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Abstract

We investigate the stability analysis of Schwarzschild black hole in Einstein-scalar-

Gauss-Bonnet (ESGB) theory because the instability of Schwarzschild black hole with-

out scalar hair implies the Gauss-Bonnet black hole with scalar hair. The linearized

scalar equation is compared to the Lichnerowicz-Ricci tensor equation in the Einstein-

Weyl gravity. It turns out that the instability of Schwarzschild black hole in ESGB

theory is interpreted as not the tachyonic instability, but the Gregory-Laflamme insta-

bility of black string. In the small mass regime of 1/λ < 1.174/r+, the Schwarzschild

solution becomes unstable and a new branch of solution with scalar hair bifurcates

from the Schwarzschild one. This is very similar to finding a newly non-Schwarzschild

black hole in Einstein-Weyl gravity.
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1 Introduction

Recently, black hole solutions with scalar hair were found from Einstein-scalar-Gauss-

Bonnet (ESGB) theories [1, 2, 3]. These black hole solutions are quite interesting because

they show evasion of the novel no-hair theorem [4] which updated the old no-hair theo-

rem [5] by the discovery of black holes with Yang-Mills [6], Skyrme fields [7], or a conformal

coupling to gravity [8]. The novel no-hair theorem was extended to cover the standard

scalar-tensor theories [9] and a new form covering Galileon fields was proposed [10]. It is

worth noting that these with scalar hair are closely related to the instability of black hole

without scalar hair. In this theory, the instability of Schwarzschild black hole is determined

solely by the linearized scalar equation where the Gauss-Bonnet term acts as an effective

mass. This is so because the linearized Einstein equation is nothing but that of the Einstein

gravity, where the Regge-Wheeler prescription works to indicate no instability [11, 12].

On the other hand, a fourth-order gravity (Einstein-Weyl gravity) has provided a non-

Schwarzschild black hole solution with Ricci tensor hair [13]. Here the Ricci hair means the

black hole with non-zero Ricci tensor (R̄µν 6= 0), compared to zero Ricci tensor (R̄µν = 0)

for Schwarzschild black hole. Making use of the trace no-hair theorem which states that

R̄ = 0 is zero outside the horizon as well as R̄ → 0 at infinity and on the inner bound-

ary at the horizon [14], they have found the non-Schwarzschild black hole solution which

crosses the Schwarzschild solution at the bifurcation point. In this theory, the instability

of Schwarzschild black hole was determined by solving the Lichnerowicz equation for the

linearized Ricci tensor (so-called Lichnerowicz-Ricci tensor equation) [15, 16, 14]. It has

shown that the small black hole in Einstein-Weyl gravity is unstable against s(l = 0)-mode

of Ricci tensor perturbation, while the large black hole is stable [17]. Actually, this was

confirmed by comparing the Lichnerowicz-Ricci tensor equation with the linearized Ein-

stein equation around a five-dimensional black string where the Gregory-Laflamme (GL)

instability appeared [18]. In exploring a non-Schwarzschild black hole solution, a static

eigenfunction of Lichnerowicz operator has two crucial roles in Einstein-Weyl gravity [19]:

a role of perturbation away from Schwarzschild black hole along a non-Schwarzschild black

hole and the other role of threshold unstable mode lying at the edge of a domain of GL

instability for a small Schwarzschild black hole. We expect that the same thing happens to

the black holes found in ESGB theories.

In this work, we will investigate a close connection for instability of black holes found
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between ESGB theory and Einstein-Weyl gravity. The linearized scalar equation around

Schwarzschild black hole in ESGB theory is surely compared to the Lichnerowicz-Ricci

tensor equation around Schwarzschild black hole in the Einstein-Weyl gravity. It turns out

that the instability of black hole in ESGB theory is interpreted as the GL instability of

black string, even though one uses the linearized scalar equation. In the small mass but

not extreme curvature regime, the black hole solution becomes unstable and a new branch

of solution with scalar hair bifurcates from the Schwarzschild black hole without scalar

hair. This is very similar to finding a non-Schwarzschild black hole with Ricci tensor hair

in Einstein-Weyl gravity. Importantly, this will be interpreted as a scalar theory version of

the GL instability for a black hole without hair.

2 ESGB theory

Let us start with the ESGB theory [2]

SESGB =
1

16π

∫

d4x
√−g

[

R − 2∂µφ∂
µφ− Vφ + λ2f(φ)R2

GB

]

, (1)

where φ is the scalar field with a potential Vφ and a coupling function f(φ), λ is the GB

coupling constant having inverse mass dimension, and R2
GB is the GB term defined by

R2
GB = R2 − 4RµνR

µν +RµνρσR
µνρσ. (2)

In this work, we choose Vφ = 0, but not choose a specific form for f(φ). Instead, we

would like imposing the conditions of f ′(φ)|φ=0 = 0 and f ′′(φ)|φ=0 = 1 and thus, it admits

the expansion of f(φ) ≈ f(0) + φ2/2 + ·. Examples include f(φ) = 1
2
φ2 [3] and f(φ) =

1
12
[1− e−6φ2

] [2]. Other examples appeared in Ref. [20]. From the action (1), we derive the

Einstein equation

Gµν = 2∂µφ∂νφ− (∂φ)2gµν + Γµν , (3)

where Gµν = Rµν − (R/2)gµν is the Einstein tensor and Γµν is given by

Γµν = 2R∇(µΨν) + 4∇αΨαGµν − 8R(µ|α|∇αΨν)

+ 4Rαβ∇αΨβgµν − 4Rβ
µαν∇αΨβ (4)
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with

Ψµ = λ2df(φ)

dφ
∂µφ = λ2f ′(φ)∂µφ. (5)

On the other hand, the scalar field equation takes the form

�φ+
λ2

4
f ′(φ)R2

GB = 0. (6)

Choosing φ = 0 and f ′(φ)|φ=0 = 0, one finds the Schwarzschild solution from (3) and

(6)

ds2 = ḡµνdx
µdxν = −

(

1− r+
r

)

dt2 +
dr2

(

1− r+
r

) + r2dΩ2
2 (7)

with r+ = 2M . Notice that (7) indicates the black hole solution without scalar hair.

For the stability analysis, we need the two linearized equations which describe the metric

perturbation hµν and scalar perturbation δφ propagating around (7). They are derived by

linearizing (3) and (6) as

δRµν(h) = 0, (8)
(

�̄+
λ2

4
R̄2

GB

)

δφ = 0. (9)

Here the overbar(¯) denotes computation based on the background spacetime (7). Impor-

tantly, we note that “−λ2

4
R̄2

GB” plays a role of not a mass m̃2 but an effective mass m̃2
eff for

δφ because it depends on r. In this sense, the GB coupling term is quite different from a

negative mass term like Vφ = −m2
Tφ

2/2 with m2
T > 0 in the tachyonic scalar theory.

For comparison, we would like to mention the Lichnerowicz-Ricci tensor equation around

the Schwarzschild black hole in the Einstein-Weyl gravity [15, 17, 16, 14]

SEW =

∫

d4x
√−g

[

γR− αCµνρσC
µνρσ

]

(10)

where Cµνρσ is the Weyl tensor. This theory implies the trace no-hair theorem of R = 0.

Considering the Schwarzschild black hole (7) and linearizing the Einstein equation leads to

the Lichnerowicz-Ricci tensor equation for the traceless and transverse Ricci tensor δRµν

as
(

∆L +m2
)

δRµν = 0, m2 =
γ

2α
, (11)

where the Lichnerowicz operator on the Schwarzschild background is given by

∆LδRµν = −�̄δRµν − 2R̄µρνσδR
ρσ. (12)
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Here, we emphasize that Eq.(11) is the tensor counterpart to the linearized scalar equation

(9). Actually, Eq.(11) describes a massive spin-2 mode (δRµν) with mass m propagating

on the black hole background. Rewriting Eq.(11) as (2α∆L + γ)δRµν = 0, one may recover

the linearized Einstein equation δRµν = 0 in the limit of α → 0.

3 Instability of black hole without scalar hair

Performing the stability analysis of the black hole, one uses firstly the linearized Einstein

equation (8). It turned out that the black hole is stable when making use of the Regge-

Wheeler prescription [11, 12]. In this case, a massless spin-2 mode starts with l = 2.

Now, let us consider the linearized scalar equation (6). Considering

δφ(t, r, θ, ϕ) =
u(r)

r
e−iωtYlm(θ, ϕ), (13)

and introducing a tortoise coordinate r∗ = r+r+ ln(r/r+−1) defined by dr∗ = dr/(1−r+/r),

the radial equation of (9) leads to the Schrödinger-type equation

d2u

dr2∗
+
[

ω2 − V (r)
]

u(r) = 0, (14)

where the potential V (r) is given by

V (r) =
(

1− 2M

r

)[2M

r3
+

l(l + 1)

r2
− 12λ2M2

r6

]

. (15)

Moreover, introducing the negative scalar potential Vφ = −m2
Tφ

2/2 instead of −λ2f(φ)R2
GB

in Eq.(1), the tachyonic scalar potential takes the form

Vt(r) =
(

1− 2M

r

)[2M

r3
+

l(l + 1)

r2
−m2

T

]

, (16)

which induces the tachyonic instability [3] because the sufficient condition for instability

(
∫∞

2M
drVt(r)/(1 − r+/r) < 0) is always satisfied with any mass m2

T > 0. In Minkowski

spacetimes, the tachyonic scalar equation takes the form of ϕ̈k(t) + (k2 − m2
T)ϕk(t) = 0,

leading to an exponentially growing solution ϕk(t) ∼ e
√

m2
T
−k2t for m2

T > k2 [21]. This is

an origin of instability arisen from the tachyonic mass.

In the case of s(l = 0)-mode, from the condition of
∫∞

2M
drV (r)/(1 − r+/r) < 0, one

may introduce a sufficient condition of an unstable bound for a mass parameter of scalar

(1/λ) [2]
M2

λ2
<

3

10
⇒ 0 <

r+
λ

< 1.095. (17)
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However, (17) is not a necessary and sufficient condition for instability. Observing Fig. 1

together with r+ = 1, one finds that three potentials V (r) have negative regions near the

horizon but they become positive after crossing the r-axis. Surely, these are not types of

Regge-Wheeler potentials which are positive definite outside the horizon [11, 12]. It might

show a new feature of instability, but the threshold of instability depends on the numerical

computations. Importantly, we find a similar behavior from the Zerlli-type potential

Vz(r) =
(1− 1

r
)

(1 +m2r3)2

[ 1

r3
− 3m2(4r − 3) + 3m4r3(2r − 3) +m6r6

]

(18)

for s(l = 0) of Ricci tensor perturbation around the Schwarzschild black hole with r+ = 1

in the Einstein-Weyl gravity (see FIG. 2 in [19]) derived from the linearized equation (11).

In addition, we would like to mention that such potentials exist around neutral black holes

(black holes without charge) in higher dimensions and the S-deformation used to prove the

stability of neutral black holes [22]. This implies that the stability analysis based on the

shape of the potential is regarded as a delicate issue. On the other hand, the tachyonic

potential Vt(r) indicates a quite different behavior: it develops positive region near the

horizon, while it approaches −0.04 as r → ∞ for mT = 0.2. This shows clearly that the

instability of black hole in ESGB theory is not just the tachyonic instability [3] because the

sufficient condition for instability (
∫∞

2M
drVt(r)/(1− r+/r) < 0) is always satisfied with any

mass m2
T > 0.

In order to determine the threshold of instability, one has to solve the second-order

differential equation numerically

d2u

dr2∗
−

[

Ω2 + V (r)
]

u(r) = 0, (19)

which may allow an exponentially growing mode of eΩt(ω = iΩ) as an unstable mode. Here

we choose two boundary conditions: a normalizable solution of u(∞) ∼ e−Ωr∗ at infinity

and a solution of u(r+) ∼ (r − r+)
Ωr+ near the horizon. By observing Fig. 2 together with

r+ = 1, 2, 3, we read off the unstable bound for scalar mass parameter (1/λ) as

0 <
1

λ
<

(1

λ

)th

≈ 1.174

r+
(20)

which implies that the threshold of instability is located at r+ = rc ≈ 1.174 which is greater

than 1.095 (sufficient condition for instability). This corresponds to the bifurcation point.
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Figure 1: The potentials as function of r ∈ [1,∞) for horizon radius r+ = 1 and l = 0.

The blue (bottom), red (middle), and green (top) curve represent potential V (r) of scalar

for mass parameter 1/λ = 1.095 (sufficient condition for instability), 1.174 (threshold of

instability), and 1.2 (stable case), respectively. These all have negative regions near the

horizon. However, the tachyonic potential (cyan curve) Vt(r) develops positive region near

horizon while it approaches −0.04 as r → ∞ for mT = 0.2.

Choosing λ = 1, the Schwarzschild black hole will be unstable if its horizon radius satisfies

the bound

r+ < rc ≈ 1.174. (21)

This implies that the Schwarzschild black hole whose radius is less than the critical radius

at the bifurcation point becomes unstable, whereas the black hole whose radius exceeds the

critical radius at the bifurcation point is stable.

On the other hand, from Fig. 3 based on Eq.(11), the GL instability mass bound for the

s(l = 0)-mode of linearized Ricci tensor δRtr in Einstein-Weyl gravity was given by [17, 14]

0 < m < mth ≈ 0.876

r+
. (22)

Here, selecting m = 1, one finds the bound for unstable (small) black holes [19]

r+ < rc ≈ 0.876. (23)
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1

Λ

0.0

0.5
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1.5
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W

Figure 2: Ω graphs as function of mass parameter 1/λ for small black holes of r+ = 1, 2, 3.

Here, one reads off the thresholds of instability (1/λ)th from the points that curves of Ω

intersect the positive 1
λ
-axis: (1/λ)th ≈1.174, 0.587, 0.294. The instability range decreases

as the horizon radius increases.

0.0 0.2 0.4 0.6 0.8
m

0.02

0.04

0.06

0.08

0.10
W

Figure 3: Plots of unstable modes (•) on three curves with the horizon radii r+ = 1, 2, 4. The

y(x)-axis denote Ω in eΩt (mass m of massive spin-2 mode). The smallest curve represents

r+ = 4, the medium denotes r+ = 2, and the largest one shows r+ = 1. Here the thresholds

of instability are located at mth ≈0.876, 0438, 0.219 which means that the instability region

is smaller and smaller as the horizon radius is large and larger.
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At this stage, we note that Fig. 2 drawn for s-mode of scalar perturbation is similar to FIG.1

in [23] for s-mode of Ricci tensor perturbation around the non-rotating BTZ black hole in

the new massive gravity where the GL instability is reinforced. In this sense, the instability

arising from the bound (20) is not the tachyonic instability [3], but the GL instability. We

stress that the tachyonic instability means negative mass squared [−m2
T in Eq.(16)] and

thus, there is no unstable bound for (positive) mass parameter (1/λ) like as (20).

4 Static scalar perturbation

In this section, we wish to develop the other criterion on checking the instability bound

(20). This can be achieved by exploring the static scalar solutions to the linearized equation

(9) on the background of Schwarzschild black hole. Considering the expression (13) with

ω = 0(Ω = 0), the radial equation of (9) for u(r) can be rewritten as

r5(r+ − r)

3r2+
u′′(r) +

r4

3r+
u′(r)−

[ r3

3r+
+

l(l + 1)r4

3r2+

]

u(r) = λ2u(r). (24)

Introducing a new coordinate z = r
r+
[z ∈ [1,∞)] and a new parameter λs = λ

r+
, Eq.(24)

can be rewritten as

z5(z − 1)

3
u′′(z) +

z4

3
u′(z)− z4

3

[1

z
+ l(l + 1)

]

u(z) = λ2
su(z), (25)

which is independent of horizon radius r+. Here we focus on obtaining the s(l = 0)-mode

solution. Because of the absence of analytic solution, one has to find a numerical solution.

For this purpose, we firstly consider the near-horizon Taylor expansion for u(z) as

u(z) = u+ + u′
+(z − 1) +

u′′
+

2
(z − 1)2 + · · · , (26)

which can be used to set data just outside the horizon for a numerical integration from the

horizon to the infinity. Here we note that the coefficients u′
+ and u′′

+ can be determined in

terms of a free parameter u+ as u′
+ = (1− 3λ2

s)u+ and u′′
+ = 3(3λ2

s
+2)

2λ6
s

u2
+.

On the other hand, an asymptotic form of u(z) near z = ∞ is given by

u(z) = u∞ +
u(1)

z
+

u(2)

z2
+ · · · . (27)

Similarly, we find the relations of u(1) = u∞/2 and u(2) = u∞/3.
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Figure 4: Graphs for scalar perturbation δφ as function of r/r+ for r+/λ ≈
1.174, 0.453, 0.280 which correspond to the number of nodes n = 0, 1, 2 in scalar profiles.

Now let us perform two integrations: from z = 1 to a matching point z = zm > 1 by

imposing the ingoing wave boundary condition at the horizon and from z = ∞ to z = zm by

imposing no outgoing wave at infinity. Then, a numerical solution could be constructed by

connecting the near-horizon form (26) to the asymptotic form (27) together with choosing

a proper parameter λs. We obtain a discrete spectrum of parameter: 1/λs = r+/λ ∈
[1.174, 0.453, 0.280, 0.202, · · · ]. In Fig. 4, these solutions are classified by order number

n = 0, 1, 2, 3, · · · which is identified with the number of nodes for δφ(z) = u(z)/z. Here,

a regular solution to equation (19) with Ω = 0 is found only when the parameter λ takes

a specific value r+/λ ≈ 1.174 (threshold of instability=the edge of domain of instability).

In other words, the n = 0 scalar mode without zero represents a stable black hole, while

the n = 1, 2 scalar modes with zero denote unstable black holes. This shows that one may

classify the black hole into unstable and stable black holes by solving the static linearized

scalar equation (25) without considering exponentially growing mode of eΩt.

Finally, we note that the Schwarzschild solution without scalar hair (φ̄ = 0) is allowed

for any value of λ, while the black hole solution with scalar hair (φ̄ 6= 0) exists when

λ/r+(λ
2/M2) belongs to a set of scalarization bands [3]. The key of instability is the

appearance of zeros in the scalar profiles. Actually, the discrete set corresponds to the

right-end values of scalarization bands for black hole with scalar hair. This shows a close

connection between instability of black hole without scalar hair and appearance of black

hole with scalar hair.
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5 Discussions

First of all, we summarize similar properties for black holes in ESGB theory and Einstein-

Weyl gravity in Table 1. This shows a strongly similar connection for Schwarzschild black

hole between ESGB theory and Einstein-Weyl gravity even though two theories are different.

The s-mode of scalar perturbation around the Schwarzschild black hole induces the

GL instability for the mass bound of 1/λ < 1.174/r+ in ESGB theory, while the s-mode of

Ricci tensor perturbation around the Schwarzschild black hole induces the instability for the

mass bound ofm < 0.876/r+ in Einstein-Weyl gravity. Also, the instability of Schwarzschild

black hole without scalar hair implies the Gauss-Bonnet black hole with scalar hair in ESGB

theory as the instability of Schwarzschild black hole without Ricci-tensor hair leads to the

non-Schwarzschild black hole with Ricci hair in Einstein-Weyl gravity.

From this observation, we conclude that the instability of the Schwarzschild black hole

in ESGB theory is interpreted as a scalar theory version of the GL instability for a small

black hole in the tensor theory of Einstein-Weyl gravity. This instability dose not belong

to the tachyonic instability because the scalar potential V (r) is similar to Vz(r) in (18) in

Ref.[19], but it is quite different from Vt(r) of the tachyon as was shown in Fig. 1.

Theory ESGB theory Einstein-Weyl gravity

Action SESGB in (1) SEW in (10)

BH without hair SBH with φ̄(r) = R̄µν = 0 SBH with R̄µν = 0

Linearized equation scalar equation (9) tensor equation (11)

GL instability mode s(l = 0)-mode of δφ s(l = 0)-mode of δRµν

Unstable mass bound 0 < 1
λ
< 1.174

r+
0 < m < 0.876

r+

Bifurcation point 1.174 0.876

Potential V (r) in (15) Vz(r) (18) in Ref.[19]

Small unstable SBH r+ < rc ≈ 1.174 for 1
λ
= 1 r+ < rc ≈ 0.876 for m = 1

BH with hair scalar hair in Refs.[2, 3] Ricci-tensor hair in Ref.[13]

Table 1: Similar Properties for Schwarzschild black hole (SBH) in ESGB theory and

Einstein-Weyl gravity.
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