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1 Introduction
Let d be a cube-free positive integer, k = Q( 3

√
d, ζ3), and Ck,3 be the 3-class group of

k. A number of researchers have studied the 3-class group Ck,3 and the calculation of its
rank. Calegari and Emerton [7, Lemma 5.11] proved that the rank of the 3-class group
of Q( 3

√
p, ζ3), with a prime p ≡ 1 (mod 9), is equal to two if 9 divides the class number

of Q( 3
√
p). The converse of the Calegari-Emerton result was proved by Frank Gerth III in

[11, Theorem 1, p. 471].

The purpose of this paper is to classify all integers d for which Ck,3 is of type (9, 3), i.e.
Ck,3 ' Z/9Z × Z/3Z. This investigation can be viewed as a continuation of the previous
more general works [7, Lemma 5.11] and [11, Theorem 1, p. 471]. Effectively, we shall
prove the following main theorem:

Theorem 1.1. Let Γ = Q( 3
√
d) be a pure cubic field, where d ≥ 2 is a cube-free integer, and

let k = Q( 3
√
d, ζ3) be its normal closure. Denote by u the index of the subgroup generated

by the units of intermediate fields of the extension k/Q in the group of units of k.

1) If the field k has a 3-class group of type (9, 3), then d = pe, where p is a prime number
congruent to 1 (mod 9) and e = 1 or 2.

2) If p is a prime number congruent to 1 (mod 9), 9 divides the class number of Γ
exactly, and u = 1, then the 3-class group of k is of type (9, 3).
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This result will be underpinned by numerical examples obtained with the computational
number theory system PARI [17] in § 3. In section 2, where Theorem 1.1 is proved, we only
state results that will be needed in this paper. More information on 3-class groups can
be found in [10] and [9]. For the prime ideal factorization in the pure cubic field Q( 3

√
d),

we refer the reader to the papers [8], [5], [4] and [16]. For the prime factorization rules of
the third cyclotomic field Q(ζ3), we refer the reader to [13, Chap. 9, Sec. 1, Propositions
9.1.1–4, pp. 109-111].

Notations:

• The lower case letter p, respectively q, will denote a prime number congruent to 1,
respectively −1, modulo 3;
• Γ = Q( 3

√
d) : a pure cubic field, where d ≥ 2 is a cube-free integer;

• k0 = Q(ζ3) : the cyclotomic field, where ζ3 = e2iπ/3;
• k = Γ(ζ3) : the normal closure of Γ;
• Γ′ and Γ′′ : the two conjugate cubic fields of Γ, contained in k;
• u : the index of the subgroup E0 generated by the units of intermediate fields of the
extension k/Q in the group of units of k;
• 〈τ〉 = Gal (k/Γ), such that τ 2 = id, τ(ζ3) = ζ2

3 , and τ( 3
√
d) = 3

√
d;

• 〈σ〉 = Gal (k/k0), such that σ3 = id, σ(ζ3) = ζ3, and σ( 3
√
d) = ζ3

3
√
d;

• λ = 1− ζ3 is a prime element above 3 of k0;
• q∗ = 1 or 0, according to whether ζ3 is norm of an element of k or not;
• t : the number of prime ideals ramified in k/k0;
• For an algebraic number field L:

− OL, EL : the ring of integers of L, and the group of units of L;

− CL,3, hL : the 3-class group of L, and the class number of L;

− L
(1)
3 , L∗ : the Hilbert 3-class field of L, and the absolute genus field of L.

2 Fields Q( 3
√
d, ζ3) whose 3-Class Group is of Type (9, 3)

2.1 Preliminary results

In [15, Chap. 7, pp. 87–96], Ishida has explicitly given the genus field of any pure field.
For the pure cubic field Γ = Q( 3

√
d), where d is a cube-free natural number, we have the

following theorem.

Theorem 2.1. Let Γ = Q( 3
√
d) be a pure cubic field, where d ≥ 2 is a cube-free integer,

and let p1, . . . , pr be all prime divisors of d such that pi is congruent to 1 (mod 3) for each
i ∈ {1, 2, . . . , r}. Let Γ∗ be the absolute genus field of Γ, then

Γ∗ =
∏r

i=1M(pi) · Γ,
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where M(pi) denotes the unique subfield of degree 3 of the cyclotomic field Q(ζpi). The
genus number of Γ is given by gΓ = 3r.

Remark 2.1. (1) If no prime p ≡ 1 (mod 3) divides d, i.e. r = 0, then Γ∗ = Γ.
(2) For any value r ≥ 0, Γ∗ is contained in the Hilbert 3-class field Γ

(1)
3 of Γ.

(3) The cubic field M(p) is determined explicitly in [12, § 4, Proposition 1, p. 11].
Assuming that hΓ is divisible exactly by 9, we can explicitly construct the absolute

genus field Γ∗ as follows:

Lemma 2.1. Let Γ = Q( 3
√
d) be a pure cubic field, where d ≥ 2 is a cube-free integer.

If hΓ is exactly divisible by 9, then there are at most two primes congruent to 1 (mod 3)
dividing d.

Proof. If p1, . . . , pr are all prime numbers congruent to 1 (mod 3) dividing d, then 3r|hΓ.
Therefore, if hΓ is exactly divisible by 9, then r ≤ 2. So there are two primes p1 and
p2 dividing d such that pi ≡ 1 (mod 3) for i ∈ {1, 2}, or there is only one prime p ≡ 1
(mod 3) with p|d, or there is no prime p ≡ 1 (mod 3) such that p|d.

Lemma 2.2. Let Γ = Q( 3
√
d) be a pure cubic field, where d ≥ 2 is a cube-free integer.

If hΓ is exactly divisible by 9 and if the integer d is divisible by two primes p1 and p2

such that pi ≡ 1 (mod 3) for i ∈ {1, 2}, then Γ∗ = Γ
(1)
3 , (Γ′)∗ = Γ′

(1)
3 and (Γ′′)∗ = Γ′′

(1)
3 .

Furthermore, k · Γ(1)
3 = k · Γ′(1)

3 = k · Γ′′(1)
3 .

Proof. If hΓ is exactly divisible by 9 and d is divisible by two prime numbers p1 and p2

which are congruent to 1 (mod 3), then gΓ = 9 so Γ∗ = Γ
(1)
3 = Γ ·M(p1) ·M(p2), where

M(p1) (respectively M(p2)) is the unique cubic subfield of Q(ζp1) (respectively Q(ζp2)).
The equations {

(Γ′)∗ = Γ′ ·M(p1) ·M(p2) = Γ′
(1)
3 ,

(Γ′′)∗ = Γ′′ ·M(p1) ·M(p2) = Γ′′
(1)
3

can be deduced by the fact that in the general case we have
(Γ′)∗ = Γ′

r∏
i=1

M(pi),

(Γ′′)∗ = Γ′′
r∏
i=1

M(pi),

where pi, for each 1 ≤ i ≤ r, is a prime divisor of d such that pi ≡ 1 (mod 3). From the
fact that hΓ is exactly divisible by 9, we conclude that hΓ′ is exactly divisible by 9 and hΓ′′

is exactly divisible by 9, because Γ, Γ′ and Γ′′ are isomorphic.
Moreover, 

k · Γ(1)
3 = k · Γ ·M(p1) ·M(p2) = k ·M(p1) ·M(p2),

k · Γ′(1)
3 = k · Γ′ ·M(p1) ·M(p2) = k ·M(p1) ·M(p2),

k · Γ′′(1)
3 = k · Γ′′ ·M(p1) ·M(p2) = k ·M(p1) ·M(p2).

Hence, k · Γ(1)
3 = k · Γ′(1)

3 = k · Γ′′(1)
3 .
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Now, let u be the index of units defined in the above notations. We assume that hΓ is
exactly divisible by 9 and u = 1. From [5, § 14, Theorem 14.1, p. 232], we have hk =

u

3
·h2

Γ,
whence hk is exactly divisible by 27. The structure of the 3-class group Ck,3 is described
by the following Lemma:
Lemma 2.3. Let Γ be a pure cubic field, k its normal closure, and u be the index of units
defined in the notations above, then

Ck,3 ' Z/9Z× Z/3Z ⇔ [CΓ,3 ' Z/9Z and u = 1].

Lemma 2.3 will be underpinned in section 3 by numerical examples obtained with the
computational number theory system PARI [17].

Proof. Assume that Ck,3 ' Z/9Z×Z/3Z. Let hΓ,3(respectively, hk,3) be the 3-class number
of Γ (respectively, k), then hk,3 = 27. According to [5, § 14, Theorem 14.1, p. 232], we get
27 = u

3
· h2

Γ,3 with u ∈ {1, 3}, and thus u = 1, because otherwise 27 would be a square in
N, which is a contradiction. Thus h2

Γ,3 = 81 and hΓ,3 = 9.
Let C+

k,3 = {A ∈ Ck,3 | Aτ = A} and C−k,3 = {A ∈ Ck,3 | Aτ = A−1}. According to [9, § 2,
Lemmas 2.1 and 2.2, p. 53], we have Ck,3 ' C+

k,3 × C
−
k,3 and C+

k,3 ' CΓ,3, hence |C−k,3| = 3.
Since Ck,3 is of type (9, 3), we deduce that C−k,3 is a cyclic group of order 3 and C+

k,3 is a
cyclic group of order 9. Therefore, we have

u = 1 and CΓ,3 ' Z/9Z.
Conversely, assume that u = 1 and CΓ,3 ' Z/9Z. By [5, § 14, Theorem 14.1, p. 232], we
deduce that |Ck,3| = 1

3
· |CΓ,3|2, and so |Ck,3| = 27. Furthermore, |C−k,3| = 3 and

Ck,3 ' CΓ,3 × C−k,3 ' Z/9Z× Z/3Z.

2.2 Proof of Theorem 1.1

Let Γ = Q( 3
√
d) be a pure cubic field, where d ≥ 2 is a cube-free integer, k = Q( 3

√
d, ζ3) be

its normal closure, and Ck,3 be the 3-class group of k.
(1) Assume that the 3- class group Ck,3 is of type (9, 3). We first write the integer d in the
form given by equation (3.2) of [9, p. 55]:

d = 3epe11 . . . pevv p
ev+1

v+1 . . . p
ew
w q

f1
1 . . . qfII q

fI+1

I+1 . . . q
fJ
J , (1)

where pi and qi are positive rational primes such that:

pi ≡ 1 (mod 9), for 1 ≤ i ≤ v,
pi ≡ 4 or 7 (mod 9), for v + 1 ≤ i ≤ w,
qi ≡ −1 (mod 9), for 1 ≤ i ≤ I,
qi ≡ 2 or 5 (mod 9), for I + 1 ≤ i ≤ J,
ei = 1 or 2, for 1 ≤ i ≤ w,
fi = 1 or 2, for 1 ≤ i ≤ J,
e = 0, 1 or 2.
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Let C(σ)
k,3 be the ambiguous ideal class group of k/k0, where σ is a generator of Gal (k/k0).

It is known that C(σ)
k,3 is an elementary abelian 3-group, because an ambiguous class C

satisfies σ(C) = C, by definition, and therefore C3 = C · σ(C) · σ2(C) = Nk/k0(C) = 1, since
k0 has class number 1.

The fact that the 3-class group Ck,3 is of type (9, 3) implies that rank C
(σ)
k,3 = 1. In fact,

it is clear that if Ck,3 is of type (9, 3), then rank C
(σ)
k,3 = 1 or 2.

Let us assume that rank C
(σ)
k,3 = 2. From [10, § 5, Theorem 5.3, pp. 97–98], we have

rank Ck,3 = 2t− s,

where the integers t and s are defined in [10, § 5, Theorem 5.3, pp. 97–98] as follows:

t := rank C
(σ)
k,3 ,

s : the rank of the matrix (βi,j) defined in [10, § 5, Theorem. 5.3, pp. 97–98].

Since Ck,3 is of type (9,3), then rank Ck,3 = 2, and according to our hypothesis we have
t = rank C

(σ)
k,3 = 2. So we get s = 2.

By [10, § 5, Theorem 5.3, pp. 97–98], the 3-class group Ck,3 is isomorphic to the direct
product of an abelian 3-group of rank 2(t− s) and an elementary abelian 3-group of rank
s. Here t = s = 2. Thus Ck,3 is isomorphic to the direct product of an abelian 3-group of
rank 0 and an elementary abelian 3-group of rank 2, we get

Ck,3 ' Z/3Z× Z/3Z,

which contradicts the fact that Ck,3 is of type (9, 3). We conclude rank C
(σ)
k,3 = 1.

On the one hand, suppose that d is not divisible by any rational prime p such that p ≡ 1
(mod 3), i.e. w = 0 in Eq. (1) above. According to [9, § 5, Theorem 5.1, p. 61], this implies
that Ck,3 ' CΓ,3 × CΓ,3. Since the 3-group Ck,3 is of type (9, 3), then |Ck,3| = 33, and by
Lemma 2.3 we have CΓ,3 ' Z/9Z, so we get |CΓ,3 × CΓ,3| = 34, which is a contradiction.
Hence, the integer d is divisible by at least one rational prime p such that p ≡ 1 (mod 3).

On the other hand, the fact that the 3-class group Ck,3 is of type (9, 3) implies that
CΓ,3 ' Z/9Z according to Lemma 2.3. Since hΓ is exactly divisible by 9, then according
to Lemma 2.1, there are at most two primes congruent to 1 (mod 3) dividing d.

Now, assume that there are exactly two different primes p1 and p2 dividing d such that
p1 ≡ p2 ≡ 1 (mod 3), then, according to Lemma 2.2, we get:

Γ∗ = Γ
(1)
3 = Γ ·M(p1) ·M(p2),

whereM(p1) (respectively,M(p2)) is the unique subfield of degree 3 of Q(ζp1) (respectively,
Q(ζp2)). If M(p1) 6= M(p2), then Γ ·M(p1) and Γ ·M(p2) are two different subfields of Γ

(1)
3

over Γ of degree 3. According to class field theory, we have

Gal(Γ
(1)
3 /Γ) ∼= CΓ,3 ' Z/9Z.
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Since Gal(Γ
(1)
3 /Γ) is a cyclic 3-group, there exist only one sub-group of Gal(Γ

(1)
3 /Γ) of order

3. By the Galois correspondence, there exist a unique sub-field of Γ
(1)
3 over Γ of degree 3.

We conclude that Γ ·M(p1) = Γ ·M(p2), which is a contradiction.
Thus, M(p1) = M(p2), and then p1 = p2, which contradicts the fact that p1 and p2

are two different primes. Hence, there is exactly one prime congruent to 1 (mod 3) which
divides d. Thus the integer d can be written in the following form:

d = 3epe11 q
f1
1 . . . qfII q

fI+1

I+1 . . . q
fJ
J ,

with p1 ≡ −qi ≡ 1 (mod 3), where p1, e, e1, qi and fi (for 1 ≤ i ≤ J) are defined in Eq.
(1).

Next, since rank C
(σ)
k,3 = 1, then according to [9, § 3, Lemma 3.1, p. 55], there are three

possible cases as follows:

• Case 1 : 2w + J = 1,
• Case 2 : 2w + J = 2,
• Case 3 : 2w + J = 3,

where w and J are the integers defined in Eq. (1) above. We will successively treat these
cases as follows:

• Case 1: We have 2w + J = 1, then w = 0 and J = 1. This case is impossible, because
we have shown above that the integer d is divisible by exactly one prime number congruent
to 1 (mod 3) and thus w = 1.
• Case 2: We have 2w + J = 2, and as in Case 1, we necessarily have w = 1 and J = 0,
which implies that d = 3epe11 , where p1 is a prime number such that p1 ≡ 1 (mod 3),
e ∈ {0, 1, 2} and e1 ∈ {1, 2}. Then,

− If d ≡ ±1 (mod 9), then we necessarily have e = 0.
Assume that p1 ≡ 4 or 7 (mod 9), then d 6≡ ±1 (mod 9) which is an absurd. So
we necessarily have p1 ≡ 1 (mod 9). Thus the integer d will be written in the form
d = pe11 , where p1 ≡ 1 (mod 9) and e1 ∈ {1, 2}.

− If d 6≡ ±1 (mod 9):

∗ If e 6= 0, the integer d is written as d = 3epe11 , where p1 ≡ 1 (mod 3) and
e, e1 ∈ {1, 2}.
∗ If e = 0, then d is written as d = pe11 with p1 ≡ 4 or 7 (mod 9) and e1 ∈ {1, 2}.

• Case 3: We have 2w + J = 3, then we necessarily get w = 1 and J = 1, because
w 6= 0. Thus d = 3epe11 q

f1
1 , where p1 ≡ 1 (mod 3), q1 ≡ −1 (mod 3), e ∈ {0, 1, 2} and

e1, f1 ∈ {1, 2}. Then:

− If d ≡ ±1 (mod 9), we necessarily have e = 0. If p1 or −q1 6≡ 1 (mod 9), then d 6≡ ±1
(mod 9) which is an absurd. It remain only the case where p1 ≡ −q1 ≡ 1 (mod 9).
Then the integer d will be written in the form d = pe11 q

f1
1 , where p1 ≡ −q1 ≡ 1

(mod 9) and e1, f1 ∈ {1, 2}.

6



− If d 6≡ ±1 (mod 9):
According to [10, § 5, p. 92], the rank of C(σ)

k,3 is specified as follows:

rank C
(σ)
k,3 = t− 2 + q∗,

where t and q∗ are defined in the notations.
On the one hand, the fact that rank C

(σ)
k,3 = 1 imply that t = 2 or 3 according to

whether ζ3 is norm of an element of k or not.
On the other hand, we have d = 3epe11 q

f1
1 with p1 ≡ 1 (mod 3) and q1 ≡ −1 (mod 3).

By [13, Chap. 9, Sec. 1, Proposition 9.1.4, p.110] we have q1 is inert in k0, and by
[8, Sec 4, pp. 51-54] we have q1 is ramifed in Γ = Q( 3

√
d). Since d 6≡ ±1 (mod 9),

then 3 is ramifed in Γ by [8, Sec 4, pp. 51-54], and 3Ok0 = (λ)2 where λ = 1 − ζ3.
Since p1 ≡ 1 (mod 3), then by [13, Chap. 9, Sec. 1, Proposition 9.1.4, p.110] we
have p1 = π1π2 where π1 and π2 are two primes of k0 such that π2 = πτ1 , the prime p1

is ramifed in Γ, then π1 and π2 are ramified in k. Hence, the number of prime ideals
which are ramified in k/k0 is t = 4, which contradicts the fact that t = 2 or 3.

We summarize all forms of integer d in the three cases 1, 2 and 3 as follows:

d =


pe11 with p1 ≡ 1 (mod 9),
pe11 with p1 ≡ 4 or 7 (mod 9),
3epe11 6≡ ±1 (mod 9) with p1 ≡ 1 (mod 9),
3epe11 6≡ ±1 (mod 9) with p1 ≡ 4 or 7 (mod 9),

pe11 q
f1
1 ≡ ±1 (mod 9) with p1 ≡ −q1 ≡ 1 (mod 9),

where e, e1, f1 ∈ {1, 2}.

Our next goal is to show that the only possible form of the integer d is the first form
d = pe11 , where p1 ≡ 1 (mod 9) and e1 = 1 or 2.

• Case where d = pe11 , with p1 ≡ 4 or 7 (mod 9):

− If
(

3
p

)
3
6= 1, then according to [3, § 1, Conjecture 1.1, p. 1], we have Ck,3 ' Z/3Z,

which contradict the fact that Ck,3 is of type (9, 3). We note that in this case, the
fields Γ and k are of Type III, respectively, α, in the terminology of [5, § 15, Theorem
15.6, pp. 235-236], respectively, [1, § 2.1, Theorem 2.1, p. 4].

− If
(

3
p

)
3

= 1, then according to [3, § 1, Conjecture 1.1, p. 1], we have Ck,3 '
Z/3Z× Z/3Z, which is impossible. We note that in this case, the fields Γ and k are
of Type I, respectively, β, in the terminology of [5, § 15, Theorem 15.6, pp. 235-236],
respectively, [1, § 2.1, Theorem 2.1, p. 4].
For this case, we see that in [5, § 17, Numerical Data, p. 238], and also in the
tables of [6] which give the class number of a pure cubic field, the prime numbers
p = 61, 67, 103, and 151, which are all congruous to 4 or 7 (mod 9), verify the
following properties:

7



(i) 3 is a residue cubic modulo p;

(ii) 3 divide exactly the class number of Γ;

(iii) u = 3;

(iv) CΓ,3 ' Z/3Z, and Ck,3 ' Z/3Z× Z/3Z.

• Case where d = 3epe11 6≡ ±1 (mod 9), with p1 ≡ 1 (mod 9):
Here e, e1 ∈ {1, 2}. As Q(

3
√
ab2) = Q(

3
√
a2b), we can choose e1 = 1, i.e. d = 3ep1 with

e ∈ {1, 2}. On the one hand, the fact that p1 ≡ 1 (mod 3) implies by [13, Chap. 9, Sec.
1, Proposition 9.1.4, p.110] that p1 = π1π2 with πτ1 = π2 and π1 ≡ π2 ≡ 1 (mod 3Ok0),
the prime p1 is totally ramified in Γ, then π1 and π2 are totally ramified in k and we have
π1Ok = P3

1 and π2Ok = P3
2 , where P1,P2 are two prime ideals of k.

We know that 3Ok0 = λ2Ok0 , with λ = 1 − ζ3 a prime element of k0. Since d 6≡ ±1
(mod 9), then 3 is totally ramified in Γ, and then λ is ramified in k/k0. Hence, the number
of ideals which are ramified in k/k0 is t = 3.

On the other hand, from [13, Chap. 9, Sec. 1, Proposition 9.1.4, p.110] we have
3 = −ζ2

3λ
2, then k = k0( 3

√
x) with x = ζ2

3λ
2π1π2. The primes π1 and π2 are congruent to

1 (mod λ3) because p1 ≡ 1 (mod 9), then according to [1, § 3, Lemma 3.3, p. 17] we have
ζ3 is a norm of an element of k \ {0}, so q∗ = 1. We conclude according to [10, § 5, p. 92]
that rank C

(σ)
k,3 = 2 which is impossible.

• Case where d = 3epe11 6≡ ±1 (mod 9), with p1 ≡ 4 or 7 (mod 9):
Here e, e1 ∈ {1, 2}. So we can choose e = 1, then d = 3pe11 with e1 ∈ {1, 2}. As above we
get π1 and π2, and λ are ramified in k/k0.
Put pOΓ = P3, π1Ok = P3

1 , π2Ok = P3
2 and λOk = I3, where P is a prime ideal of Γ, and

P1,P2 and I are prime ideals of k. According to [14, § 3.2, Theorem 3.5, pp 36-39] we get
Ck,3 is cyclic of order 3 which contradict the fact that Ck,3 is of type (9, 3).
• Case where d = pe11 q

f1
1 ≡ ±1 (mod 9), with p1 ≡ −q1 ≡ 1 (mod 9) :

Since d ≡ ±1 (mod 9), then according to [8, Sec. 4, pp. 51-54] we have 3 is not ramified in
the field Γ, so λ = 1− ζ3 is not ramified in k/k0. As p1 ≡ 1 (mod 3), then by [13, Chap. 9,
Sec. 1, Proposition 9.1.4, p.110] p1 = π1π2 with πτ1 = π2 and π1 ≡ π2 ≡ 1 (mod 3Ok0), so
π1 and π2 are totally ramified in k. Since q1 ≡ −1 (mod 3), then q1 is inert in k0. Hence,
the primes ramifies in k/k0 are π1, π2 and q1. Put x = πe11 π

e1
2 π

f1 , where −q1 = π is a prime
number of k0, then we have k = k0( 3

√
x). The fact that p1 ≡ −q1 ≡ 1 (mod 9) imply that

π1 ≡ π2 ≡ π ≡ 1 (mod λ3), then by [1, § 3, Lemma 3.3, p. 17], ζ3 is a norm of an element
of k \ {0}, so q∗ = 1. Then by [10, § 5, p. 92] we get rank C

(σ)
k,3 = t− 2 + q∗ = 2 which is

impossible.

Finally, we have shown that if the 3-class group Ck,3 is of type (9, 3), then d = pe, where
p is a prime number such that p ≡ 1 (mod 9) and e = 1 or 2. We can see that this result
is compatible with the first form of the integer d in [1, § 1, Theorem 1.1, p. 2].
(2) Suppose that d = pe, with p is a prime number congruent to 1 (mod 9). Here e ∈ {1, 2},
since Q( 3

√
p) = Q( 3

√
p2) we can choose e = 1. From [5, § 14, Theorem 14.1, p. 232], we

have hk = u
3
· h2

Γ, the fact that u = 1 and that hΓ is exactly divisible by 9 implies that hk

8



is exactly divisible by 27.
Since hΓ is exactly divisible by 9, then by [7, Lemma 5.11] we have rank Ck,3 = 2. We
conclude that Ck,3 ' Z/9Z× Z/3Z.

3 Numerical Examples

Let Γ = Q(
3
√
ab2) be a pure cubic field, where a and b are coprime square-free integers.

We point out that Q(
3
√
ab2) = Q(

3
√
a2b). Assume that k = Q(

3
√
ab2, ζ3) and Ck,3 is of type

(9, 3). Using the system Pari [17], we compute class groups for b = 1 and a prime a = p ≡ 1
(mod 9). The following table illustrates our main result Theorem 1.1 and Lemma 2.3. Here
we denote by:

CΓ,3 (respectively, Ck,3) : the 3-class group of Γ (respectively, k);

hΓ,3 (respectively, hk,3) : the 3-class number of Γ (respectively, k).

Table : Some fields Q( 3
√
p, ζ3) whose 3-class group is of type (9, 3).

p p2 p (mod 9) hΓ,3 hk,3 u CΓ,3 Ck,3

199 39601 1 9 27 1 [9] [9, 3]
271 73441 1 9 27 1 [9] [9, 3]
487 237169 1 9 27 1 [9] [9, 3]
523 273529 1 9 27 1 [9] [9, 3]
1297 1682209 1 9 27 1 [9] [9, 3]
1621 2627641 1 9 27 1 [9] [9, 3]
1693 2866249 1 9 27 1 [9] [9, 3]
1747 3052009 1 9 27 1 [9] [9, 3]
1999 3996001 1 9 27 1 [9] [9, 3]
2017 4068289 1 9 27 1 [9] [9, 3]
2143 4592449 1 9 27 1 [9] [9, 3]
2377 5650129 1 9 27 1 [9] [9, 3]
2467 6086089 1 9 27 1 [9] [9, 3]
2593 6723649 1 9 27 1 [9] [9, 3]
2917 8508889 1 9 27 1 [9] [9, 3]
3511 12327121 1 9 27 1 [9] [9, 3]
3673 13490929 1 9 27 1 [9] [9, 3]
3727 13890529 1 9 27 1 [9] [9, 3]
3907 15264649 1 9 27 1 [9] [9, 3]
4159 17297281 1 9 27 1 [9] [9, 3]
4519 20421361 1 9 27 1 [9] [9, 3]
4591 21077281 1 9 27 1 [9] [9, 3]
4789 22934521 1 9 27 1 [9] [9, 3]
4933 24334489 1 9 27 1 [9] [9, 3]
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p p2 p (mod 9) hΓ,3 hk,3 u CΓ,3 Ck,3

4951 24512401 1 9 27 1 [9] [9, 3]
5059 25593481 1 9 27 1 [9] [9, 3]
5077 25775929 1 9 27 1 [9] [9, 3]
5347 28590409 1 9 27 1 [9] [9, 3]

Remark 3.1. Let p is a prime number such that p ≡ 1 (mod 9). Let Γ = Q( 3
√
p), k =

Q( 3
√
p, ζ3) be the normal closure of the pure cubic field Γ and Ck,3 be the 3-part of the

class group of k. If 9 divide exactly the class number of Q( 3
√
p) and u = 1, then according

to Theorem 1.1, the 3-class group of Q( 3
√
p, ζ3) is of type (9, 3). Furthermore, if 3 is not

residue cubic modulo p, then a generators of 3-class group of Q( 3
√
p, ζ3) can be deduced by

[2, § 3, Theorem 3.2, p. 10].
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