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HILBERT SCHEMES OF TWO POINTS ON K3 SURFACES AND

CERTAIN RATIONAL CUBIC FOURFOLDS

GENKI OUCHI

Abstract. In this paper, we check that Fano schemes of lines on certain

rational cubic fourfolds are birational to Hilbert schemes of two points on K3
surfaces.

1. INTRODUCTION

1.1. Background and Result. The rationality problem of cubic fourfolds is one
of long standing problems in algebraic geometry. The following are known examples
of rational cubic fourfolds.

(i) special cubic fourfolds of discriminant 14 ([6], [17], [16])
(ii) special cubic fourfolds of discriminant 26, 38 ([16])
(iii) some cubic fourfolds containing a plane ([10])
(iv) some cubic fourfolds containing an elliptic ruled surface of degree 6 ([4])

Conjectually, very general cubic fourfolds are irrational. However, there are no
known irrational cubic fourfolds so far. Inspired by weak factorization theorem [1],
[18], Kuznetsov [14], [15] proposed the following conjecture.

Conjecture 1.1. ([14]) Let X be a cubic fourfold. Consider the semiorthogonal

decomposition

Db(X) = 〈AX ,OX ,OX(1),OX(2)〉.

Then X is rational if and only if AX is equivalent to a derived category of a K3

surface.

Conjecture 1.1 implies irrationality of very general cubic fourfolds since AX is
not equivalent to derived categories of K3 surfaces for a very general cubic fourfold
X . Kuznetsov [14] proved Conjecture 1.1 for Pfaffian cubic fourfolds, which are
members in (i), and cubic fourfolds in (iii). Hassett studied Noether-Lefschetz
divisors Cd of the moduli space C of cubic fourfolds. A cubic fourfold X belongs
to Cd if and only if there is a primitive sublattice K ⊂ H2,2(X,Z) generated by
H2, T ∈ H2,2(X,Z) such that d = discK. Here, H is the hyperplane class of X
and the discriminant discK of K is the determinant of an intersection matrix of
K. Elements in Cd are called special cubic fourfolds of discriminant d. Hassett
introduced the following two conditions on an integer d.

(∗) d > 6 and d ≡ 0 or 2 (mod 6)
(∗∗) d is not divisible by 4, 9, or any odd prime p ≡ 2 (mod 3)

The condition (∗) is shown to be equivalent to the non-emptyness of Cd in [10]. For
the condition (∗∗), the following theorem holds.
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Proposition 1.2. ([10]) Let d be an integer satisfying (∗). The integer d satisfies

(∗∗) if and only if for any cubic fourfold X ∈ Cd, there is a polarized K3 surface

S of degree d and a rank two discriminant d primitive sublattice K ⊂ H2,2(X,Z)
containing H2 with a Hodge isometry K⊥ ≃ H2

prim(S,Z)(−1). Here, the orthogonal

complement K⊥ is taken in H4(X,Z).

Addington and Thomas [5] compared Conjecture 1.1 with Proposition 1.2. They
proved that d satisfies (∗) and (∗∗) if and only if AX is equivalent to a derived
category of a K3 surface for a general X ∈ Cd. Hassett [10] and Addington [2]
studied the following condition.

(∗ ∗ ∗) The equation a2d = 2n2 + 2n+ 2 has an integral solution (a, n).

The condition (∗ ∗ ∗) is related to Fano schemes of lines. Galkin and Shinder [9]
computed classes of rational cubic fourfolds in the Grothendieck ring of varieties
based on the weak factorization theorem. They proved the following proposition.

Proposition 1.3. ([9]) Assume that the cancellation conjecture ([9], Conjecture
2.7) or the weaker condition ([9], Remark 7.2) holds. If a cubic fourfold X is

rational, then the Fano scheme of line on X is birational to the Hilbert scheme of

points on a K3 surface.

Borisov [7] found a counterexample of the cancelation conjecture. Moreover, it
is known that the weaker assumption is also false [13]. Addington [2] proved the
following proposition.

Proposition 1.4. ([2]) Let d be an integer satisfying (∗). The integer d satisfies

(∗∗) if and only if the Fano scheme F (X) of lines on X is birational to a moduli

space of stable sheaves on a K3 surface. The integer d satisfies (∗ ∗ ∗) if and only

if the Fano scheme F (X) of lines on X is birational to the Hilbert scheme of two

points on a K3 surface.

The condition (∗ ∗ ∗) is stronger than (∗∗). For example, the integer 74 satisfies
(∗∗), but it does not satisfy (∗ ∗ ∗). By Proposition 1.4, Fano schemes of lines on
rational cubic fourfolds in (i), (ii) are birational to the Hilbert schemes of points
on K3 surfaces.

The main result of this paper is the following.

Theorem 1.5. Let X be a rational cubic fourfold in (ii),(iii). Then the Fano

scheme of lines on X is birational to the Hilbert scheme of points on a K3 surface.

The proof of Theorem 1.5 will be done by computation for cohomology lattice.

1.2. Plan of the paper. In section 2, we study rational cubic fourfolds in (iii)
and (iv) and prepare lemmas. In section 3, we prove Theorem 1.5 .

1.3. Notation and Convention. We work over the complex number field C. Cu-
bic fourfolds means smooth hypersurfaces of degree three in P
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2. Preliminaries

2.1. Cubic fourfolds containing a plane. Let X be a cubic fourfold containing
a plane P . Take the blow up p : X̃ → X of the plane P in X . Then X̃ has a
structure of a quadric fibration π : X̃ → P2 (See [11]). Let F be the cohomology
class of a fiber of π and Q := p∗F the cohomology class of a quadric surface in X .
Let K8 := 〈H2, Q〉 be the sublattice of H2,2(X,Z) generated by classes H2 and Q.
The intersection matrix of K8 is

(

3 2
2 4

)

.

Hassett proved the following proposition.

Proposition 2.1. ([11]) The quadric fibration π : X̃ → P2 has a rational section

if and only if there is a cohomology class Σ ∈ H2,2(X,Z) such that Σ ·Q = 1.

Essentially, there are two types of intersection matrices of rank three sublattices
generated H2, Q and Σ in Proposition 2.1.

Lemma 2.2. ([5]) Assume that there is a cohomology class Σ ∈ H2,2(X,Z) such

that Σ ·Q = 1. Then we can choose Σ ∈ H2,2(X,Z) so that the intersection matrix

of the sublattice 〈H2, Q,Σ〉 is




3 2 0
2 4 1
0 1 2k





or




3 2 1
2 4 1
1 1 2k + 1





for some integer k. The first case occurs when disc〈H2, Q,Σ〉 = 16k − 3 and the

second case occurs when disc〈H2, Q,Σ〉 = 16k + 5.

2.2. Cubic fourfolds containing an elliptic ruled surface. Let X be a cubic
fourfold containing an elliptic ruled surface T of degree 6. Take the blow up p :
X̃ → X of the elliptic ruled surface T in X . Then X̃ has a structure of a del Pezzo
fibration π : X̃ → P2 (See [4]). Let E be the exceptional divisor of p. Then we have
the following diagram.

E
�

� j
//

q

��

X̃

p

��
π

��
❅

❅

❅

❅

❅

❅

❅

❅

T
�

�

// X P2

The cohomology group of X̃ has the decomposition

H∗(X̃,Z) = p∗H4(X,Z)⊕ j∗q
∗H2(T,Z).

Let F be the cohomology class of a fibre of π and S := p∗F the cohomology class of
a sextic del Pezzo surface in X . Let K18 := 〈H2, S〉 be the sublattice of H2,2(X,Z)
generated by classes H2 and S. The intersection matrix of K18 is

(

3 6
6 18

)

.

The following proposition is an analogue of Proposition 2.1.
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Proposition 2.3. ([3], [4]) The del Pezzo fibration π : X̃ → P2 has a rational

section if and only if there is a cohomology class Σ ∈ H2,2(X,Z) such that Σ · S =
1, 2.

Proof. By Proposition 8 in [4], π has a rational section if and only if there exists

a cohomology class Σ′ ∈ H2,2(X̃,Z) such that gcd(Σ′ · F, 6) = 1. The condition
gcd(Σ′ ·F, 6) = 1 is nothing but Σ′ ·F ≡ 1, 5 (mod 6). So it is enough to show that
the following two conditions are equivalent.

(1) There exists a cohomology class Σ ∈ H2,2(X,Z) such that Σ · S = 1, 2.

(2) There exists a cohomology class Σ′ ∈ H2,2(X̃,Z) such that Σ′ · F ≡ 1, 5
(mod 6).

The second cohomology group H2(T,Z) is generated by the class of a section e

and the class of a fibre f of the elliptic ruled surface T . Then we have e2 = f2 = 0,
ef = 1 and KT = −2e. Let HT be the restriction of the hyperplane class H to T .
By the proof of Theorem 2 in [4], H2

T = 6, HT ·KT = 6 hold. So we get HT = e+3f .
Let D := S∩T be the divisor class of T . Like the proof of Theorem 2 in [4], we can
obtain KT = HT −D, that is, D = 3e+ 3f . So we have p∗S = F + j∗q

∗(3e+ 3f).
First, we show that (1) implies (2). If Σ ·S = 1 holds, we can see that Σ′ ·F = 1,

where Σ′ = p∗Σ, by the projection formula. If Σ · S = 2 holds, we can see that
Σ′ · F ≡ 5 (mod 6), where Σ′ = p∗Σ + j∗q

∗e, by the direct computation. Next,
we show the converse. There are a cohomology class Σ ∈ H2,2(X,Z) and a, b ∈ Z

such that Σ′ = p∗Σ+ j∗q
∗(ae+ bf). Then we have Σ′ · F = Σ · S − 3(a+ b). Since

Σ′ · F ≡ 1, 5 (mod 6), we have Σ · S ≡ 1, 2, 4, 5 (mod 6). Replacing Σ by −Σ, we
have Σ · S ≡ 1, 2 (mod 6). Due to H2 · S = 6, adding multiples of H2, we can take
Σ such that Σ · S = 1, 2.

�

The following lemma is an analogue of Lemma 2.2.

Lemma 2.4. Assume that there is a cohomology class Σ ∈ H2,2(X,Z) such that Σ ·
S = c, where c = 0, 1. Then we can choose Σ ∈ H2,2(X,Z) so that the intersection

matrix of the sublattice 〈H2, S,Σ〉 is





3 6 0
6 18 c

0 c 2k





or




3 6 1
6 18 c

1 c 2k + 1





or




3 6 2
6 18 c

2 c 2k





for some integer k. These three cases occur when disc〈H2, S,Σ〉 = 36k− 3c2, 36k−
3c2 + 12c, 36k− 3c2 + 24c− 72 respectively.
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Proof. Write H2 · Σ = 3a + b, where a, b ∈ Z and 0 ≤ b ≤ 2. Replacing Σ by
Σ− 3aH2 + aS, we may assume that the intersection matrix is





3 6 b

6 18 c

b c Σ2



 .

Since Cdisc〈H2,Σ〉 is non-empty, we have disc〈H2,Σ〉 = 3Σ2 − b2 ≡ 0, 2 (mod 6). We
have the following:

• Σ2 = 2k for some k ∈ Z if b = 0
• Σ2 = 2k + 1 for some k ∈ Z if b = 1
• Σ2 = 2k for some k ∈ Z if b = 2.

Computing disc〈H2, S,Σ〉 for b = 0, 1, 2, we obtain the desired result. �

3. Main results

In this section, we give the proof of the main result. We use the notation in
section 3. Theorem 1.5 is deduced from Proposition 1.4 and the following theorem.

Theorem 3.1. Assume one of the followings:

(1) A cubic fourfold X contains a plane P with a cohomology class Σ ∈ H2,2(X,Z)
such that Σ ·Q = 1.

(2) A cubic fourfold X contains an elliptic ruled surface T of degree 6 with a

cohomology class Σ ∈ H2,2(X,Z) such that Σ · S = 1.
(3) A cubic fourfold X contains an elliptic ruled surface T of degree 6 with a

cohomology class Σ ∈ H2,2(X,Z) such that Σ · S = 2.

Then there is an integer d satisfying (∗ ∗ ∗) such that X ∈ Cd. In particular, F (X)
is birational to the Hilbert scheme of two points on a K3 surface.

Proof. (1) Choose Σ as in Lemma 2.2. Let Σ(x, y) := xQ + yΣ ∈ 〈H2, Q,Σ〉 and
d(x, y) = disc〈H2,Σ(x, y)〉 for integers x, y ∈ Z. Assume that disc〈H2, Q,Σ〉 =
16k − 3. Then we have d(x, y) = 8x2 + 6xy + 6ky2. Consider the equation

a2(8x2 + 6xy + 6ky2) = 2n2 + 2n+ 2.

For example, (a, x, y, n) = (1, 1 − 3k, 1, 2(1 − 3k)) gives an integral solution of
this equation. Assume that disc〈H2, Q,Σ〉 = 16k + 5. Then we have d(x, y) =
8x2+2xy+(6k+2)y2. Similarly, (a, y, z, n) = (1, 3k, 1, 6k) gives an integral solution
of the equation

a2(8x2 + 2xy + (6k + 2)y2) = 2n2 + 2n+ 2.

So we can take an integer d satisfying (∗ ∗ ∗) such that X ∈ Cd. The proofs on the
cases of (2) is similar.

(2) Using Lemma 2.4 as in the proof of (1), it is enough to prove the existence
of integral solutions of the following equations:

(a) a2(18x2 + 6xy + 6ky2) = 2n2 + 2n+ 2
(b) a2(18x2 − 6xy + (6k + 2)y2) = 2n2 + 2n+ 2
(c) a2(18x2 − 18xy + (5k − 4)y2) = 2n2 + 2n+ 2.

For examples, there are following integral solutions:

(a) (a, x, y, n) = (1, 4k − 1, 2, 12k− 2)
(b) (a, x, y, n) = (1, 4k + 1, 2, 12k+ 2)
(c) (a, x, y, n) = (1, 4k − 5, 2, 12k− 18).
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(3) Using Lemma 2.4 as in the proof of (1) and (2), it is enough to prove the
existence of integral solutions of the following equations:

(d) a2(18x2 + 12xy + 6ky2) = 2n2 + 2n+ 2
(e) a2(18x2 + (6k + 2)y2) = 2n2 + 2n+ 2
(f) a2(18x2 − 12xy + (6k − 4)y2) = 2n2 + 2n+ 2.

For examples, there are following integral solutions:

(d) (a, x, y, n) = (1, k − 1, 1, 3k − 2)
(e) (a, x, y, n) = (1, k, 1, 3k)
(f) (a, x, y, n) = (1, k − 1, 1, 3k − 4).

�
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fourfolds, arXiv:1504.05863.
[7] L. Borisov, Class of the affine line is a zero divisor in the Grothendieck ring, arXiv:1412.6194.
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