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DURFEE-TYPE INEQUALITY FOR COMPLETE INTERSECTION

SURFACE SINGULARITIES

MAKOTO ENOKIZONO

Abstract. We prove that the signature of the Milnor fiber of smoothings of a 2-dimensional
isolated complete intersection singularity does not exceed the negative number determined
by the geometric genus, the embedding dimension and the number of irreducible components
of the exceptional set of the minimal resolution, which implies Durfee’s weak conjecture and
a partial answer to Kerner–Némethi’s conjecture.

Introduction

Let (X, o) be an analytic germ of a 2-dimensional complex isolated complete intersection
singularity with embedding dimension n ≥ 3. As analytic germs, it is isomorphic to the cen-
tral fiber o ∈ h−1(0) of some holomorphic map-germ h = (h1, . . . hn−2) : (C

n, o)→ (Cn−2, 0).
We put Xδ = h−1(δ) for δ ∈ Cn−2 and Bε ⊂ Cn the closed ball of radius ε centered at o.
For a regular value δ ∈ Cn−2 and ε > 0, M = Xδ ∩ Bε is a real 4-dimensional manifold with
boundary and its topology is independent of the choices of δ and ε with ||δ|| > 0 and ε > 0 suf-
ficiently small, which is called the Milnor fiber. The second Betti number µ := rankH2(M,Z)
is called the Milnor number. Let µ+ (resp. µ−, µ0) be the number of positive (resp. negative,
0) eigenvalues of the natural intersection form H2(M,Z) × H2(M,Z) → Z. Then we have
µ = µ+ + µ− + µ0 and call σ := µ+ − µ− the signature of the Milnor fiber M . In [1], Durfee
conjectured that the signature σ is always non-positive, which is nowadays called Durfee’s
weak conjecture (there is a counterexample to the conjecture for the non-complete intersec-
tion case, cf. [6]). Our main theorem in this paper is that Durfee’s weak conjecture is true
for all complete intersection surface singularities. More precisely, we prove the following:

Theorem 0.1 (Theorem 3.1). Let (X, o) be a germ of an isolated complete intersection

surface singularity with embedding dimension n. Let π : X̃ → X be the minimal resolution of

(X, o) and pg := dimCR
1π∗OX̃ the geometric genus of (X, o). Then we have

σ ≤ −
8

3n− 5
pg −#exc(π)

or equivalently,

(0.1)
12(n− 1)

3n− 5
pg ≤ µ+ 1− χtop(exc(π))
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with the equality holding if and only if (X, o) is a rational double point, where #exc(π) is the
number of irreducible components of the exceptional set exc(π) and χtop(exc(π)) its topological
Euler number.

Theorem 0.1 is a generalization of the Durfee-type inequality for hypersurface surface
singularities established in [2]. The coefficient of pg in (3.1) coincides with the number
C2,n−2 defined in [3]. Kerner and Némethi conjectured in [3] that for any isolated complete
intersection singularity of dimension n and embedding dimension n+r with n ≥ 3 or (n, r) =
(2, 1), one has Cn,rpg ≤ µ, where Cn,r is the rational number determined by n and r (more
details, see [3]). They also give counterexamples of complete intersection singularities for the
case of n = 2 and r > 1. Nevertheless, Theorem 0.1 says that Kerner-Némethi’s conjecture
“asymptotically” holds for n = 2 and arbitrary r. Note that Cn,1 = 6 and Durfee’s strong
conjecture is nothing but Kerner-Nemethi’s conjecture for the case of n = 2 and r = 1, which
remains open. Durfee’s weak conjecture for the hypersurface case was first proved by Kollár
and Némethi in [4]
To prove Theorem 0.1, we use the method of invariants of fibered surfaces. A fibered surface

(or a fibration for short) f : S → B is a surjective morphism from a non-singular projective
surface S to a non-singular projective curve B with connected fibers. Let Kf = KS − f ∗KB

denote the relative canonical bundle of f and put χf := degf∗O(Kf). The ratio K2
f/χf of

the self-intersection number K2
f and χf is called the slope of f . In [2], the lower bound of

the slope of fibered surfaces whose general fiber is a plane curve was established. As an
application, a Durfee-type inequality holds for 2-dimensional hypersurface singularities. In
this paper, we consider fibered surfaces whose general fiber is a complete intersection curve
in the projective space and establish the lower bound of the slope of such fibrations under
additional assumptions:

Theorem 0.2 (Theorem 2.1). Let f : S → B be a relatively minimal fibration whose general

fiber F is a complete intersection of n − 1 hypersurfaces of degree d in Pn. Assume the

following conditions:

(1) There is a line bundle L on S such that the complete linear system |L|F | of the restriction

of L to the general fiber F defines the embedding F ⊂ Pn as complete intersection.

(2) Let X be the image of the rational map φ|L|/B : S 99K PB(f∗L). Then any fiber Xt =
X ∩ P(f∗L ⊗ C(t)) over t ∈ B is a complete intersection of n − 1 hypersurfaces of degree d
in P(f∗L ⊗ C(t)) = Pn.

Then we have

K2
f ≥ λn,dχf ,

where the rational number λn,d is defined by

λn,d =
24(n− 1)d− 24(n+ 1)

(3n− 2)d− (3n+ 2)
.

Theorem 0.1 is obtained as an application of Theorem 0.2.
This paper is organized as follows. In §1, we compute some invariants of normal complete

intersection surfaces in a projective bundle on a non-singular projective curve. In particular,
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there are many examples of fibered surfaces whose general fiber is a complete intersection of
n−1 hypersurfaces of degree d in Pn with slope λn,d. In §2, we give a proof of Theorem 0.2 and
state a conjecture about complete intersection curve fibrations. In §3, we show Theorem 0.1
as an application of Theorem 0.2. The proof of Theorem 0.1 is similar to the argument in
[2] which gives a Durfee-type inequality for hypersurface surface singularities.

Acknowledgment. I would like to express special thanks to Prof. Kazuhiro Konno and Prof.
Tadashi Ashikaga for a lot of discussions and supports. I am grateful to Prof. Tomohiro
Okuma, Prof. Masataka Tomari and Prof. Tadashi Tomaru for variable discussions and com-
ments for singularities. I also thank Doctors Hiroto Akaike, Sho Ejiri and Kohei Kikuta for
discussions. The research is supported by JSPS KAKENHI No. 16J00889.

1. Complete intersection surfaces in a projective bundle over a curve

Let B be a non-singular projective curve of genus b, E a locally free sheaf of rank n+1 on B
and πW : W := PB(E)→ B the associated projective bundle on B. Let Hi ∈ |OW (d)⊗π∗

W ai|,
i = 1 . . . , n − 1 be hypersurfaces of relative degree d such that X := H1 ∩ · · · ∩ Hn−1 is a
normal irreducible surface and f := πW |X : X → B the projection. We consider the following
two invariants:

K2
f
= (KX − f

∗
KB)

2 = K2
X − 8(g − 1)(b− 1)

χf = χ(OX)− (g − 1)(b− 1),

where g is the genus of a general fiber F of f . These invariants can be computed easily as
follows.

Lemma 1.1. Let ai be the degree of ai. Then we have

K2
f
= ((n− 1)d− (n+ 1))(d− 1)dn−2

(
(n− 1)ddegE + (n+ 1)

n−1∑

i=1

ai

)

and

χf =
1

24
((3n− 2)d− (3n+ 2))(d− 1)dn−2

(
(n− 1)ddegE + (n+ 1)

n−1∑

i=1

ai

)
.

In particular, K2
f
= λn,dχf holds.

Proof. Put e′ := (n − 1)d − n − 1. Let TW and ΓW respectively denote the numerical
equivalence classes of the tautological line bundle OW (1) and the fiber of πW . Since

KW ∼ −(n + 1)OW (1) + π∗
W (KB + ∧n+1E)

and

KX = (KW +H1 + · · ·+Hn−1)|X ,
3



we have

K2
X = (KW +H1 + · · ·+Hn−1)

2H1 · · ·Hn−1

=

(
e′TW + (

n−1∑

i=1

ai + 2b− 2 + degE)ΓW

)2

(dTW + a1ΓW ) · · · (dTW + an−1ΓW )

= e′dn−1(e′ + 2)degE + e′dn−2(e′ + 2d)

n−1∑

i=1

ai + 4e′dn−1(b− 1),

where the last equality follows from T n+1
W = degE , T n

WΓW = 1 and Γ2
W = 0. Thus we have

K2
f
= K2

X − 4e′dn−1(b− 1) = e′dn−1(e′ + 2)degE + e′dn−2(e′ + 2d)

n−1∑

i=1

ai.

Next, we compute χf . We put

χ(d, a) := χ(OW (−d)⊗ π∗
WOB(−a))

= (−1)n+1

((
d− 1

n

)
(b− 1) +

(
d

n + 1

)
degE +

(
d− 1

n

)
a

)
,

where a is the degree of a divisor a on B. From the exact sequence

0→ OH1∩···∩Hi−1
(−

l∑

j=1

Hnj
−Hi)→ OH1∩···∩Hi−1

(−
l∑

j=1

Hnj
)→ OH1∩···∩Hi

(−
l∑

j=1

Hnj
)→ 0,

we can show by the induction on i that

χ(OH1∩···∩Hi
(−

l∑

j=1

Hnj
)) =

i∑

k=0

(−1)k
∑

1≤j1<···<jk≤i

χ((k + l)d, aj1 + · · ·+ ajk + an1
+ · · ·+ anl

).

Putting i = n− 1 and l = 0, we have

χ(OX) =
n−1∑

k=0

(−1)k
∑

1≤j1<···<jk≤n−1

χ(kd, aj1 + · · ·+ ajk)

= A0(b− 1) + A1degE + A2

n−1∑

i=1

ai,

where

A0 :=

n−1∑

k=0

(−1)n+k+1

(
n− 1

k

)(
kd− 1

n

)
,

A1 :=

n−1∑

k=0

(−1)n+k+1

(
n− 1

k

)(
kd

n+ 1

)
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and

A2 :=
n−1∑

k=0

(−1)n+k+1

(
n− 2

k − 1

)(
kd− 1

n

)
.

For integers m ≥ 1 and l ≥ 0, put

σm,l :=
m∑

k=0

(−1)k
(
m

k

)
kl.

Thus we can see that σm,l = 0 for m > l and

σm,m = (−1)mm!,

σm,m+1 =
(−1)m

2
m(m+ 1)m!,

σm,m+2 =
(−1)m

24
m(m+ 1)(m+ 2)(3m+ 1)m!

from the properties σm,l = m(σm,l−1 − σm−1,l−1) and σm,0 = 0. Thus we can compute A0, A1

and A2 as follows.

A0 =
(−1)n+1

n!
dn−1

(
dσn−1,n −

n(n+ 1)

2
σn−1,n−1

)

=
dn−1e′

2
.

A1 =
(−1)n+1

(n+ 1)!
dn−1

(
d2σn−1,n+1 −

n(n + 1)

2
dσn−1,n +

n(n + 1)(n− 1)(3n+ 2)

24
σn−1,n−1

)

=
(3n− 2)d− (3n+ 2)

24
dn−1(d− 1)(n− 1).

A2 =
(−1)n

n!
dn−2

(
d2σn−2,n +

nd

2
(2d− n(n + 1))σn−2,n−1

+
n(n− 1)

24
(12d2 − 12(n+ 1)d+ (n + 1)(3n+ 2))σn−2,n−2

)

=
(3n− 2)d− (3n+ 2)

24
dn−2(d− 1)(n+ 1).

Thus we have

χf = χ(OX)−
dn−1e′

2
(b− 1) = λ−1

n,dK
2
f
.

✷

Remark 1.2. Taking Hi’s sufficiently general, the surface X is non-singular by Bertini’s theo-
rem. Thus the fibration f = f : X → B is a fibered surface whose general fiber is a complete
intersection of n− 1 hypersurfaces of degree d in Pn with slope λn,d.
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2. Slope inequality for complete intersection curve fibrations

In this section, we prove the following theorem:

Theorem 2.1. Let f : S → B be a relatively minimal fibration whose general fiber F is

a complete intersection of n − 1 hypersurfaces of degree d in Pn. Assume the following

conditions:

(1) There is a line bundle L on S such that the complete linear system |L|F | of the restriction

of L to the general fiber F defines the embedding F ⊂ Pn as complete intersection.

(2) Let X be the image of the rational map φ|L|/B : S 99K PB(f∗L). Then any fiber Xt =
X ∩ P(f∗L ⊗ C(t)) over t ∈ B is a complete intersection of n − 1 hypersurfaces of degree d
in P(f∗L ⊗ C(t)) = Pn.

Then we have

K2
f ≥ λn,dχf ,

where the rational number λn,d is defined by

λn,d =
24(n− 1)d− 24(n+ 1)

(3n− 2)d− (3n+ 2)
.

Let f : S → B be a relatively minimal fibration of genus g whose general fiber is a complete
intersection F = H1 ∩ · · · ∩ Hn−1 ⊂ Pn, Hi ∈ |OPn(d)| and L a line bundle on S satisfying
the conditions (1), (2) in Theorem 2.1. Put e′ := (n−1)d−n−1. Then we have e′L|F ∼ KF

from the adjunction formula. Thus there exists an f -vertical divisor D on S such that
e′L +D ∼ Kf . Let m be a positive integer and e := me′. Then there is a natural injection
f∗L

⊗e → f∗ω
⊗m
f (b) whose cokernel is a torsion sheaf by taking a sufficiently effective divisor

b on B. Let K be the kernel of the natural homomorphism Symef∗L → f∗L
⊗e. Then we

have an exact sequence

(2.1) 0→ K → Symef∗L → f∗ω
⊗m
f (−c)→ T → 0,

where the divisor c is determined as follows. Let b′ be a maximal divisor on B satisfying

Im(Symef∗L → f∗L
⊗e → f∗ω

⊗m
f (b)) ⊂ f∗ω

⊗m
f (b− b

′).

Then we put c := b
′ − b (not necessarily effective). Thus the elementary transformation

P ′ := PB(Sym
ef∗L/K)

τ ′
←− P̃

τ
−→ P := PB(f∗ω

⊗m
f )

occurs with
τ ∗OP (1)− τ ′∗OP ′(1) = π̃∗

c+ Eτ ,

where π̃ : P̃ → B is the projection and Eτ is an effective τ -exceptional divisor. Put P :=
PB(Sym

ef∗L) and W := PB(f∗L). Then there are the natural embedding P ′ ⊂ P as a
relative plane and the relative Veronese embedding W ⊂ P of degree e. Clearly, two rational

maps S 99K W ⊂ P and S 99K P 99K P ′ ⊂ P are coincide. Let ρ : S̃ → S be a resolution of

indeterminacy of two rational maps S 99K P and S 99K P̃ and Φ : S̃ → P and Φ̃: S̃ → P̃
the induced morphisms. Put T := τ ∗OP (1), T

′ := τ ′∗OP ′(1), T := OP(1) and TW := OW (1).

Then we have T|P ′ = T ′ and T|W = eTW . Let F , F̃ , Γ, Γ′, Γ̃, Γ and ΓW respectively be the
6



numerical equivalence classes of the fiber of the natural projections f : S → B, f̃ : S̃ → B,

π : P → B, π′ : P ′ → B, π̃ : P̃ → B, Π : P → B and πW : W → B. Then we can write

T − T ′ ≡ cΓ̃ +Eτ , where the symbol ≡ means the numerical equivalence and c := degc. Put
M := Φ̃∗T and M ′ := Φ̃∗T ′ = Φ∗T. Then we have

(2.2) mρ∗Kf = M + Z

for some effective f̃ -vertical divisor Z. We can also write Kf̃ = ρ∗Kf + E for some effective

ρ-exceptional divisor E. Put X := Φ(S̃), which is nothing but the image of φ|L|/B : S 99K W .
Then we can write as cycles in P,

W ≡ enTN−n + αTN−n−1Γ

and
X ≡ dn−1eTN−1 + βTN−2Γ

for some integers α and β, where N :=
(
e+n
n

)
− 1. Thus we can compute

(2.3) (T|W )n+1 = Tn+1W = endeg(Symef∗L) + α

and

(2.4) M ′2 = T2X = dn−1edeg(Symef∗L) + β.

On the other hand, we have

(2.5) (T|W )n+1 = (eTW )n+1 = en+1degf∗L.

We can regard X as a cycle in W , which is denoted by [X ]W . Then we can write

[X ]W ≡ dn−1T n−1
W + βWT n−2

W ΓW =

(
dn−1

en−1
Tn−1 +

βW

en−2
Tn−2Γ

)
|W

for some integer βW . The numerical equivalence
(
dn−1

en−1
Tn−1 +

βW

en−2
Tn−2Γ

)
W ≡ X

induces

(2.6) β = e2βW +
dn−1

en−1
α.

Combining (2.6) with (2.3), (2.4) and (2.5), we have

βW =
1

e2
β −

dn−1

en+1
α

=
1

e2
M ′2 −

dn−1

en+1
(T|W )n+1

=
1

e2
M ′2 − dn−1degf∗L.(2.7)

From the condition (2) in Theorem 2.1, we can see that X is the zeros of a section of a
vector bundle V of rank n− 1 on W :

7



Lemma 2.2. There exist a vector bundle V on W of rank n− 1 and a section s ∈ H0(W,V )
such that X is the zeros of s and V |π−1

W
(t) ≃ Oπ−1

W
(t)(d)

⊕n−1 for any t ∈ B.

Proof. Let Kd be the kernel of the natural homomorphism

Symdf∗L = πW∗OW (d)→ πW∗OX(d)

and regard it as a relative linear system of πW . Thus by the condition (2) in Theorem 2.1,
X coincides with the relative base locus Bs(Kd), that is, X is correspond to the ideal sheaf
defined by the image of the homomorphism ev : π∗

WKd ⊗ OW (−d) → OW . Hence X is the
zeros of the global section s of OW (d)⊗ π∗

WK
∗
d corresponding to the dual of ev. The vector

bundle V := OW (d)⊗ π∗
WK

∗
d is a desired one. ✷

By the splitting principle, we may assume that c(V ) =
∏n−1

i=1 (1 + ρi), ρi ≡ dTW + aiΓW ,

where c(V ) =
∑

i ci(V ) is the total Chern class of V and then degKd = −
∑n−1

i=1 ai. Since

[X ]W = cn−1(V ) =
∏n−1

i=1 ρi, we have

(2.8) βW = dn−2
n−1∑

i=1

ai = −d
n−2degKd.

Remark 2.3. For example, if X is a complete intersection X = H1 ∩ · · · ∩ Hn−1, Hi ∈
|OW (d) ⊗ π∗

Wai|, then the vector bundle V is the direct sum
⊕n−1

i=1 (OW (d)⊗ π∗
Wai) and

ai = degai.

Since M −M ′ ≡ cF̃ + Φ̃∗Eτ and dn−1e′ = 2g − 2, we get

M ′2 = M2 − 2dn−1ec+ (Φ̃∗Eτ )
2.

We can compute (Φ̃∗Eτ )
2 as follows.

(Φ̃∗Eτ )
2 = (M −M ′ − cF̃ )Φ̃∗Eτ

= −M ′Φ̃∗Eτ

= −T ′Eτ Φ̃(S̃)

= −dn−1eT ′n′

Eτ

= −dn−1eT ′n′

(T − T ′ − cΓ̃)

= −dn−1e((T − cΓ̃−Eτ )
n′

T − T ′n′+1 − c)

= −dn−1e((T n′

− n′cT n′−1Γ̃)T − T ′n′+1 − c)

= −dn−1e(T n′+1 − T ′n′+1 − (n′ + 1)c)

= −dn−1eℓ,

where n′ := (2m− 1)(g − 1)− 1 and ℓ := length(T ). Thus we have

(2.9) M ′2 = M2 − dn−1e(2c+ ℓ).
8



The complete linear system |M ′+ f̃ ∗
a| is free from base points for a sufficiently ample divisor

a on B. Thus by Bertini’s Theorem, we can take a smooth general member C ∈ |M ′ + f̃ ∗
a|.

Put C ′ := Φ(C). Then we can compute the arithmetic genera of C and C ′ independently
and the difference pa(C

′)− g(C) is as follows.

Lemma 2.4. We have

0 ≤ 2pa(C
′)− 2g(C) =

d

e
M2 − dn−1e(d− 1)degf∗L

− dn−1(e′ + 2d)c− dn−1(e′ + d)ℓ−

(
1

m
Z + E

)
C.

Proof. From the adjunction formula KC = (KS̃ + C)|C, we have

2g(C)− 2 = (KS̃ + C)C

= (ρ∗Kf + E + (2b− 2)F̃ + C)C

= (ρ∗Kf + E + (2b− 2)F̃ +M ′ + aF̃ )(M ′ + aF̃ )

=

((
1 +

1

m

)
M +

1

m
Z + E + (2b− 2 + a− c)F̃ − Φ̃∗Eτ

)
·

(
M + (a− c)F̃ − Φ̃∗Eτ

)

=

(
1 +

1

m

)
M2 +

(
1

m
Z + E

)
C

+ dn−1e

(
2b− 2 +

(
2 +

1

m

)
(a− c)− ℓ

)
,(2.10)

where b := g(B) and a := dega.
Next, we compute the arithmetic genus pa(C

′). Since C → C ′ is the normalization of C ′,
the exact sequence

0→ OC′ → ϕ∗OC → Q→ 0

holds on W , where we put ϕ := Φ|C : C → C ′ ⊂W and the cokernel Q is a torsion sheaf on
W which satisfies ch(Q) = chn+1(Q) = pa(C

′)− g(C). Then we have

(2.11) ch(ϕ∗OC) = ch(OC′) + pa(C
′)− g(C).

Applying the Grothendiek Riemann-Roch theorem to ϕ : C →W and ϕ∗OC , we have

ch(ϕ∗OC)td(TW ) = ϕ∗(ch(OC)td(TC)),

where TY is the tangent sheaf of a variety Y and note that Rkϕ∗OC = 0 for k ≥ 1. By
computing this, we have chn(ϕ∗OC) = [C ′]W and

chn+1(ϕ∗OC) = 1− g(C) +
1

2
KWC ′.

9



Combining this with (2.11), we have

(2.12) chn+1(OC′) = 1− pa(C) +
1

2
KWC ′.

On the other hand, from Lemma 2.2, C ′ is the zeros of some global section (s, s′) of the
vector bundle V ⊕ L, where L := OW (e)⊗ π∗

Wa and hence OC′ has the Koszul resolution

0→ ∧n(V ⊕ L)∗ → ∧n−1(V ⊕ L)∗ → · · · → ∧2(V ⊕ L)∗ → (V ⊕ L)∗
(s,s′)∗

−−−→ OW → OC′ → 0.

It follows that

ch(OC′) =

n∑

k=0

(−1)k
∑

1≤i1<···<ik≤n

e−(ρi1+···+ρik )

=
n∑

k=0

(−1)k
∑

1≤i1<···<ik≤n

n+1∑

j=0

(−1)j
(ρi1 + · · ·+ ρik)

j

j!

=

n+1∑

j=0

(
n∑

k=0

(−1)k+j
∑

1≤i1<···<ik≤n

(ρi1 + · · ·+ ρik)
j

j!

)

=

(
1−

1

2

n∑

i=1

ρi

)
n∏

i=1

ρi,

where ρn := c1(L) ≡ eTW + aΓW . Thus we have

(2.13) chn+1(OC′) = −
1

2

(
((n− 1)d+ e)TW +

(
n−1∑

i=1

ai + a

)
ΓW

)
C ′.

Substituting (2.13) into (2.12), we have

2pa(C
′)− 2 =

((
1 +

1

m

)
eTW +

(
2b− 2 + degf∗L+

n−1∑

i=1

ai + a

)
ΓW

)
C ′

= dn−1e

((
1 +

1

m

)
e+ 1

)
degf∗L+ e

((
1 +

1

m

)
e+ d

)
βW

+ dn−1e

(
2b− 2 +

(
2 +

1

m

)
a

)

=
1

e

((
1 +

1

m

)
e + d

)
(M2 − dn−1e(2c+ ℓ))− dn−1e(d− 1)degf∗L

+ dn−1e

(
2b− 2 +

(
2 +

1

m

)
a

)
.(2.14)

Subtracting (2.10) from (2.14), we have the desired equation. ✷

Remark 2.5. If X is a complete intersection X = H1 ∩ · · · ∩ Hn−1, we can calculate pa(C
′)

more easily by the adjunction formula.
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Next, we show the following equality among K2
f , χf , c and ℓ.

Lemma 2.6. We have

(u− dv)degf∗L =

(
1

2
m(m− 1)−

m2v

dn−2e2

)
K2

f + χf

+

(
2dv

e
−

(
1−

1

2m

)
dn−1e

)
c+

(
dv

e
− 1

)
ℓ

for m≫ 0, where

u :=
dn−1

2

(
e2 − ((n− 1)d− n)e + 2(n− 1)r

)
,

v :=
dn−2

2

(
e2 − (nd− (n+ 1))e+ 2(n+ 1)r

)

and

r :=
1

24
(d− 1)((3n− 2)d− (3n+ 2)).

Proof. We can see that K ≃ πW∗IX/W (e), where IX/W is the ideal sheaf of X in W , since the
natural homomorphism

πW∗OX(e)→ f̃∗Φ
∗OW (e)→ f̃∗ρ

∗L⊗e = f∗L
⊗e

is injective and the multiplicative map is decomposed as follows:

Symef∗L = πW∗OW (e)→ πW∗OX(e)→ f∗L
⊗e.

From the Serre vanishing theorem, we have RiπW∗IX/W (e) = RiπW∗OX(e) = 0 for i > 0 and
m≫ 0 and then the following exact sequence holds:

0→ πW∗IX/W (e)→ πW∗OW (e)→ πW∗OX(e)→ 0.

Thus, from (2.1), we have

(2.15) degπW∗OX(e) = degf∗ω
⊗m
f (−c)− ℓ =

m(m− 1)

2
K2

f + χf − (2m− 1)(g − 1)c− ℓ.

On the other hand, from the Grothendieck Riemann-Roch theorem, we have

ch(πW∗OX(e)) = πW∗(ch(OX(e))td(TπW
)),

where TπW
= Ω∗

W/B is the relative tangent sheaf of πW : W → B. From the Euler sequence

0→ ΩW/B(1)→ π∗
W f∗L → OW (1)→ 0,
11



we have c(TπW
) = c((π∗

W f∗L)
∗ ⊗ OW (1)). By the splitting principle, we may assume that

c(f∗L) =
∏n+1

i=1 (1 + ηi) for some ηi ∈ A1(B). Then

c(TπW
) = c((π∗

Wf∗L)
∗ ⊗OW (1))

=

n+1∏

i=1

(1− π∗
W ηi + TW )

= 1 + ((n+ 1)TW − π∗
W c1(f∗L)) +

(
n(n+ 1)

2
T 2
W − nTWπ∗

W c1(f∗L)

)
+ · · · .

Hence we get

(2.16) td(TπW
) = 1 +

1

2
ν1 +

1

12
(ν2

1 + ν2) + · · · ,

where

ν1 = (n+ 1)TW − π∗
W c1(f∗L), ν2 =

n(n+ 1)

2
T 2
W − nTWπ∗

W c1(f∗L).

While we have

(2.17) ch(OX(e)) = ch(OX)ch(OW (e)) = ch(OX)

(
1 + eTW +

e2

2
T 2
W + · · ·

)

and we can compute ch(OX) as follows. The subvariety X can be regarded as the zeros of a
section s of the vector bundle V from Lemma 2.2 and hence OX has the Koszul resolution

0→ ∧n−1V ∗ → ∧n−2V ∗ → · · · → ∧2V ∗ → V ∗ s∗
−→ OW → OX → 0.

Thus we have

ch(OX) =
n−1∑

k=0

(−1)kch(∧kV ∗)

=
n−1∑

k=0

(−1)k
∑

1≤i1<···<ik≤n−1

e−(ρi1+···+ρik )

=
n−1∑

k=0

(−1)k
∑

1≤i1<···<ik≤n−1

n+1∑

j=0

(−1)j
(ρi1 + · · ·+ ρik)

j

j!

=
n+1∑

j=0

(
n−1∑

k=0

(−1)k+j
∑

1≤i1<···<ik≤n−1

(ρi1 + · · ·+ ρik)
j

j!

)

=

(
1−

1

2

n−1∑

i=1

ρi +
1

4

∑

i<i′

ρiρi′ +
1

6

n−1∑

i=1

ρ2i

)
n−1∏

i=1

ρi.(2.18)
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From (2.16), (2.17) and (2.18), we can compute deg(πW∗OX(e)) as follows.

deg(πW∗OX(e)) = degπW∗((ch(OX(e))td(TπW
))n+1)

= udegf∗L+ v
n−1∑

i=1

ai

= (u− dv)degf∗L+
v

dn−2e2
M2 −

dv

e
(2c+ ℓ).(2.19)

where we use (2.7), (2.8) and (2.9). Combining (2.19) with (2.2), (2.15) and Z = 0 for m≫ 0
from the base point free theorem, we have

(u− dv)degf∗L+
v

dn−2e2
m2K2

f −
dv

e
(2c+ ℓ)

=
1

2
m(m− 1)K2

f + χf −

(
1−

1

2m

)
dn−1ec− ℓ,

which implies the desired equation. ✷

Proof of Theorem 2.1. Eliminating the term degf∗L in Lemma 2.4 by using Lemma 2.6, we
have

K2
f = λn,dχf + p1(pa(C

′)− g(C)) + p2ℓ+ p3EC,

where

λn,d :=
(d− 1)e′

r
=

24((n− 1)d− (n + 1))

(3n− 2)d− (3n + 2)

and the coefficients pi can be computed and become positive rational numbers. In particular,
we have K2

f ≥ λn,dχf .

We close this section by stating a conjecture for complete intersection curve fibrations. A
fibered surface f : S → B is said to be a complete intersection curve fibrations of type (n, d)
if the general fiber of f is a complete intersection of n− 1 hypersurfaces of degree d in Pn.

Conjecture 2.7. Let An,d be the set of holomorphically equivalence classes of fiber germs of

relatively minimal complete intersection curve fibrations of type (n, d). Then the Horikawa

index Indn,d : An,d → Q≥0 is defined such that for any relatively minimal complete intersection

curve fibration f : S → B of type (n, d), the slope equality

K2
f = λn,dχf +

∑

p∈B

Indn,d(f
−1(p))

holds.

Note that Conjecture 2.7 holds for n = 2 in [2].
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3. The negativity of the signature of the Milnor fiber

In this section, we prove the following theorem by applying Theorem 2.1.

Theorem 3.1. Let (X, o) be a germ of an isolated complete intersection surface singularity

with embedding dimension n. Let π : X̃ → X be the minimal resolution of (X, o) and pg :=
dimCR

1π∗OX̃ the geometric genus of (X, o). Then we have

σ ≤ −
8

3n− 5
pg −#exc(π)

or equivalently,

(3.1)
12(n− 1)

3n− 5
pg ≤ µ+ 1− χtop(exc(π))

with the equality holding if and only if (X, o) is a rational double point, where #exc(π) is the
number of irreducible components of the exceptional set exc(π) and χtop(exc(π)) its topological
Euler number.

Proof. Let (X, o) be a germ of a 2-dimensional isolated complete intersection singularity
with embedding dimension n + 1 ≥ 3. Then X can be regarded as the central fiber h−1(0)
of a surjective holomorphic map h = (h1, . . . , hn−1) : C

n+1 → Cn−1 with h(o) = 0, where
by algebraization, we may assume that all hi’s are polynomials in C[z1, . . . , zn+1]. We can
naturally regard Cn+1 as a Zariski open subset of Pn × P1. Let X be the closure of X in
Pn× P1. Adding monomials of sufficiently higher order to the defining equations hi, we may
assume that X also has only one singularity o. Let (Z : Z1 : · · · : Zn) and (Z ′ : Zn+1)
respectively denote the homogeneous coodinates of Pn and P1. Then the defining equation
hi(Z,Z1, . . . , Zn;Z

′, Zn+1) of X in Pn × P1 is the bi-homogenization of hi(z1, . . . , zn+1) for
i = 1, . . . , n − 1. We may also assume that all hi’s have the same degree d ≫ 0 with
respect to (Z : Z1 : · · · : Zn). Let π : S → X be the minimal resolution of o ∈ X . Let
f = pr2|X : X → P1 be the second projection and f := f ◦ π : S → P1. We may assume
that f is relatively minimal, since by adding sufficiently higher order terms to the defining
equations, it follows that any component of the central fiber f−1(0) other than exc(π) is not
a (−1)-curve. We can easily check that the fibration f : S → B = P1 satisfies the assumption
of Theorem 2.1. Thus we get

(3.2) K2
f ≥ λn,dχf

from Theorem 2.1. On the other hand, we have

(3.3) K2
f
= λn,dχf

from Lemma 1.1. Let pg = dimCR
1π∗OS be the geometric genus of (X, o) andK the canonical

cycle on exc(π) (that is, K =
∑

i biEi is a cycle on the intersection form exc(π) = ∪iEi

uniquely determined by the genus formula 2pa(Ei) − 2 = (K + Ei)Ei for any Ei). Thus we
have

(3.4) − pg = χf − χf
14



and

(3.5) K2 = K2
f −K2

f
.

Subtracting (3.3) from (3.2) and using (3.4) and (3.5), we have

K2 + λn,dpg ≥ 0.

Since

λn,d =
24((n− 1)d− (n + 1))

(3n− 2)d− (3n+ 2)
≤

24(n− 1)

3n− 2
,

we have

(3.6) K2 +
24(n− 1)

3n− 2
pg ≥ 0

with the equality holding if and only if (X, o) is a rational double point. From Laufer’s
formula [5]

µ = 12pg +K2 + χtop(exp(π))− 1,

Durfee’s equality [1]
2pg = µ+ + µ0

and
χtop(exc(π)) = #exc(π) + 1− µ0,

(3.6) is equivalent to

σ ≤ −
8

3n− 2
pg −#exc(π).

✷
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