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SOME EXPLICIT FORMULAS FOR PARTIAL SUMS OF

MÖBIUS FUNCTIONS

SHŌTA INOUE

Abstract. The purpose of this paper is to give some explicit formulas involving
Möbius functions, which may be known under the generalized Riemann Hypothesis,
but unconditional in this paper. Concretely, we prove explicit formulas of partial
sums of the Möbius function in arithmetic progressions and partial sums of the
Möbius functions on an Abelian number field K. In addition, to obtain these explicit
formulas, we study a certain finite Euler product appearing from certain relation of
primitive characters and imprimitive characters in the present paper.

1. Introduction and statement of results

The classical explicit formula

M∗(x) = lim
ν→∞

∑

|γ|<Tν

xρ

ζ ′(ρ)ρ
− 2 +

∞
∑

n=1

(−1)n−1(2π/x)2n

(2n)!nζ(2n + 1)
(1.1)

was shown by Titchmarsh [20] under the assumption of the Riemann Hypothesis and
the simplicity of zeros of the Riemann zeta-function ζ(s), where we define M∗(x) by

M∗(x) =
∑′

n≤x

µ(n),

µ(n) is the Möbius function,
∑′ indicates that if x is an integer, then the last term is to

be counted with weight 1/2, and {Tν}
∞
ν=1 is a certain sequence satisfying Tν ∈ [ν, ν+1].

In addition, Bartz [1] unconditionally proved the explicit formula

M∗(x) = lim
ν→∞

∑

|γ|<Tν

1

(m(ρ)− 1)!
lim
s→ρ

dm(ρ−1)

dsm(ρ−1)

(

(s− ρ)m(ρ) xs

ζ(s)s

)

(1.2)

− 2 +

∞
∑

n=1

(−1)n−1(2π/x)2n

(2n)!nζ(2n + 1)
,

where {Tν}
∞
ν=1 is a certain sequence satisfying Tν ∈ [ν, 2ν]. It is difficult to apply these

explicit formulas because there are some inconvenient points. For example, the main
term of formula (1.2) is more complicated for higher multiplicity zeros, and it is difficult
to understand the behavior of multiplicity of nontrivial zeros. We do not know even
the boundedness of multiplicity at present. Even if we assume the simplicity of zeros,
there is another problem, that is the behavior of ζ ′(ρ). This is also difficult because
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2 SHŌTA INOUE

this problem is related to the detailed information on the gaps between zeros of the
Riemann zeta-function. Here, the following conjecture is known for this problem.

Conjecture (The Gonek-Hejhal Conjecture). Assume the simple zero conjecture for

the Riemann zeta-function. For λ > −3
2 ,

∑

0<γ<T

∣

∣ζ ′(ρ)
∣

∣

2λ
≍ T (log T )(λ+1)2 .

This conjecture was independently suggested by Gonek [5] and by Hejhal [9]. By
applying this conjecture and the Riemann Hypothesis to a certain truncated form of
(1.1), Ng [17] proved the following sharp estimate

M(x) ≪ x1/2(log x)5/4.

This estimate is stronger than the result

M(x) ≪ x1/2 exp
(

(log x)1/2(log log x)14
)

,

which Soundararajan [19] showed under only the Riemann Hypothesis. From the above
background, it can be seen that the truncated explicit formulas are important to obtain
the exact upper bound for the summatory functions of Möbius functions.

The present paper gives some truncated explicit formulas, which generalize the trun-
cated form of (1.2). Our first purpose is to obtain the explicit formula for the function

M∗(x; q, a) =
∑′

n≤x
n≡a mod q

µ(n),

which is the summatory function of the Möbius function in arithmetic progressions
with (a, q) = 1. This function can be expressed by

M∗(x; q, a) =
1

ϕ(q)

∑

χ mod q

χ(a)
∑′

n≤x

χ(n)µ(n)(1.3)

from the orthogonality of characters. Here the first sum runs over all Dirichlet char-
acters modulo q, and ϕ is the Euler totient function. Therefore, as the first step, we
show the explicit formulas for the summatory function

M∗(x, χ) =
∑′

n≤x

χ(n)µ(n).

Theorem 1. Let x > 0, q ≥ 2, T ≥ max
{

T0, exp
(

q1/3
)

, 2/x
}

with T0 a sufficiently

large absolute constant. Then, uniformly for all primitive Dirichlet characters χ modulo

d with d ≤ q, there exists a Tν ∈ [T, 2T ] satisfying

M∗(x, χ) =
∑

|γ|<Tν

1

(m(ρ)− 1)!
lim
s→ρ

dm(ρ)−1

dsm(ρ)−1

(

(s− ρ)m(ρ)

L(s, χ)

xs

s

)

+Res
s=0

(

xs

L(s, χ)s

)

+

∞
∑

l=1

Res
s=−l

(

xs

L(s, χ)s

)

+R,
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where L(s, χ) is the Dirichlet L-function associated with χ, and m(ρ) is the multiplicity

of the non-trivial zero ρ of L(s, χ), and R satisfies the estimate

R ≪
x

T

(

log(x+ 3) + exp
(

C(log log T )2
))

+min

{

1,
x

T 〈x〉

}

.(1.4)

Here, 〈x〉 denotes the distance from x to nearest square-free integers coprime to q,
other than x itself. Moreover, we find that if χ is an odd character (i.e., χ(−1) = −1),
then for l ≥ 1,

Res
s=−l

(

xs

L(s, χ)s

)

=











(−1)ki2(qx/2π)−(2k−1)

τ(χ)L(2k, χ)(2k − 1)(2k − 1)!
if l is odd with l = 2k − 1,

0 if l is even,

and

Res
s=0

(

xs

L(s, χ)s

)

=
πi

τ(χ)L(1, χ)
,

and that if χ is an even character (i.e., χ(−1) = 1), then

Res
s=−l

(

xs

L(s, χ)s

)

=











(−1)k(qx/2π)−2k

τ(χ)L(2k + 1, χ)k(2k)!
if l is even with l = 2k,

0 if l is odd,

and

Res
s=0

(

xs

L(s, χ)s

)

=
2

τ(χ)L(1, χ)

(

log
(qx

2π

)

+
L′(1, χ)

L(1, χ)
− γ

)

,

where γ is the Euler-Mascheroni constant, and τ(χ) denotes the Gauss sum

τ(χ) =

q
∑

a=1

χ(a) exp

(

2πia

q

)

.

This explicit formula is the case of primitive characters. On the other hand, for our
purpose, we need the analogue of Theorem 1 for imprimitive characters. Here we can
associate an imprimitive character χ with a primitive character χ∗ inducing χ by the
formula

L(s, χ) = L(s, χ∗)
∏

p|q

(

1−
χ∗(p)

ps

)

.

Here we put

Fq,χ∗(s) :=
∏

p|q

(

1−
χ∗(p)

ps

)

.(1.5)

In the following, we consider the case Fq,χ∗ 6≡ 1. Then this function Fq,χ∗ has zeros only
on imaginary axis. In addition, from the uniqueness of the prime factorization, we can
see that all zeros of Fq,χ∗ are simple except the zero at s = 0. Now, by studying Fq,χ∗ ,
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we obtain an explicit formula for imprimitive characters as the following theorem. Here
we define the arithmetic function rad(n) by

rad(n) =
∏

p|n

p.

Theorem 2. Let x > 0, q ≥ 2, T ≥ max
{

T0, exp
(

q1/3
)

, 2/x
}

with T0 a sufficiently

large absolute constant, χ be an imprimitive Dirichlet character modulo q, and χ∗

be the primitive character inducing χ. Then, uniformly for all imprimitive Dirichlet

character modulo q with Fq,χ∗ 6≡ 1, there exist Tν ∈ [T, 2T ] and T∗ ∈ [Tν , Tν + 1]
satisfying

M∗(x, χ) =
∑

|γ|<Tν

1

(m(ρ)− 1)!
lim
s→ρ

dm(ρ)−1

dsm(ρ)−1

(

(s − ρ)m(ρ)

L(s, χ)

xs

s

)

+
∑

|η|<T∗

Res
s=iη

(

xs

L(s, χ)s

)

+

∞
∑

l=1

1

Fq,χ∗(−l)
Res
s=−l

(

xs

L(s, χ∗)s

)

+R,

where the second sum on the right hand side runs over zeros of L(s, χ) on the imag-

inary axis, and R is the error term satisfying estimate (1.4). In addition, if x ≥

qc exp
(

c(log T )2/3(log log T )1/3
)

holds for a sufficiently large constant c, then we have

∑

|η|<T∗

Res
s=iη

(

xs

L(s, χ)s

)

=
(log x)r+1−κ

L(r+1−κ)(0, χ)
+Oq((log x)

r−κ)(1.6)

+O
(

(log x)ω(q
′/b′) exp

(

C
√

ω (q′/b′) log (q′/b′) log log x
))

.

Here, b is the modulus of χ∗, q′ = rad(q), b′ = rad(b), C is a positive absolute constant,

κ = κ(χ) denotes

κ =

{

0 if χ is an even character,

1 if χ is an odd character,

ω(q) is the number of distinct prime factors of q, and r indicates the number of the

prime factors p of q with χ∗(p) = 1.

From the above two theorems, we can obtain the explicit formula for M∗(x; q, a)
that is the our first purpose. To abbreviate we define L−1(s; q, a) by

L−1(s; q, a) :=
1

ϕ(q)

∑

χ mod q

χ(a)L(s, χ)−1,

where a, q are positive integers with (a, q) = 1. The following corollary is our first
main result in the present paper.

Corollary 1. Let x > 0, T ≥ max
{

T0, exp
(

q1/3
)

, 2/x
}

with T0 a sufficiently large

absolute constant, a, q ∈ Z>0 with (a, q) = 1. Then, there exist some Tν ∈ [T, 2T ] and
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T∗ ∈ [Tν , Tν + 1] satisfying

M∗(x; q, a) =
∑

|γ|<Tν

1

(m(ρ)− 1)!
lim
s→ρ

dm(ρ)−1

dsm(ρ)−1

(

(s − ρ)m(ρ)L−1(s; q, a)
xs

s

)

+
∑

|η|<T∗

Res
s=iη

(

L−1(s; q, a)
xs

s

)

+

∞
∑

l=1

Res
s=−l

(

L−1(s; q, a)
xs

s

)

+R,

where the first sum runs over non-trivial zeros ρ = β + iγ of Dirichlet L-functions
modulo q, and the second sum runs over zeros iη of imprimitive Dirichlet L-functions
on imaginary axis. Futhermore, R is the error term satisfying estimate (1.4), and the

second series on the right hand side is estimated as

∑

|η|<T∗

Res
s=iη

(

L−1(s; q, a)
xs

s

)

=
(log x)ω(q)+1

ϕ(q)L(ω(q)+1)(0, χ0)
+O

(

ϕ(q)−1(log x)ω(q) exp
(

C
√

ω(q) log(q) log log x
))

+Oq

(

(log x)ω(q)
)

,

where χ0 is the principal character modulo q, and C is a positive absolute constant. In

particular, we have

∑

|η|<T∗

Res
s=iη

(

L−1(s; q, a)
xs

s

)

+
∞
∑

l=1

Res
s=−l

(

L−1(s; q, a)
xs

s

)

∼
(log x)ω(q)+1

ϕ(q)L(ω(q)+1)(0, χ0)
(x → +∞).

To prove the above theorems, we need some upper bound of 1/L(s, χ) in certain
domains, which is embodied in the following two propositions.

Proposition 1. Let α ≥ 13, T ≥ T0(α) > 0, and 1 ≤ Q ≤ (log T )α/4, where T0(α) is

a sufficiently large constant depending only on α. Then, we have

min
T≤t≤2T









max
1
2
≤σ≤2

χ∈S(Q)

|L(σ + it, χ)|−1









≤ exp(Cα(log log(QT ))2),

where C is a positive absolute constant, and S(Q) is the set of all primitive Dirichlet

characters modulo q with q ≤ Q.

This proposition is the consequence for primitive Dirichlet characters. On the other
hand, we need a similar result for imprimitive Dirichlet characters to prove Theorem
2. Then we need the upper bound of 1/Fq,χ∗ , which is the following proposition.

Proposition 2. Let q ≥ 2 be an integer, |T | ≥ ω(q), S1(q) be a nonempty subset of

the set of all imprimitive Dirichlet characters modulo q with Fq,χ∗ 6≡ 1, and d be the
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smallest modulus of a primitive character χ∗ inducing χ with χ ∈ S1(q). Then we have

min
t∈[T,T+1]






max
|σ|≤h

χ∈S1(q)

|Fq,χ∗(σ + it)|−1







≤ exp

(

C ′′ω
(

q′/d′
)

log
(

#S1(q)ω
(

q′/d′
)

+ 2
)

(

1 +

√

log (q′/d′) /ω (q′/d′)

log (#S1(q)ω (q′/d′) + 2)

))

,

where C is a sufficiently large positive absolute constant, q′ = rad(q), d′ = rad(d), and

h ≍
√

ω(q′/d′)/ log(q′/d′)
log(#S1(q)ω(q′/d′)+2) .

We are going to prove some properties of Fq,χ∗ including this proposition in section
3.

Here we note that Proposition 1 is an extension to Dirichlet L-functions of the result
in the case of the Riemann zeta-function by Ramachandra and Sankaranarayanan [18,
Theorem 1.2]. This result is useful when we prove some explicit formulas including
the above formulas. For example, Kühn, Robles and Roy showed an explicit formula
involving the Möbius function and a primitive Dirichlet character under the Riemann
Hypothesis and the simple zero conjecture for Dirichlet L-functions [11, Theorem 1.1
(ii)]. The author expects that it is possible to prove its explicit formula without
the Riemann Hypothesis for Dirichlet L-functions. In fact, they use the Riemann
Hypothesis for Dirichlet L-functions only in the proof of their Lemma 2.2, and in this
paper, we are going to prove Proposition 1 which is an unconditional alternative of
their Lemma 2.2.

One more useful point of this consequence is the uniformity for Dirichlet characters
modulo q with q ≤ Q. From this uniformity, there are some applications. For example,
one of the applications is that we can take Tν not depending on the characters modulo
q in Corollary 1. In addition, by the following result, we can apply Proposition 1 to a
certain number field.

Proposition 3 (Theorem 8.2 in [16]). Let K/Q be an Abelian number field, K ⊂ Km

be the m-th cyclotomic field, and X(K) be the group of all characters Gal(Km/Q)
which are equal to unity on Gal(Km/K). Then we have

ζK(s) =
∏

χ∈X(K)

L(s, χ∗),

where χ∗ is the primitive Dirichlet character inducing χ.

The following corollary is an immediate consequence of Propositions 1 and 3.

Corollary 2. Let α ≥ 13 and T ≥ T0(α) > 0 with T0(α) a sufficiently large constant

depending only on α. If K is an Abelian number field, Km is the smallest cyclotomic

field satisfying K ⊂ Km, then we have

min
T≤t≤2T

(

max
1
2
≤σ≤2

|ζK(σ + it)|−1

)

≤ exp(Cα(#X(K))(log log(mT ))2)

for m ≤ (log T )α/4, where C is a positive absolute constant.
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Remark 1. Corollary 2 is a consequence for an Abelian number field. On the other
hand, probably, it is difficult to extend Corollary 2 to any number field. The reason is
that a zero density theorem for Dirichlet L-functions in the region close to critical line
plays an important role in the proof of Proposition 1, but it is difficult to obtain the
zero density theorem of the same type for Dedekind zeta-functions.

By Corollary 2, we can obtain the explicit formula for the summatory function of
the Möbius function µK on an Abelian number field K. This Möbius function µK is
defined by

µK(a) =







1 if a = OK ,
(−1)k if a is the product of k distinct prime ideals,

0 otherwise.

Here, we define the summatory function M∗
K(x) by

M∗
K(x) =

∑′

N(a)≤x

µK(a),

where the sum on the right hand side runs over integral ideals a of the ring OK ,
and N(a) is the absolute norm of a, and

∑′ indicates that if x is an integer, then
∑′

N(a)≤x =
∑

N(a)<x +
1
2

∑

N(a)=x. Then we obtain the following theorem.

Theorem 3. Let K be an Abelian number field, Km be the smallest cyclotomic field

satisfying K ⊂ Km, x > 0, T ≥ max
{

T0, exp
(

m1/3
)

, 2/x
}

with T0 a sufficiently large

absolute constant. Then, there exist some Tν ∈ [T, 2T ] satisfying

M∗
K(x) =

∑

|γ|<Tν

1

(m(ρ)− 1)!
lim
s→ρ

dm(ρ)−1

dsm(ρ)−1

(

(s− ρ)m(ρ) xs

ζK(s)s

)

+
∞
∑

l=0

Res
s=−l

(

xs

ζK(s)s

)

+R′.

Here, R′ satisfies the estimate

R′ ≪
x

T
min

{

enK/x(log(x+ 2))nK , κK log(x+ 2) +
Φ0(K)

(log(x+ 2))−1 + 1/nK

}

(1.7)

+ exp
(

CnK(#X(K))(log log T )2
)

+ anx min

{

1,
x

T |x− nx|

}

,

where nK is the degree of K, κK is the residue of ζK at s = 1, and Φ0(K) is a constant

depending only on K such that
∣

∣

∣

∣

∣

∣

∑

N(a)≤x

1− κKx

∣

∣

∣

∣

∣

∣

≤ Φ0(K)x1−1/nK .

In addition, let nx denote one of the nearest positive integer from x other than x itself

such that there exist ideals a ⊂ OK with N(a) = nx and µK(a) 6= 0. If there exist

several such integers, then we understand that nx is the one that anx is the biggest

among them. Moreover, we have

Res
s=0

(

xs

ζK(s)s

)

= −
2r1+r2πr2(log x)r1+r2−1

|dK |1/2κK
+OK

(

(1− δ0,r1+r2−1)| log x|
r1+r2−2

)

,



8 SHŌTA INOUE

and

Res
s=−l

(

xs

ζK(s)s

)

≪















CnKx−l

lnK/2+1

(

2πe

l

)nK l

(log(x+ 3))r1+r2−1 if l is even,

(1− δ0,r2)
CnKx−l

lnK/2+1

(

2πe

l

)nK l

(log(x+ 3))r2−1 if l is odd

for l ∈ Z≥1, where r1 is the number of real embeddings, 2r2 is the number of complex

embeddings, and δi,j is the Kronecker delta. In particular, we have

∞
∑

l=0

Res
s=−l

(

xs

ζK(s)s

)

∼ −
2r1+r2πr2(log x)r1+r2−1

|dK |1/2κK
(x → +∞).

Here we do not consider refined upper bounds of Φ0(K), but it is studied by Murty
and Order in [15].

Moreover, as one more application of Proposition 1, there are the following re-
sults for the sum involving derivative functions. The following some theorems are the
generalization of the result in the case of the Riemann zeta-function by Garaev and
Sankaranarayanan [4].

Theorem 4. Let χ be a primitive Dirichlet character modulo q, and assume the sim-

plicity of all complex zeros of L(s, χ). Then, for T > exp
(

q1/3
)

, there exist some

Tν ∈ [T, 2T ] satisfying

∑

0<γ<Tν

1

L′(ρ, χ)
=

Tν

2π
+O

(

exp
(

C(log log T )2
)

+ C(χ)
)

,

where the sum on the left hand side runs over non-trivial zeros ρ = β + iγ of L(s, χ),
and C(χ) is a sufficiently large constant depending only on χ. Moreover, for any

T > T0(q) > 0 with a sufficiently large constant T0(q) depending only on q, we have

∑

0<γ≤T

1

|L′(ρ, χ)|
≫ T.(1.8)

In particular, we also have

1

ϕ(q)

∑

χ mod q

∑

0<γ≤T

1

|L′(ρ, χ)|
≫ T.(1.9)

We can obtain a theorem for ζK(s) with an Abelian number field K, similar to
Theorem 4. It is the following result.

Theorem 5. Let K be an Abelian number field, Km be the smallest cyclotomic field

satisfying K ⊂ Km, and assume the simplicity of all complex zeros of ζK(s). Then,

for T > exp
(

m1/3
)

, there exist some Tν ∈ [T, 2T ] satisfying

∑

0<γ<Tν

1

ζ ′K(ρ)
=

Tν

2π
+O

(

exp
(

C(#X(K))(log log T )2
)

+ C(K)
)

,

where X(K) is the same as in Proposition 3, the sum on the left hand side runs over

non-trivial zeros ρ = β + iγ of L(s, χ), and C(K) is a sufficiently large constant
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depending only on K. In particular, for any T ≥ T0(K) > 0 with a sufficiently large

constant T0(K) depending only on K, we have

∑

0<γ≤T

1

|ζ ′K(ρ)|
≫ T.(1.10)

We omit the proof of Theorem 5 because the proof is almost the same as the proof
of Theorem 4 by using Corollary 2.

Here we mention some comments on (1.9) and (1.10). These results are useful when
we consider the exact behavior of some partial sum of some Möbius functions under a
conjecture. In fact, estimates (1.9) and (1.10) can be applied to show some Ω-results for
certain summatory functions of the Möbius functions under the Linear Independence
Conjecture. Here the Linear Independence Conjecture is the following conjecture.

Conjecture (Linear Independence Conjecture for Dedekind zeta-functions (cf. [3])).
The positive imaginary parts of the zeros of any Dedekind zeta-function are linearly

independent over Q.

Note that the Linear Independence Conjecture for Dedekind zeta-functions implies
the same type conjecture for Dirichlet L-functions by Proposition 3.

Now by estimates (1.9) and (1.10), as extension of Ingham’s theorem [10], we can
obtain that, for (a, q) = 1,

lim
x→∞

M(x; q, a)

x1/2
= ±∞,

and, for any Abelian number field K,

lim
x→∞

MK(x)

x1/2
= ±∞(1.11)

under the Linear Independence Conjecture for Dedekind zeta-functions. These proofs
are similar to the proof of Corollary 15.7 in [14]. In addition, we can remove the
condition “Abelian” in (1.11) by assuming the Riemann Hypothesis for Dedekind zeta-
functions.

Remark 2. We can generalize the above two theorems to the statement which is anal-
ogous to the Landau-Gonek formula (cf. [2, Proposition 2] and [6, Theorem 1]), i.e.
for some Tν ∈ [T, 2T ],

∑

0<γ<Tν

xρ

L′(ρ, χ)
,
∑

0<γ<Tν

xρ

ζ ′K(ρ)
(1.12)

are estimated by a little modified asymptotic formula with the original Landau-Gonek
formula under the simple zero conjecture for the corresponding function. Moreover,
if the Riemann Hypothesis for the corresponding function F (s)(= L(s, χ) or ζK(s))
and |F (ρ)|−1 ≪ |ρ|1−δ for some fixed constant δ > 0 are also true, then we have an
analogue of the Landau-Gonek formula for (1.12) for any sufficiently large T > 0. We
only mention this fact here because the author cannot find some useful applications of
these consequences.

Here the author raises the following conjecture suggested by the above results.
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Conjecture 1. Let χ be a primitive Dirichlet character, and K be an Abelian number

field. Then
∑

0<γ≤T

1

L′(ρ, χ)
,
∑

0<γ≤T

1

ζ ′K(ρ)
∼

T

2π
(T → ∞).

We can prove this conjecture in the case of the Riemann zeta-function under some
known conjectures that are the Riemann Hypothesis, the simple zero conjecture and
the estimate |ζ ′(ρ)|−1 ≪ |ρ|1/3+ε. In fact, we can obtain the following asymptotic
formula

∑

0<γ≤T

1

ζ ′(ρ)
=

T

2π
+Oε

(

T 1/3+ε
)

under these conjectures. The present paper does not give the proof of this estimate
because it is almost similar to the proof of Theorem 15.6 in [14].

2. On estimates of Dirichlet L-functions in certain domains

In this section, we are going to show some estimates of Dirichlet L-functions includ-
ing Proposition 1. Firstly, we refer to an important result on the zero density theorem
for Dirichlet L-functions by Montgomery.

Lemma 1 (Theorem 1 in [12]). Let S(Q) denote the set of all primitive Dirichlet

characters modulo q with q ≤ Q. For Q ≥ 1, T ≥ 2, and 1
2 ≤ σ ≤ 1, we have

∑

χ∈S(Q)

Nχ(σ, T ) ≪ (Q2T )
3(1−σ)
2−σ (log(QT ))13,

where
∑∗

χ denotes a sum over all primitive Dirichlet characters modulo q, and Nχ(σ, T )

is the number of zeros ρ of L(s, χ) with Re(ρ) ≥ σ and |Im(ρ)| ≤ T .

By using this lemma, we show the following proposition.

Proposition 4. Let α ≥ 13, T ≥ T0(α) > 0 with T0(α) a sufficiently large number

depending only on α, and 1 ≤ Q ≤ (log T )α/4. Then there exists a closed interval J0
of length (log(QT ))α/3 contained in [T, 2T ] such that

max
σ≥1/2+14αr,t∈J0

χ∈S(Q)

|logL(s, χ)| ≪ α log log(QT ),

where r = (log log(QT ))2(log(Q2T ))−1.

Proof. Let D = α
3 and Ij =

[

T + 2(j − 1)(log(QT ))D, T + 2j(log(QT ))D
)

. By Lemma

1, if σ ≥ 1
2 + α(log log(QT ))(log(Q2T ))−1, then

∑

χ∈S(Q)

Nχ(σ, 2T ) −
∑

χ∈S(Q)

Nχ(σ, T ) ≤ CQ2T (log(QT ))−α.(2.1)

Here C is a sufficiently large absolute constant. Now we consider the disjoint rectangles

(σ, t) ∈ Rj =

[

1

2
+ α(log log(QT ))(log(Q2T ))−1, 2

]

× Ij ,

which we may regard subsets in the complex plane. The number of these rectangles
is N =

[

1
2T (log(QT ))−D

]

. By inequality (2.1), if Q ≤ (log T )α/4, then the number of
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zeros of Dirichlet L-functions attached to primitive characters modulo q with q ≤ Q in
the rectangle R =

⊔N
j=1Rj is less than CT (log(QT ))−α/2. Therefore, if T ≥ T0(α) for

sufficiently large number T0(α) depending only on α, then the number of rectangles Rj

not having zeros of the Dirichlet L-functions is greater than N − CT (log(QT ))−α(≥
N/2).

Let J be the set of all j such that Rj does not include zeros of those Dirichlet L-
functions. By using the Euler product for L(s, χ) and the Taylor expansion, for σ > 1,
we find that

logL(s, χ) =
∑

p

χ(p)p−s +
1

2

∑

p

χ(p)2p−2s +
∑

p

∞
∑

n=3

χ(p)n

npns

=: P1(s, χ) +
1

2
P2(s, χ) + Ψ(s, χ),(2.2)

and that P2(s, χ) is regular on σ > 1/2, and Ψ(s, χ) is regular on σ > 1/3 and bounded
on σ ≥ 1/2. In addition, logL(s, χ) is regular on Rj(j ∈ J) since L(s, χ) does not have
zero on the same domain. Hence P1(s, χ) is analytically continued to Rj(j ∈ J).

Let k be a positive integer. We define ak,χ by

(

P1(s, χ) +
1

2
P2(s, χ)

)k

=

∞
∑

n=1

ak,χ(n)

ns
.

We can estimate |ak,χ(n)| by the following way. If ak,χ(n) 6= 0, then n can be written

in the form n = pl11 · · · plkk (li ∈ {1, 2}). The number of ways which one can express n

by ordering pl11 , . . . , p
lk
k in different ways is at most k!. This means that we have the

inequality

|ak,χ(n)| ≤ k! ≤ kk.

Hence, by the boundedness of ak,χ(n) with respect to n,

∞
∑

n=1

ak,χ(n)

ns
exp

(

−
n

X

)

is an entire function for any X > 0. Here, as our first step, we show that if X =
(

Q2T
)1/4

, and k = [α log log(QT )], then we have

(

P1(s, χ) +
1

2
P2(s, χ)

)k

=

∞
∑

n=1

ak,χ(n)

ns
exp

(

−
n

X

)

+O(1)(2.3)

for any j ∈ J and (σ, t) ∈ R′
j, where R′

j = [12 + 14k(log log(QT ))(log(Q2T ))−1, 2] × I ′j
with I ′j = [T + 2(j − 1)(log(QT ))D + (log(QT ))2, T + 2j(log(QT ))D − (log(QT ))2].
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The proof is as follows. Using a formula for Abelian weight (cf. (5.25) in [14]) and
the Stirling formula, if K = (log(QT ))2, then we have

∞
∑

n=1

ak,χ(n)

ns
exp

(

−
n

X

)

=
1

2πi

∫ 2+i∞

2−i∞

(

P1(s+ w,χ) +
1

2
P2(s + w,χ)

)k

Γ(w)Xwdw

=
1

2πi

∫ 2+iK

2−iK

(

P1(s+ w,χ) +
1

2
P2(s+ w,χ)

)k

Γ(w)Xwdw

+O
(

kk(log(QT ))3e−π(log(QT ))2/2X2
)

.

Here we consider the estimate of the integral on the right-hand side. By the Borel-
Carathéodry lemma, we can find that

| logL(s, χ)| ≤
2|s − a|

R− |s− a|
max

|s−a|=R
Re(logL(s, χ)) +

R+ |s− a|

R− |s− a|
| logL(a, χ)|

holds for |s − a| < R with R = 2, a = 5
2 + k(log log(QT ))(log(Q2T ))−1 + it, t ∈ Ij

′.
Hence we have

| logL(s, χ)| ≪ (log(QT ))2(log log(QT ))−2

for σ ≥ 1
2 + 2αk(log log(QT ))(log(Q2T ))−1, t ∈ Ij

′ since L(s, χ) ≪ Q|t| holds for
σ ≥ 1/2. By this estimate and the boundedness of Ψ(s, χ) for σ ≥ 1/2, we have

∣

∣

∣

∣

P1(s, χ) +
1

2
P2(s, χ)

∣

∣

∣

∣

k

= |logL(s, χ)−Ψ(s, χ)|k

≤ Ck(log(QT ))2k(log log(QT ))−k(2.4)

for σ ≥ 1
2+2αk(log log(QT ))(log(Q2T ))−1, t ∈ Ij

′. In addition, by the residue theorem,

if β = 12k(log log(QT ))(log(Q2T ))−1, then

1

2πi

∫ 2+iK

2−iK

(

P1(s+ w,χ) +
1

2
P2(s+ w,χ)

)k

Γ(w)Xwdw =

1

2πi

(
∫ 2+iK

−β+iK
+

∫ −β+iK

−β−iK
+

∫ −β−iK

2−iK

)(

P1(s+ w,χ) +
1

2
P2(s+ w,χ)

)k

Γ(w)Xwdw

+

(

P1(s, χ) +
1

2
P2(s, χ)

)k

holds for σ ≥ 1
2 + 14k(log log(QT ))(log(Q2T ))−1, t ∈ I ′j. By inequality (2.4) and the

Stirling formula, we have

1

2πi

∫ 2±iK

−β±iK

(

P1(s + w,χ) +
1

2
P2(s+ w,χ)

)k

Γ(w)Xwdw

≪ Ck(log(QT ))2k+3(log log(QT ))−2ke−
π
2
(log(QT ))2X2,

and

1

2πi

∫ −β+iK

−β−iK

(

P1(s+ w,χ) +
1

2
P2(s+ w,χ)

)k

Γ(w)Xwdw

≪ β−1X−βCk(log(QT ))2k(log log(QT ))−2k.
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From the above estimates, if X = (Q2T )1/4, and k = [α log log(QT )], then we obtain
the formula (2.3).

Next we consider the function

F2k(T, χ) :=
∑

j∈J

max
s∈Rj

′

| logL(s, χ)|2k.

By (2.2) and (2.3), we have

| logL(s, χ)|2k ≤ 22k
(

|P1(s, χ) +
1

2
P2(s, χ)|

2k + |Ψ(s, χ)|2k
)

≤ 42k

∣

∣

∣

∣

∣

∞
∑

n=1

ak,χ(n)

ns
exp

(

−
n

X

)

∣

∣

∣

∣

∣

2

+ C2k.

Therefore, if r = (log log(QT ))2(log(Q2T ))−1, and sj is an element of R′
j satisfying

max
s∈R′

j

| logL(s, χ)|2k = | logL(sj , χ)|
2k,

then we have

| logL(sj, χ)|
2k ≪ 42k

∣

∣

∣

∣

∣

∞
∑

n=1

ak,χ(n)

nsj
exp

(

−
n

X

)

∣

∣

∣

∣

∣

2

+ C2k

=
42k

πr2

∣

∣

∣

∣

∣

∣

∫ ∫

|s−sj|≤r

(

∞
∑

n=1

ak,χ(n)

ns
exp

(

−
n

X

)

)2

dσdt

∣

∣

∣

∣

∣

∣

+ C2k

≪
42k

r2

∫ ∫

|s−sj|≤r

∣

∣

∣

∣

∣

∞
∑

n=1

ak,χ(n)

ns
exp

(

−
n

X

)

∣

∣

∣

∣

∣

2

dσdt+ C2k

by the mean value theorem on analytic functions. By the disjointness of the domains
|s− sj| ≤ r for each j and the estimate

∣

∣

∣

∣

∣

∣

∑

n>X2

ak,χ(n)

ns
exp

(

−
n

X

)

∣

∣

∣

∣

∣

∣

≤ kk
∑

n>X2

1

n1/2
exp

(

−
n

X

)

= kk
∞
∑

m=0

∑

2mX2<n≤2m+1X2

1

n1/2
exp

(

−
n

X

)

≤ kk
∞
∑

m=0

2
m
2 X exp (−2mX)

≤ kkX

(

exp(−X) +

∞
∑

m=1

(

21/2e−X
)m
)

≪ kkX exp(−X),

we have

F2k(T, χ) ≪
42k

r2

∫ ∫

E

∣

∣

∣

∣

∣

∣

∑

n≤X2

ak,χ(n)

ns
exp

(

−
n

X

)

∣

∣

∣

∣

∣

∣

2

dσdt

+
(

C2k + r−2(4k)2kX2 exp(−2X)
)

N,
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where E is the domain with 1
2 ≤ σ ≤ 2, T ≤ t ≤ 2T . As for the remaining integral, we

have
∣

∣

∣

∣

∣

∣

∑

n≤X2

ak,χ(n)

ns
exp

(

−
n

X

)

∣

∣

∣

∣

∣

∣

2

=
∑

m,n≤X2

ak,χ(m)ak,χ(n)

mσ+itnσ−it
exp

(

−
m+ n

X

)

=











∑

m,n≤X2

m6=n

+
∑

m,n≤X2

m=n











ak,χ(m)ak,χ(n)

mσ+itnσ−it
exp

(

−
m+ n

X

)

=
∑

m,n≤X2

m6=n

ak,χ(m)ak,χ(n)

mσ+itnσ−it
exp

(

−
m+ n

X

)

+O



k2k
∑

n≤X2

1

n2σ



 ,

and

∫ ∫

E

∣

∣

∣

∣

∣

∣

∑

n≤X2

ak,χ(n)

ns
exp

(

−
n

X

)

∣

∣

∣

∣

∣

∣

2

ds

=
∑

m,n≤X2

m6=n

ak,χ(m)ak,χ(n) exp

(

−
m+ n

X

)

(

∫ 2

1
2

dσ

(mn)σ

)

(
∫ 2T

T

( n

m

)it
dt

)

+O
(

k2kQ2T logX
)

≪ k2k
∑

m,n≤X2

m6=n

∣

∣

∣
log
( n

m

)∣

∣

∣

−1 1

(mn)1/2
+ k2kQ2T logX ≪ k2kX4 + k2kQ2T logX.

Hence we find that

∫ ∫

E

∣

∣

∣

∣

∣

∣

∑

n≤X2

ak,χ(n)

ns
exp

(

−
n

X

)

∣

∣

∣

∣

∣

∣

2

ds ≪ k2kQ2T logX

by X =
(

Q2T
)1/4

. Thus we have

F2k(T, χ) ≪ r−2(4k)2kQ2T logX +
(

C2k + r−2(4k)2kX2 exp(−2X)
)

N,

and there exists a j0 ∈ J satisfying

max
s∈R′

j0

| logL(s, χ)|2k ≪r−2(4k)2k(logX)(log(QT ))α/3

+ C2k + r−2(4k)2kX2 exp(−2X)

by the definition of F .
From the above discussion, the inequality

max
s∈R′

j0

| logL(s, χ)| ≪ k ≪ α log log(QT )

holds uniformly for χ ∈ S(Q), which completes the proof of Proposition 4. �
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The following corollary is an immediate consequence of Proposition 4.

Corollary 3. We have

max
σ≥1/2+14αr,t∈J0

χ∈S(Q)

|L(s, χ)|± ≤ exp (Cα log log(QT )) = (log(QT ))Cα,(2.5)

where C is a positive absolute constant, and the meaning of the other letters appearing

in the formula is the same as in Proposition 4.

Lemma 2. Let χ be a primitive Dirichlet character modulo q. If |t| ≥ 1 and σ ≤ 1
2 ,

then

|L(s, χ)| ≍

(

2πe

q|s|

)σ

(q|s|)1/2 exp

(

|t| tan−1

(

1− σ

|t|

))

|L(1− s, χ)|.(2.6)

If |t| ≤ 1, σ = −(m+ 1/2), then

|L(s, χ)| ≍

(

2πe

q|s|

)σ

(q|σ|)1/2|L(1− s, χ)|.(2.7)

Proof. By the functional equation for Dirichlet L-functions and the Stirling formula,
we obtain this lemma. �

Lemma 3. Let J1 = [y1, y2] be the closed interval that is obtained by removing intervals

of length log(QT ) from both ends of J0. Then we have

max
σ≥1/2−26αr,t∈J1

χ∈S(Q)

|L(s, χ)| ≤ exp
(

Cα(log log(QT ))2
)

,

where C is a positive absolute constant, and the meaning of the letters appearing in the

formula is the same as in Proposition 4.

Proof. For σ ≥ 1/2 + 14αr, t ∈ J0, we have

| logL(s, χ)| ≥ log |L(s, χ)| ≍ log |(qt)1/2−σL(1− s, χ)|

≥ log |L(1− s, χ)| −

(

σ −
1

2

)

log(qt)

since |L(s, χ)| ≍ (qt)1/2−σ |L(1 − s, χ)| by Lemma 2. In addition, if χ is a primitive
character, then χ is also a primitive character. Therefore, for t ∈ J0, we have

log

∣

∣

∣

∣

L

(

1

2
− 26αr + it, χ

)∣

∣

∣

∣

≪ αr log(QT ) +

∣

∣

∣

∣

log

(

L

(

1

2
+ 26αr + it, χ

))∣

∣

∣

∣

≪ α(log log(QT ))2

by Proposition 4. Hence, if t ∈ J0, then

L

(

1

2
− 26αr + it, χ

)

≪ exp
(

Cα(log log(QT ))2
)

.(2.8)

Next we consider the function

gl(w) = L(sl + w,χ)ew
2

(l = 1, 2),
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where sl =
1
2 + iyl. By a basic upper bound L(s, χ) ≪ q(|t|+ 1) for σ ≥ 1/4, we have

gl (x± i log(QT )) ≪ ex
2−(log(QT ))2 |L(sl + x± i log(QT ), χ)|

≪ ex
2−(log(QT ))2QT ≪ 1

for −26αr ≤ x ≤ 26αr, T ≥ T0(α). Moreover, by estimates (2.5) and (2.8), we also
have

gl

(

1

2
± 26αr + iy

)

= L (sl ± 26αr + iy, χ) e(
1
2
±26αr+iy)2

≪ exp(Cα(log log(QT ))2)

for − log(QT ) ≤ y ≤ log(QT ). Hence, by the maximum modulus principle, we obtain

gl(x+ iy) ≪ exp(Cα(log log(QT ))2)

for −26αr ≤ x ≤ 26αr and − log(QT ) ≤ y ≤ log(QT ). In particular, if y = 0, then

L(sl + x, χ) = gl(x)e
x2

≪ exp(Cα(log log(QT ))2 + x2)

≪ exp(Cα(log log(QT ))2)

holds for −26αr ≤ x ≤ 26αr. Again by using the maximum modulus principle, we can
find that

L(s, χ) ≪ exp(Cα(log log(QT ))2)

in the compact set 1
2 − 26αr ≤ σ ≤ 1

2 + 26αr, t ∈ J1. �

Lemma 4. If f is a regular function and
∣

∣

∣

∣

f(s)

f(s0)

∣

∣

∣

∣

< eM , (M > 1)

in |s− s0| ≤ r, then for any constant 0 < ε < 1
2 ,

f ′

f
(s) =

∑

|ρ−s0|≤
1
2
r

1

s− ρ
+Oε

(

M

r

)

in |s− s0| ≤
(

1
2 − ε

)

r, where ρ is a zero of f .

Proof. This is Lemma 3 in [18]. �

Proposition 5. Let J2 be the closed interval that is obtained by removing intervals of

length 40αr from both ends of J1. If s0 =
1
2 + 14αr + it0, t0 ∈ J2, then we have

L′(s, χ)

L(s, χ)
=

∑

|ρ−s0|≤20αr

1

s− ρ
+O (log(QT ))(2.9)

for |s−s0| ≤ 15αr, where the meaning of the letters appearing in the following formula

is the same as the above situations.

Proof. By Corollary 3, we have

|L(s, χ)| ≥ exp (−Cα log log(QT ))
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for σ ≥ 1
2 + 14αr, t ∈ J0. By this inequality and Lemma 3, we find that

∣

∣

∣

∣

L(s, χ)

L(s0, χ)

∣

∣

∣

∣

≤ exp
(

Cα(log log(QT ))2
)

for |s− s0| ≤ 40αr. Hence, by Lemma 4, if ε = 1
8 , then we obtain

L′(s, χ)

L(s, χ)
=

∑

|ρ−s0|≤20αr

1

s− ρ
+O

(

(4αr)−1Cα(log log(QT ))2
)

=
∑

|ρ−s0|≤20αr

1

s− ρ
+O (log(QT ))

for |s− s0| ≤ 15αr. �

Lemma 5. Let t0 ∈ J2. If s0 =
1
2 + 14αr + it0, then

logL(σ + it0, χ) =
∑

|ρ−s0|≤20αr

(log(σ + it0 − ρ)− log (s0 − ρ))

+O
(

α(log log(QT ))2
)

for 1
2 −αr ≤ σ ≤ 1

2 +29αr. In particular, by taking the real parts in the both sides, we

find that

log |L(σ + it0, χ)| =
∑

|ρ−σ0|≤20αr

log

∣

∣

∣

∣

σ + it0 − ρ

s0 − ρ

∣

∣

∣

∣

+O
(

α(log log(QT ))2
)

.(2.10)

Proof. Let t0 ∈ J2. Then by formula (2.9) for 1
2 ≤ σ ≤ 1

2 +
3
2αr, we find that

∫ σ

1
2
+14αr

L′(x+ it0, χ)

L(x+ it0, χ)
dx =

∑

|ρ−s0|≤20αr

∫ σ

1
2
+14αr

dx

x+ it0 − ρ
+O

(

α(log log(QT ))2
)

,

and that

logL(σ + it0, χ)− logL (s0, χ)

=
∑

|ρ−s0|≤20αr

(log(σ + it0 − ρ)− log(s0 − ρ)) +O
(

α(log log(QT ))2
)

.

Hence, by Proposition 4, we obtain

logL(σ + it0, χ) =
∑

|ρ−s0|≤20αr

(log(σ + it0 − ρ)− log(s0 − ρ))

+O
(

α(log log(QT ))2
)

.

This completes the proof of Lemma 5. �

Now, let us start the proof of Proposition 1.

Proof of Proposition 1. If 1
2 + 14αr ≤ σ ≤ 2, then Proposition 1 is implied by Propo-

sition 4. Hence we consider the case of 1
2 ≤ σ ≤ 1

2 + 14αr. We find that

∑

|ρ−s0|≤20αr

log

∣

∣

∣

∣

σ + it0 − ρ

s0 − ρ

∣

∣

∣

∣

≥
∑

|ρ−s0|≤20αr

log

∣

∣

∣

∣

t0 − γ

20αr

∣

∣

∣

∣

≥
∑

|t0−γ|≤20αr

log

∣

∣

∣

∣

t0 − γ

20αr

∣

∣

∣

∣
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hold uniformly for 1
2 ≤ σ ≤ 1

2 + 14αr. In addition, if [t1, t1 + 1] ⊂ J1, then for
T ≥ T0(α), we see that

∫ t1+1

t1

∑

|t−γ|≤20αr

log

∣

∣

∣

∣

t− γ

20αr

∣

∣

∣

∣

dt =
∑

t1−20αr≤γ≤t1+1+20αr

∫ min{t1+1,γ+20αr}

max{t1,γ−20αr}
log

∣

∣

∣

∣

t− γ

20αr

∣

∣

∣

∣

dt

≥
∑

t1−20αr≤γ≤t1+1+20αr

∫ γ+20αr

γ−20αr
log

∣

∣

∣

∣

t− γ

20αr

∣

∣

∣

∣

dt

= 20αr
∑

t1−20αr≤γ≤t1+1+20αr

∫ 1

−1
log |x|dx

≥ −Cαr log(QT ) ≥ −Cα(log log(QT ))2,

uniformly for χ ∈ S(Q). Hence, there exists a t2 ∈ [t1, t1 + 1] satisfying

∑

|ρ−s0|≤20αr

log

∣

∣

∣

∣

∣

σ + it2 − ρ
1
2 + αr + it2 − ρ

∣

∣

∣

∣

∣

−1

≪ α(log log(QT ))2,

uniformly for 1
2 ≤ σ ≤ 2 and χ ∈ S(Q). Thus this estimate implies Proposition 1 by

formula (2.10). �

3. The finite Euler product appearing in the expression of Dirichlet

L-functions attached to imprimitive characters

In this section, we are going to show some estimates on the function

Fq,χ∗(s) =
∏

p|q

(

1−
χ∗(p)

ps

)

including Proposition 2. In the following, we consider the case Fq,χ∗ 6≡ 1. In other
words, we assume that χ∗ is a primitive character modulo d such that there exists a
prime factor p of q with p ∤ d.

Lemma 6. Let q ≥ 2. Then Fq,χ∗ is an entire function of order 1.

Proof. By the definition of Fq,χ∗ , if σ < 0, then we have

|Fq,χ∗(s)| =
∏

p|q

∣

∣

∣

∣

1−
χ∗(p)

ps

∣

∣

∣

∣

≤
∏

p|q

(

1 +
1

pσ

)

= exp





∑

p|q

log

(

1 +
1

pσ

)





≤ exp



−2σ
∑

p|q

log p



 ≤ exp (2(log q)|s|) .

On the other hand, if σ ≥ 0, then we have

|Fq,χ∗(s)| =
∏

p|q

∣

∣

∣

∣

1−
χ∗(p)

ps

∣

∣

∣

∣

≤ 2ω(q) ≪q 1.
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Therefore, order of Fq,χ∗ is less than or equal to 1. In addition, order of Fq,χ∗ is greater
than or equal to 1 since we can get the following lower bound

|Fq,χ∗(s)| =
∏

p|q

∣

∣

∣

∣

1−
χ∗(p)

ps

∣

∣

∣

∣

≥
∏

p|q

p∤d

(

1

pσ
− 1

)

= exp











∑

p|q

p∤d

log

(

1

pσ
− 1

)











≥ exp



−
1

2
σ
∑

p∤q

log p



 ≥ exp

(

1

2
(log 2)|σ|

)

for σ ≤ −2. Hence we obtain Lemma 6. �

The next lemma is an immediate consequence of this lemma.

Lemma 7. Let q ≥ 2 be an integer, d be a proper divisor of q, and χ∗ be a primitive

Dirichlet character modulo d. Then we have

Fq,χ∗(s) = srea+bs
∏

η

(

1−
s

iη

)

es/iη,(3.1)

where the above infinite product runs over all the zeros of Fq,χ∗ removing zero at s = 0,
and r is the multiplicity of zero of Fq,χ∗ at s = 0. In particular, r equals to the number

of prime factors of q satisfying χ∗(p) = 1. Moreover, by taking logarithmic derivative

of the both sides, we find that

F ′
q,χ∗

Fq,χ∗

(s) =
r

s
+ b+

∑

η

(

1

s− iη
+

1

iη

)

.(3.2)

Lemma 8. If b is the number appearing in (3.1), then

b = −
1

2
log
(

q′/d′
)

+ i
∑

p|q

p∤d

χ∗(p)6=1

Im(χ∗(p))

2− 2Re(χ∗(p))
log p,(3.3)

where q′ = rad(q), d′ = rad(d).

Proof. By formula (3.2), b can be expressed by

lim
σ↓0

(

F ′
q,χ∗

Fq,χ∗

(σ)−
r

σ

)

= b.

On the other hand, by taking logarithmic derivatives in (1.5), we have

F ′
q,χ∗

Fq,χ∗

(s) =
∑

p|q

χ∗(p) log p

ps − χ∗(p)
=

r
∑

i=1

log pi
psi − 1

+
∑

p|q

χ∗(p)6=1

χ∗(p) log p

ps − χ∗(p)
,

where pi are prime factors of q with χ∗(p) = 1. Therefore, we obtain

lim
σ↓0

(

F ′
q,χ∗

Fq,χ∗

(σ)−
r

σ

)

= −
1

2

r
∑

i=1

log pi +
∑

p|q

χ∗(p)6=1

χ∗(p) log p

1− χ∗(p)
.
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Moreover, if χ∗(p) 6= 0, 1, then we can find that the identity

χ∗(p)

1− χ∗(p)
= −

1

2
+ i

Im(χ∗(p))

2− 2Re(χ∗(p))

holds by easy calculations. Thus we obtain Lemma 8. �

Lemma 9. Let h > 0, and Nq,χ∗(t, h) be the number of zeros iη of Fq,χ∗ with t ≤ η ≤
t+ h. Then we have

Nq,χ∗(t, h) ≤ ω
(

q′/d′
)

+
h

2
log
(

q′/d′
)

+
h2

h2 + t2
r,

where q′ = rad(q) and d′ = rad(d).

Proof. By formula (3.2), we have

F ′
q,χ∗

Fq,χ∗

(h+ it) =
r

h+ it
+ b+

∑

η

(

1

h+ it− iη
+

1

iη

)

.(3.4)

On the other hand, by taking logarithmic derivatives in (1.5), we find that

∣

∣

∣

∣

F ′
q,χ∗

Fq,χ∗

(h+ it)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

p|q

χ∗(p) log p

ph+it − χ∗(p)

∣

∣

∣

∣

∣

∣

≤
∑

p|q

p∤d

log p

ph − 1
≤
∑

p|q

p∤d

1

h
= h−1ω

(

q′/d′
)

.(3.5)

Now, we take the real parts of the both sides of (3.4). Then, by Re
∑

η(iη)
−1 = 0 and

(3.3), we have

∑

η

h

h2 + (t− η)2
≤

ω (q′/d′)

h
+

1

2
log
(

q′/d′
)

+
h

h2 + t2
r.(3.6)

Hence, we have

ω (q′/d′)

h
+

1

2
log
(

q′/d′
)

+
h

h2 + t2
r ≫

∑

η

h

h2 + (t− η)2

≥
∑

|t−η−1/(2h)|≤1/(2h)

h

h2 + (t− η)2
≫

∑

|t−η−1/2|≤1/(2h)

1

h
=

1

h
Nq,χ∗(t, h),

which completes the proof of Lemma 9. �

Proposition 6. Let h > 0. If |σ| ≤ h, then we have

F ′
q,χ∗

Fq,χ∗

(s) =
r

s
+

∑

|t−η|≤h

1

s− iη
+O

(

h−1ω
(

q′/d′
)

+ log
(

q′/d′
)

+
r

|t|+ h

)

.

Proof. By (3.2) and (3.5), we find that

F ′
q,χ∗

Fq,χ∗

(σ + it)−
F ′
q,χ∗

Fq,χ∗

(h+ it) =
r

σ + it
−

r

h+ it
+
∑

η

(

1

σ + it− iη
−

1

h+ it− iη

)

,
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and that
∣

∣

∣

F ′

q,χ∗

Fq,χ∗
(h+ it)

∣

∣

∣ ≤ h−1ω (q′/d′). Therefore, we have

F ′
q,χ∗

Fq,χ∗

(σ + it) =
r

σ + it
+





∑

|t−η|≤h

+
∑

|t−η|>h





(

1

σ + it− iη
−

1

h+ it− iη

)

+O

(

r

|t|+ h
+ h−1ω

(

q′/d′
)

)

.

In addition, we can obtain that

∑

|t−η|>h

(

1

σ + it− iη
−

1

h+ it− iη

)

=
∑

|t−η|>h

h− σ

(σ + it− iη)(h + it− iη)

≪
∑

|t−η|>h

h

|t− η|2
≪
∑

η

h

h2 + (t− η)2
≤ h−1ω

(

q′/d′
)

+
1

2
log
(

q′/d′
)

+
h

h2 + t2
r

by (3.6), and that

∑

|t−η|≤h

1

h+ it− iη
≪

∑

|t−η|≤h

h−1 ≪ h−1ω
(

q′/d′
)

+ log
(

q′/d′
)

+
h

h2 + t2
r

by Lemma 9. Hence we obtain Proposition 6. �

Proposition 7. Let h > 0. For |σ| ≤ h, |t| ≥ h, we have

log Fq,χ∗(s) =
1

2

∑

|t−η|≤h

log

(

σ2 + (t− η)2

h2 + (t− η)2

)

+O

(

h−1ω
(

q′/d′
)

+ h log
(

q′/d′
)

+
h

|t|
r

)

.

(3.7)

Proof. By Lemma 9 and Proposition 6, we can find that

log Fq,χ∗(σ + it) =

∫ σ

h

F ′
q,χ∗

Fq,χ∗

(α+ it)dα + log Fq,χ∗(h+ it)

=
1

2

∑

|t−η|≤h

log

(

σ2 + (t− η)2

h2 + (t− η)2

)

+ logFq,χ∗(h+ it)

+O

(

ω(q′/d′) + h log
(

q′/d′
)

+
h

|t|
r

)

.

In addition, we see that

| log Fq,χ∗(h+ it)| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

p|q

p∤d

∞
∑

n=1

1

n

(

χ∗(p)

ph+it

)n

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤
∑

p|q

p∤d

∞
∑

n=1

1

phn
=
∑

p|q

p∤d

1

ph − 1

≤
∑

p|q

p∤d

1

h log p
≪ h−1ω

(

q′/d′
)

by the definition of Fq,χ∗ and the Taylor expansion of the logarithmic function. Hence
we obtain Proposition 7. �
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Now, let us start the proof of Proposition 2.

Proof of Proposition 2. Let T ≥ ω(q), and d be the smallest modulus of χ ∈ S1(q).
Then, by Lemma 9, the number of zeros iη of the all Fq,χ∗ with χ ∈ S1(q) with
η ∈ [T, T +1] is less than C#S1(q) log (q

′/d′), where C is an absolute positive constant.
Therefore, there exists a t0 ∈ [T, T + 1] such that |t0 − η| ≥ 1

2C#S1(q) log(q′/d′)
holds for

all zeros iη. Now we apply Proposition 7 with h ≍
√

ω(q′/d′)/ log(q′/d′)
log(#S1(q)ω(q′/d′)+2) . By taking

real parts on the both sides of equation (3.7), we obtain

log |Fq,χ∗(σ + it0)| ≥ −
1

2

∑

|t0−η|≤h

log(4Ch2#S1(q) log
(

q′/d′
)

)

− C ′
(

h−1ω
(

q′/d′
)

+ h log(q′/d′)
)

≥ −C ′′ω
(

q′/d′
)

log
(

#S1(q)ω
(

q′/d′
)

+ 2
)

(

1 +

√

log (q′/d′) /ω (q′/d′)

log (#S1(q)ω (q′/d′) + 2)

)

,

uniformly for χ ∈ S1(q) and |σ| ≤ h with C ′, C ′′ > 0 sufficiently large positive absolute
constants. Hence, we have

|Fq,χ∗(σ + it0)|
−1

≤ exp

(

C ′′ω
(

q′/d′
)

log
(

#S1(q)ω
(

q′/d′
)

+ 2
)

(

1 +

√

log (q′/d′) /ω (q′/d′)

log (#S1(q)ω (q′/d′) + 2)

))

,

which completes the proof of Proposition 2. �

4. Proof of Theorems 1 and 2

Proof of Theorem 1. Let x > 0, T ≥ max
{

T0, exp
(

q1/3
)

, 2/x
}

, and σ0 = 1+1/ log(x+
3). First, using Perron’s formula (cf. Theorem 5.2 and Corollary 5.3 in [14]), we have

M∗(x, χ) =
1

2πi

∫ σ0+iTν

σ0−iTν

xs

L(s, χ)s
ds+O

(

x log(x+ 3)

T
+min

{

1,
x

T 〈x〉

})

,(4.1)

where Tν satisfies the inequality

|L(σ + iTν , χ)|
−1 ≤ exp

(

C(log log T )2
)

(4.2)

for any 1
2 ≤ σ ≤ 2 and χ ∈ S(q) with Tν ∈ [T, 2T ]. Note that we can take the above

Tν by Proposition 1. Here, we remark that T ≥ exp
(

q1/3
)

≫ q.

Let M = m+ 1
2 with a positive integer m satisfying m > T . By the residue theorem,

we have

1

2πi

∫ σ0+iTν

σ0−iTν

xs

L(s, χ)s
ds =

1

2πi

(∫ σ0+iTν

−M+iT
+

∫ −M+iTν

−M−iTν

+

∫ −M−iTν

σ0−iTν

)

xs

L(s, χ)s
ds

+
∑

|γ|<T∗

Res
s=ρ

(

xs

L(s, χ)s

)

+
∑

0≤l<M

Res
s=−l

(

xs

L(s, χ)s

)

=: J1 + J2 + J3 +
∑

|γ|<Tν

Res
s=ρ

(

xs

L(s, χ)s

)

+
∑

0≤l<M

Res
s=−l

(

xs

L(s, χ)s

)

.
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Here, by the basic formula for residues, we find that

Res
s=ρ

(

xs

L(s, χ)s

)

=
1

(m(ρ)− 1)!
lim
s→ρ

dm(ρ)−1

dsm(ρ)−1

(

(s− ρ)m(ρ) xs

L(s, χ)s

)

.

As for the other residues, we can also obtain the formula by the functional equation

L(s, χ) = ε(χ)L(1− s, χ)2sπs−1d1/2−sΓ(1− s) sin
(π

2
(s+ κ)

)

.

Here ε(χ) is defined by

ε(χ) =
τ(χ)

iκd1/2
.

Now we estimate the integrals J1, J2 and J3. By Lemma 2, J2 is evaluated by

|J2| =

∣

∣

∣

∣

∣

∫

|t|≤Tν

x−M+it

L(−M + it, χ)(−M + it)
dt

∣

∣

∣

∣

∣

≪ x−M

∫

|t|≤Tν

(

2πe

M

)M

M−3/2dt

≪
( x

2πe

)−M
M−M−3/2T.

Therefore, we have

lim
M→∞

J2 = 0.

Next we estimate J1. We put

J1 =
1

2πi

(

∫ σ0+iTν

1/2+iTν

+

∫ 1/2+iTν

−1+iTν

+

∫ −1+iTν

−M+iTν

)

xs

L(s, χ)s
ds =: J ′

1 + J ′′
1 + J ′′′

1 .

By Lemma 2 and estimate (4.2), we find that

|J ′
1| ≪

∫ σ0

1/2
xT−1

ν exp
(

C(log log T )2
)

dσ ≪
x exp

(

C(log log T )2
)

T
,

|J1
′′| ≪

exp
(

C(log log T )2
)

T 3/2

∫ 1/2

−1
(xTν)

σdσ ≪
x1/2 exp

(

C(log log T )2
)

T log(xT )
,

and that

|J1
′′′| ≪

1

T 3/2

∫ −1

−M
(xTν)

σdσ ≪
(xT )−1

T 3/2 log(xT )
.

Hence we have

J1 ≪
x exp

(

C(log log T )2
)

T
.

Similarly, we have

J3 ≪
x exp

(

C(log log T )2
)

T

since L(s, χ) = L(s, χ) and χ is also a primitive character. From the above estimates,
we obtain Theorem 1. �
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Proof of Theorem 2. First, we find that

M∗(x, χ) =
1

2πi

∫ σ0+iTν

σ0−iTν

xs

L(s, χ)s
ds+O

(

x log(x+ 3)

T
+min

{

1,
x

T 〈x〉

})

,

similarly to (4.1), where we use the same notation as in the proof of Theorem 1. Here,
by the proof of Proposition 1, Tν ∈ J1 ⊂ J0 holds, where J0 and J1 are intervals
appearing in Corollary 3 and Lemma 3, respectively. We also consider a uniform
estimate of Fq,χ∗(s) for χ ∈ S∗(q). Here S∗(q) denotes the set of all imprimitive
characters modulo q. If h := 1

log q ≤ σ ≤ 2, then we have

∏

p|q

∣

∣

∣

∣

1−
χ∗(p)

ps

∣

∣

∣

∣

−1

≤
∏

p|q

(

1 +
1

ph − 1

)

≤
∏

p|q

(

1 +
1

h log p

)

≤ exp





∑

p|q

1

h log p



 ≤ exp (Cω(q) log q) .(4.3)

Therefore, by this estimate, (4.2) and Lemma 2, we obtain

|L(σ + iTν , χ)|
−1 = |L (σ + iTν , χ

∗)|−1
∏

p|q

∣

∣

∣

∣

1−
χ∗(p)

ps

∣

∣

∣

∣

−1

≤ exp
(

C
(

(log log T )2 + ω(q) log q
))

≤ exp
(

C(log log T )2
)

(4.4)

for h ≤ σ ≤ 2.
Here, let M = m+ 1

2 , with a positive integer m satisfying m > T . By Proposition

2 and ω(q) ≪ log q
log log(q+5) , we can also take some T∗ ∈ [Tν , Tν + 1] ⊂ J0 such that

|Fq,χ∗(σ + iT∗)|
−1 =

∣

∣

∣

∣

∣

∣

∏

p|q

(

1−
χ∗(p)

pσ+iT∗

)

∣

∣

∣

∣

∣

∣

−1

≤ exp

(

C(log q)2

log log(q + 5)

)

(4.5)

holds for |σ| ≤ h, uniformly χ ∈ S∗(q). Then, by using the residue theorem, we have

1

2πi

∫ σ0+iTν

σ0−iTν

xs

L(s, χ)s
ds =

1

2πi
×

(

∫ σ0+iTν

1/4+iTν

+

∫ 1/4+iTν

1/4+iT∗

+

∫ 1/4+iT∗

−M+iT∗

+

∫ −M+iT∗

−M−iT∗

+

∫ −M−iT∗

1/4−iT∗

+

∫ 1/4−iT∗

1/4−iTν

+

∫ 1/4+iTν

σ0+iTν

)

xsds

L(s, χ)s
+
∑

|γ|<Tν

Res
s=ρ

(

xs

L(s, χ)s

)

+
∑

|γ|<T∗

Res
s=iη

(

xs

L(s, χ)s

)

+
∑

0≤l<M

Res
s=−l

(

xs

L(s, χ)s

)

.

Now, we can obtain the residues for non-positive integer in a similar manner as in
Theorem 1 since the all trivial zeros of L(s, χ∗) are simple.

We estimate the integrals. As for the first integral, by inequality (4.4), we find that
∣

∣

∣

∣

∣

∫ σ0+iTν

1/4+iTν

xs

L(s, χ)s
ds

∣

∣

∣

∣

∣

≤
x

T
exp

(

C(log log T )2
)

.
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Next we consider the fourth integral. Now, Fq,χ∗(s) is estimated by

|Fq,χ∗(σ + it)| =
∏

p|q

p∤b

∣

∣

∣

∣

1−
χ∗(p)

pσ+it

∣

∣

∣

∣

≥
∏

p|q

p∤b

(

p−σ − 1
)

≥ |σ|ω(q) log 2(4.6)

for σ ≤ −h. Here b is the modulo of χ∗. Therefore, by Lemma 2 and (4.6), the fourth
integral is estimated by

∫

|t|≤T∗

x−M+it

L(−M + it, χ)(−M + it)
dt ≪q x

−M

∫

|t|≤T∗

(

2πe

M

)M

M−3/2dt

≪
( x

2πe

)−M
M−M−3/2T.

The last term tends to zero as M → +∞. That is,

lim
M→∞

∫

|t|≤T∗

x−M+it

L(−M + it, χ)(−M + it)
dt = 0.

Next we consider the second integral. Now, we can see [Tν , T∗] ⊂ J0 since Tν ∈ J1,
and so we can apply Corollary 3 to the second integral. Hence, by Corollary 3, (2.6)
and (4.3), we have

∫ 1/4+iTν

1/4+iT∗

xs

L(s, χ)s
ds ≪

x1/4

T
(qω(q) log T )C ≪

x1/4

T
exp

(

C(log log T )2
)

.

Next we consider the third integral. We put

∫ 1/4+iT∗

−M+iT∗

xs

L(s, χ)s
ds =

(

∫ 1/4+iT∗

−1+iT∗

+

∫ −1+iT∗

−M+iT∗

)

xs

L(s, χ)s
ds.

Here, we can also apply Corollary 3 to this case by T∗ ∈ J0. By Corollary 3, (2.6),
(4.3), (4.5) and (4.6), we can find that

∫ 1/4+iT∗

−1+iT∗

xs

L(s, χ)s
ds ≪

exp
(

C
(

(log q)2

log log(q+5) + log log T
))

T 3/2

∫ 1/4

−1
(xT )σdσ

≪
x1/4 exp

(

C(log log T )2
)

T 5/4 log(xT )
,

and that
∫ −1+iT∗

−M+iT∗

xs

L(s, χ)s
ds ≪

1

T 3/2

∫ −1

−M
(xT∗)

σdσ ≪
1

xT 5/2 log(xT )
.

From the above discussion, the first four integrals are estimated by

≪
x exp

(

C(log log T )2
)

T
.(4.7)

The remaining integrals also have the same upper bound since L(s, χ) = L(s, χ) holds,
and estimate (4.7) is uniform for χ ∈ S∗(q). Thus, we obtain estimate (1.4) for Theorem
2.
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Finally, we consider the upper bound of the sum of the residues on the imaginary
axis. We separate the sum in three parts such that

∑

|η|<T∗

Res
s=iη

(

xs

L(s, χ)s

)

= Res
s=0

(

xs

L(s, χ)s

)

+
∑

0<|η|≤T0(q)

Res
s=iη

(

xs

L(s, χ)s

)

+
∑

T0(q)<|η|<T∗

Res
s=iη

(

xs

L(s, χ)s

)

.

By estimates (4.3), (4.5), and (4.6), we can find a constant T0(q), depending only on
q, with T0(q) ∈ [ω(q) + 5, ω(q) + 6] and

|Fq,χ∗(σ + iT0(q))|
−1 ≤ exp

(

C(log q)2

log log(q + 5)

)

for |σ| ≤ 2. By the Leibniz rule, the first sum is estimated by

Res
s=0

(

xs

L(s, χ)s

)

=
1

(r + 1− κ)!
lim
s→0

r+1−κ
∑

j=0

(

r + 1− κ
j

)

xs(log x)r+1−κ−j dj

dsj

(

sr+2−κ

L(s, χ)s

)

=
(log x)r+1−κ

L(r+1−κ)(0, χ)
+Oq

(

(log x)r−κ
)

.

On the second sum, by the simplicity of zeros of Fq,χ∗ , we have

∑

0<|η|≤T0(q)

Res
s=iη

(

xs

L(s, χ)s

)

=
∑

0<|η|≤T0(q)

xiη

L′(iη, χ)iη
= Oq(1).

As for the third sum, we use the result that

1

L(s, χ)
≪ log(q|t|)(4.8)

for

σ ≥ 1−
c

log q + (log(|t|))2/3(log log(|t|))1/3
and |t| ≥ 5,(4.9)

where c is a positive absolute constant. On the region (4.9), we refer to [13, §9.5]. The
author cannot find the above upper bound (4.8) in this region in references, but we
can obtain it by the standard method (cf. [14, §11.1]). Here, we put ε(x) = 1

logx with

x ≥ qC exp
(

C(log T )2/3(log log T )1/3
)

. Then, by the residue theorem, the third sum
can be written as

∑

T0(q)<η<T∗

Res
s=iη

(

xs

L(s, χ)s

)

=
1

2πi

(

∫ ε(x)+iT∗

ε(x)+iT0(q)
+

∫ −ε(x)+iT∗

ε(x)+iT∗

+

∫ −ε(x)+iT0(q)

−ε(x)+iT∗

+

∫ ε(x)+iT0(q)

−ε(x)+iT0(q)

)

xs

L(s, χ)s
ds.



SOME EXPLICIT FORMULAS FOR PARTIAL SUMS OF MÖBIUS FUNCTIONS 27

From the definitions of T0(q) and T∗, we find that
(

∫ −ε(x)+iT∗

ε(x)+iT∗

+

∫ ε(x)+iT0(q)

−ε(x)+iT0(q)

)

xs

L(s, χ)s
ds = Oq(1).

On the other hand, by using Lemma 9 and Proposition 7 with h′ =
√

ω(q′/b′)
log(q′/b′) log logx ,

we have

|Fq,χ∗(σ + it)| ≥ exp
(

−C1

√

ω (q′/b′) log (q′/b′) log log x
)

∏

|t−η|≤h′

|σ + i(t− η)|

≥ exp
(

−C2

√

ω (q′/b′) log (q′/b′) log log x
)

(

1

log x

)ω(q′/b′)

on the lines |σ| = (log x)−1, |t| ≥ 2. Now b denotes the modulus of χ∗. Therefore, for

|σ| = (log x)−1, |t| ≥ log q
log log(q+2)) + 5, we have

1

L(σ + it, χ)
≪ exp

(

C2

√

ω (q′/b′) log (q′/b′) log log x
) (log x)ω(q

′/b′)

b|t||L(1 + σ + it, χ∗)|

≪ exp
(

C2

√

ω (q′/b′) log (q′/b′) log log x
)

(log x)ω(q
′/b′) log(b|t|)

b|t|

by Lemma 2. Hence we have
∫ ±ε(x)+iT∗

±ε(x)+iT0(q)

xs

L(s, χ)s
ds

≪ exp
(

C2

√

ω (q′/b′) log (q′/b′) log log x
)

(log x)ω(q
′/b′)

∫ T∗

T0(q)

log(bt)

bt2
dt

≪ exp
(

C2

√

ω (q′/b′) log (q′/b′) log log x
)

(log x)ω(q
′/b′).

Thus we have
∑

T0(q)<η<T∗

Res
s=iη

(

xs

L(s, χ)s

)

≪ exp
(

C
√

ω (q′/b′) log (q′/b′) log log x
)

(log x)ω(q
′/b′),

where C is a positive absolute constant. Similarly, we have

∑

−T∗<η<−T0(q)

Res
s=iη

(

xs

L(s, χ)s

)

≪ exp
(

C
√

ω (q′/b′) log (q′/b′) log log x
)

(log x)ω(q
′/b′).

From the above estimates, we obtain (1.6). �

5. Proof of Theorem 3

First, we prepare some lemmas.

Lemma 10. Let K be any number field, nK be the degree of K, and κK be the residue

of ζK(s) at s = 1. Then, for σ > 1, we have

|ζK(σ + it)| ≤ min

{

ζ(σ)nK ,
σ

σ − 1
κK +

σΦ0(K)

σ − 1 + 1/nK

}

=: ΦK(σ),(5.1)
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where Φ0(K) is a constant depending only on K such that

∣

∣

∣

∣

∣

∣

∑

N(a)≤x

1− κKx

∣

∣

∣

∣

∣

∣

≤ Φ0(K)x1−1/nK .

Proof. By the Euler product for Dedekind zeta-functions, we find that

|ζK(σ + it)| ≤
∏

p

(

1−
1

N(p)σ

)−1

=
∏

p

∏

p|p

(

1−
1

pdeg(p)σ

)−1

≤
∏

p

(

1−
1

pσ

)−nK

= ζ(σ)nK .

On the other hand, using the partial summation, we have

|ζK(σ + it)| ≤ σ

∫ ∞

1

A(x)

xσ+1
dx ≤

σ

σ − 1
κK +

σΦ0(K)

σ − 1 + 1/nK
,

where A(x) =
∑

N(a)≤x 1. Hence we obtain Lemma 10. �

Lemma 11. Let K be a number field. If |t| ≥ 1 and σ ≤ 1
2 , then

|ζK(s)| ≫
1

CnK

(

(2πe)nK

|dK ||s|nK

)σ

(|dK ||s|nK )1/2 exp

(

nK |t| tan−1

(

1− σ

|t|

))

|ζK(1− s)|

If |t| ≤ 1, σ = −(m+ 1/2), then

|ζK(s)| ≫
1

CnK

(

(2πe)nK

|dK ||s|nK

)σ

(|dK ||σ|nK )1/2 |ζK(1− s)|.

The above C are absolute constants.

Proof. By the functional equation for ζK(s) which is

ζK(s) = 2nK (2π)nK (s−1)|dK |1/2−s(Γ(1 − s))nK

(

sin
πs

2

)r1+r2 (

cos
πs

2

)r2
ζK(1− s),

and the Stirling formula, we obtain this lemma. �

Proof of Theorem 3. Let x > 0, T ≥ max
{

9, exp
(

m1/3
)

, 2/x
}

and σ0 = 1+1/ log(x+
3). First, using Perron’s formula, we have

M∗
K(x) =

1

2πi

∫ σ0+iTν

σ0−iTν

xs

ζK(s)s
ds+O

(

x

T
ΦK(σ0) + min

{

1,
x

T 〈x〉

})

,(5.2)

where Tν satisfies the inequality

|ζK(σ + iTν)|
−1 ≤ exp

(

CnK(#X(K))(log log T )2
)

(5.3)

for any −1 ≤ σ ≤ 2 with Tν ∈ [T, 2T ] by Corollary 2 and Lemma 11. Here we remark
that T ≥ exp

(

m1/3
)

≫ m.
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Let R = r + 1
2 with positive integer r satisfying r > T . By the residue theorem, we

have

1

2πi

∫ σ0+iTν

σ0−iTν

xs

ζK(s)s
ds =

1

2πi

(∫ σ0+iTν

−R+iT
+

∫ −R+iTν

−R−iTν

+

∫ −R−iTν

σ0−iTν

)

xs

ζK(s)s
ds

+
∑

|γ|<T∗

Res
s=ρ

(

xs

ζK(s)s

)

+
∑

0≤l<R

Res
s=−l

(

xs

ζK(s)s

)

=: J1 + J2 + J3 +
∑

|γ|<Tν

Res
s=ρ

(

xs

ζK(s)s

)

+
∑

0≤l<R

Res
s=−l

(

xs

ζK(s)s

)

.

Here, by the basic formula for residues, we find that

Res
s=ρ

(

xs

ζK(s)s

)

=
1

(m(ρ)− 1)!
lim
s→ρ

dm(ρ)−1

dsm(ρ)−1

(

(s− ρ)m(ρ) xs

ζK(s)s

)

.

Next, we estimate the integrals. By Lemma 11, J2 is evaluated by

|J2| =

∣

∣

∣

∣

∣

∫

|t|≤Tν

x−R+it

ζK(−R+ it)(−R + it)
dt

∣

∣

∣

∣

∣

≪ x−RCnK

∫

|t|≤Tν

(

(2πe)nK

RnK

)R

R−nK/2−1dt

≪ CnK

(

x

(2πe)nK

)−R

R−(R−1/2)nK−1T.

Therefore, we have

lim
R→∞

J2 = 0.

Next, we estimate J1. Now, we put

J1 =
1

2πi

(∫ σ0+iTν

−1+iTν

+

∫ −1+iTν

−R+iTν

)

xs

ζK(s)s
ds =: J ′

1 + J ′′
1 .

By Lemma 10, Lemma 11 and estimate (5.3), we find that

|J ′
1| ≪

∫ σ0

−1
xT−1

ν exp
(

CnK(#X(K))(log log T )2
)

dσ ≪
x exp

(

CnK(log log T )2
)

T
,

and that

|J ′′
1 | ≪

CnK

T 3/2

∫ −1

−R
(xTν)

σdσ ≪
CnK (xT )−1

T 3/2 log(xT )
.

Hence we have

J1 ≪
x exp

(

CnK(#X(K))(log log T )2
)

T
.

Similarly, by the Schwarz reflection principle, we have

J3 ≪
x exp

(

CnK(#X(K))(log log T )2
)

T
.

Thus we obtain estimate (1.7).
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Finally, we consider the upper bound of the sum of the residues for non-positive
integers. We put r = r1 + r2 − 1. Then, by the Leibniz rule, we find that

Res
s=0

(

xs

ζK(s)s

)

=
1

r!
lim
s→0

dr

dsr

(

sr+1

ζK(s)s
xs
)

=
1

r!
(log x)r lim

s→0

sr

ζK(s)
+

(1− δ0,r)

r!

r
∑

j=1

(

r
j

)

(log x)r−j lim
s→0

dj

dsj

(

sr

ζK(s)

)

= −
(2π)nK (log x)r(2/π)r1+r2

2nK |dK |1/2κK
+OK

(

(1− δ0,r)| log x|
r−1
)

.

On the other hand, for l ≥ 1, we have

Res
s=−l

(

xs

ζK(s)s

)

=

∫

|s+l|= 1
log(x+3)

xs

ζK(s)s
ds

=
i

log(x+ 3)

∫ 2π

0

x
−l+ eiθ

log(x+3) eiθ

ζK

(

−l + eiθ

log(x+3)

)(

−l + eiθ

log(x+3)

)dθ

≪
x−l

l log(x+ 3)

∫ 2π

0

dθ
∣

∣

∣
ζK

(

−l + eiθ

log(x+3)

)∣

∣

∣

by the Cauchy formula. Now, by the functional equation and the Stirling formula, we
can find that if l is even, then

∣

∣

∣

∣

ζK

(

−l+
eiθ

log(x+ 3)

)∣

∣

∣

∣

−1

≪ CnK

(

2πe

l

)nK l

l−nK/2(log(x+ 3))r1+r2 ,

and that if l is odd, then
∣

∣

∣

∣

ζK

(

−l +
eiθ

log(x+ 3)

)∣

∣

∣

∣

−1

≪ CnK

(

2πe

l

)nK l

l−nK/2(log(x+ 3))r2 .

Hence, for l ≥ 1, we obtain

Res
s=−l

(

xs

ζK(s)s

)

≪















CnKx−l

lnK/2+1

(

2πe

l

)nK l

(log(x+ 3))r1+r2−1 if l is even,

(1− δ0,r2)
CnKx−l

lnK/2+1

(

2πe

l

)nK l

(log(x+ 3))r2−1 if l is odd.

Form the above estimates, we obtain Theorem 3. �

6. Proof of Theorem 4

Proof of Theorem 4. Let χ be a primitive Dirichlet character modulo q. Assume the
simple zero conjecture for L(s, χ). Now, there exisits the domain −3/4 ≤ σ ≤ 2, 0 <
t ≤ 2δ(χ) with δ(χ) ≤ 5 such that this domain does not have zeros of L(s, χ) since
L(s, χ) is entire function. In addition, by the compactness of the line segment −3/4 ≤
σ ≤ 2, t = δ, and the continuity of L(s, χ), we have

1

|L(s, χ)|
≤ C(χ)

on the same domain, where C(χ) is a sufficiently large constant depending only on χ.
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Let T ≥ exp
(

q1/3
)

. Here, by Proposition 1 and Lemma 2, there exist some Tν ∈
[T, 2T ] satisfying

|L(σ + iTν , χ)|
−1 ≤ exp(C(log log T )2)(6.1)

for −1 ≤ σ ≤ 2.
Now, by the residue theorem, we have

∑

0<γ<Tν

1

L′(ρ, χ)
=

1

2πi

(

∫ 2+iTν

2+iδ(χ)
+

∫ −3/4+iTν

2+iTν

+

∫ −3/4+iδ(χ)

−3/4+iTν

+

∫ 2+iδ(χ)

−3/4+iδ(χ)

)

ds

L(s, χ)
.

From the way of taking δ(χ) and Tν , the integrals on the horizontal line parts are
estimated by

∣

∣

∣

∣

∣

∫ 2±iTν

−3/4+iTν

ds

L(s, χ)

∣

∣

∣

∣

∣

≪ exp(C(log log T )2),

and
∣

∣

∣

∣

∣

∫ 2+iδ(χ)

−3/4+iδ(χ)

ds

L(s, χ)

∣

∣

∣

∣

∣

≤ 3C(χ).

In addition, we have
∣

∣

∣

∣

∣

∫ −3/4+iTν

−3/4+iδ(χ)

ds

L(s, χ)

∣

∣

∣

∣

∣

≪ 1

since |L(−3/4 + it, χ)|−1 ≪ (|t| + 1)−5/4 by Lemma 2. On the first integral term, by
the Dirichlet series expression, we have

1

2πi

∫ 2+iTν

2+iδ(χ)

ds

L(s, χ)
=

1

2π

∫ Tν

δ(χ)

∞
∑

n=1

µ(n)χ(n)

n2+it
dt

=
Tν

2π
+

1

2π

∞
∑

n=2

µ(n)χ(n)

n2

∫ Tν

δ(χ)
n−itdt+O(1)

=
Tν

2π
+O

(

∞
∑

n=2

1

n2 log n

)

=
Tν

2π
+O(1).

Hence we have
∑

0<γ<Tν

1

L′(ρ, χ)
=

Tν

2π
+O

(

exp
(

C(log log T )2
)

+ C(χ)
)

.

In particular, for T ≥ T0(q) with sufficiently large constant T0(q) depending only on
q, we obtain

∑

0<γ≤2T

1

|L′(ρ, χ)|
≥

∑

0<γ<Tν

1

|L′(ρ, χ)|
≥

∣

∣

∣

∣

∣

∣

∑

0<γ<Tν

1

L′(ρ, χ)

∣

∣

∣

∣

∣

∣

≫ T,

which completes the proof of Theorem 4. �
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