .q}clq{fll . qf;", (1)
where p; and ¢; are positive rational primes such that:
((pi=1 (mod9), for 1<1i¢<w,
pi=4 or 7 (mod?9), for v+1<i<w,
¢ =—1 (mod9), for 1<i<I,
¢ =2 or5 (mod9), for IT+1<i</J,
e; =1 or 2, for 1<i<w,
fi=1 or2, for 1<i<J,
e=0,1 or 2.

\



Let C’IE(;) be the ambiguous ideal class group of k/kg, where o is a generator of Gal (k/kg).

It is known that Cl({ag) is an elementary abelian 3-group, because an ambiguous class C
satisfies 0(C) = C, by definition, and therefore C* = C - 0(C) - 0*(C) = Nk, (C) = 1, since
ko has class number 1.

The fact that the 3-class group Cy 3 is of type (9, 3) implies that rank 01503) = 1. In fact,
it is clear that if C 3 is of type (9,3), then rank CIEU?)) =1or 2.

Let us assume that rank Cﬁ? = 2. From [10, § 5, Theorem 5.3, pp. 97-98|, we have
rank Cy 3 = 2t — s,
where the integers ¢ and s are defined in [10, § 5, Theorem 5.3, pp. 97-98] as follows:

t = rank 015?3)7
s @ the rank of the matrix (§; ;) defined in |10, § 5, Theorem. 5.3, pp. 97-98].

Since Cl 3 is of type (9,3), then rank Cy 3 = 2, and according to our hypothesis we have
t = rank C’l({g) = 2. So we get s = 2.

By |10, § 5, Theorem 5.3, pp. 97-98|, the 3-class group Cj 3 is isomorphic to the direct
product of an abelian 3-group of rank 2(¢ — s) and an elementary abelian 3-group of rank
s. Here t = s = 2. Thus CY 3 is isomorphic to the direct product of an abelian 3-group of
rank 0 and an elementary abelian 3-group of rank 2, we get

Cis ~ Z/37 x 7./3Z,

which contradicts the fact that Cy 3 is of type (9,3). We conclude rank C’IEU?)) = 1.

On the one hand, suppose that d is not divisible by any rational prime p such that p = 1
(mod 3),i.e. w=0in Eq. (1) above. According to |9, § 5, Theorem 5.1, p. 61], this implies
that Cy 3 ~ Cr3 X Cr3. Since the 3-group Cj 3 is of type (9,3), then |Cy 3| = 3%, and by
Lemma 2.3 we have Cr3 ~ Z/9Z, so we get |Crz x Crs| = 3*, which is a contradiction.
Hence, the integer d is divisible by at least one rational prime p such that p =1 (mod 3).

On the other hand, the fact that the 3-class group Cy s is of type (9,3) implies that
Crs ~ Z/9Z according to Lemma 2.3. Since hr is exactly divisible by 9, then according
to Lemma 2.1, there are at most two primes congruent to 1 (mod 3) dividing d.

Now, assume that there are exactly two different primes p; and p, dividing d such that
p1 = pe =1 (mod 3), then, according to Lemma 2.2, we get:

=T =T M(p,) - M(ps),

where M (p;) (respectively, M (p2)) is the unique subfield of degree 3 of Q((,,) (respectively,

Q(&py))- If M(p1) # M(p2), then I'- M(p;) and I' - M (py) are two different subfields of Fél)
over I' of degree 3. According to class field theory, we have

Gal(T\"/T") = Cr5 ~ 7,/97.
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Since Gal(l"él) /T") is a cyclic 3-group, there exist only one sub-group of Gal(l"él) /T") of order
3. By the Galois correspondence, there exist a unique sub-field of Fgl) over I' of degree 3.
We conclude that I' - M(p;) = I' - M (p,), which is a contradiction.

Thus, M(p1) = M(pz2), and then p; = po, which contradicts the fact that p; and py
are two different primes. Hence, there is exactly one prime congruent to 1 (mod 3) which
divides d. Thus the integer d can be written in the following form:

d=3p%q" ... q}c]q{fll o qﬁJ,
with py = —¢; = 1 (mod 3), where py, €, €1, ¢; and f; (for 1 < i < J) are defined in Eq.
(1).
Next, since rank Clﬁ‘;} =1, then according to [9, § 3, Lemma 3.1, p. 55|, there are three
possible cases as follows:

eCasel: 2w+ J=1,
e Case 2 : 2w+ J =2,
e Case 3 : 2w+ J =3,

where w and J are the integers defined in Eq. (1) above. We will successively treat these
cases as follows:

e Case 1: We have 2w + J = 1, then w = 0 and J = 1. This case is impossible, because
we have shown above that the integer d is divisible by exactly one prime number congruent
to 1 (mod 3) and thus w = 1.

e Case 2: We have 2w + J = 2, and as in Case 1, we necessarily have w = 1 and J = 0,
which implies that d = 3°p{', where p; is a prime number such that p; = 1 (mod 3),
e €{0,1,2} and e; € {1,2}. Then,

— If d = £1 (mod 9), then we necessarily have e = 0.
Assume that p; = 4 or 7 (mod 9), then d Z +1 (mod 9) which is an absurd. So
we necessarily have py = 1 (mod 9). Thus the integer d will be written in the form
d = p{*, where p; =1 (mod 9) and e; € {1,2}.

— Ifd # £1 (mod 9):

€1

x If e # 0, the integer d is written as d = 3°p{*, where p; = 1 (mod 3) and
e,ep € {1,2}.
« If e =0, then d is written as d = p{* with py =4 or 7 (mod 9) and e; € {1,2}.
e Case 3: We have 2w 4+ J = 3, then we necessarily get w = 1 and J = 1, because

w # 0. Thus d = 3p¢]", where p; = 1 (mod 3), ¢ = —1 (mod 3), e € {0,1,2} and
61,f1 € {1,2} Then:

— Ifd=+1 (mod 9), we necessarily have e = 0. If p; or —¢y Z 1 (mod 9), then d # £1

(mod 9) which is an absurd. It remain only the case where p; = —¢; = 1 (mod 9).
Then the integer d will be written in the form d = p?q{l, where p1 = —¢1 = 1

(mod 9) and ey, f; € {1,2}.



— Ifd # £1 (mod 9):

According to [10, § 5, p. 92|, the rank of Cl((a?)) is specified as follows:
rank Cﬁ? =t—2+4q",

where t and ¢* are defined in the notations.

On the one hand, the fact that rank C’l(fg) = 1 imply that ¢ = 2 or 3 according to
whether (5 is norm of an element of k or not.

On the other hand, we have d = 3¢p$*¢/* with p; =1 (mod 3) and ¢; = —1 (mod 3).
By [13, Chap. 9, Sec. 1, Proposition 9.1.4, p.110] we have ¢; is inert in ko, and by
[8, Sec 4, pp. 51-54] we have ¢ is ramifed in I' = Q(3/d). Since d # £1 (mod 9),
then 3 is ramifed in T by [8, Sec 4, pp. 51-54], and 30y, = (A\)? where A = 1 — (3.
Since p; = 1 (mod 3), then by [13, Chap. 9, Sec. 1, Proposition 9.1.4, p.110| we
have p; = mmy where m; and 7y are two primes of kg such that m = 7], the prime p;
is ramifed in I', then m; and 7y are ramified in k. Hence, the number of prime ideals
which are ramified in k/kq is ¢ = 4, which contradicts the fact that t = 2 or 3.

We summarize all forms of integer d in the three cases 1,2 and 3 as follows:

iy
'

d=< 3 #+1 (mod9)
3pit #+1  (mod 9)
Pql' =41 (mod 9)

where e, ey, f1 € {1,2}.

with py =1 (mod 9),

with py =4 o0or7 (mod9),
with p; =1 (mod 9),

with py=4o0r7 (mod?9),
with p1=—-¢ =1 (mod9),

Our next goal is to show that the only possible form of the integer d is the first form
d = p{, where py =1 (mod 9) and e; =1 or 2.

e Case where d = p{*', with p; =4 or 7 (mod 9):

—If (%) # 1, then according to [3, § 1, Conjecture 1.1, p. 1], we have Cx 3 ~ Z/3Z,
3

which contradict the fact that C 3 is of type (9,3). We note that in this case, the
fields I' and k are of Type III, respectively, «, in the terminology of [5, § 15, Theorem
15.6, pp. 235-236], respectively, [1, § 2.1, Theorem 2.1, p. 4].

If (%) = 1, then according to [3, § 1, Conjecture 1.1, p.

Z/3Z >§ Z/3Z, which is impossible. We note that in this case, the fields I" and k are
of Type I, respectively, 3, in the terminology of [5, § 15, Theorem 15.6, pp. 235-236],
respectively, [1, § 2.1, Theorem 2.1, p. 4.

For this case, we see that in [5, § 17, Numerical Data, p. 238|, and also in the
tables of [6] which give the class number of a pure cubic field, the prime numbers
p = 61,67,103, and 151, which are all congruous to 4 or 7 (mod 9), verify the
following properties:

1|, we have Cy3 ~



(i) 3 is a residue cubic modulo p;

(ili) u=3;

(IV) Cng ~ Z/3Z, and Ck73 ~ Z/3Z X Z/3Z

)
(ii) 3 divide exactly the class number of I';
)

e Case where d = 3°p{* # +1 (mod 9), with p; =1 (mod 9):

Here e,e; € {1,2}. As Q(+/ab?) = Q(+/a2b), we can choose e; = 1, i.e. d = 3°p; with
e € {1,2}. On the one hand, the fact that p; = 1 (mod 3) implies by [13, Chap. 9, Sec.
1, Proposition 9.1.4, p.110] that p; = mmy with 7] = m and m = m = 1 (mod 30,),
the prime p; is totally ramified in I', then 7 and 7y are totally ramified in k and we have
m Oy = P} and mOy = P3, where Py, P, are two prime ideals of k.

We know that 30y, = A\?Oj,, with A = 1 — (3 a prime element of kq. Since d # +1
(mod 9), then 3 is totally ramified in I'; and then A is ramified in k/ky. Hence, the number
of ideals which are ramified in k/kq is t = 3.

On the other hand, from [13, Chap. 9, Sec. 1, Proposition 9.1.4, p.110] we have
3= —(2\?, then k = ko(/z) with x = (3\?mmy. The primes m; and 7y are congruent to
1 (mod A?) because p; =1 (mod 9), then according to [1, § 3, Lemma 3.3, p. 17] we have
(3 is a norm of an element of k \ {0}, so ¢* = 1. We conclude according to [10, § 5, p. 92]
that rank Ol(fza) = 2 which is impossible.

e Case where d = 3°p* # +1 (mod 9), with p; =4 or 7 (mod 9):

Here e,e; € {1,2}. So we can choose e = 1, then d = 3p{* with e; € {1,2}. As above we
get m and 7y, and A are ramified in k/ko.

Put pOr = P3, m O = P}, mOy = P3 and AOy = I3, where P is a prime ideal of ', and
Py, Py and I are prime ideals of k. According to |14, § 3.2, Theorem 3.5, pp 36-39] we get
Ch.3 is cyclic of order 3 which contradict the fact that Cj 3 is of type (9, 3).

e Case where d = pS'¢* = £1 (mod 9), with p; = —¢; =1 (mod 9) :

Since d = +1 (mod 9), then according to [8, Sec. 4, pp. 51-54] we have 3 is not ramified in
the field T', so A = 1 — (3 is not ramified in k/ky. As p; =1 (mod 3), then by [13, Chap. 9,
Sec. 1, Proposition 9.1.4, p.110] p; = myme with 7] = 7y and m = 1, = 1 (mod 30y,), so
m and 7o are totally ramified in k. Since ¢; = —1 (mod 3), then ¢ is inert in ky. Hence,
the primes ramifies in k/kq are m, 7 and ¢q;. Put z = 7' 75 7/t where —q; = 7 is a prime
number of kg, then we have k = ko(/z). The fact that p; = —¢; =1 (mod 9) imply that
m =m=m=1 (mod A\3), then by [1, § 3, Lemma 3.3, p. 17|, (3 is a norm of an element
of k\ {0}, so ¢* = 1. Then by [10, § 5, p. 92| we get rank C’lg) =t—2+¢" =2 which is
impossible.

Finally, we have shown that if the 3-class group Cy 3 is of type (9, 3), then d = p®, where
p is a prime number such that p =1 (mod 9) and e = 1 or 2. We can see that this result
is compatible with the first form of the integer d in [1, § 1, Theorem 1.1, p. 2.
(2) Suppose that d = p°, with p is a prime number congruent to 1 (mod 9). Here e € {1, 2},
since Q(¥/p) = Q(+/p?) we can choose e = 1. From [5, § 14, Theorem 14.1, p. 232|, we
have hy = 3 - h%, the fact that u = 1 and that hr is exactly divisible by 9 implies that &y
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is exactly divisible by 27.

Since hr is exactly divisible by 9, then by [7, Lemma 5.11] we have rank Cy 3 = 2. We

conclude that Cy 3 ~ Z/9Z x Z/3Z.

3 Numerical Examples

Let I' = Q(m) be a pure cubic field, where a and b are coprime square-free integers.
We point out that Q(v/ab?) = Q(v/a2b). Assume that k = Q(v/ab?, (3) and Cy 3 is of type
(9,3). Using the system Pari [17]|, we compute class groups for b = 1 and a prime a = p =1
(mod 9). The following table illustrates our main result Theorem 1.1 and Lemma 2.3. Here

we denote by:

Cr s (respectively, Cy 3)
hr s (respectively, hy 3)

Table : Some fields Q(/p, (3) whose 3-class group is of type (9, 3).

the 3-class group of I' (respectively, k)
the 3-class number of I' (respectively, k).

D P p (mod 9) | hrg | his | u | Crg | Cxs
199 | 39601 1 9 |27 1] 9] |93
o071 | 73441 1 9 |27 [ 1] [9 |[9,3]
487 | 237169 1 9 |27 [ 1] [9 |[9,3]
523 | 273529 1 9 |27 [ 1] [9] |[9,3]
1207 | 1682209 1 9 | 27 | 1] (9 |[9,3]
1621 | 2627641 1 9 |27 [1] [9 |[9,3]
1603 | 2866249 1 9o | 27 | 1] [9] |[9,3]
1747 | 3052009 1 9 |27 [ 1] [9 |[9,3]
1999 | 3996001 1 9 |27 [ 1] [9] |[9,3]

2017 | 4068289 1 9 | 27 | 1] [9 |[9,3]
2143 | 4592449 1 9 |27 [1] [9 |[9,3]
2377 | 5650129 1 9 | 27 | 1] [9] |[9,3]
2467 | 6086089 1 9 |27 [ 1] [9 |[9,3]
2593 | 6723649 1 9 |27 [ 1] [9] |[9,3]
2917 | 8508889 1 9 | 27 |1] [9 |[9,3]
3511 | 12327121 1 9 |27 [1] [9 |[9,3]
3673 | 13490929 1 o |27 [1] 9] | [9.3]
3727 | 13890529 1 9 | 27 | 1] [9] |[9,3]
3007 | 15264649 1 9 | 27 11| (9] | [9,3]
4159 | 17297281 1 9 | 27 | 1] [9 |[9,3]
4519 | 20421361 1 9 |27 [1] [9 |[9,3]
4591 | 21077281 1 9 | 27 | 1] [9] |[9,3]
4789 | 22934521 1 9 | 27 11| [9 | [9,3]
4933 | 24334489 1 9 |27 [ 1] [9 |[9,3]




p v’ p (mod 9) | hrs | s | u | Cra | Cigs
1951 | 24512401 1 9 |27 1] P |93
5059 | 25593481 1 o |27 [1] 9] | [9.3]
5077 | 25775929 1 o |27 |1 9] |[9.3]
5347 | 28590409 1 9 | 27 | 1] [9] | 19,3

Remark 3.1. Let p is a prime number such that p = 1 (mod 9). Let I' = Q(¢/p), k =
Q(/p, ¢3) be the normal closure of the pure cubic field I' and Cy 3 be the 3-part of the
class group of k. If 9 divide exactly the class number of Q(y/p) and u = 1, then according
to Theorem 1.1, the 3-class group of Q({/p,(3) is of type (9,3). Furthermore, if 3 is not
residue cubic modulo p, then a generators of 3-class group of Q(/p, (3) can be deduced by
[2, § 3, Theorem 3.2, p. 10].
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